WO2018150742A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2018150742A1
WO2018150742A1 PCT/JP2017/046760 JP2017046760W WO2018150742A1 WO 2018150742 A1 WO2018150742 A1 WO 2018150742A1 JP 2017046760 W JP2017046760 W JP 2017046760W WO 2018150742 A1 WO2018150742 A1 WO 2018150742A1
Authority
WO
WIPO (PCT)
Prior art keywords
sipe
chamfered
chamfered portion
region
pneumatic tire
Prior art date
Application number
PCT/JP2017/046760
Other languages
English (en)
French (fr)
Inventor
卓範 植村
貴之 白石
啓 甲田
達朗 新澤
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to US16/486,798 priority Critical patent/US11701926B2/en
Priority to DE112017007086.4T priority patent/DE112017007086B4/de
Priority to CN201780086690.9A priority patent/CN110300668B/zh
Publication of WO2018150742A1 publication Critical patent/WO2018150742A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • B60C11/1263Depth of the sipe different within the same sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C11/1281Width of the sipe different within the same sipe, i.e. enlarged width portion at sipe bottom or along its length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • the present invention relates to a pneumatic tire, and more particularly, by devising a chamfered shape of a sipe, it is possible to achieve both improvement in driving stability performance on a dry road surface and improvement in driving stability performance on a wet road surface.
  • tires Regarding tires.
  • a plurality of sipes are formed on ribs defined by a plurality of main grooves.
  • drainage is ensured, and steering stability performance on a wet road surface is exhibited.
  • the rigidity of the rib is lowered, so that there is a disadvantage that the steering stability performance on the dry road surface is lowered.
  • An object of the present invention is to provide a pneumatic tire that can improve both the steering stability performance on the dry road surface and the steering stability performance on the wet road surface by devising the chamfered shape of the sipe. .
  • a pneumatic tire of the present invention has a plurality of main grooves extending in the tire circumferential direction in a tread portion, and an air including sipes extending in a tire width direction on ribs defined by the main grooves.
  • the sipe has a stepping side edge and a kicking side edge, and a chamfer portion shorter than the sipe length of the sipe is formed on each of the stepping side edge and the kicking side edge.
  • the chamfered portion of the tread portion the chamfered portion included in the center region located on the center side of the tread portion in the tire width direction when the ground contact width is divided into three equal parts
  • the total projected area A CE, and the total projection area A SH of the chamfered portion that is included in the shoulder regions located on both sides of the center region is characterized by satisfying the relation of A CE ⁇ A SH.
  • a chamfered portion shorter than the sipe sipe length is provided on each of the stepping side edge and the kicking side edge of the sipe.
  • the chamfered portion and the non-chamfered area are mixed on the stepping side edge and the kicking side edge, the above-described wet performance improvement effect can be fully enjoyed during braking and driving. Can do.
  • the area to be chamfered can be minimized as compared with a conventional chamfered sipe, it is possible to improve the steering stability performance on a dry road surface. As a result, it is possible to achieve both the improvement of the steering stability performance on the dry road surface and the improvement of the steering stability performance on the wet road surface.
  • the ground contact width is equally divided into three in the tire width direction and is located on the center side in the tire width direction. It is possible to improve the steering stability on a dry road surface by the total projected area a CE of the chamfered portion contained in the center region relatively small, the chamfered portion included in the shoulder regions located on both sides of the center region it is possible to improve the steering stability on a wet road surface by increasing relatively each total projected area a SH of. As a result, it is possible to improve the steering stability performance on the dry road surface and the steering stability performance on the wet road surface in a well-balanced manner.
  • the maximum depth x (mm) of the sipe and the maximum depth y (mm) of the chamfered portion satisfy the relationship of the following formula (1), and the sipe from the end located on the inner side in the tire radial direction of the chamfered portion.
  • the sipe width of the sipe is constant in the range to the groove bottom.
  • the area to be chamfered can be minimized as compared with a conventional sipe that has been chamfered, so that it is possible to improve steering stability performance on a dry road surface.
  • each total projected area A SH of the chamfered portion that is included in the total projected area A CE and shoulder region of the chamfered portion contained in the center region in the all chamfer preferably satisfies the following formula (2).
  • This makes it possible to improve the steering stability performance on the dry road surface and the steering stability performance on the wet road surface in a well-balanced manner. More preferably, it is in the range of 30% to 80%. 10% ⁇ (A SH ⁇ A CE ) / A CE ⁇ 100% ⁇ 100% (2)
  • sipes are arranged on two or more rows of ribs among a plurality of rows of ribs partitioned by the main groove. This makes it possible to improve the steering stability performance on the dry road surface and the steering stability performance on the wet road surface in a well-balanced manner.
  • all of the chamfered portions are configured by sipe chamfered portions. This makes it possible to improve the steering stability performance on the dry road surface and the steering stability performance on the wet road surface in a well-balanced manner.
  • the total volume S SH chamfered portion contained in a total volume S CE and shoulder region of the chamfered portion contained in the center region in the all chamfer preferably satisfies the following formula (3). This makes it possible to improve the steering stability performance on the dry road surface and the steering stability performance on the wet road surface in a well-balanced manner. More preferably, it is in the range of 3% to 8%. 1% ⁇ (S CE ⁇ S SH ) / S CE ⁇ 100% ⁇ 10% (3)
  • the projected area of the chamfered portion is an area measured when the chamfered portion is projected in the normal direction of the tread surface of the tread.
  • the volume of the chamfered portion is the volume of the region surrounded by the groove having the chamfered portion, the contour line of the chamfered portion, and the tread surface of the tread portion, in other words, the groove wall and the tread surface of the tread portion when chamfering is performed. This is the amount of scraping of the edge part made by.
  • the contact area is an area on the tire circumference defined by the contact width.
  • the contact width is the maximum linear distance in the tire axial direction at the contact surface with the plane when the tire is mounted on a regular rim and the regular internal pressure is filled and the tire is placed perpendicular to the plane and a regular load is applied. It is.
  • the “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set.
  • Regular internal pressure is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based.
  • the maximum air pressure is JATMA, and the table is “TIRE LOAD LIMITS AT VARIOUS” for TRA.
  • Regular load is the load determined by each standard for each tire in the standard system including the standard on which the tire is based.
  • the maximum load capacity is JATMA, and the table “TIRE LOAD LIMITS AT” is TRA.
  • the maximum value described in VARIOUS COLD INFRATION PRESURES is “LOAD CAPACITY” if it is ETRTO, and if the tire is a passenger car, the load is equivalent to 88% of the load.
  • FIG. 1 is a meridian cross-sectional view showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing an example of a tread portion of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 3 is a perspective view showing a part of the tread portion of the pneumatic tire according to the present invention.
  • FIG. 4 is a plan view showing a part of the tread portion of the pneumatic tire according to the present invention.
  • FIG. 5 is a plan view showing a sipe formed in the tread portion of FIG. 4 and its chamfered portion. 6 is a cross-sectional view taken along the line XX of FIG. FIG.
  • FIG. 7 is a plan view showing a modification of the tread portion of the pneumatic tire according to the embodiment of the present invention.
  • FIGS. 8A and 8B are cross-sectional views showing another modification of the sipe formed in the tread portion of the pneumatic tire according to the present invention and its chamfered portion.
  • 9 (a) and 9 (b) are cross-sectional views showing another modification of the sipe formed in the tread portion of the pneumatic tire according to the present invention and its chamfered portion.
  • FIG. 10 is a plan view showing another modified example of the sipe and its chamfered portion of the pneumatic tire according to the present invention.
  • FIGS. 11A and 11B are plan views showing another modification of the sipe of the pneumatic tire and the chamfered portion thereof according to the present invention.
  • 12 is a cross-sectional view taken along line YY in FIG.
  • CL is a tire center line.
  • E is a ground end
  • TW is a ground width.
  • a pneumatic tire includes a tread portion 1 that extends in the tire circumferential direction and has an annular shape, and a pair of sidewall portions that are disposed on both sides of the tread portion 1. 2 and 2 and a pair of bead portions 3 and 3 disposed on the inner side in the tire radial direction of the sidewall portions 2.
  • the carcass layer 4 is mounted between the pair of bead portions 3 and 3.
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded from the inside of the tire to the outside around the bead core 5 disposed in each bead portion 3.
  • a bead filler 6 made of a rubber composition having a triangular cross-section is disposed on the outer periphery of the bead core 5.
  • a plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1.
  • These belt layers 7 include a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and are arranged so that the reinforcing cords cross each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set, for example, in the range of 10 ° to 40 °.
  • a steel cord is preferably used as the reinforcing cord of the belt layer 7.
  • At least one belt cover layer 8 in which reinforcing cords are arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is disposed on the outer peripheral side of the belt layer 7.
  • an organic fiber cord such as nylon or aramid is preferably used.
  • FIG. 2 shows an example of a tread portion of a pneumatic tire according to an embodiment of the present invention.
  • the main groove 9 includes a pair of inner main grooves 9A and 9A located on both sides of the tire center line CL, and a pair of outer main grooves 9B and 9B located on the outermost side in the tire width direction.
  • a rib 10 is defined in the tread portion 1 by these four main grooves 9.
  • the rib 10 is located on the tire center line CL, the center rib 100A, a pair of intermediate ribs 100B and 100C located on the outer side in the tire width direction of the center rib 100A, and the intermediate ribs 100B and 100C on the outer side in the tire width direction.
  • a sipe 11 having a pair of chamfered portions 12 is formed on each of the center rib 100A and the intermediate ribs 100B and 100C.
  • the sipe 11 includes a sipe 110A disposed on the center rib 100A and sipe 110B and 110C disposed on the intermediate ribs 100B and 100C, respectively.
  • the chamfered portion 12 includes a chamfered portion 120A formed on the sipe 110A, a chamfered portion 120B formed on the sipe 110B, and a chamfered portion 120C formed on the sipe 110C.
  • a plurality of sipes 110A inclined in the same direction with respect to the tire width direction are formed at intervals in the tire circumferential direction. Both ends of these sipes 110A communicate with the inner main groove 9A. That is, the sipe 110A is an open sipe.
  • a plurality of sipes 110B inclined in the same direction with respect to the tire width direction are formed at intervals in the tire circumferential direction.
  • One end of each sipe 110B communicates with the inner main groove 9A, and the other end communicates with the outer main groove 9B. That is, the sipe 110B is an open sipe.
  • a plurality of sipes 110C that are inclined in the same direction with respect to the tire width direction are formed in the intermediate rib 100C at intervals in the tire circumferential direction.
  • One end of each sipe 110C communicates with the inner main groove 9A, and the other end communicates with the outer main groove 9B. That is, the sipe 110C is an open sipe.
  • the shoulder ribs 100D and 100E have a plurality of lug grooves 200 extending in the tire width direction, inclined in the same direction with respect to the tire width direction, and disconnected from the outer main groove 9B in the tire circumferential direction. It is formed at intervals.
  • the lug groove 200 includes a lug groove 200A formed in the shoulder rib 100D and a lug groove 200B formed in the shoulder rib 100E.
  • the rib 10 includes a plurality of sipes 11 extending in the tire width direction and a block 101 partitioned by the plurality of sipes 11.
  • the plurality of blocks 101 are arranged so as to be aligned in the tire circumferential direction.
  • the sipe 11 is a narrow groove having a groove width of 1.5 mm or less.
  • the sipe 11 has a curved shape as a whole, and is formed in the rib 10 at intervals in the tire circumferential direction. Further, the sipe 11 has an edge 11 ⁇ / b> A that is a stepping side with respect to the rotation direction R and an edge 11 ⁇ / b> B that is a kicking side with respect to the rotation direction R. A chamfered portion 12 is formed on each of the step-on edge 11A and the kick-out edge 11B.
  • the chamfered portion 12 includes a chamfered portion 12A that is a stepping side with respect to the rotation direction R, and a chamfered portion 12B that is a kicking side with respect to the rotation direction R.
  • a non-chamfered region 13 where no other chamfered portion exists is present at a portion facing these chamfered portions 12. That is, there is a non-chamfered area 13B on the side facing the chamfered part 12A that is the kicking side with respect to the rotation direction R, and a part that faces the chamfered part 12B is the non-chamfered area 13A that is on the stepping side with respect to the rotational direction R. There is. In this way, the chamfered portion 12 and the non-chamfered region 13 where no other chamfered portion exists are arranged adjacent to the stepping-side edge 11A and the kicking-out edge 11B of the sipe 11, respectively.
  • the length in the tire width direction is set as a sipe length L and chamfered lengths L A and L B , respectively.
  • These sipes length L, a chamfer length L A, L B is sipes 11 or chamfer 12A, in the tire width direction from each of the one end of 12B to the other end in length.
  • the chamfer lengths L A and L B of the chamfered portions 12A and 12B are both shorter than the sipe length L of the sipe 11.
  • FIG. 6 is a view perpendicular to the extending direction of the sipe 11 and with the tread portion cut away in the vertical direction.
  • the maximum depth of the sipe 11 is x (mm) and the maximum depth of the chamfered portion 12 is y (mm)
  • the maximum depth y (mm) is greater than the maximum depth x (mm).
  • the sipe 11 and the chamfered portion 12 are formed so as to be shallow.
  • the maximum depth x of the sipe 11 is preferably 3 mm to 8 mm.
  • the sipe width W of the sipe 11 is substantially constant in the range from the end 121 located on the inner side in the tire radial direction of the chamfered portion 12 to the groove bottom of the sipe 11.
  • the sipe width W is, for example, not including the height of the ridge in the sipe width when a ridge is present on the groove wall of the sipe 11, or as the sipe width of the sipe 11 moves toward the groove bottom. If it is gradually narrowed, the narrowed portion is not included in the sipe width, and is the width of the sipe 11 that is substantially measured.
  • the region located on the center side in the tire width direction is defined as a center region CE, and the regions located on both sides of the center region CE are respectively shoulder regions.
  • the total projected area ACE of all the chamfered portions included in the center region CE and The total projected area A SH of all the chamfered portions included in the shoulder region SH satisfies the relationship of A CE ⁇ A SH .
  • sipes 11 included in the shoulder region SH Increase the total number of the sipe 11 included in the center region CE, or provide a chamfered portion in a groove (for example, sipe, lug groove) included in the shoulder region SH in addition to the sipe 11. be able to.
  • the total number of sipes 11 included in the center region CE and each shoulder region SH is the same, while the shapes of the chamfered portions 12 included in the center region CE and the shoulder region SH are greatly different.
  • the total projected area of the chamfered portion 12 included in the shoulder region SH can be relatively increased to satisfy the relationship of A CE ⁇ A SH .
  • the tread portion 1 is partitioned by four main grooves 9 extending in the tire circumferential direction, and a center rib 100A positioned on the tire center line CL and a pair of intermediate ribs 100B positioned on the outer side in the tire width direction. , 100C and a pair of shoulder ribs 100D, 100E located on the outer sides in the tire width direction of the intermediate ribs 100B, 100C.
  • the center rib 100A is formed with a sipe 110A having a chamfered portion 120A
  • the intermediate ribs 100B and 100C are respectively formed with sipe 110B and 110C having chamfered portions 120B and 120C
  • the shoulder ribs 100D and 100E have lug grooves 200A and 200B is formed.
  • the chamfered portions 120A, 120B, and 120C have outer edge contour lines that are not parallel to the ridge lines of the sipes 110A, 110B, and 110C, respectively, and the chamfered portion 120A is chamfered as it goes from the center side of the rib 10 toward the main groove 9 side. While the width of 120A decreases, the chamfered portions 120B and 120C increase in width from the center side of the rib 10 toward the main groove 9 side. Furthermore, since the chamfered portion is provided only in the sipe 11, all the chamfered portions formed in the grooves other than the main groove 9 (the sipe 11 and the lug groove 200) are constituted by the chamfered portions 120A, 120B, and 120C. .
  • a chamfered portion 12 shorter than the sipe length L of the sipe 11 is provided on each of the stepping-side edge 11A and the kicking-out edge 11B of the sipe 11, and faces the chamfered portions 12 in the sipe 11. Since there is a non-chamfered area 13 in which no other chamfered part exists in the part, the drainage effect is improved based on the chamfered part 12, and at the same time, a water film is formed by the edge effect in the non-chamfered area 13 where the chamfered part 12 is not provided. It can be effectively removed. Therefore, it is possible to greatly improve the steering stability performance on the wet road surface.
  • the chamfered portion 12 and the non-chamfered region 13 where no chamfered portion is present are mixed in the stepping-side edge 11A and the kicking-out edge 11B, the above-described wet performance improvement effect can be obtained at the time of braking and It can be enjoyed to the maximum when driving. Further, in all the chamfered portions formed in grooves other than the main groove 9 and including at least the chamfered portion 12 of the sipe 11, the center in the tire width direction is obtained when the ground contact width TW is equally divided into three in the tire width direction.
  • the maximum depth x (mm) and the maximum depth y (mm) may be configured to satisfy the relationship of the following formula (1).
  • the sipe 11 and the chamfered portion 12 so as to satisfy the relationship of the following formula (1), the chamfering area can be minimized as compared with a conventional sipe that has been chamfered. It is possible to improve the steering stability performance in As a result, it is possible to achieve both improvement in steering stability performance on a dry road surface and improvement in steering stability performance on a wet road surface.
  • the total projected area A SH of the chamfered portion that is included in the total projected area A CE and the shoulder region SH of the chamfered portion contained in the center region CE preferably satisfies the following formula (2). More preferably, it is in the range of 30% to 80%.
  • the total volume S SH chamfered portion contained in a total volume S CE and shoulder region SH of the chamfered portion contained in the center region CE is able to satisfy the relationship of S CE ⁇ S SH preferred . While ensuring all relatively small to surface pressure on the total volume S SH chamfered portion included in the shoulder region SH, relatively large total projected area A SH all chamfered portion included in the shoulder region SH By doing so, it becomes possible to improve the steering stability performance on the dry road surface and the steering stability performance on the wet road surface in a well-balanced manner.
  • the total volume S SH chamfered portion contained in a total volume S CE and shoulder region SH of the chamfered portion contained in the center region CE preferably satisfies the following formula (3). More preferably, it is in the range of 3% to 8%.
  • the volume of the chamfered portion 12 of the sipe 11 included in the center region CE is relatively increased. While increasing the size, as shown in FIGS. 9A and 9B, the volume of the chamfered portion 12 of the sipe 11 included in the shoulder region SH is relatively reduced to satisfy the relationship of S CE ⁇ S SH. can do.
  • FIGS. 8A and 8B show another modification of the sipe formed on the tread portion of the pneumatic tire according to the present invention and its chamfered portion.
  • a line segment connecting the end portions 121 and 122 of the chamfered portion 12 in a cross-sectional view perpendicular to the longitudinal direction of the sipe 11 is defined as a chamfered reference line RL.
  • At least one of the chamfered portions 12A and 12B has a contour OL that is convex toward the inner side in the tire radial direction from the chamfered reference line RL.
  • a region surrounded by the contour line OL, the sipe 11 and the tread portion 1 is defined as a chamfered region Ra, and a region surrounded by the chamfer reference line RL, the sipe 11 and the tread surface is defined as a reference region Rb. That is, a fan-shaped area surrounded by two dotted lines and an outline OL shown in FIGS. 8A and 8B is a chamfered area Ra, and two lines shown in FIGS. 8A and 8B.
  • a triangular area surrounded by the dotted line and the chamfered reference line RL is the reference area Rb.
  • the cross-sectional area a of the chamfered region Ra is equal to or larger than the cross-sectional area b of the reference region Rb.
  • the cross-sectional area a of the chamfered region Ra is preferably larger than the cross-sectional area b of the reference region Rb.
  • a line segment connecting the end portions 121 and 122 of the chamfered portion 12 is defined as a chamfered reference line RL.
  • At least one of the chamfered portions 12A and 12B has a contour OL that is convex toward the outer side in the tire radial direction from the chamfered reference line RL.
  • a region surrounded by the contour line OL, the sipe 11 and the tread portion 1 is defined as a chamfered region Ra, and a region surrounded by the chamfer reference line RL, the sipe 11 and the tread surface is defined as a reference region Rb.
  • the area surrounded by the two dotted lines and the outline OL shown in FIGS. 9A and 9B is the chamfered area Ra, and the two dotted lines shown in FIGS.
  • a triangular area surrounded by the chamfer reference line RL is the reference area Rb.
  • the cross-sectional area a of the chamfered area Ra is smaller than the cross-sectional area b of the reference area Rb.
  • the sipe 11 is arranged on two or more rows of ribs 10 among the plurality of rows 10 of ribs 10 partitioned by the main groove 9.
  • all of the chamfered portions formed in grooves other than the main groove 9 and including at least the chamfered portion 12 of the sipe 11 may be configured by the chamfered portion 12 of the sipe 11.
  • the total projected area difference between the total projected area A SH all chamfer included in the total projected area A CE and the shoulder region SH of all chamfers contained in the center region CE Is the total projected area difference (A) between the total projected area A CE ′ of the chamfered portion 12 of the sipe 11 included in the center region CE and the total projected area A SH ′ of the chamfered portion 12 of the sipe 11 included in the shoulder region SH.
  • SH' - ACE ' since all the chamfered portions are configured by the chamfered portion 12, it is possible to improve the steering stability performance on the dry road surface and the steering stability performance on the wet road surface in a well-balanced manner.
  • FIG. 10 shows another modification of the sipe formed in the tread portion of the pneumatic tire according to the present invention and its chamfered portion.
  • the sipe 11 shown in FIG. 10 is formed to have an inclination angle ⁇ with respect to the tire circumferential direction.
  • the inclination angle ⁇ is an angle formed by a phantom line (a dotted line shown in FIG. 10) connecting both ends of the sipe 11 and the side surface of the block 101.
  • the inclination angle ⁇ includes an acute angle and an obtuse angle.
  • FIG. 10 shows the inclination angle ⁇ on the acute angle side.
  • the inclination angle ⁇ targets the inclination angle of the sipe 11 at an intermediate pitch in the rib 10.
  • the inclination angle ⁇ on the acute angle side is preferably 40 ° to 80 °, and more preferably 50 ° to 70 °.
  • the pattern rigidity can be improved, and the steering stability performance on the dry road surface can be further improved.
  • the inclination angle ⁇ is smaller than 40 °, the uneven wear resistance performance deteriorates, and if it exceeds 80 °, the pattern rigidity cannot be sufficiently improved.
  • the side having the inclination angle ⁇ on the acute angle side of the sipe 11 is defined as the acute angle side
  • the side having the inclination angle ⁇ on the obtuse angle side of the sipe 11 is defined as the obtuse angle side.
  • the chamfered portions 12A and 12B formed on the edges 11A and 11B of the sipe 11 are formed on the acute angle side of the sipe 11. As described above, the chamfering is performed on the acute angle side of the sipe 11 so that the uneven wear resistance can be further improved.
  • the chamfered portions 12A and 12B may be formed on the obtuse angle side of the sipe 11. Since the chamfered portion 12 is formed on the obtuse angle side of the sipe 11 as described above, the edge effect is increased and the steering stability performance on the wet road surface can be further improved.
  • the overall shape of the sipe 11 described above is curved, it is possible to improve the steering stability performance on the wet road surface. Furthermore, a part of the sipe 11 is curved or viewed in plan view. It may have a bent shape. By forming the sipe 11 in this manner, the total amount of the edges 11A and 11B in each sipe 11 is increased, and it becomes possible to improve the steering stability performance on the wet road surface.
  • the chamfered portions 12 are arranged one by one on the stepping side edge 11 ⁇ / b> A and the kicking side edge 11 ⁇ / b> B of the sipe 11.
  • the chamfered portion 12 By arranging the chamfered portion 12 in this way, it is possible to improve uneven wear resistance.
  • two or more chamfered portions 12 are formed at the stepping-side edge 11A and the kicking-out edge 11B of the sipe 11, the number of nodes increases and the uneven wear resistance tends to be deteriorated.
  • the maximum width of the chamfered portion 12 measured along the direction orthogonal to the sipe 11 is defined as a width W1.
  • the maximum width W1 of the chamfered portion 12 is preferably 0.8 to 5.0 times the sipe width W of the sipe 11, and more preferably 1.2 to 3.0 times.
  • the maximum width W1 of the chamfered portion 12 is smaller than 0.8 times the sipe width W of the sipe 11, the improvement of the steering stability performance on the wet road surface is insufficient, and if it is larger than 5.0 times on the dry road surface. The steering stability performance will be insufficient.
  • the outer edge of the chamfered portion 12 in the longitudinal direction is formed in parallel with the extending direction of the sipe 11.
  • the chamfered portion 12 extends in parallel with the sipe 11 to improve uneven wear resistance, and at the same time, improves steering stability performance on dry road surfaces and steering stability performance on wet road surfaces. It becomes possible to make it.
  • the end portions of the chamfered portions 12A and 12B located near the main groove 9 communicate with the main grooves 9 located on both sides of the rib 10 as shown in FIG. Since the chamfered portions 12A and 12B are formed in this way, it is possible to further improve the steering stability performance on the wet road surface.
  • the end portions of the chamfered portions 12 ⁇ / b> A and 12 ⁇ / b> B located near the main groove 9 may end in the rib 10 without communicating with the main groove 9. Since the chamfered portions 12A and 12B are formed in this way, it is possible to further improve the steering stability performance on the dry road surface.
  • 11 (a) and 11 (b) show another modification of the sipe formed on the tread portion of the pneumatic tire according to the present invention and its chamfered portion.
  • the chamfered portion 12A and the chamfered portion 12B are formed so that both of the chamfered portions 12A and 12B overlap at the center of the sipe 11.
  • the length in the tire width direction of the overlap portion which is a portion where the chamfered portion 12A and the chamfered portion 12B overlap, is defined as an overlap length L1.
  • the sipe length of the overlap length L1 when both of the chamfered portion 12A and the chamfered portion 12B do not overlap and are spaced apart by a certain distance, the sipe length of the overlap length L1.
  • the ratio to L is expressed as a negative value.
  • the overlap length L1 of the overlap portion is preferably ⁇ 30% to 30% of the sipe length L, and more preferably ⁇ 15% to 15%.
  • FIG. 12 is cut out along the extending direction of the sipe.
  • the sipe 11 has a bottom raised portion 14 at a part in the length direction.
  • the bottom raising portion 14 there are a bottom raising portion 14 ⁇ / b> A located at the center of the sipe 11 and a bottom raising portion 14 ⁇ / b> B located at both ends of the sipe 11.
  • the bottom raising portion 14 of the sipe 11 may be formed at an end portion and / or other than the end portion of the sipe 11.
  • the maximum height from the groove bottom of the sipe 11 to the upper surface of the raised portion 14A is defined as a height H 14A .
  • the height H 14A is preferably 0.2 to 0.5 times the maximum depth x of the sipe 11, and more preferably 0.3 to 0.4 times.
  • the height H 14A of the bottom raising portion 14A disposed in other than the end portions of the sipe 11 is set to an appropriate height, it is possible to improve the rigidity of the block 101, to maintain the drainage effect Therefore, it is possible to improve the steering stability performance on the wet road surface.
  • the rigidity of the block 101 cannot be sufficiently improved. If the height H 14A is larger than 0.5 times, the maneuvering on the wet road surface is not possible. The stability performance cannot be improved sufficiently.
  • the maximum height from the groove bottom of the sipe 11 to the upper surface of the raised portion 14B is defined as a height H 14B .
  • the height H 14B is preferably 0.6 to 0.9 times the maximum depth x of the sipe 11, and more preferably 0.7 to 0.8 times.
  • the height H 14B of the raised bottom portion 14B which is formed at an end portion of the sipe 11 is set to an appropriate height, it is possible to improve the rigidity of the block 101, the steering stability on a dry road surface Can be improved.
  • the height H 14B is smaller than 0.6 times the maximum depth x of the sipe 11, the rigidity of the block 101 cannot be sufficiently improved.
  • the height H 14B is larger than 0.9 times, the maneuvering on the wet road surface is not possible. The stability performance cannot be improved sufficiently.
  • the raised lengths L 14A and L 14B of the raised portions 14A and 14B are preferably 0.3 to 0.7 times the sipe length L, and more preferably 0.4 to 0.6 times. .
  • the raised bottom portion 14A, raised length L 14A of 14B, by appropriately setting the L 14B, can be both improved steering stability in improving the wet road surface and steering stability on a dry road surface It becomes.
  • a pneumatic tire having a tire size of 245 / 40R19, having a plurality of main grooves extending in the tire circumferential direction in the tread portion, and having sipes extending in the tire width direction on ribs defined by the main grooves, arrangement of chamfers (both sides) or one side), the sipe length L and the chamfer length L a, the length of L B, the presence or absence of chamfering of the portion opposed to the chamfered portion, all of the total projected area a CE and shoulder region of any of the chamfered portion of the center region the magnitude of the total projected area a SH chamfer, the sipe width, the total projected area difference of all of the chamfered portions of all of the chamfered portion and the shoulder region of the center region [(a SH -A CE) / a CE ⁇ 100%] , The number of ribs provided with sipes having chamfered portions, the total projected area difference between the chamfered portions of the sipe in the center region
  • the sensory evaluation regarding the steering stability performance on the dry road surface and the steering stability performance on the wet road surface was performed under the condition of the air pressure of 260 kPa by attaching each test tire to the rim size 19 ⁇ 8.5J wheel and mounting it on the vehicle.
  • the evaluation results are shown as an index with Conventional Example 1 as 100. The larger the index value, the better the steering stability performance on the dry road surface and the steering stability performance on the wet road surface.
  • the tires of Examples 1 to 7 have a steering stability performance on a dry road surface and a steering stability performance on a wet road surface by devising the shape of the chamfered portion formed in the sipe. And improved at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

サイプの面取り形状を工夫することにより、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上の両立を可能にした空気入りタイヤを提供する。サイプ11は踏み込み側のエッジ11Aと蹴り出し側のエッジ11Bを有し、これらエッジ11A,11Bのそれぞれにサイプ11のサイプ長さLよりも短い面取り部12とが形成されており、サイプ11における各面取り部12に対向する部位には他の面取り部が存在しない非面取り領域13があり、主溝9以外の溝に形成された面取り部であって少なくともサイプ11の面取り部12を含む全ての面取り部において、接地幅TWをタイヤ幅方向に3等分したときにタイヤ幅方向中央側に位置するセンター領域CEに含まれる面取り部の総投影面積ACEと、センター領域CEの両側に位置するショルダー領域SHに含まれる面取り部の各総投影面積ASHとがACE<ASHの関係を満たす。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関し、更に詳しくは、サイプの面取り形状を工夫することにより、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上の両立を可能にした空気入りタイヤに関する。
 従来、空気入りタイヤのトレッドパターンにおいて、複数の主溝により区画されるリブには複数本のサイプが形成されている。このようなサイプを設けることにより排水性を確保し、ウエット路面での操縦安定性能を発揮するようにしている。しかしながら、ウエット路面での操縦安定性能の改善のためトレッド部に多数のサイプを配置した場合、リブの剛性が低下するため、ドライ路面での操縦安定性能が低下するという欠点がある。
 また、空気入りタイヤにおいて、トレッドパターンにサイプを形成しかつその面取りを施したものが種々提案されている(例えば、特許文献1参照)。サイプを形成しかつその面取りを施した場合、面取りの形状によってはエッジ効果を喪失することがあり、また、面取りの寸法によってはドライ路面での操縦安定性能或いはウエット路面での操縦安定性能の向上が不十分となることがある。
日本国特表2013-537134号公報
 本発明の目的は、サイプの面取り形状を工夫することにより、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上の両立を可能にした空気入りタイヤを提供することにある。
 上記目的を達成するための本発明の空気入りタイヤは、トレッド部にタイヤ周方向に延びる複数本の主溝を有し、該主溝により区画されるリブにタイヤ幅方向に延びるサイプを備える空気入りタイヤにおいて、前記サイプは踏み込み側のエッジと蹴り出し側のエッジを有し、これら踏み込み側のエッジと蹴り出し側のエッジのそれぞれに前記サイプのサイプ長さよりも短い面取り部が形成されており、前記サイプにおける各面取り部に対向する部位には他の面取り部が存在しない非面取り領域があり、前記主溝以外の溝に形成された面取り部であって少なくとも前記サイプの面取り部を含む全ての面取り部において、接地幅をタイヤ幅方向に3等分したときに前記トレッド部のタイヤ幅方向中央側に位置するセンター領域に含まれる面取り部の総投影面積ACEと、該センター領域の両側に位置するショルダー領域に含まれる面取り部の各総投影面積ASHとがACE<ASHの関係を満たすことを特徴とする。
 本発明では、主溝により区画されたリブにタイヤ幅方向に延びるサイプを備える空気入りタイヤにおいて、サイプの踏み込み側のエッジと蹴り出し側のエッジのそれぞれにサイプのサイプ長さよりも短い面取り部を設ける一方で、該サイプにおける各面取り部に対向する部位には他の面取り部が存在しない非面取り領域があることで、面取り部に基づいて排水効果を改善すると同時に、非面取り領域ではエッジ効果により水膜を効果的に除去することができる。そのため、ウエット路面での操縦安定性能を大幅に向上させることが可能となる。しかも、踏み込み側のエッジと蹴り出し側のエッジのそれぞれに面取り部と非面取り領域が混在しているため、上述のようなウエット性能の改善効果を制動時及び駆動時において最大限に享受することができる。また、従来の面取りを施したサイプと比較して、面取りを施す面積を最小限とすることができるため、ドライ路面での操縦安定性能を向上させることが可能となる。その結果、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上とを両立させることが可能となる。更に、主溝以外の溝に形成された面取り部であって少なくともサイプの面取り部を含む全ての面取り部において、接地幅をタイヤ幅方向に3等分したときにタイヤ幅方向中央側に位置するセンター領域に含まれる面取り部の総投影面積ACEを相対的に小さくすることによりドライ路面での操縦安定性能を向上させることができると共に、センター領域の両側に位置するショルダー領域に含まれる面取り部の各総投影面積ASHを相対的に大きくすることによりウエット路面での操縦安定性能を向上させることができる。その結果、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 本発明では、サイプの最大深さx(mm)と面取り部の最大深さy(mm)は下記式(1)の関係を満たし、面取り部のタイヤ径方向内側に位置する端部からサイプの溝底までの範囲においてサイプのサイプ幅が一定であることが好ましい。これにより、従来の面取りを施したサイプと比較して、面取りを施す面積を最小限とすることができるため、ドライ路面での操縦安定性能を向上させることが可能となる。その結果、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上を両立させることが可能となる。
 x×0.1≦y≦x×0.3+1.0 (1)
 本発明では、上記全ての面取り部においてセンター領域に含まれる面取り部の総投影面積ACEとショルダー領域に含まれる面取り部の各総投影面積ASHは下記式(2)を満たすことが好ましい。これにより、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。より好ましくは、30%~80%の範囲である。
 10%≦(ASH-ACE)/ACE×100%≦100% (2)
 本発明では、主溝により区画される複数列のリブのうち2列以上のリブにサイプが配置されていることが好ましい。これにより、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 本発明では、上記全ての面取り部はサイプの面取り部から構成されていることが好ましい。これにより、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 本発明では、上記全ての面取り部においてセンター領域に含まれる面取り部の総体積SCEとショルダー領域に含まれる面取り部の各総体積SSHとはSCE≧SSHの関係を満たすことが好ましい。ショルダー領域の面取り部の総体積SSHを相対的に小さくして面圧を確保しながら、ショルダー領域の面取り部の総投影面積ASHを相対的に大きくすることで、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 本発明では、上記全ての面取り部においてセンター領域に含まれる面取り部の総体積SCEとショルダー領域に含まれる面取り部の各総体積SSHは下記式(3)を満たすことが好ましい。これにより、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。より好ましくは、3%~8%の範囲である。
 1%≦(SCE-SSH)/SCE×100%≦10% (3)
 本発明において、面取り部の投影面積とは、面取り部をトレッド部の踏面の法線方向に投影したときに計測される面積である。一方、面取り部の体積とは、面取り部を有する溝と面取り部の輪郭線とトレッド部の踏面とに囲まれる領域の体積であり、言い換えれば、面取りを施すにあたって溝壁とトレッド部の踏面とがなすエッジ部分の削り取り量である。
 本発明において、接地領域とは、接地幅にて規定されるタイヤ周上の領域である。接地幅は、タイヤを正規リムにリム組みして正規内圧を充填した状態で該タイヤを平面に対して垂直に置き正規荷重を加えたときの平面との接触面におけるタイヤ軸方向の最大直線距離である。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”である。「正規荷重」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”であり、タイヤが乗用車の場合には前記荷重の88%に相当する荷重とする。
図1は本発明の実施形態からなる空気入りタイヤを示す子午線断面図である。 図2は本発明の実施形態からなる空気入りタイヤのトレッド部の一例を示す平面図である。 図3は本発明に係る空気入りタイヤのトレッド部の一部を示す斜視図である。 図4は本発明に係る空気入りタイヤのトレッド部の一部を示す平面図である。 図5は図4のトレッド部に形成されたサイプ及びその面取り部を示す平面図である。 図6は図4のX-X矢視断面図である。 図7は本発明の実施形態からなる空気入りタイヤのトレッド部の変形例を示す平面図である。 図8(a),(b)は本発明に係る空気入りタイヤのトレッド部に形成されたサイプ及びその面取り部の他の変形例を示す断面図である。 図9(a),(b)は本発明に係る空気入りタイヤのトレッド部に形成されたサイプ及びその面取り部の他の変形例を示す断面図である。 図10は本発明に係る空気入りタイヤのサイプ及びその面取り部の他の変形例を示す平面図である。 図11(a),(b)は本発明に係る空気入りタイヤのサイプ及びその面取り部の他の変形例を示す平面図である。 図12は図4のY-Y矢視断面図である。
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。なお、図1,図2においてCLはタイヤ中心線である。図2において、Eは接地端であり、TWは接地幅である。
 図1に示すように、本発明の実施形態からなる空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部1と、該トレッド部1の両側に配置された一対のサイドウォール部2,2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3,3とを備えている。
 一対のビード部3,3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上には断面三角形状のゴム組成物からなるビードフィラー6が配置されている。
 一方、トレッド部1におけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。ベルト層7の補強コードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層8が配置されている。ベルトカバー層8の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。
 なお、上述したタイヤ内部構造は空気入りタイヤにおける代表的な例を示すものであるが、これに限定されるものではない。
 図2は本発明の実施形態からなる空気入りタイヤのトレッド部の一例を示すものである。トレッド部1には、タイヤ周方向に延びる4本の主溝9が形成されている。主溝9は、タイヤ中心線CLの両側に位置する一対の内側主溝9A,9Aと、タイヤ幅方向最外側に位置する一対の外側主溝9B,9Bとを含んでいる。これら4本の主溝9により、トレッド部1には、リブ10が区画されている。リブ10は、タイヤ中心線CL上に位置するセンターリブ100Aと、センターリブ100Aのタイヤ幅方向外側に位置する一対の中間リブ100B,100Cと、各中間リブ100B,100Cのタイヤ幅方向外側に位置する一対のショルダーリブ100D,100Eとを含んでいる。
 センターリブ100Aと中間リブ100B,100Cには、それぞれ一対の面取り部12を有するサイプ11が形成されている。サイプ11は、センターリブ100Aに配置されたサイプ110Aと、中間リブ100B,100Cのそれぞれに配置されたサイプ110B,110Cとを含んでいる。面取り部12は、サイプ110Aに形成された面取り部120Aと、サイプ110Bに形成された面取り部120Bと、サイプ110Cに形成された面取り部120Cとを含んでいる。
 センターリブ100Aには、タイヤ幅方向に対して同一方向に傾斜する複数本のサイプ110Aがタイヤ周方向に間隔をおいて形成されている。これらサイプ110Aは両端が内側主溝9Aに対してそれぞれ連通している。即ち、サイプ110Aはオープンサイプである。
 中間リブ100Bには、タイヤ幅方向に対して同一方向に傾斜する複数本のサイプ110Bがタイヤ周方向に間隔をおいて形成されている。これらサイプ110Bは一端が内側主溝9Aに対して連通する一方で他端が外側主溝9Bに対して連通している。即ち、サイプ110Bはオープンサイプである。中間リブ100Cには、タイヤ幅方向に対して同一方向に傾斜する複数本のサイプ110Cがタイヤ周方向に間隔をおいて形成されている。これらサイプ110Cは一端が内側主溝9Aに対して連通する一方で他端が外側主溝9Bに対して連通している。即ち、サイプ110Cはオープンサイプである。
 ショルダーリブ100D,100Eには、タイヤ幅方向に延在し、タイヤ幅方向に対して同一方向に傾斜し、外側主溝9Bに対して非連通となる複数本のラグ溝200がタイヤ周方向に間隔をおいて形成されている。ラグ溝200は、ショルダーリブ100Dに形成されたラグ溝200Aと、ショルダーリブ100Eに形成されたラグ溝200Bとを含んでいる。
 図3~図6は本発明に係る空気入りタイヤのトレッド部の一部を示すものである。図3~図5において、Tcはタイヤ周方向、Twはタイヤ幅方向を示している。図3に示すように、リブ10はタイヤ幅方向に延びる複数本のサイプ11と、複数本のサイプ11により区画されたブロック101とを含んでいる。複数のブロック101はタイヤ周方向に並ぶように配置されている。サイプ11とは溝幅が1.5mm以下の細溝である。
 図4に示すように、サイプ11は全体の形状が湾曲状を有し、リブ10内においてタイヤ周方向に間隔をおいて形成されている。また、サイプ11は、回転方向Rに対して踏み込み側となるエッジ11Aと、回転方向Rに対して蹴り出し側となるエッジ11Bとを有している。踏み込み側のエッジ11Aと蹴り出し側のエッジ11Bのそれぞれに面取り部12が形成されている。
 面取り部12は、回転方向Rに対して踏み込み側となる面取り部12Aと、回転方向Rに対して蹴り出し側となる面取り部12Bとを有している。これら面取り部12に対向する部位には他の面取り部が存在しない非面取り領域13が存在している。即ち、面取り部12Aに対向する部位に回転方向Rに対して蹴り出し側となる非面取り領域13Bがあり、面取り部12Bに対向する部位に回転方向Rに対して踏み込み側となる非面取り領域13Aがある。このようにサイプ11の踏み込み側のエッジ11Aと蹴り出し側のエッジ11Bのそれぞれに面取り部12と他の面取り部が存在しない非面取り領域13が隣接するように配置されている。
 図5に示すように、サイプ11及び面取り部12A,12Bにおいて、タイヤ幅方向の長さをそれぞれサイプ長さL、面取り長さLA,LBとする。これらサイプ長さL、面取り長さLA,LBは、サイプ11又は面取り部12A,12Bのそれぞれの一方の端部から他方の端部までのタイヤ幅方向の長さである。面取り部12A,12Bの面取り長さLA,LBはいずれもサイプ11のサイプ長さLよりも短く形成されている。
 図6はサイプ11の延在方向に対して直交しかつトレッド部を鉛直方向に切り欠いたものである。図6に示すように、サイプ11の最大深さをx(mm)、面取り部12の最大深さをy(mm)とするとき、最大深さx(mm)より最大深さy(mm)が浅くなるようにサイプ11と面取り部12は形成されている。サイプ11の最大深さxは3mm~8mmが好ましい。面取り部12のタイヤ径方向内側に位置する端部121からサイプ11の溝底までの範囲においてサイプ11のサイプ幅Wが実質的に一定である。このサイプ幅Wは、例えば、サイプ11の溝壁に突条が存在する場合にはその突条の高さをサイプ幅に含めないものとし、或いはサイプ11のサイプ幅が溝底に向かうにしたがって徐々に狭くなっている場合には狭くなっている部分はサイプ幅に含めないものとして、実質的に測定されるサイプ11の幅とする。
 上記空気入りタイヤにおいて、図2に示すように接地幅TWを3等分したとき、タイヤ幅方向中央側に位置する領域をセンター領域CEとし、センター領域CEの両側に位置する領域をそれぞれショルダー領域SHとする。このとき、主溝9以外の溝に形成された面取り部であって少なくともサイプ11の面取り部12を含む全ての面取り部において、センター領域CEに含まれる全ての面取り部の総投影面積ACEとショルダー領域SHに含まれる全ての面取り部の各総投影面積ASHとはACE<ASHの関係を満たす。図2の態様では、サイプ11のみに面取り部が設けられているため、主溝9以外の溝(サイプ11及びラグ溝200)に形成された全ての面取り部は面取り部12で構成されており、各ショルダー領域SHに含まれる全ての面取り部120B及び面取り部120Cの総投影面積ASHはそれぞれセンター領域CEに含まれる全ての面取り部120A,120B,120Cの総投影面積ACEより大きくなるように構成されている。
 このようにショルダー領域SHに含まれる全ての面取り部の総投影面積ASHをセンター領域CEに含まれる全ての面取り部の総投影面積ACEより大きくする方法として、ショルダー領域SHに含まれるサイプ11の総本数をセンター領域CEに含まれるサイプ11の総本数より多くすることや、サイプ11の他にショルダー領域SHに含まれる溝(例えば、サイプ、ラグ溝)に面取り部を設けること等を挙げることができる。また、図7に示すように、センター領域CEと各ショルダー領域SHに含まれるサイプ11の総本数を同数とする一方でセンター領域CEとショルダー領域SHに含まれる面取り部12の形状を大幅に異ならせて、ショルダー領域SHに含まれる面取り部12の総投影面積を相対的に大きくし、ACE<ASHの関係を満たすように構成することもできる。
 図7において、トレッド部1は、タイヤ周方向に延びる4本の主溝9により区画され、タイヤ中心線CL上に位置するセンターリブ100Aと、そのタイヤ幅方向外側に位置する一対の中間リブ100B,100Cと、各中間リブ100B,100Cのタイヤ幅方向外側に位置する一対のショルダーリブ100D,100Eからなる。センターリブ100Aには面取り部120Aを有するサイプ110Aが形成され、中間リブ100B,100Cには面取り部120B,120Cを有するサイプ110B,110Cがそれぞれ形成され、ショルダーリブ100D,100Eにはラグ溝200A,200Bがそれぞれ形成されている。また、面取り部120A,120B,120Cはそれぞれサイプ110A,110B,110Cの稜線に対して平行でない外縁輪郭線を有し、面取り部120Aはリブ10の中央側から主溝9側に向かうにつれて面取り部120Aの幅が小さくなる一方で、面取り部120B,120Cはリブ10の中央側から主溝9側に向かうにつれて面取り部120B,120Cの幅が大きくなっている。更に、サイプ11のみに面取り部が設けられているため、主溝9以外の溝(サイプ11及びラグ溝200)に形成された全ての面取り部は面取り部120A,120B,120Cから構成されている。即ち、センター領域CEに含まれる全ての面取り部120A,120B,120Cの総投影面積ACEと、各ショルダー領域SHに含まれる全ての面取り部120B及び面取り部120Cの総投影面積ASHはそれぞれACE<ASHの関係を満たしている。
 上記空気入りタイヤでは、サイプ11の踏み込み側のエッジ11Aと蹴り出し側のエッジ11Bのそれぞれにサイプ11のサイプ長さLよりも短い面取り部12を設け、サイプ11における各面取り部12に対向する部位には他の面取り部が存在しない非面取り領域13があることで、面取り部12に基づいて排水効果を改善すると同時に、面取り部12を設けていない非面取り領域13ではエッジ効果により水膜を効果的に除去することができる。そのため、ウエット路面での操縦安定性能を大幅に向上させることが可能となる。しかも、踏み込み側のエッジ11Aと蹴り出し側のエッジ11Bのそれぞれに面取り部12と面取り部が存在しない非面取り領域13が混在しているため、上述のようなウエット性能の改善効果を制動時及び駆動時において最大限に享受することができる。更に、主溝9以外の溝に形成された面取り部であって少なくともサイプ11の面取り部12を含む全ての面取り部において、接地幅TWをタイヤ幅方向に3等分したときにタイヤ幅方向中央側に位置するセンター領域CEに含まれる面取り部の総投影面積ACEを相対的に小さくすることによりドライ路面での操縦安定性能を向上させることができると共に、センター領域CEの両側に位置するショルダー領域SHに含まれる面取り部の各総投影面積ASHを相対的に大きくすることによりウエット路面での操縦安定性能を向上させることができる。その結果、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 上記空気入りタイヤにおいて、最大深さx(mm)と最大深さy(mm)が下記式(1)の関係を満たすように構成すると良い。下記式(1)の関係を満たすようにサイプ11と面取り部12を設けることで、従来の面取りを施したサイプと比較して、面取りを施す面積を最小限とすることができるため、ドライ路面での操縦安定性能を向上させることが可能となる。その結果、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上を両立させることが可能となる。ここで、y<x×0.1であると面取り部12に基づく排水効果が不十分になり、逆にy>x×0.3+1.0であるとリブ10の剛性低下によりドライ路面での操縦安定性能が低下することになる。特に、y≦x×0.3+0.5の関係を満足すると良い。
 x×0.1≦y≦x×0.3+1.0 (1)
 上記全ての面取り部において、センター領域CEに含まれる面取り部の総投影面積ACEとショルダー領域SHに含まれる面取り部の各総投影面積ASHは下記式(2)を満たすことが好ましい。より好ましくは、30%~80%の範囲である。このようにセンター領域CEに含まれる全ての面取り部の総投影面積ACEとショルダー領域SHに含まれる全ての面取り部の各総投影面積ASHの総投影面積差を適度に設定することで、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とを同時に改善することが可能となる。
 10%≦(ASH-ACE)/ACE×100%≦100% (2)
 一方、上記全ての面取り部において、センター領域CEに含まれる面取り部の総体積SCEとショルダー領域SHに含まれる面取り部の各総体積SSHはSCE≧SSHの関係を満たすことが好ましい。ショルダー領域SHに含まれる全ての面取り部の総体積SSHを相対的に小さくして面圧を確保しながら、ショルダー領域SHに含まれる全ての面取り部の総投影面積ASHを相対的に大きくすることで、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 特に、上記全ての面取り部において、センター領域CEに含まれる面取り部の総体積SCEとショルダー領域SHに含まれる面取り部の各総体積SSHは下記式(3)を満たすことが好ましい。より好ましくは、3%~8%の範囲である。このようにセンター領域CEに含まれる全ての面取り部の総体積SCEとショルダー領域SHに含まれる全ての面取り部の各総体積SSHを適度に設定することで、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 1%≦(SCE-SSH)/SCE×100%≦10% (3)
 上述のようにセンター領域CEに含まれる全ての面取り部の総体積SCEをショルダー領域SHに含まれる全ての面取り部の総体積SSHより大きくする方法として、例えば、センター領域CEとショルダー領域SHに含まれるサイプ11の面取り部12のそれぞれの断面形状を異ならせて、図8(a),(b)に示すようにセンター領域CEに含まれるサイプ11の面取り部12の体積を相対的に大きくする一方で図9(a),(b)に示すようにショルダー領域SHに含まれるサイプ11の面取り部12の体積を相対的に小さくし、SCE≧SSHの関係を満たすように構成することができる。
 図8(a),(b)及び図9(a),(b)は本発明に係る空気入りタイヤのトレッド部に形成されたサイプ及びその面取り部の他の変形例を示すものである。図8(a),(b)に示すように、サイプ11の長手方向に垂直な断面視において、面取り部12の端部121,122を結ぶ線分を面取り基準線RLとする。そして、面取り部12A,12Bの少なくとも一方がこの面取り基準線RLよりもタイヤ径方向内側に向かって凸となる輪郭線OLを有している。この輪郭線OLとサイプ11とトレッド部1の踏面とに囲まれた領域を面取り領域Raとし、面取り基準線RLとサイプ11と踏面とに囲まれた領域を基準領域Rbとする。即ち、図8(a),(b)に示す2本の点線と輪郭線OLとに囲まれた扇形の領域が面取り領域Raであり、図8(a),(b)に示す2本の点線と面取り基準線RLとに囲まれた三角形の領域が基準領域Rbである。このとき、面取り領域Raの断面積aは基準領域Rbの断面積bと同等又は基準領域Rbの断面積bよりも大きくなっている。特に、面取り領域Raの断面積aは基準領域Rbの断面積bよりも大きいことが好ましい。
 図9(a),(b)に示すように、サイプ11の長手方向に垂直な断面視において、面取り部12の端部121,122を結ぶ線分を面取り基準線RLとする。そして、面取り部12A,12Bの少なくとも一方がこの面取り基準線RLよりもタイヤ径方向外側に向かって凸となる輪郭線OLを有している。この輪郭線OLとサイプ11とトレッド部1の踏面とに囲まれた領域を面取り領域Raとし、面取り基準線RLとサイプ11と踏面とに囲まれた領域を基準領域Rbとする。即ち、図9(a),(b)に示す2本の点線と輪郭線OLとに囲まれた領域が面取り領域Raであり、図9(a),(b)に示す2本の点線と面取り基準線RLとに囲まれた三角形の領域が基準領域Rbである。このとき、面取り領域Raの断面積aは基準領域Rbの断面積bよりも小さくなっている。
 上記空気入りタイヤにおいて、主溝9により区画される複数列のリブ10のうち2列以上のリブ10にサイプ11が配置されていることが好ましい。このように2列以上のリブ10にサイプ11を配置することで、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 特に、主溝9以外の溝に形成された面取り部であって少なくともサイプ11の面取り部12を含む全ての面取り部はサイプ11の面取り部12から構成されていると良い。このような場合、センター領域CEに含まれる全ての面取り部の総投影面積ACEとショルダー領域SHに含まれる全ての面取り部の総投影面積ASHとの総投影面積差(ASH-ACE)は、センター領域CEに含まれるサイプ11の面取り部12の総投影面積ACE´とショルダー領域SHに含まれるサイプ11の面取り部12の総投影面積ASH´との総投影面積差(ASH´-ACE´)と一致する。このように上記全ての面取り部が面取り部12から構成されていることで、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とをバランス良く改善することが可能となる。
 図10は本発明に係る空気入りタイヤのトレッド部に形成されたサイプ及びその面取り部の他の変形例を示すものである。図10に示すサイプ11は、タイヤ周方向に対して傾斜角度θを有するように形成されている。この傾斜角度θは、サイプ11の両端部を結ぶ仮想線(図10で示す点線)とブロック101の側面がなす角度をいい、傾斜角度θには鋭角側の傾斜角度と鈍角側の傾斜角度が存在し、図10においては鋭角側の傾斜角度θを示している。また、傾斜角度θは、リブ10内の中間ピッチにおけるサイプ11の傾斜角度を対象とする。このとき、鋭角側の傾斜角度θは、40°~80°であることが好ましく、より好ましくは50°~70°であると良い。このようにサイプ11をタイヤ周方向に対して傾斜させることで、パターン剛性を向上させることができ、ドライ路面での操縦安定性能をより一層向上させることが可能となる。ここで、傾斜角度θが40°より小さいと耐偏摩耗性能が悪化し、80°を超えるとパターン剛性を十分に向上させることができない。
 本発明では、サイプ11の鋭角側の傾斜角度θを有する側を鋭角側とし、サイプ11の鈍角側の傾斜角度θを有する側を鈍角側とする。サイプ11のエッジ11A,11Bにそれぞれ形成された面取り部12A,12Bはサイプ11の鋭角側に形成されている。このようにサイプ11の鋭角側に面取りが施されていることで、耐偏摩耗性能をより一層改善することが可能となる。或いは、面取り部12A,12Bがサイプ11の鈍角側に形成されていても良い。このように面取り部12がサイプ11の鈍角側に形成されていることで、エッジ効果が大きくなり、ウエット路面での操縦安定性能をより一層向上させることが可能となる。
 本発明では、上述するサイプ11の全体の形状が湾曲状であることによって、ウエット路面での操縦安定性能を向上させることが可能となるが、更に、サイプ11の一部が平面視において湾曲或いは屈曲する形状を有していても良い。このようにサイプ11が形成されていることで、各サイプ11におけるエッジ11A,11Bの総量が増大し、ウエット路面での操縦安定性能を向上させることが可能となる。
 面取り部12は、図10に示すように、サイプ11の踏み込み側のエッジ11Aと蹴り出し側のエッジ11Bにそれぞれ1箇所ずつ配置されている。このように面取り部12が配置されていることで、耐偏摩耗性能を向上させることが可能となる。ここで、面取り部12が、サイプ11の踏み込み側のエッジ11Aと蹴り出し側のエッジ11Bにそれぞれ2箇所以上形成されると節が多くなり、耐偏摩耗性能を悪化させてしまう傾向がある。
 また、サイプ11に直交する方向に沿って測定される面取り部12の幅の最大値を幅W1とする。このとき、面取り部12の最大幅W1がサイプ11のサイプ幅Wの0.8~5.0倍とすることが好ましく、より好ましくは1.2倍~3.0倍であると良い。このように面取り部12の最大幅W1をサイプ幅Wに対して適度に設定することで、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上を両立させることが可能となる。ここで、面取り部12の最大幅W1が、サイプ11のサイプ幅Wの0.8倍より小さいとウエット路面での操縦安定性能の向上が不十分となり、5.0倍より大きいとドライ路面での操縦安定性能の向上が不十分となる。
 更に、面取り部12の長手方向の外縁部はサイプ11の延在方向と平行に形成されている。このように面取り部12がサイプ11と平行に延在することで、耐偏摩耗性能を向上させるができると共に、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上を両立させることが可能となる。
 面取り部12A,12Bの主溝9寄りに位置する端部は、図10に示すように、リブ10の両側に位置する主溝9にそれぞれ連通している。このように面取り部12A,12Bが形成されていることで、ウエット路面での操縦安定性能をより一層向上させることが可能となる。或いは、面取り部12A,12Bの主溝9寄りに位置する端部が、主溝9に連通せずにリブ10内で終端していてもよい。このように面取り部12A,12Bが形成されていることで、ドライ路面での操縦安定性能をより一層向上させることが可能となる。
 図11(a),(b)は本発明に係る空気入りタイヤのトレッド部に形成されたサイプ及びその面取り部の他の変形例を示すものである。面取り部12Aと面取り部12Bは、図11(a)に示すように、サイプ11の中央部において面取り部12A,12Bの双方の一部が重なり合うように形成されている。ここで、面取り部12Aと面取り部12Bが重なり合った部分であるオーバーラップ部のタイヤ幅方向の長さをオーバーラップ長さL1とする。一方、図11(b)に示すように、面取り部12Aと面取り部12Bの双方の一部が重ならず、一定の間隔をあけて離間している場合、オーバーラップ長さL1のサイプ長さLに対する割合はマイナス値で表す。オーバーラップ部のオーバーラップ長さL1は、サイプ長さLの-30%~30%であることが好ましく、より好ましくは-15%~15%であると良い。このように面取り部12におけるオーバーラップ長さL1をサイプ長さLに対して適度に設定することで、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上を両立させることが可能となる。ここで、オーバーラップ長さL1が30%より大きいとドライ路面での操縦安定性能の向上が不十分となり、-30%より小さいとウエット路面での操縦安定性能の向上が不十分となる。
 図12はサイプの延在方向に沿って切り欠いたものである。図12に示すように、サイプ11はその長さ方向の一部に底上げ部14を有している。底上げ部14としては、サイプ11の中央部に位置する底上げ部14Aと、サイプ11の両端部に位置する底上げ部14Bが存在する。このようにサイプ11に底上げ部14を設けることで、ドライ路面での操縦安定性能の向上とウエット路面での操縦安定性能の向上を両立させることが可能となる。サイプ11の底上げ部14はサイプ11の端部及び/又は端部以外に形成しても良い。
 サイプ11に形成された底上げ部14においてタイヤ径方向の高さを高さH14とする。サイプ11の端部以外に形成された底上げ部14Aにおいて、サイプ11の溝底から底上げ部14Aの上面までの高さの最大値を高さH14Aとする。この高さH14Aは、サイプ11の最大深さxの0.2~0.5倍であることが好ましく、より好ましくは0.3~0.4倍が良い。このようにサイプ11の端部以外に配置された底上げ部14Aの高さH14Aが適度な高さに設定されることで、ブロック101の剛性を向上させることができると共に、排水効果を維持することができるため、ウエット路面での操縦安定性能を向上させることが可能となる。ここで、高さH14Aが、サイプ11の最大深さxの0.2倍より小さいとブロック101の剛性を十分に向上させることができず、0.5倍より大きいとウエット路面での操縦安定性能を十分に向上させることができない。
 サイプ11の両端部に形成された底上げ部14Bにおいて、サイプ11の溝底から底上げ部14Bの上面までの高さの最大値を高さH14Bとする。この高さH14Bは、サイプ11の最大深さxの0.6~0.9倍であることが好ましく、より好ましくは0.7~0.8倍が良い。このようにサイプ11の端部に形成された底上げ部14Bの高さH14Bが適度な高さに設定されることで、ブロック101の剛性を向上させることができ、ドライ路面での操縦安定性能を向上させることが可能となる。ここで、高さH14Bが、サイプ11の最大深さxの0.6倍より小さいとブロック101の剛性を十分に向上させることができず、0.9倍より大きいとウエット路面での操縦安定性能を十分に向上させることができない。
 また、サイプ11の底上げ部14においてタイヤ幅方向の長さを底上げ長さL14とする。底上げ部14A,14Bの底上げ長さL14A,L14Bは、サイプ長さLに対して0.3~0.7倍であることが好ましく、より好ましくは0.4~0.6倍が良い。このように底上げ部14A,14Bの底上げ長さL14A,L14Bを適度に設定することで、ドライ路面での操縦安定性能を向上とウエット路面での操縦安定性能の向上を両立させることが可能となる。
 タイヤサイズ245/40R19で、トレッド部にタイヤ周方向に延びる複数本の主溝を有し、主溝により区画されるリブにタイヤ幅方向に延びるサイプを備える空気入りタイヤにおいて、面取りの配置(両側又は片側)、サイプ長さLと面取り長さLA,LBの長短、面取り部に対向する部位の面取りの有無、センター領域の全ての面取り部の総投影面積ACEとショルダー領域の全ての面取り部の総投影面積ASHとの大小、サイプ幅、センター領域の全ての面取り部とショルダー領域の全ての面取り部の総投影面積差 [(ASH-ACE)/ACE×100%]、面取り部を有するサイプを備えたリブの列数、センター領域のサイプの面取り部とショルダー領域のサイプの面取り部の総投影面積差 [(ASH´-ACE´)/ACE´×100%]、センター領域の全ての面取り部の総体積SCEとショルダー領域の全ての面取り部の総体積SSHとの大小、センター領域の全ての面取り部とショルダー領域の全ての面取り部の総体積差 [(SCE-SSH)/SCE×100%]を表1及び表2のように設定した従来例1,2及び実施例1~7のタイヤを製作した。
 なお、表1及び表2において、「センター領域の全ての面取り部とショルダー領域の全ての面取り部の総投影面積差」と「センター領域のサイプの面取り部とショルダー領域のサイプの面取り部の総投影面積差」の値が一致する場合、主溝以外の溝に形成された面取り部であって少なくともサイプの面取り部を含む全ての面取り部がサイプの面取り部のみで構成されていることを意味する。
 これら試験タイヤについて、テストドライバーによるドライ路面での操縦安定性能及びウエット路面での操縦安定性能に関する官能評価を実施し、その結果を表1及び表2に併せて示した。
 ドライ路面での操縦安定性能及びウエット路面での操縦安定性能に関する官能評価は、各試験タイヤをリムサイズ19×8.5Jホイールに組み付けて車両に装着し、空気圧260kPaの条件にて行った。評価結果は、従来例1を100とする指数にて示した。この指数値が大きいほどドライ路面での操縦安定性能及びウエット路面での操縦安定性能が優れていることを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これら表1及び表2から判るように、サイプに形成された面取り部の形状を工夫することで、実施例1~7のタイヤは、ドライ路面での操縦安定性能とウエット路面での操縦安定性能とが同時に改善されていた。
 1 トレッド部
 2 サイドウォール部
 3 ビード部
 9 主溝
 10 リブ
 11 サイプ
 11A 踏み込み側のエッジ
 11B 蹴り出し側のエッジ
 12 面取り部
 12A 踏み込み側の面取り部
 12B 蹴り出し側の面取り部
 13 非面取り領域
 13A 踏み込み側の非面取り領域
 13B 蹴り出し側の非面取り領域
 CE センター領域
 SH ショルダー領域
 E 接地端
 TW 接地幅

Claims (7)

  1.  トレッド部にタイヤ周方向に延びる複数本の主溝を有し、該主溝により区画されるリブにタイヤ幅方向に延びるサイプを備える空気入りタイヤにおいて、
     前記サイプは踏み込み側のエッジと蹴り出し側のエッジを有し、これら踏み込み側のエッジと蹴り出し側のエッジのそれぞれに前記サイプのサイプ長さよりも短い面取り部が形成されており、前記サイプにおける各面取り部に対向する部位には他の面取り部が存在しない非面取り領域があり、前記主溝以外の溝に形成された面取り部であって少なくとも前記サイプの面取り部を含む全ての面取り部において、接地幅をタイヤ幅方向に3等分したときに前記トレッド部のタイヤ幅方向中央側に位置するセンター領域に含まれる面取り部の総投影面積ACEと、該センター領域の両側に位置するショルダー領域に含まれる面取り部の各総投影面積ASHとがACE<ASHの関係を満たすことを特徴とする空気入りタイヤ。
  2.  前記サイプの最大深さx(mm)と前記面取り部の最大深さy(mm)が下記式(1)の関係を満たし、前記面取り部のタイヤ径方向内側に位置する端部から前記サイプの溝底までの範囲において前記サイプのサイプ幅が一定であることを特徴とする請求項1に記載の空気入りタイヤ。
     x×0.1≦y≦x×0.3+1.0 (1)
  3.  前記全ての面取り部において前記センター領域に含まれる面取り部の総投影面積ACEと前記ショルダー領域に含まれる面取り部の各総投影面積ASHが下記式(2)を満たすことを特徴とする請求項1又は2に記載の空気入りタイヤ。
     10%≦(ASH-ACE)/ACE×100%≦100% (2)
  4.  前記主溝により区画される複数列のリブのうち2列以上のリブに前記サイプが配置されていることを特徴とする請求項1~3のいずれかに記載の空気入りタイヤ。
  5.  前記全ての面取り部が前記サイプの面取り部から構成されていることを特徴とする請求項4に記載の空気入りタイヤ。
  6.  前記全ての面取り部において前記センター領域に含まれる面取り部の総体積SCEと前記ショルダー領域に含まれる面取り部の各総体積SSHとがSCE≧SSHの関係を満たすことを特徴とする請求項1~5のいずれかに記載の空気入りタイヤ。
  7.  前記全ての面取り部において前記センター領域に含まれる面取り部の総投影面積SCEと前記ショルダー領域に含まれる面取り部の各総投影面積SSHが下記式(3)を満たすことを特徴とする請求項6に記載の空気入りタイヤ。
     1%≦(SCE-SSH)/SCE×100%≦10% (3)
PCT/JP2017/046760 2017-02-17 2017-12-26 空気入りタイヤ WO2018150742A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/486,798 US11701926B2 (en) 2017-02-17 2017-12-26 Pneumatic tire
DE112017007086.4T DE112017007086B4 (de) 2017-02-17 2017-12-26 Luftreifen
CN201780086690.9A CN110300668B (zh) 2017-02-17 2017-12-26 充气轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-027543 2017-02-17
JP2017027543A JP6828495B2 (ja) 2017-02-17 2017-02-17 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2018150742A1 true WO2018150742A1 (ja) 2018-08-23

Family

ID=63169452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046760 WO2018150742A1 (ja) 2017-02-17 2017-12-26 空気入りタイヤ

Country Status (5)

Country Link
US (1) US11701926B2 (ja)
JP (1) JP6828495B2 (ja)
CN (1) CN110300668B (ja)
DE (1) DE112017007086B4 (ja)
WO (1) WO2018150742A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772689B2 (ja) * 2016-09-08 2020-10-21 横浜ゴム株式会社 空気入りタイヤ
JP7428904B2 (ja) * 2018-11-21 2024-02-07 横浜ゴム株式会社 空気入りタイヤ
JP2021079938A (ja) * 2019-11-18 2021-05-27 住友ゴム工業株式会社 タイヤ
CN112810387B (zh) * 2019-11-18 2023-10-17 住友橡胶工业株式会社 轮胎

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035345A (ja) * 2011-08-04 2013-02-21 Bridgestone Corp タイヤ
US20130248068A1 (en) * 2011-01-19 2013-09-26 Bridgestone Corporation Pneumatic tire
JP2015047977A (ja) * 2013-09-02 2015-03-16 東洋ゴム工業株式会社 空気入りタイヤ
WO2015083474A1 (ja) * 2013-12-06 2015-06-11 住友ゴム工業株式会社 重荷重用タイヤ
JP2015140047A (ja) * 2014-01-27 2015-08-03 住友ゴム工業株式会社 空気入りタイヤ
JP2015160487A (ja) * 2014-02-26 2015-09-07 株式会社ブリヂストン 空気入りタイヤ
JP2017001584A (ja) * 2015-06-12 2017-01-05 株式会社ブリヂストン タイヤ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531047A1 (de) * 1985-08-30 1987-03-05 Uniroyal Englebert Gmbh Fahrzeugluftreifen
JPH0253611A (ja) * 1988-08-19 1990-02-22 Yokohama Rubber Co Ltd:The 重荷重用空気入りラジアルタイヤ
US5833780A (en) * 1995-06-21 1998-11-10 The Yokohama Rubber Co., Ltd. Pneumatic radial tire for heavy loads
JP4275257B2 (ja) * 1999-07-13 2009-06-10 株式会社ブリヂストン 空気入りタイヤ
JP2001322406A (ja) * 2000-05-15 2001-11-20 Bridgestone Corp 空気入りタイヤ
JP2003154527A (ja) * 2001-11-19 2003-05-27 Bridgestone Corp タイヤ加硫金型及びそれを用いて製造したタイヤ
CN100509448C (zh) * 2002-11-06 2009-07-08 株式会社普利司通 充气轮胎
JP4291053B2 (ja) * 2003-06-23 2009-07-08 東洋ゴム工業株式会社 空気入りタイヤ
FR2871735B1 (fr) * 2004-06-16 2006-08-04 Michelin Soc Tech Bande de roulement ayant des incisions zigzag et lames pour le moulage de telles incisions
FR2926037B1 (fr) * 2008-01-09 2009-12-18 Michelin Soc Tech Dispositif pour bande de roulement.
JP5099914B2 (ja) * 2008-10-03 2012-12-19 東洋ゴム工業株式会社 空気入りタイヤ
FR2939360B1 (fr) * 2008-12-05 2011-03-04 Michelin Soc Tech Bande de roulement pourvue d'incisions
US9469160B2 (en) * 2009-01-26 2016-10-18 Bridgestone Corporation Tire with tread having blocks having cutout portions
FR2964600B1 (fr) 2010-09-09 2014-08-22 Michelin Soc Tech Bande de roulement pour pneumatique
FR2989031B1 (fr) * 2012-04-05 2014-05-02 Michelin & Cie Bande de roulement de pneu pour essieu moteur de poids lourd
JP5796655B1 (ja) * 2014-03-28 2015-10-21 横浜ゴム株式会社 空気入りタイヤ
JP6306436B2 (ja) 2014-05-30 2018-04-04 株式会社ブリヂストン 空気入りタイヤ
JP6006772B2 (ja) 2014-10-30 2016-10-12 住友ゴム工業株式会社 空気入りタイヤ
JP6231974B2 (ja) 2014-11-27 2017-11-15 住友ゴム工業株式会社 空気入りタイヤ
CN108602393B (zh) * 2016-02-15 2021-06-11 横滨橡胶株式会社 充气轮胎
JP6662076B2 (ja) * 2016-02-15 2020-03-11 横浜ゴム株式会社 空気入りタイヤ
DE112017007175B4 (de) * 2017-03-06 2022-04-28 The Yokohama Rubber Co., Ltd. Luftreifen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130248068A1 (en) * 2011-01-19 2013-09-26 Bridgestone Corporation Pneumatic tire
JP2013035345A (ja) * 2011-08-04 2013-02-21 Bridgestone Corp タイヤ
JP2015047977A (ja) * 2013-09-02 2015-03-16 東洋ゴム工業株式会社 空気入りタイヤ
WO2015083474A1 (ja) * 2013-12-06 2015-06-11 住友ゴム工業株式会社 重荷重用タイヤ
JP2015140047A (ja) * 2014-01-27 2015-08-03 住友ゴム工業株式会社 空気入りタイヤ
JP2015160487A (ja) * 2014-02-26 2015-09-07 株式会社ブリヂストン 空気入りタイヤ
JP2017001584A (ja) * 2015-06-12 2017-01-05 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
CN110300668A (zh) 2019-10-01
US20190359007A1 (en) 2019-11-28
DE112017007086B4 (de) 2024-05-29
US11701926B2 (en) 2023-07-18
CN110300668B (zh) 2021-08-20
DE112017007086T5 (de) 2019-10-31
JP6828495B2 (ja) 2021-02-10
JP2018131125A (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6841276B2 (ja) 空気入りタイヤ
WO2018150746A1 (ja) 空気入りタイヤ
JP6933138B2 (ja) 空気入りタイヤ
WO2017141913A1 (ja) 空気入りタイヤ
WO2018150742A1 (ja) 空気入りタイヤ
JP6358395B2 (ja) 空気入りタイヤ
JP6819580B2 (ja) 空気入りタイヤ
WO2018150731A1 (ja) 空気入りタイヤ
JP6299929B2 (ja) 空気入りタイヤ
WO2018043581A1 (ja) 空気入りタイヤ
WO2018043580A1 (ja) 空気入りタイヤ
WO2018047763A1 (ja) 空気入りタイヤ
WO2018047764A1 (ja) 空気入りタイヤ
JP7428903B2 (ja) 空気入りタイヤ
WO2018150732A1 (ja) 空気入りタイヤ
WO2020090644A1 (ja) 空気入りタイヤ
JP6933137B2 (ja) 空気入りタイヤ
JP7428904B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896491

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17896491

Country of ref document: EP

Kind code of ref document: A1