WO2018150529A1 - シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法 - Google Patents

シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法 Download PDF

Info

Publication number
WO2018150529A1
WO2018150529A1 PCT/JP2017/005831 JP2017005831W WO2018150529A1 WO 2018150529 A1 WO2018150529 A1 WO 2018150529A1 JP 2017005831 W JP2017005831 W JP 2017005831W WO 2018150529 A1 WO2018150529 A1 WO 2018150529A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
layer
fiber optic
moisture
optic plate
Prior art date
Application number
PCT/JP2017/005831
Other languages
English (en)
French (fr)
Inventor
文亨 国本
Original Assignee
野洲メディカルイメージングテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野洲メディカルイメージングテクノロジー株式会社 filed Critical 野洲メディカルイメージングテクノロジー株式会社
Priority to JP2018550000A priority Critical patent/JP6454451B1/ja
Priority to PCT/JP2017/005831 priority patent/WO2018150529A1/ja
Priority to KR1020197023917A priority patent/KR20190099539A/ko
Priority to US16/478,033 priority patent/US10871581B2/en
Priority to CN201780086351.0A priority patent/CN110291594A/zh
Publication of WO2018150529A1 publication Critical patent/WO2018150529A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/04Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with an intermediate layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members

Definitions

  • the present invention relates to a scintillator module, a scintillator sensor unit, and a method for manufacturing the scintillator module.
  • a scintillator module using a fiber optic plate As a scintillator module used in such a flat panel detector, a scintillator module using a fiber optic plate (FOP) is known.
  • FOP fiber optic plate
  • a reflective layer is formed by vacuum-depositing a metal such as aluminum to reflect visible light from the radiation incident side.
  • a resin layer for example, parylene polymer
  • the thickness of the moisture-proof coating layer is very thin as described above, it is weak against impact from the outside, scratches and peeling occur and the moisture-proof property is remarkably deteriorated, and consequently the performance of the flat panel detector is deteriorated. There was a fear.
  • the present invention has been made in view of the above, and is a scintillator module, a scintillator sensor unit, and a scintillator module manufacturing method that can be easily manufactured, is resistant to mechanical impact, and can maintain high moisture resistance. Is to provide.
  • the scintillator module according to the embodiment is formed of a material having weldability and moisture resistance, and the scintillator layer and the visible light reflection layer laminated on the fiber optic plate are made of fiber optic.
  • a moisture-proof weld layer extending to the side surface of the plate and covering in a sealed state; and a resin case covering the moisture-proof weld layer.
  • the resin case may have a peripheral wall surface along the shape of the surface facing the visible light reflecting film layer and the moisture-proof weld layer and the peripheral surface of the fiber optic plate.
  • the resin case may be fitted so as to face the fiber optic plate through the peripheral wall surface and the moisture-proof weld layer.
  • the resin case may be formed of a thermoplastic resin. Furthermore, the resin case may be made of a crystalline resin.
  • the moisture-proof weld layer may be formed of a butyl rubber-based weld material.
  • the scintillator sensor unit of the embodiment includes any one of the above scintillator modules and a photodiode array unit disposed at a position facing the fiber optic plate.
  • the manufacturing method of the scintillator module of the embodiment includes a step of forming a scintillator layer and a visible light reflecting layer on a fiber optic plate, and a material having weldability and moisture resistance placed on the visible light reflecting layer.
  • a process of bringing a resin case having a lid shape formed of a thermoplastic resin into contact with and covering the formed sheet, and a resin case toward the fiber optic plate side while heating the resin case and the sheet with a mold And a step of extending the sheet to the side surface of the fiber optic plate to form a moisture-proof weld layer, and a step of removing the mold and cooling.
  • FIG. 1 is a schematic configuration diagram of a scintillator sensor unit according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of the scintillator module.
  • FIG. 3 is a flowchart of a procedure for manufacturing the scintillator module.
  • FIG. 4 is an explanatory diagram (part 1) of a procedure for manufacturing a scintillator module.
  • FIG. 5 is an explanatory diagram (part 2) of the procedure for manufacturing the scintillator module.
  • FIG. 1 is a schematic configuration diagram of a scintillator sensor unit according to an embodiment.
  • the scintillator sensor unit 10 is roughly classified by the scintillator module 11 that converts radiation (for example, X-rays) incident from the incident surface 11A side into visible light and outputs the visible light from the exit surface 11B side, and the scintillator module 11 converts the radiation.
  • a photodiode array unit 12 that receives visible light and outputs it as image data.
  • FIG. 2 is a schematic cross-sectional view of the scintillator module.
  • the scintillator module 11 includes a scintillator layer 21 that converts incident radiation into visible light, a fiber optic plate 22 that guides visible light converted by the scintillator layer 21 to the photodiode array unit 12, and a scintillator layer 21. And a visible light reflecting film layer 23 that reflects visible light incident from the radiation incident surface 11A side to prevent incidence and reflects the visible light converted by the scintillator layer 21 to the fiber optic plate 22 side. ing.
  • the scintillator module 11 covers the fiber optic plate 22 by covering the incident surface 11A side and side surface of the visible light reflecting film layer 23, the side surface (circumferential surface) of the scintillator layer 21, and part of the side surface of the fiber optic plate 22.
  • the butyl rubber-based welding material layer (moisture-proof welding layer) 24 is mechanically protected by maintaining a pressure-bonded state facing all the surfaces facing the side surfaces of the scintillator layer 21 and the fiber optic plate 22.
  • a resin case (resin cover member) 25 is provided.
  • the scintillator layer 21 is formed by being formed on the fiber optic plate 22, and for example, CsI (Tl) [thallium activated cesium iodide], CsI (Na) [sodium activated cesium iodide], NaI (Tl) [thallium activated sodium iodide] or the like.
  • the fiber optic plate 22 is formed in a plate shape by a large number of single-mode optical fibers and an absorber glass that is formed around the single-mode optical fibers and absorbs leakage light. Lead to the diode array unit 12.
  • the visible light reflecting film layer 23 is configured as a film having a multilayer film structure using a metal thin film such as an aluminum thin film and a polyester resin, for example.
  • the butyl rubber-based welding material layer 24 has low moisture permeability (for example, ⁇ 4 g / m 2 ⁇ 24 h), that is, has high moisture resistance and adhesion, and is in close contact with the fiber optic plate 22 and the resin case 25.
  • a highly material is used.
  • HX-779BT manufactured by Aika Industry Co., Ltd. is used.
  • thermoplastic resin which is a resin material that is easy to process and hardly interferes with the incidence of radiation.
  • a crystalline resin having a shrinkage ratio of 10/1000% or more is used.
  • polyethylene resin shrinkage rate 20/1000 to 60/1000%
  • polypropylene resin shrinkage rate 10/1000 to 25/1000%) are used.
  • the thickness of the resin case 25 there are requirements from applications such as ease of processing, ease of handling and strength, cassettes on which the scintillator sensor unit 10 is mounted, and thickness restrictions depending on the shape of the device, etc. Therefore, a thickness of about 0.1 mm to 1.0 mm is used. However, it is basically arbitrary as long as the strength required for processing (further shape as required) is ensured.
  • these resins are formed as a resin case 25 by die molding so that the shape thereof is, for example, a rectangular lid shape in plan view.
  • the shape in plan view is not limited to this, and any shape is possible as long as the shape is required for the scintillator sensor unit 10 such as a circular shape or a polygonal shape.
  • the above-mentioned butyl rubber-based welding material layer 24 is weak to physical contact and impact as it is because of its adhesiveness and softness, but since the resin case 25 covers it, the butyl rubber-based welding material layer 24 is moved to the butyl rubber-based welding material layer 24. Has reduced the impact.
  • FIG. 3 is a flowchart of a procedure for manufacturing the scintillator module.
  • FIG. 4 is an explanatory diagram (part 1) of a procedure for manufacturing a scintillator module.
  • a scintillator layer 21 is formed on one surface of a fiber optic plate 22 having a rectangular shape in plan view (step S11).
  • a visible light reflecting film is attached to the scintillator layer 21 to form a visible light reflecting film layer 23 (step S12).
  • a butyl rubber-based welding material sheet 24S is placed on the upper surface of the visible light reflecting film layer 23 (step S13), and as shown in FIG. 25 (step S14).
  • the butyl rubber-based welding material sheet 24S is only located on the upper surface of the visible light reflecting film layer 23, and does not reach the side surface of the fiber optic plate 22, The visible light reflecting film layer 23 and the scintillator layer 21 are not housed.
  • FIG. 5 is an explanatory diagram (part 2) of the procedure for manufacturing the scintillator module.
  • the upper mold 31U that can be heated and pressurized from the upper surface side (the side far from the fiber optic plate 22) of the resin case 25 is the upper surface and side surfaces of the resin case 25.
  • a heat press process is performed in which the mold 31 is brought into contact with the lower mold 31L to support the fiber optic plate 22, and is pressurized and heated (step S15).
  • the inner dimension of the mold 31 is preferably a size that takes into account the amount of expansion when the resin case 25 is heated. This is for suppressing the thickness of the butyl rubber-based welding material layer 24 after processing from being unnecessarily thin and reducing moisture resistance.
  • the resin case 25 formed of a thermoplastic resin expands by heating, and the butyl rubber-based welding material sheet 24S decreases in hardness and increases in fluidity, as shown in FIG.
  • the resin case 25 flows along the gap between the visible light reflecting film layer 23, the scintillator layer 21, and the side surfaces of the fiber optic plate 22, and enters the incident surface 11 A side and side surfaces of the visible light reflecting film layer 23.
  • the side surface (peripheral surface) and part of the side surface of the fiber optic plate 22 are covered, and the scintillator layer 21 and the visible light reflecting film layer 23 are accommodated between the fiber optic plate 22.
  • the butyl rubber-based welding material sheet 24S is welded to the incident surface 11A side and the side surface of the visible light reflecting film layer 23, the side surface (circumferential surface) of the scintillator layer 21 and a part of the side surface of the fiber optic plate 22, As shown in FIG. 5C, the scintillator layer 21 and the visible light reflecting film layer 23 are accommodated between the fiber optic plate 22 and the fiber optic plate 22 in a moisture-proof state.
  • the butyl rubber welding material layer 24 is sandwiched between the fiber optic plate 22 whose dimensions hardly change during heating and cooling and the resin case 25 that expands during heating and contracts during cooling.
  • the moisture-proof performance can be surely ensured and is physically protected by the resin case 25.
  • moisture protection and packaging of the scintillator module can be performed at a low cost without using an advanced vacuum deposition apparatus.
  • the butyl rubber-based welding material sheet 24S has been described as having a single sheet shape. However, when the size of the scintillator sensor unit 10 is large, a plurality of sheets are spread, or the tape shape is changed. It is also possible to lay a plurality of butyl rubber-based welding material tapes having a predetermined width so as to be used as a sheet as a whole.
  • the butyl rubber-based welding material is used as the moisture-proof welding layer.
  • the present invention is not limited to this, and any material that exhibits the same properties by heating and pressing can be similarly applied. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

シンチレータモジュールは、溶着性及び防湿性を有する材料で形成され、ファイバーオプティックプレートに積層されたシンチレータ層及び可視光反射層をファイバーオプティックプレートの側面まで延在して密閉状態で覆う防湿溶着層と、防湿溶着層を覆う樹脂製ケースと、を備えるので、シンチレータモジュールを容易に製造可能で、機械的な衝撃に強く、防湿性を高く維持することが可能なシンチレータモジュールが得られる。

Description

シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法
 本発明は、シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法に関する。
 近年、医療、工業用のX線撮影では、感光フィルムが用いられてきたが、リアルタイム性や維持管理費の観点から放射線イメージセンサを備えた放射線イメージングシステムが普及してきている。
 このような放射線イメージングシステムに適用可能な放射線イメージセンサとしては、様々考えられるが、一例として、フラットパネルディテクタが挙げられる(例えば、特許文献1参照)。
 このようなフラットパネルディテクタに用いられルシンチレータモジュールとして、ファイバーオプティックプレート(FOP)を用いたシンチレータモジュールが知られている。
 ファイバーオプティックプレートを用いたシンチレータモジュールにおいては、ファイバーオプティックプレート上にシンチレータ層を成膜した後、放射線入射側からの可視光を反射するためにアルミニウムなどの金属を真空蒸着して反射層を形成し、防湿性を持たせるために樹脂層(例えば、パリレンポリマー)でコーティングして防湿コーティング層を形成する必要があった。
特開2002-116258号公報
 ところで、反射層及び防湿コーティング層を形成するには、高度な真空蒸着装置が必要となり、製造工程が複雑化し、生産コストが高くなるという問題点があった。
 また、防湿コーティング層の透湿性(WVTR:Water Vapor Transmission Rate)は、膜厚20μmの場合、4g/m・24h(=4g/m・day)程度であり、決して高いとは言えなかった。
 また防湿コーティング層の厚さは上述したように非常に薄いため、外部からの衝撃に対し弱く、キズや剥離が発生し防湿性を著しく悪化させ、ひいては、フラットパネルディテクタの性能を低下させてしまう虞があった。
 本発明は、上記に鑑みてなされたものであって、容易に製造可能で、機械的な衝撃に強く、防湿性を高く維持することが可能なシンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法を提供することにある。
 上述した課題を解決し、目的を達成するために、実施形態のシンチレータモジュールは、溶着性及び防湿性を有する材料で形成され、ファイバーオプティックプレートに積層されたシンチレータ層及び可視光反射層をファイバーオプティックプレートの側面まで延在して密閉状態で覆う防湿溶着層と、防湿溶着層を覆う樹脂製ケースと、を備える。
 この場合において、樹脂製ケースは、可視光反射フィルム層と防湿溶着層を介して対向する面及びファイバーオプティックプレートの周面の形状に沿った周壁面を有するようにしてもよい。
 また、樹脂製ケースは、周壁面及び防湿溶着層を介して前記ファイバーオプティックプレートに対向するように嵌め込まれているようにしてもよい。
 また、樹脂製ケースは、熱可塑性樹脂で形成されているようにしてもよい。
 さらに、樹脂製ケースは、結晶性樹脂で形成されているようにしてもよい。
 また、防湿溶着層は、ブチルゴム系溶着材により形成されているようにしてもよい。
 また、実施形態のシンチレータセンサユニットは、上記いずれかのシンチレータモジュールと、ファイバーオプティックプレートに対向する位置に配置されたフォトダイオードアレイユニットと、を備える。
 また、実施形態のシンチレータモジュールの製造方法は、ファイバーオプティックプレートにシンチレータ層及び可視光反射層を積層して形成する工程と、可視光反射層に載置された溶着性及び防湿性を有する材料で形成されたシートに熱可塑性樹脂で形成された蓋形状を有する樹脂製ケースを当接させて覆う工程と、金型により樹脂製ケース及びシートを加熱しつつファイバーオプティックプレート側に向けて樹脂製ケースを加圧し、シートをファイバーオプティックプレートの側面まで延在させて防湿溶着層を形成する工程と、金型を外して冷却する工程と、を備える。
図1は、実施形態のシンチレータセンサユニットの概要構成図である。 図2は、シンチレータモジュールの概要構成断面図である。 図3は、シンチレータモジュールの作製手順のフローチャートである。 図4は、シンチレータモジュールの作製手順の説明図(その1)である。 図5は、シンチレータモジュールの作製手順の説明図(その2)である。
 次に図面を参照して実施形態について詳細に説明する。
 図1は、実施形態のシンチレータセンサユニットの概要構成図である。
 シンチレータセンサユニット10は、大別すると、入射面11A側から入射した放射線(例えば、X線)を可視光に変換して出射面11B側から出力するシンチレータモジュール11と、シンチレータモジュール11により変換された可視光を受光して画像データとして出力するフォトダイオードアレイユニット12と、を備えている。
 図2は、シンチレータモジュールの概要構成断面図である。
 シンチレータモジュール11は、入射した放射線を可視光に変換するシンチレータ層21と、シンチレータ層21により変換された可視光をフォトダイオードアレイユニット12まで導く導光部材としてのファイバーオプティックプレート22と、シンチレータ層21に積層され放射線の入射面11A側から入射する可視光を反射して入射を妨げるとともにシンチレータ層21により変換された可視光をファイバーオプティックプレート22側に反射する可視光反射フィルム層23と、を備えている。
 さらにシンチレータモジュール11は、可視光反射フィルム層23の入射面11A側及び側面、シンチレータ層21の側面(周面)及びファイバーオプティックプレート22の側面の一部を覆って、ファイバーオプティックプレート22との間にシンチレータ層21及び可視光反射フィルム層23を防湿状態で収容するブチルゴム系溶着材層24と、ブチルゴム系溶着材層24の入射面11A側の面及び可視光反射フィルム層23、平面視長方形状の蓋形状を有し、シンチレータ層21及びファイバーオプティックプレート22の側面に対向している面の全てに対向して圧着状態を維持しブチルゴム系溶着材層(防湿溶着層)24を機械的に保護する樹脂製ケース(樹脂製カバー部材)25と、を備えている。
 上記構成において、シンチレータ層21は、ファイバーオプティックプレート22上に成膜されて形成され、例えば、CsI(Tl)[タリウム活性化ヨウ化セシウム]、CsI(Na)[ナトリウム活性化ヨウ化セシウム]、NaI(Tl)[タリウム活性化ヨウ化ナトリウム]等として構成されている。
 また、ファイバーオプティックプレート22は、多数本のシングルモード光ファイバと、シングルモード光ファイバの周囲に形成され漏れ光を吸収する吸収体ガラスと、によりプレート状に形成されて、入射光をダイレクトにフォトダイオードアレイユニット12まで導く。
 可視光反射フィルム層23は、例えば、アルミ薄膜等金属薄膜とポリエステル系樹脂を用いた多層膜構造を有するフィルムとして構成されている。
 ブチルゴム系溶着材層24としては、透湿性が低く(例えば、<<4g/m・24h)、すなわち、防湿性が高く、粘着性があり、ファイバーオプティックプレート22及び樹脂製ケース25との密着性が高い材料が用いられる。例えば、アイカ工業株式会社製HX-779BT等が用いられる。
 樹脂製ケース25としては、加工が容易で放射線の入射を妨げにくい樹脂材料である熱可塑性樹脂が用いられている。特に好ましくは、収縮率が10/1000%以上の結晶性樹脂が用いられる。例えば、ポリエチレン樹脂(収縮率20/1000~60/1000%)、ポリプロピレン樹脂(収縮率10/1000~25/1000%)が用いられる。
 ここで、樹脂製ケース25の厚さとしては、加工の容易さ、取り扱いの容易さおよび強度の観点、シンチレータセンサユニット10が搭載されるカセッテや機器の形状による厚み制限などのアプリケーションからの要求等から、厚さ0.1mm~1.0mm程度のものが用いられるが、加工時に必要とされる強度(必要に応じてさらに形状)が確保されれば、基本的には任意である。
 そして、これらの樹脂は、金型成形によりその形状が、例えば、平面視長方形状の蓋形状とされて樹脂製ケース25として形成される。なお、平面視形状は、これに限るものでは無く、円形状、多角形状等シンチレータセンサユニット10に要求される形状であればいずれの形状でも可能である。
 ところで、上述したブチルゴム系溶着材層24は、粘着性及び軟質性のため、そのままでは物理的な接触や衝撃などに弱いが、樹脂製ケース25が覆っているため、ブチルゴム系溶着材層24への影響を低減している。
 ここで、実施形態のシンチレータモジュールの作製手順について説明する。
 図3は、シンチレータモジュールの作製手順のフローチャートである。
 図4は、シンチレータモジュールの作製手順の説明図(その1)である。
 まず、平面視長方形状のファイバーオプティックプレート22の一方の面に、図4(A)に示すように、シンチレータ層21を成膜する(ステップS11)。
 次に図4(B)に示すように、シンチレータ層21に可視光反射用フィルムを貼り付けて、可視光反射フィルム層23を形成する(ステップS12)。
 次に図4(C)に示すように、可視光反射フィルム層23の上面にブチルゴム系溶着材シート24Sを載置し(ステップS13)、さらに図4(D)に示すように、樹脂製ケース25を被せる(ステップS14)。
 この状態においては、図4(C)に示したように、ブチルゴム系溶着材シート24Sは可視光反射フィルム層23の上面に位置するだけであり、ファイバーオプティックプレート22の側面には至っておらず、可視光反射フィルム層23及びシンチレータ層21を収納する状態とはなっていない。
 図5は、シンチレータモジュールの作製手順の説明図(その2)である。
 続いて、図5(A)に示すように、樹脂製ケース25の上面側(ファイバーオプティックプレート22から遠い側)から、加熱、加圧可能な上部金型31Uが樹脂製ケース25の上面及び側面を覆い、下部金型31Lがファイバーオプティックプレート22を支持するように金型31を当接させ、加圧及び加熱するヒートプレス処理を行う(ステップS15)。
 この場合において、金型31の内寸は、樹脂製ケース25の加熱時の膨張分を考慮したサイズとするのが好ましい。これは、加工後のブチルゴム系溶着材層24の厚さが必要以上に薄くなり、防湿性が低下するのを抑制するためである。
 この結果、熱可塑性樹脂で形成されている樹脂製ケース25は加熱により膨張し、ブチルゴム系溶着材シート24Sは、硬度が低下し、流動性が高くなり、図5(B)に示すように、樹脂製ケース25と、可視光反射フィルム層23、シンチレータ層21およびファイバーオプティックプレート22の側面との隙間に沿って流れて、可視光反射フィルム層23の入射面11A側及び側面、シンチレータ層21の側面(周面)並びにファイバーオプティックプレート22の側面の一部を覆って、ファイバーオプティックプレート22との間にシンチレータ層21及び可視光反射フィルム層23を収容した状態となる。
 この状態で金型31による加熱を停止し、離型し、冷却することにより熱可塑性樹脂で形成されている樹脂製ケース25を収縮させる(ステップS16)。
 これにより、可視光反射フィルム層23の入射面11A側及び側面、シンチレータ層21の側面(周面)並びにファイバーオプティックプレート22の側面の一部には、ブチルゴム系溶着材シート24Sが溶着されて、図5(C)に示すように、ブチルゴム系溶着材層24として形成され、ファイバーオプティックプレート22との間にシンチレータ層21及び可視光反射フィルム層23を防湿状態で収容することとなる。
 この状態において、ブチルゴム系溶着材層24は、加熱、冷却時にほとんど寸法が変化しないファイバーオプティックプレート22と、加熱時に膨張し、冷却時に収縮する樹脂製ケース25との間に圧着状態で挟まれるため、確実に防湿性能を確保できるとともに、樹脂製ケース25により物理的に保護される。
 以上の説明のように、本実施形態によれば、シンチレータモジュールの防湿保護及びパッケージングを高度な真空蒸着装置を使用せずに低コストで行える。
 以上の説明においては、ブチルゴム系溶着材シート24Sを一枚のシート形状を有するものとして説明したが、シンチレータセンサユニット10の大きさが大きい場合等には、複数のシートを敷き詰めたり、テープ形状を有し、所定の幅を有するブチルゴム系溶着材テープを複数本敷き詰めて全体としてシート状として用いたりするように構成することも可能である。
 また、以上の説明においては、防湿溶着層としてブチルゴム系溶着材を用いていたが、これに限られるものでは無く、加熱及び加圧して同様の性状をしめす材料であれば同様に適用が可能である。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (8)

  1.  溶着性及び防湿性を有する材料で形成され、ファイバーオプティックプレートに積層されたシンチレータ層及び可視光反射層を前記ファイバーオプティックプレートの側面まで延在して密閉状態で覆う防湿溶着層と、
     前記防湿溶着層を覆う樹脂製ケースと、
     を備えたシンチレータモジュール。
  2.  前記樹脂製ケースは、前記可視光反射フィルム層と前記防湿溶着層を介して対向する面及び前記ファイバーオプティックプレートの周面の形状に沿った周壁面を有する、
     請求項1記載のシンチレータモジュール。
  3.  前記樹脂製ケースは、前記周壁面及び前記防湿溶着層を介して前記ファイバーオプティックプレートに対向するように嵌め込まれている、
     請求項2記載のシンチレータモジュール。
  4.  前記樹脂製ケースは、熱可塑性樹脂で形成されている、
     請求項1乃至請求項3のいずれか一項記載のシンチレータモジュール。
  5.  前記樹脂製ケースは、結晶性樹脂で形成されている、
     請求項4記載のシンチレータモジュール。
  6.  前記防湿溶着層は、ブチルゴム系溶着材により形成されている、
     請求項1乃至請求項5のいずれか一項記載のシンチレータモジュール。
  7.  請求項1乃至請求項6記載のいずれか一項記載のシンチレータモジュールと、
     前記ファイバーオプティックプレートに対向する位置に配置されたフォトダイオードアレイユニットと、
     を備えたシンチレータセンサユニット。
  8.  ファイバーオプティックプレートにシンチレータ層及び可視光反射層を積層して形成する工程と、
     前記可視光反射層に載置された溶着性及び防湿性を有する材料で形成されたシートに熱可塑性樹脂で形成された蓋形状を有する樹脂製ケースを当接させて覆う工程と、
     金型により前記樹脂製ケース及び前記シートを加熱しつつ前記ファイバーオプティックプレート側に向けて前記樹脂製ケースを加圧し、前記シートを前記ファイバーオプティックプレートの側面まで延在させて防湿溶着層を形成する工程と、
     前記金型を外して冷却する工程と、
     を備えたシンチレータモジュールの製造方法。
PCT/JP2017/005831 2017-02-17 2017-02-17 シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法 WO2018150529A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018550000A JP6454451B1 (ja) 2017-02-17 2017-02-17 シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法
PCT/JP2017/005831 WO2018150529A1 (ja) 2017-02-17 2017-02-17 シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法
KR1020197023917A KR20190099539A (ko) 2017-02-17 2017-02-17 신틸레이터 모듈, 신틸레이터 센서 유닛 및 신틸레이터 모듈의 제조 방법
US16/478,033 US10871581B2 (en) 2017-02-17 2017-02-17 Scintillator module, scintillator sensor unit, and scintillator module production method
CN201780086351.0A CN110291594A (zh) 2017-02-17 2017-02-17 闪烁体模块、闪烁体传感器单元和闪烁体模块的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005831 WO2018150529A1 (ja) 2017-02-17 2017-02-17 シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2018150529A1 true WO2018150529A1 (ja) 2018-08-23

Family

ID=63169177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005831 WO2018150529A1 (ja) 2017-02-17 2017-02-17 シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法

Country Status (5)

Country Link
US (1) US10871581B2 (ja)
JP (1) JP6454451B1 (ja)
KR (1) KR20190099539A (ja)
CN (1) CN110291594A (ja)
WO (1) WO2018150529A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098299A (ja) * 2001-09-21 2003-04-03 Fuji Photo Film Co Ltd 放射線像変換パネル
JP2004294137A (ja) * 2003-03-26 2004-10-21 Konica Minolta Holdings Inc 放射線像変換パネル及びその製造方法
JP2005114397A (ja) * 2003-10-03 2005-04-28 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル及びその製造方法
CN101900824A (zh) * 2010-06-24 2010-12-01 江苏康众数字医疗设备有限公司 闪烁体封装薄膜及封装方法
JP2014153074A (ja) * 2013-02-05 2014-08-25 Hamamatsu Photonics Kk 放射線像変換パネルの製造方法、及び、放射線像変換パネル
JP2015045615A (ja) * 2013-08-29 2015-03-12 富士フイルム株式会社 放射線画像検出装置及び製造方法
JP2016095189A (ja) * 2014-11-13 2016-05-26 コニカミノルタ株式会社 シンチレータパネル及び放射線検出器
JP2016136094A (ja) * 2015-01-23 2016-07-28 コニカミノルタ株式会社 シンチレータパネル及び放射線検出器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1024374B1 (en) 1998-06-18 2002-06-19 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
WO2006016505A1 (en) 2004-08-10 2006-02-16 Canon Kabushiki Kaisha Radiation detecting apparatus, scintillator panel, their manufacturing method and radiation detecting system
JP4612815B2 (ja) 2004-08-10 2011-01-12 キヤノン株式会社 放射線検出装置、シンチレータパネル、これらの製造方法及び放射線検出システム
JP2008215951A (ja) 2007-03-01 2008-09-18 Toshiba Corp 放射線検出器
JP2011137665A (ja) 2009-12-26 2011-07-14 Canon Inc シンチレータパネル及び放射線撮像装置とその製造方法、ならびに放射線撮像システム
JP2012154696A (ja) * 2011-01-24 2012-08-16 Canon Inc シンチレータパネル、放射線検出装置およびそれらの製造方法
JP5677136B2 (ja) 2011-02-24 2015-02-25 富士フイルム株式会社 放射線画像検出装置及び放射線撮影用カセッテ
JP5728250B2 (ja) 2011-03-01 2015-06-03 キヤノン株式会社 放射線検出装置、シンチレータパネル、それらの製造方法、および放射線検出システム
JP5744570B2 (ja) * 2011-03-02 2015-07-08 キヤノン株式会社 放射線検出装置、放射線検出装置の製造方法及び放射線検出システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098299A (ja) * 2001-09-21 2003-04-03 Fuji Photo Film Co Ltd 放射線像変換パネル
JP2004294137A (ja) * 2003-03-26 2004-10-21 Konica Minolta Holdings Inc 放射線像変換パネル及びその製造方法
JP2005114397A (ja) * 2003-10-03 2005-04-28 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル及びその製造方法
CN101900824A (zh) * 2010-06-24 2010-12-01 江苏康众数字医疗设备有限公司 闪烁体封装薄膜及封装方法
JP2014153074A (ja) * 2013-02-05 2014-08-25 Hamamatsu Photonics Kk 放射線像変換パネルの製造方法、及び、放射線像変換パネル
JP2015045615A (ja) * 2013-08-29 2015-03-12 富士フイルム株式会社 放射線画像検出装置及び製造方法
JP2016095189A (ja) * 2014-11-13 2016-05-26 コニカミノルタ株式会社 シンチレータパネル及び放射線検出器
JP2016136094A (ja) * 2015-01-23 2016-07-28 コニカミノルタ株式会社 シンチレータパネル及び放射線検出器

Also Published As

Publication number Publication date
US20190369270A1 (en) 2019-12-05
US10871581B2 (en) 2020-12-22
JPWO2018150529A1 (ja) 2019-02-21
JP6454451B1 (ja) 2019-01-16
KR20190099539A (ko) 2019-08-27
CN110291594A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
US6172371B1 (en) Robust cover plate for radiation imager
US10302773B2 (en) Radiation detector
JP4670955B2 (ja) フラットパネルディテクター
WO2012026187A1 (ja) 放射線検出器
US20140374608A1 (en) Radiation detection apparatus and method of manufacturing the same
JP5239866B2 (ja) 放射線フラットパネルディテクター
US20080011961A1 (en) Scintillator panel
JP2008209195A (ja) シンチレータパネル及び放射線フラットパネルディテクター
US8779373B2 (en) Radiation detection apparatus, radiation detection system and method of manufacturing radiation detection apparatus
JPWO2008111379A1 (ja) シンチレータパネル及び放射線フラットパネルディテクター
JP6454451B1 (ja) シンチレータモジュール、シンチレータセンサユニット及びシンチレータモジュールの製造方法
JP7029217B2 (ja) 放射線検出器
JP2011022068A (ja) シンチレータパネル
JP2009002776A (ja) シンチレータパネル及び放射線フラットパネルディテクター
CN112292616A (zh) 放射线检测器及放射线图像摄影装置
JP7457640B2 (ja) 放射線検出器、及び放射線検出器の製造方法
JP7470631B2 (ja) 放射線検出器、放射線検出器の製造方法、及びシンチレータパネルユニット
US20240118437A1 (en) Radiation detector, radiation detector manufacturing method, and scintillator panel unit
US20240045085A1 (en) Radiation detector, radiation detector manufacturing method, and scintillator panel unit
JP7287515B2 (ja) 放射線検出器
EP3172453B1 (en) Bonding method with curing by reflected actinic rays
JP2009300213A (ja) シンチレータパネル及び放射線フラットパネルディテクター
KR101168874B1 (ko) 신틸레이터 패널, 이의 제조 방법 및 이를 포함하는 방사선 검출기
WO2020129428A1 (ja) シンチレータプレート、放射線検出装置および放射線検出システム
JP2009002775A (ja) シンチレータパネル及び放射線フラットパネルディテクター

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550000

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023917

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896472

Country of ref document: EP

Kind code of ref document: A1