WO2018150468A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2018150468A1
WO2018150468A1 PCT/JP2017/005337 JP2017005337W WO2018150468A1 WO 2018150468 A1 WO2018150468 A1 WO 2018150468A1 JP 2017005337 W JP2017005337 W JP 2017005337W WO 2018150468 A1 WO2018150468 A1 WO 2018150468A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
coaxial cable
electronic device
antenna
length
Prior art date
Application number
PCT/JP2017/005337
Other languages
English (en)
French (fr)
Inventor
小田桐 一哉
Original Assignee
株式会社ソニー・インタラクティブエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・インタラクティブエンタテインメント filed Critical 株式会社ソニー・インタラクティブエンタテインメント
Priority to US16/482,183 priority Critical patent/US11171398B2/en
Priority to EP17896773.3A priority patent/EP3584880B1/en
Priority to CN201780085886.6A priority patent/CN110268578A/zh
Priority to PCT/JP2017/005337 priority patent/WO2018150468A1/ja
Priority to JP2019500071A priority patent/JP6887483B2/ja
Publication of WO2018150468A1 publication Critical patent/WO2018150468A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/02Connectors or connections adapted for particular applications for antennas

Definitions

  • the present invention relates to an electronic device including a coaxial cable connected to an antenna.
  • Some electronic devices have an antenna for wireless communication. Such an electronic device relays a radio signal transmitted and received by the antenna through a feeder line such as a coaxial cable connected to the antenna.
  • electromagnetic waves radiated from the antenna may propagate as leakage current along the outer conductor of the coaxial cable.
  • an electromagnetic wave due to the influence of the antenna is radiated from the outer conductor of the coaxial cable even at a position away from the antenna.
  • the electromagnetic wave radiated around the coaxial cable is not preferable because it may cause noise affecting the circuit components and other coaxial cables arranged in the vicinity thereof.
  • the present invention has been made in consideration of the above circumstances, and one of its purposes is to provide an electronic device capable of suppressing electromagnetic waves generated from a coaxial cable connected to an antenna.
  • An electronic device is formed in a strip shape with a coaxial cable connected to an antenna, and is electrically coupled to an outer conductor of the coaxial cable, and one end thereof is electrically connected to a ground to which the coaxial cable is connected. And a conductor not connected to.
  • FIG. 1 is a diagram illustrating a schematic internal configuration of an electronic device according to a first embodiment of the present invention. It is a figure which shows an example of distribution of electromagnetic waves when there is no conductor in this embodiment. It is a figure which shows an example of distribution of the electromagnetic waves at the time of arrange
  • FIG. 1 is a plan view schematically showing a schematic internal configuration of an electronic apparatus 1a according to the first embodiment of the present invention.
  • the electronic device 1a is, for example, a personal computer, a stationary game machine, a portable game machine, a smartphone, or the like.
  • an antenna 10, a coaxial cable 20, a conductor 30, and a wireless module 41 are included.
  • the antenna 10 is used for the electronic device 1 to perform wireless communication with other electronic devices by transmitting and / or receiving wireless signals.
  • the antenna 10 may be used for wireless LAN communication based on the IEEE 802.11 standard or Bluetooth (registered trademark) communication.
  • the communication frequency f is a frequency of a radio signal transmitted and received by the antenna 10, and is determined according to a radio communication standard.
  • the antenna 10 transmits and receives a radio signal having a frequency included in a predetermined frequency band.
  • the coaxial cable 20 includes an inner conductor that passes through the center and an outer conductor that surrounds the coaxial cable 20 and is used as a feed line for the antenna 10. That is, the coaxial cable 20 has a tip portion electrically connected to the antenna 10 and relays the antenna 10 and the radio module 41. In the present embodiment, it is assumed that the antenna 10 is disposed outside the substrate 40. Therefore, a part of the coaxial cable 20 is also arranged outside the substrate 40.
  • the electronic device 1a When the antenna 10 transmits and receives a radio signal, a leakage current flows through the outer conductor of the coaxial cable 20, which may cause electromagnetic waves that become noise from the outer conductor to be emitted to the surroundings.
  • the electronic device 1a includes a conductor 30 in order to suppress radiation of electromagnetic waves from the outer conductor.
  • the conductor 30 is made of a conductive material such as sheet metal or copper foil tape, and has an elongated strip shape. One end of the conductor 30 is electrically connected to the outer conductor of the coaxial cable 20 at a position outside the substrate 40. Specifically, the coating covering the outer conductor of the coaxial cable 20 is removed at the connection point with the conductor 30, and one end of the conductor 30 is fixed to the exposed outer conductor.
  • a connection point where the conductor 30 is connected to the outer conductor of the coaxial cable 20 is referred to as a base point B.
  • the conductor 30 is not electrically connected to other conductive members, and one end (the tip portion of the conductor 30) opposite to the base point B is an open end.
  • one end of the conductor 30 opposite to the base point B is referred to as an open end O.
  • the end point closest to the antenna 10 and close to the open end O in the region where the conductor 30 is in contact with the outer conductor of the coaxial cable 20 is defined as a base point B.
  • an end point on the side closer to the antenna 10 in the tip portion of the conductor 30 farthest from the coaxial cable 20 is defined as an open end O.
  • the conductor 30 has a substantially linear shape and extends along a direction substantially orthogonal to the extending direction of the coaxial cable 20. Further, the length from the base point B to the open end O of the conductor 30 is determined according to the wavelength of the electromagnetic wave for which radiation is desired to be suppressed.
  • the physical length from the base point B of the conductor 30 to the open end O is represented as a path length L. More specifically, the path length L is defined by the length from the base point B to the open end O along the outer periphery of the conductor 30 on the side close to the antenna 10.
  • the electrical length of the conductor 30 from the base point B to the open end O corresponding to the path length L is denoted as electrical length Le.
  • the electrical length Le of the conductor 30 matches the path length L. Therefore, the path length L of the conductor 30 may be included in the above-described range.
  • the electrical length Le is larger than the actual path length L. Therefore, the size of the conductor 30 can be reduced.
  • the width W in the lateral direction of the conductor 30 (that is, the direction along the extending direction of the coaxial cable 20) is preferably set to a value sufficiently smaller than ⁇ / 4. For this reason, the width W is preferably at least 1 ⁇ 2 or less of the length path length L of the conductor 30.
  • the conductor 30 may be connected to a position away from the antenna 10 of the coaxial cable 20 to some extent.
  • the length of the coaxial cable 20 from the antenna 10 to the position where the conductor 30 is connected is denoted as a distance d.
  • the interval d is longer than ⁇ / 4. Regardless of the size of the distance d, the presence of the conductor 30 can suppress electromagnetic waves generated from the coaxial cable 20 on the opposite side of the antenna 10 with the conductor 30 in between.
  • FIG. 2 and 3 are diagrams for explaining the effect of the conductor 30, and both show the results of simulating the distribution of electromagnetic waves radiated from the antenna 10 and the coaxial cable 20.
  • FIG. 2 shows the distribution of electromagnetic waves when the conductor 30 is not present
  • FIG. 3 shows the distribution of electromagnetic waves when the conductor 30 is present.
  • electromagnetic waves are also generated along the coaxial cable 20 at a location away from the antenna 10.
  • the conductor 30 exists, as shown in FIG. 3, electromagnetic waves are generated around the conductor 30, but on the side opposite to the antenna 10 across the conductor 30, It can be seen that the generation of electromagnetic waves is suppressed.
  • FIG. 4 is a graph showing a difference in effect due to a difference in the path length L of the conductor 30, and shows a result of executing a simulation by changing the path length L in various ways.
  • the value on the horizontal axis of the graph is the path length L
  • the value on the vertical axis is the strength (electric field strength) of the electromagnetic wave generated at the measurement point X when the conductor 30 is connected to the coaxial cable 20.
  • a position 90 mm away from the antenna 10 is a measurement point X.
  • the broken line in the figure indicates the electric field strength at the measurement point X when the conductor 30 is not present.
  • the communication frequency f of the antenna 10 is 2440 MHz
  • the path length L and the electrical length Le are substantially equal.
  • peaks where the electric field strength is particularly small appear at locations where the path length L substantially coincides with ⁇ / 4 and 3 / 4 ⁇ .
  • the electric field strength is reduced within a range of ⁇ ⁇ / 8 from these locations.
  • the electric field strength increases and does not differ much from the value when the conductor 30 is not provided. Therefore, as described above, when the electrical length Le of the conductor 30 is included in the range of ⁇ / 2 period such as ⁇ / 8 to 3 / 8 ⁇ , 5 / 8 ⁇ to 7 / 8 ⁇ , and so on. It can be seen that the conductor 30 has a significant effect.
  • the electronic apparatus 1a by electrically connecting the conductor 30 to the outer conductor of the coaxial cable 20, the outer conductor of the coaxial cable 20 radiates due to the influence of the antenna 10. Electromagnetic waves to be suppressed can be suppressed. Thereby, the influence by the electromagnetic waves to the circumference
  • the electronic device 1a may include a plurality of antennas 10 and wireless communication by these antennas 10 may be controlled by a single wireless module 41.
  • the coaxial cable 20 that connects these antennas 10 and the wireless module 41 approaches each other in the vicinity of the wireless module 41. Therefore, when no countermeasure is taken, electromagnetic waves generated from these coaxial cables 20 may interfere with each other.
  • the electronic apparatus 1a according to the present embodiment by connecting the conductor 30 to each coaxial cable 20, the coaxial cable 20 is located nearer to the radio module 41 than the conductor 30. 20 can be prevented.
  • the conductor 30 is not linear, but is bent at a plurality of locations, and is meandering as a whole. That is, the conductor 30 is formed in a meander shape. Even in such a shape, the conductor 30 can suppress electromagnetic radiation from the coaxial cable 20. Also in this embodiment, the path length L of the conductor 30 is determined so that the electrical length Le is close to (1/4 + n / 2) ⁇ .
  • the electromagnetic wave radiation from the coaxial cable 20 can be suppressed by the conductor 30 as in the first embodiment. Furthermore, by making the conductor 30 have a meander shape, it is not necessary to greatly separate the open end O from the coaxial cable 20 as compared with the case where the conductors 30 having the same path length L are arranged in a straight line. Can be kept from taking up space in the electronic device 1b.
  • FIG. 1c an electronic apparatus 1c according to a third embodiment of the present invention will be described with reference to FIG.
  • the present embodiment is different from the previous embodiments in that a plurality of conductors are connected to the outer conductor of the coaxial cable 20. That is, in this embodiment, the two conductors 30 of the conductor 30a and the conductor 30b are connected to the external conductor.
  • the two conductors 30 have the same path length L and are connected to different positions on the coaxial cable 20. Since the path lengths L are equal, these conductors 30a and 30b have the same electrical length Le and are effective against electromagnetic waves in the same frequency band. By providing a plurality of conductors 30 having the same electrical length in this way, it is possible to suppress the propagation of leakage current from the antenna 10 more strongly than when only one conductor 30 is provided.
  • the two conductors 30 are connected to the coaxial cable 20, but three or more conductors 30 may be connected.
  • the two conductors 30 are arranged so as to extend in different directions with respect to the coaxial cable 20, but the present invention is not limited thereto, and they may be arranged in the same direction.
  • the two conductors 30 may be arranged in different directions at positions where the distance d from the antenna 10 on the coaxial cable 20 is equal to each other.
  • a plurality of conductors 30 are connected to the outer conductor of the coaxial cable 20 as in the third embodiment.
  • the plurality of conductors 30 have different lengths.
  • a conductor 30c having a path length La and a conductor 30d having a path length Lb are connected to the outer conductor of the coaxial cable 20.
  • the electrical length of each conductor 30 is equal to the path length.
  • the conductor 30c is effective for electromagnetic waves having a wavelength four times the path length La.
  • the conductor 30d is effective against electromagnetic waves having a wavelength four times the path length Lb. That is, the emission of electromagnetic waves having a plurality of wavelengths is suppressed as a whole. Therefore, according to the electronic apparatus 1d according to the present embodiment, for example, when the antenna 10 is a multi-resonance antenna and has a plurality of resonance frequencies, the leakage current of the plurality of frequencies propagating from the antenna 10 is effectively reduced. Can be suppressed.
  • two conductors 30 are connected here, but three or more conductors 30 having different electrical lengths may be connected to the coaxial cable 20.
  • the two conductors 30 are arranged in the same direction with respect to the coaxial cable 20, but may be arranged in different directions.
  • the two conductors 30 may be arranged in different directions at positions where the distance d from the antenna 10 on the coaxial cable 20 is equal to each other.
  • an electronic apparatus 1e according to a fifth embodiment of the present invention will be described with reference to FIG.
  • one conductor 30 having a shape bent in the middle is connected as in the second embodiment.
  • the conductor 30 is bent only once and has an L-shape as a whole.
  • the conductor 30 is bent toward the antenna 10 side.
  • a portion where the conductor 30 is bent in the present embodiment is referred to as a bending point C.
  • the conductor 30 extends from the base point B toward the bending point C in a direction substantially orthogonal to the extending direction of the coaxial cable 20. And it is bent at a substantially right angle at the bending point C, and extends from the bending point C toward the open end O in a direction substantially parallel to the extending direction of the coaxial cable 20.
  • the path length L of the conductor 30 is L1 + L2.
  • the path length L is determined according to the communication frequency f of the antenna 10.
  • the length L1 corresponds to the linear distance from the coaxial cable 20 to the open end O.
  • the inventor changes the length L1 stepwise without changing the path length L, and connects the conductor 30 to the coaxial cable 20 (that is, the distance from the antenna 10 to the conductor 30).
  • the effect of the conductor 30 was examined by changing d).
  • FIG. 9A to 9E show the investigation results of the effect of the conductor 30.
  • FIG. These drawings all show the results of examining the electric field strength of electromagnetic waves radiated from the coaxial cable 20 connected to the antenna 10 having a communication frequency f of 2440 MHz.
  • the path length L of the conductor 30 is fixed to 30 mm, which is about 1 ⁇ 4 of the wavelength ⁇ corresponding to the communication frequency f.
  • the horizontal axis indicates the distance d from the antenna 10 to the conductor 30, and the vertical axis indicates the electric field strength indicating the intensity of the electromagnetic wave generated at the measurement point X, as in FIG. is there.
  • the broken line in a figure has shown the electric field strength of the electromagnetic waves which generate
  • FIG. 10A to 10C show the effect of the conductor 30 when the length L1 is changed while the interval d is fixed.
  • the effect of the conductor 30 hardly appears when the length L1 is 1 mm, but when the length L1 is increased to 3 mm, the effect of the conductor 30 is drastically increased. Appears. From there, there is a further decrease in the electric field strength due to the effect of the conductor 30 until the length L1 becomes 5 mm, and thereafter there is almost no change. Therefore, even when the conductor 30 is bent halfway, it is preferable that the open end O be separated from the coaxial cable 20 by at least 3 mm or more, and more preferably 5 mm or more.
  • the effect of suppressing electromagnetic waves by the conductor 30 can be enhanced by appropriately adjusting the shape of the conductor 30 and the connection position with respect to the coaxial cable 20.
  • the conductor 30 is electrically coupled to the outer conductor of the coaxial cable 20 by peeling off the coating of the coaxial cable 20 and bringing the conductor 30 into direct contact with the exposed outer conductor.
  • the conductor 30 is disposed outside the coating near the coaxial cable 20 without removing the coating of the coaxial cable 20.
  • the conductor 30 is not directly connected to the outer conductor of the coaxial cable 20, but is electrically coupled to the outer conductor by capacitive coupling. Thereby, it is possible to prevent the electromagnetic wave from being emitted from the coaxial cable 20 without directly connecting the conductor 30 to the outer conductor of the coaxial cable 20.
  • FIG. 11 shows a schematic internal configuration of the electronic device 1f according to the present embodiment.
  • FIG. 12 is an enlarged cross-sectional view illustrating a state in which the portion where the conductor 30 is disposed is cut by a plane perpendicular to the extending direction of the coaxial cable 20.
  • the coaxial cable 20 has an outer conductor 20b disposed around a signal line 20d passing through the center with a dielectric 20c interposed therebetween, and the periphery thereof is covered with a coating 20a.
  • the coating 20a of the coaxial cable 20 is not removed, and the coaxial cable 20 and the conductor 30 are arranged so as to overlap in a plan view.
  • the conductor 30 is capacitively coupled to the outer conductor 20b of the coaxial cable 20 with the covering 20a interposed therebetween.
  • the conductor 30 is in contact with the coating 20a, but the conductor 30 may be disposed at a position away from the coating 20a. However, in order to capacitively couple the conductor 30 and the outer conductor 20b, it is preferable to make the gap g between the conductor 30 and the outer conductor 20b as small as possible.
  • FIG. 13 is a graph showing the difference in effect due to the difference in the path length L of the conductor 30 in the present embodiment.
  • the value on the horizontal axis of the graph is the path length L
  • the broken line in the figure indicates the electric field strength at the measurement point X when the conductor 30 is not present.
  • the communication frequency f of the antenna 10 is 2440 MHz
  • the path length L and the electrical length Le are substantially equal.
  • n is an arbitrary integer of 0 or more
  • the electrical length Le is (1/8 + n / 2) ⁇ ⁇ Le ⁇ (3/8 + n / 2) ⁇ . In this range, it can be seen that the electromagnetic wave suppression effect by the conductor 30 is increased.
  • the width W in the lateral direction of the conductor 30 (the direction along the extending direction of the coaxial cable 20) is set to a certain size.
  • FIG. 14 is a graph showing the difference in the effect of the conductor 30 due to the difference in the width W.
  • the value on the vertical axis indicates the electric field intensity at the measurement point X
  • the value on the horizontal axis indicates the width W of the conductor 30.
  • the broken line has shown the electric field strength when the conductor 30 does not exist.
  • the width W of the conductor 30 is preferably at least 2 mm or more, and more preferably 6 mm or more.
  • the width W of the conductor 30 is constant, but the width W of the conductor 30 may not be constant.
  • FIG. 15 shows a modification of the shape of such a conductor 30.
  • one end of the conductor 30 opposite to the open end O is electrically coupled to the coaxial cable 20. May be electrically coupled to the coaxial cable 20.
  • FIG. 16 shows an arrangement example of the conductors 30 in this case.
  • the outer conductor 20b of the coaxial cable 20 and the conductor 30 are capacitively coupled at a position where they overlap in plan view.
  • the tip on the side opposite to the open end O also has an effect of suppressing electromagnetic waves having a wavelength corresponding to the length.
  • FIG. 17 shows an arrangement example of the conductors 30 in this case.
  • the conductor 30 is a flexible cable, and unlike the case of FIG. 16, the end of the conductor 30 opposite to the open end O side is connected to a connector arranged on the substrate 40. Thereby, the end of the conductor 30 opposite to the open end O is connected to the ground of the substrate 40 to which the coaxial cable 20 is connected.
  • the open end O side of the conductor 30 is once bent and then connected to a circuit board in the peripheral device 50. That is, the flexible cable that functions as the conductor 30 is for connecting the electronic circuit in the substrate 40 and the peripheral device 50.
  • the ground of the circuit board of the peripheral device 50 is electrically separated from the ground of the board 40. Therefore, the open end O of the conductor 30 is not electrically connected to the ground of the substrate 40 to which the coaxial cable 20 is connected, and the electromagnetic wave having the wavelength ⁇ corresponding to the path length L when viewed from the coaxial cable 20. It has the effect of preventing the propagation of.
  • the cable disposed so as to overlap the coaxial cable 20 functions as the conductor 30.
  • the end of the conductor 30 opposite to the open end O may be electrically connected to the ground to which the coaxial cable 20 is connected.
  • the embodiments of the present invention are not limited to those described above.
  • the antenna 10 is for performing wireless communication based on the wireless LAN standard or the Bluetooth standard, but a conductor is connected to a coaxial cable connected to various other antennas. Also good.
  • the number and shape of the conductors are not limited to those described above, and may be various numbers and shapes having the same effect.
  • each of the plurality of embodiments described above may be combined and applied to one electronic device.
  • some or all of the plurality of conductors 30 may have a meander shape.
  • a plurality of conductors 30 that are electrically coupled to the coaxial cable 20 by capacitive coupling may be disposed, or the shape thereof may be L-shaped or meandered.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguides (AREA)

Abstract

アンテナ(10)に接続される同軸ケーブル(20)と、帯状に形成され、同軸ケーブル(20)の外部導体と電気的に結合し、その先端は電気的に他の導電部材に接続されていない導電体(30)と、を備える電子機器である。

Description

電子機器
 本発明は、アンテナに接続された同軸ケーブルを備える電子機器に関する。
 電子機器の中には、無線通信用のアンテナを備えるものがある。このような電子機器は、アンテナが送受信する無線信号を、アンテナに接続された同軸ケーブル等の給電線によって中継する。
 上記従来例の電子機器では、アンテナから放射される電磁波が同軸ケーブルの外部導体に沿って漏洩電流として伝搬することがある。このような漏洩電流が発生すると、たとえアンテナから離れた位置であっても、同軸ケーブルの外部導体からアンテナの影響による電磁波が放射されてしまう。同軸ケーブルの周囲に放射される電磁波は、その近くに配置されている回路部品や他の同軸ケーブル等に影響を及ぼすノイズになるおそれがあり、好ましくない。
 本発明は上記実情を考慮してなされたものであって、その目的の一つは、アンテナに接続された同軸ケーブルから発生する電磁波を抑制することのできる電子機器を提供することにある。
 本発明に係る電子機器は、アンテナに接続される同軸ケーブルと、帯状に形成され、前記同軸ケーブルの外部導体と電気的に結合し、その一端は、前記同軸ケーブルが接続されるグラウンドと電気的に接続されていない導電体と、を備えることを特徴とする。
本発明の第1の実施形態に係る電子機器の概略の内部構成を示す図である。 本実施形態における導電体がない場合の電磁波の分布の一例を示す図である。 導電体を配置した場合の電磁波の分布の一例を示す図である。 導電体の長さの違いによる効果の違いを示すグラフである。 本発明の第2の実施形態に係る電子機器の概略の内部構成を示す図である。 本発明の第3の実施形態に係る電子機器の概略の内部構成を示す図である。 本発明の第4の実施形態に係る電子機器の概略の内部構成を示す図である。 本発明の第5の実施形態に係る電子機器の概略の内部構成を示す図である。 本発明の第5の実施形態における導電体の効果の一例を示すグラフである。 本発明の第5の実施形態における導電体の効果の一例を示すグラフである。 本発明の第5の実施形態における導電体の効果の一例を示すグラフである。 本発明の第5の実施形態における導電体の効果の一例を示すグラフである。 本発明の第5の実施形態における導電体の効果の一例を示すグラフである。 本発明の第5の実施形態における導電体の効果の一例を示すグラフである。 本発明の第5の実施形態における導電体の効果の一例を示すグラフである。 本発明の第5の実施形態における導電体の効果の一例を示すグラフである。 本発明の第6の実施形態に係る電子機器の概略の内部構成を示す図である。 本発明の第6の実施形態における同軸ケーブルと導電体の位置関係を示す拡大断面図である。 本発明の第6の実施形態における導電体の効果の一例を示すグラフである。 本発明の第6の実施形態における導電体の効果の一例を示すグラフである。 導電体の形状の変形例を示す図である。 導電体の形状の変形例を示す図である。 フレキシブルケーブルを導電体として機能させる場合の例を示す図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
[第1の実施形態]
 図1は、本発明の第1の実施形態に係る電子機器1aの概略の内部構成を模式的に示す平面図である。電子機器1aは、例えばパーソナルコンピュータや据え置き型ゲーム機、携帯型ゲーム機、スマートフォンなどであって、図1に示すように、アンテナ10と、同軸ケーブル20と、導電体30と、無線モジュール41が搭載された基板40と、を備えている。
 アンテナ10は、無線信号を送信及び/又は受信することで、電子機器1が他の電子機器と無線通信を行うために用いられる。例えばアンテナ10は、IEEE802.11規格に基づく無線LAN通信や、Bluetooth(登録商標)通信に用いられるものであってよい。
 以下では、アンテナ10が無線通信に使用する周波数の代表値を、通信周波数fと表記する。通信周波数fは、アンテナ10が送受信する無線信号の周波数であって、無線通信の規格に応じて定められる。なお、一般にアンテナ10は所定の周波数帯域に含まれる周波数の無線信号を送受信する。この場合の通信周波数fは、使用される周波数帯域の中央値によって定義される。すなわち、アンテナ10が無線通信を行う周波数帯域の最大値をfmax、最小値をfminとすると、通信周波数fは
f=(fmax+fmin)/2
で定義される。
 同軸ケーブル20は、中心を通る内部導体とその周囲を囲む外部導体とを含んで構成され、アンテナ10に対する給電線として使用される。すなわち、同軸ケーブル20は、その先端部分がアンテナ10と電気的に接続されており、アンテナ10と無線モジュール41とを中継している。なお、本実施形態ではアンテナ10は基板40の外側に配置されているものとする。そのため同軸ケーブル20の一部も、基板40の外側に配置されている。
 アンテナ10が無線信号を送受信すると、同軸ケーブル20の外部導体に漏洩電流が流れ、それにより外部導体から周囲にノイズとなる電磁波が放射されるおそれがある。本実施形態に係る電子機器1aは、この外部導体からの電磁波の放射を抑制するために、導電体30を備えている。
 導電体30は、板金や銅箔テープなどの導電性の材料で形成されており、細長い帯状の形状を有している。導電体30の一端は、基板40の外側の位置で、同軸ケーブル20の外部導体に電気的に接続されている。具体的に、導電体30との接続箇所では、同軸ケーブル20の外部導体を覆う被覆が取り除かれており、これにより露出した外部導体に導電体30の一端が固着されている。以下では、導電体30が同軸ケーブル20の外部導体に接続されている接続箇所を、基点Bと表記する。基点Bから先の箇所では、導電体30は他の導電部材と電気的に接続されておらず、基点Bと反対側の一端(導電体30の先端部)は開放端となっている。以下では、導電体30の基点Bと反対側の一端を開放端Oと表記する。より具体的に、導電体30が同軸ケーブル20の外部導体に接触している領域のうち、最もアンテナ10に近い側で、かつ開放端Oに近い側の端点を、基点Bとする。また、同軸ケーブル20から最も離れた導電体30の先端部分のうち、アンテナ10に近い側の端点を、開放端Oとする。
 本実施形態では、導電体30は略直線形状であって、同軸ケーブル20の延伸方向に対して略直交する方向に沿って延伸している。また、導電体30の基点Bから開放端Oまでの長さは、放射を抑えたい電磁波の波長に応じて決定されている。以下では、導電体30の基点Bから開放端Oまでの物理的な長さを経路長Lと表記する。より具体的に、経路長Lは、導電体30のアンテナ10に近い側の外周に沿った基点Bから開放端Oまでの長さによって定義される。また、この経路長Lに対応する基点Bから開放端Oまでの導電体30の電気長を、電気長Leと表記する。
 導電体30の経路長Lは、アンテナ10の通信周波数fに対応する電磁波の波長をλとし、nを0以上の任意の整数とした場合に、電気長Leが
Le=(1/4+n/2)λ
に近くなるように決定することが好ましい。より具体的に、導電体30の電気長Leは、
(1/8+n/2)λ≦Le≦(3/8+n/2)λ
を満たすようにすることが好ましい。これにより、アンテナ10から伝搬する波長λの電磁波を効果的に抑制することができる。ここで、導電体30が樹脂材料等の誘電体に接触するように配置されているのでなければ、導電体30の電気長Leは経路長Lに一致する。そこで、導電体30の経路長Lが上述した範囲に含まれるようにすればよい。導電体30が誘電体に接触するように配置される場合、電気長Leは実際の経路長Lよりも大きくなる。そのため、導電体30の大きさを小さくすることができる。
 なお、導電体30の横方向(すなわち、同軸ケーブル20の延伸方向に沿った方向)の幅Wは、λ/4よりも十分小さな値にすることが好ましい。そのため、幅Wは少なくとも導電体30の長さ経路長Lの1/2以下とすることが好ましい。
 導電体30は、同軸ケーブル20のアンテナ10からある程度離れた位置に接続されてもよい。以下では、アンテナ10から導電体30が接続された位置(基点Bの位置)までの同軸ケーブル20の長さを、間隔dと表記する。本実施形態では、間隔dはλ/4よりも長くなっている。間隔dの大きさに関わりなく、導電体30の存在によって、導電体30を挟んでアンテナ10側と反対側の同軸ケーブル20から発生する電磁波を抑制することができる。
 図2及び図3は、導電体30の効果を説明するための図であって、いずれもアンテナ10及び同軸ケーブル20から放射される電磁波の分布をシミュレーションした結果を示している。これらの図では、濃度が濃くなっている場所が、強い電磁波が放射されている箇所を示している。図2は導電体30が存在しない場合の電磁波の分布を示しており、図3は導電体30が存在する場合の電磁波の分布を示している。図2に示されるように、導電体30が存在しない場合、同軸ケーブル20に沿ってアンテナ10から離れた場所でも電磁波が発生している。一方、導電体30が存在する場合、図3に示されるように、導電体30の周囲に電磁波が発生しているが、導電体30を挟んでアンテナ10と反対側では、同軸ケーブル20からの電磁波の発生が抑制されていることが分かる。
 図4は、導電体30の経路長Lの違いによる効果の違いを示すグラフであって、経路長Lを様々に変化させてシミュレーションを実行した結果を示している。グラフの横軸の値は経路長Lであって、縦軸の値は、同軸ケーブル20に導電体30を接続した場合に測定点Xで発生する電磁波の強度(電界強度)である。ここでは、アンテナ10から距離90mm離れた位置を測定点Xとしている。また、図中の破線は導電体30が存在しない場合における測定点Xの電界強度を示している。なお、この図では、アンテナ10の通信周波数fは2440MHzであって、経路長Lと電気長Leは略等しいものとしている。
 同図に示されるように、経路長Lがλ/4、及び3/4λに略一致する箇所で、電界強度が特に小さくなるピークが表れている。また、これらの箇所から±λ/8の範囲で電界強度が小さくなっているが、その範囲を外れると電界強度は大きくなり、導電体30がない場合の値とあまり差が生じていない。このことから、前述したように、導電体30の電気長Leがλ/8以上3/8λ以下、5/8λ以上7/8λ以下、・・・といったλ/2周期の範囲に含まれる場合に、導電体30が有意な効果を奏することが分かる。
 以上説明したように、本実施形態に係る電子機器1aによれば、導電体30を同軸ケーブル20の外部導体に電気的に接続することによって、アンテナ10の影響によって同軸ケーブル20の外部導体が放射する電磁波を抑制することができる。これにより、同軸ケーブル20の周囲への電磁波による影響を防ぐことができる。
 特に、電子機器1aが複数のアンテナ10を備え、これらのアンテナ10による無線通信を一つの無線モジュール41で制御することがある。この場合、たとえ複数のアンテナ10を互いに離れた位置に配置しても、これらのアンテナ10と無線モジュール41を接続する同軸ケーブル20は、無線モジュール41の近傍で互いに近づくことになる。そのため、何も対策を施さなかった場合、これらの同軸ケーブル20から発生する電磁波が互いに干渉するおそれがある。本実施形態に係る電子機器1aによれば、各同軸ケーブル20に導電体30を接続することで、導電体30よりも無線モジュール41に近い側では、同軸ケーブル20が近くにある別の同軸ケーブル20と干渉しないようにすることができる。
[第2の実施形態]
 次に、本発明の第2の実施形態に係る電子機器1bについて、図5を用いて説明する。本実施形態では、第1の実施形態と比較して導電体30の形状が異なっているが、その他の点については第1の実施形態と共通している。そのため、第1の実施形態と対応する構成要素については同一の参照符号を付与し、その詳細な説明は省略する。これ以降説明するその他の実施形態についても、同様である。
 図5に示されるように、本実施形態では、導電体30が直線状ではなく、複数箇所で屈曲しており、全体として蛇行している。つまり、導電体30はメアンダ状に形成されている。このような形状であっても、導電体30によって同軸ケーブル20からの電磁波放射を抑制することができる。本実施形態でも、導電体30の経路長Lはその電気長Leが(1/4+n/2)λに近くなるように決定される。
 本実施形態に係る電子機器1bによれば、第1の実施形態と同様、導電体30によって同軸ケーブル20からの電磁波放射を抑えることができる。さらに、導電体30をメアンダ形状とすることで、経路長Lが同じ導電体30を直線状に配置した場合と比較して、開放端Oを同軸ケーブル20から大きく離す必要がなくなり、導電体30が電子機器1b内で場所をとらないようにすることができる。
[第3の実施形態]
 次に、本発明の第3の実施形態に係る電子機器1cについて、図6を用いて説明する。本実施形態では、これまでの実施形態と比較して、同軸ケーブル20の外部導体に複数の導電体が接続されている点が異なっている。すなわち、本実施形態では、導電体30a及び導電体30bの二つの導電体30が外部導体に接続されている。
 この2つの導電体30は、互いに経路長Lが等しく、同軸ケーブル20上の互いに異なる位置に接続されている。経路長Lが等しいので、これらの導電体30a及び30bは、電気長Leも互いに等しく、同じ周波数帯の電磁波に対して効果を奏する。このように互いに電気長が同じ導電体30を複数設けることで、導電体30が一つの場合よりも強力にアンテナ10からの漏洩電流の伝搬を抑えることができる。
 なお、ここでは2個の導電体30を同軸ケーブル20に接続することとしたが、3個以上の導電体30を接続してもよい。また、ここでは2個の導電体30は同軸ケーブル20に対して互いに異なる向きに延伸するように配置しているが、これに限らず、互いに同じ向きに配置してもよい。また、2個の導電体30を同軸ケーブル20上のアンテナ10からの間隔dが互いに等しい位置に異なる向きで配置してもよい。
[第4の実施形態]
 次に、本発明の第4の実施形態に係る電子機器1dについて、図7を用いて説明する。本実施形態では、第3の実施形態と同様に複数の導電体30が同軸ケーブル20の外部導体に接続されている。ただし、第3の実施形態と異なり、複数の導電体30は互いに異なる長さを有している。具体的に、本実施形態では、同軸ケーブル20の外部導体に対して、経路長Laの導電体30cと経路長Lbの導電体30dが接続されている。ここでは、各導電体30の電気長は経路長に等しいものとする。
 この場合、導電体30cは経路長Laの4倍の波長の電磁波に対して効果を奏する。また、導電体30dは経路長Lbの4倍の波長の電磁波に対して効果を奏する。すなわち、全体として複数の波長の電磁波の放射が抑えられることになる。そのため本実施形態に係る電子機器1dによれば、例えばアンテナ10が複共振アンテナであって複数の共振周波数を有している場合に、アンテナ10から伝搬する複数の周波数の漏洩電流を効果的に抑えることができる。
 なお、ここでは2個の導電体30が接続されていることとしたが、互いに電気長の異なる3個以上の導電体30が同軸ケーブル20に接続されることとしてもよい。また、ここでは2個の導電体30は同軸ケーブル20に対して互いに同じ向きに配置されているが、互いに異なる向きに配置されてもよい。また、2個の導電体30を同軸ケーブル20上のアンテナ10からの間隔dが互いに等しい位置に異なる向きで配置してもよい。
[第5の実施形態]
 次に、本発明の第5の実施形態に係る電子機器1eについて、図8を用いて説明する。本実施形態では、第2の実施形態と同様に途中で屈曲した形状を有する1個の導電体30が接続されている。ただし、第2の実施形態と異なり、本実施形態では導電体30は一度しか屈曲しておらず、全体としてL字状の形状を有している。なお、ここでは導電体30はアンテナ10側に向けて屈曲している。以下では、本実施形態において導電体30が屈曲している箇所を屈曲点Cと表記する。
 図8に示されるように、本実施形態では、導電体30は基点Bから屈曲点Cに向けて、同軸ケーブル20の延伸方向と略直交する方向に延伸している。そして、屈曲点Cで略直角に折れ曲がっており、屈曲点Cから開放端Oに向けて同軸ケーブル20の延伸方向と略平行な方向に延伸している。ここで、基点Bから屈曲点Cまでの長さをL1、屈曲点Cから開放端Oまでの長さをL2とすると、導電体30の経路長Lは
L=L1+L2
で計算され、この経路長Lがアンテナ10の通信周波数fに応じて決定されている。ここで、長さL1は同軸ケーブル20から開放端Oまでの直線距離に対応している。
 以下、この例における導電体30の効果について、様々に条件を変化させてシミュレーションを行った結果について、説明する。具体的に本願発明者は、経路長Lは変化させずに長さL1を段階的に変化させるとともに、導電体30の同軸ケーブル20への接続箇所(すなわち、アンテナ10から導電体30までの間隔d)を変化させて導電体30の効果を調べた。
 図9A~図9Eは、この導電体30の効果の調査結果を示している。これらの図は、いずれも、通信周波数fが2440MHzのアンテナ10に接続された同軸ケーブル20から放射される電磁波の電界強度を調べた結果を示している。これらの図では、導電体30の経路長Lは、この通信周波数fに対応する波長λの約1/4である30mmに固定されている。
 各図の横軸は、アンテナ10から導電体30までの間隔dを示しており、縦軸の値は、図4の場合と同様に、測定点Xで発生する電磁波の強度を示す電界強度である。なお、図中の破線は導電体30が接続されていない場合に測定点Xで発生する電磁波の電界強度を示している。
 図9A~図9Eまでの複数のグラフは、長さL1の違いによる効果の違いを示している。具体的に、図9Aは長さL1=1mmの場合の結果を示している。また、図9Bは長さL1=5mmの場合、図9Cは長さL1=15mmの場合、図9Dは長さL1=25mmの場合、図9Eは長さL1=29mmの場合を、それぞれ示している。なお、長さL2はL=30mmからL1を差し引いた値になっている。
 図9Aのグラフでは、導電体30を配置した場合(実線)と配置していない場合(破線)とで測定点Xの電界強度にほとんど差が見られない。このことから、長さL1が短く、開放端Oが同軸ケーブル20に近すぎる場合には、導電体30を配置することによる効果が十分に得られないことが分かる。一方、図9Bに示すように、長さL1が5mmの場合には、導電体30が存在しない場合と比較して有意な効果が現れている。また、長さL1を長くして、開放端Oを同軸ケーブル20から遠ざけるほど、導電体30による効果が強く現れている。
 図10A~図10Cは、間隔dを固定して長さL1を変化させた場合の導電体30の効果を示している。具体的に、図10Aは間隔d=50mmの場合、図10Bは間隔d=75mm、また図10Cは間隔d=90mmの場合の測定点Xにおける電界強度を示している。これらの図に示されるように、間隔dに関わりなく、長さL1が1mmの場合には導電体30の効果はほとんど表れないが、長さL1を3mmまで長くすると急激に導電体30の効果が表れる。そこから長さL1が5mmになるまでさらに導電体30の効果による電界強度の減少があり、その後はほとんど変化がなくなる。このことから、導電体30を途中で屈曲させる場合であっても、開放端Oを同軸ケーブル20から少なくとも3mm以上離すことが好ましく、5mm以上離すことがより好ましい。
 また、図9B~図9Eに示されるように、間隔dによっても導電体30の効果は変動する。全体として、間隔dがλ/4(=30mm)以下の場合には導電体30の効果が小さく、導電体30の接続位置をアンテナ10からある程度離すと、導電体30の効果が大きくなる。そのため、アンテナ10から導電体30の接続位置までの間隔dは、λ/4を超えるようにすることが好ましい。
 以上説明したように、導電体30の形状、及び同軸ケーブル20に対する接続位置を適切に調整することで、導電体30による電磁波の抑制効果を高めることができる。
[第6の実施形態]
 次に、本発明の第6の実施形態に係る電子機器1fについて、図11及び図12を用いて説明する。これまで説明した各実施形態では、同軸ケーブル20の被覆を剥がし、露出した外部導体に直接導電体30を接触させることで、導電体30を同軸ケーブル20の外部導体と電気的に結合している。しかしながら本実施形態では、これまでの説明と異なり、導電体30を同軸ケーブル20の被覆を取り除かずに、同軸ケーブル20近傍の被覆の外側に導電体30を配置する。この場合、導電体30は直接同軸ケーブル20の外部導体と導通しないが、容量結合によって外部導体と電気的に結合している。これにより、導電体30を同軸ケーブル20の外部導体と直接導通させずとも、同軸ケーブル20からの電磁波の放射を防止することができる。
 図11は、本実施形態に係る電子機器1fの概略の内部構成を示している。また、図12は、導電体30が配置された箇所を、同軸ケーブル20の延伸方向に垂直な面で切った様子を示す拡大断面図である。図12に示すように、同軸ケーブル20は、中心を通る信号線20dの周りに誘電体20cを挟んで外部導体20bが配置されており、その周囲が被覆20aに覆われている。そして本実施形態では、同軸ケーブル20の被覆20aは取り除かれておらず、同軸ケーブル20と導電体30とが平面視において重なるように配置されている。その結果、被覆20aを挟んで導電体30が同軸ケーブル20の外部導体20bと容量結合している。
 なお、図12では導電体30を被覆20aに接触させているが、被覆20aから離れた位置に導電体30を配置してもよい。ただし、導電体30と外部導体20bとを容量結合させるために、導電体30と外部導体20bとの間のギャップgは、できるだけ小さくすることが好ましい。
 図13は、本実施形態における導電体30の経路長Lの違いによる効果の違いを示すグラフである。図4と同様に、グラフの横軸の値は経路長Lであって、縦軸の値は、測定点X(d=90mm)で発生する電磁波の強度(電界強度)である。また、図中の破線は導電体30が存在しない場合における測定点Xの電界強度を示している。なお、この図では、アンテナ10の通信周波数fは2440MHzであって、経路長Lと電気長Leは略等しいものとしている。
 図13に示されるように、導電体30を容量結合によって同軸ケーブル20の外部導体20bと電気的に結合させた場合にも、経路長Lがλ/4、及び3/4λに略一致する箇所で電界強度が特に小さくなるピークが表れている。このことから、本実施形態においても、nを0以上の任意の整数として、電気長Leが
(1/8+n/2)λ≦Le≦(3/8+n/2)λ
の範囲において、導電体30による電磁波抑制効果が大きくなっていることが分かる。
 また、本実施形態では、導電体30と外部導体20bを容量結合させるために、導電体30の横方向(同軸ケーブル20の延伸方向に沿った方向)の幅Wを、ある程度の大きさにする必要がある。図14は、この幅Wの違いによる導電体30の効果の違いを示すグラフである。縦軸の値は測定点Xにおける電界強度を示しており、横軸の値は導電体30の幅Wを示している。また、破線は導電体30が存在しない場合の電界強度を示している。この図に示されるように、導電体30の幅Wを少なくとも2mm以上にすることが好ましく、6mm以上とすることがより好ましい。
 なお、これまで説明した各実施形態において、導電体30の幅Wは一定であることとしたが、導電体30の幅Wは一定でなくともよい。特に第6の実施形態では、上述の通り同軸ケーブル20と重なる位置で導電体30の幅Wを大きくする必要がある。そのため、同軸ケーブル20と重なる位置の導電体30の幅Wを大きくし、それ以外の箇所では幅Wを相対的に小さくしてもよい。図15はこのような導電体30の形状の変形例を示している。
 また、これまで説明した各実施形態では、導電体30の開放端Oと反対側の一端を同軸ケーブル20と電気的に結合させることとしたが、これに限らず、導電体30の途中の位置を同軸ケーブル20と電気的に結合させてもよい。図16は、この場合の導電体30の配置例を示している。この例では、同軸ケーブル20の外部導体20bと導電体30とが平面視において重なる位置において、両者は容量結合している。なお、この例では、開放端Oと反対側の先端部も、その長さに応じた波長の電磁波を抑制する効果を奏する。
 特に第6の実施形態では、導電体30を同軸ケーブル20の外部導体20bと導通させないので、基板40のグラウンドに接続されるケーブルを導電体30として機能させることができる。図17は、この場合の導電体30の配置例を示している。この例では、導電体30はフレキシブルケーブルであって、図16の場合と異なり、導電体30の開放端O側と反対側の端部が、基板40に配置されたコネクタに接続されている。これにより、導電体30の開放端Oと反対側の端部は、同軸ケーブル20が接続されている基板40のグラウンドと接続されている。導電体30の開放端O側は、一度折り曲げられた後、周辺デバイス50内の回路基板に接続されている。つまり、導電体30として機能するフレキシブルケーブルは、基板40内の電子回路と周辺デバイス50とを接続するためのものである。
 この例では、周辺デバイス50の回路基板のグラウンドは、基板40のグラウンドと電気的に分離されている。そのため、導電体30の開放端Oは、同軸ケーブル20が接続される基板40のグラウンドとは電気的に接続されておらず、同軸ケーブル20から見て、経路長Lに対応する波長λの電磁波の伝搬を防止する作用を奏する。このように、一方の端部が、同軸ケーブル20が接続されるグラウンドと電気的に接続されない開放端Oとして機能すれば、同軸ケーブル20と重ねて配置されたケーブルは導電体30として機能する。この場合、導電体30の開放端Oと逆側の端部は、同軸ケーブル20が接続されるグラウンドと電気的に接続されていてもよい。
 なお、本発明の実施の形態は、以上説明したものに限られない。例えば、以上の説明ではアンテナ10は無線LAN規格やBluetooth規格に基づく無線通信を行うためのものであることとしたが、これ以外の各種のアンテナに接続される同軸ケーブルに導電体を接続してもよい。また、導電体の数や形状も、以上説明したものに限らず、同様の効果を奏する各種の数や形状であってよい。
 また、以上説明した複数の実施形態のそれぞれが備える特徴を組み合わせて、一つの電子機器に適用してもよい。例えば、上述した第3の実施形態や第4の実施形態において、複数の導電体30の一部又は全部をメアンダ形状としてもよい。また、第6の実施形態において、同軸ケーブル20と容量結合によって電気的に結合する複数の導電体30を配置したり、その形状をL字状やメアンダ形状などにしたりしてもよい。
 1a,1b,1c,1d,1e,1f 電子機器、10 アンテナ、20 同軸ケーブル、30 導電体、40 基板、41 通信モジュール、50 周辺デバイス。

Claims (11)

  1.  アンテナに接続される同軸ケーブルと、
     帯状に形成され、前記同軸ケーブルの外部導体と電気的に結合し、その一端は、前記同軸ケーブルが接続されるグラウンドと電気的に接続されていない導電体と、
     を備えることを特徴とする電子機器。
  2.  請求項1に記載の電子機器において、
     前記外部導体との結合位置から前記一端までの前記導電体の電気長は、前記アンテナの通信周波数に対応する電磁波の波長をλとし、nを0以上の任意の整数として、(1/8+n/2)λ以上(3/8+n/2)λ以下である
     ことを特徴とする電子機器。
  3.  請求項1又は2に記載の電子機器において、
     前記導電体は、前記同軸ケーブルと平面視において重なる位置に配置され、前記同軸ケーブルの被覆を挟んで前記外部導体と容量結合によって電気的に結合している
     ことを特徴とする電子機器。
  4.  請求項3に記載の電子機器において、
     前記導電体が前記同軸ケーブルと重なる位置における、前記同軸ケーブルの延伸方向に沿った前記導電体の幅は、2mm以上である
     ことを特徴とする電子機器。
  5.  請求項3又は4に記載の電子機器において、
     前記導電体は、ケーブルであって、その前記一端と反対側の端部は、前記同軸ケーブルが接続されるグラウンドに接続されている
     ことを特徴とする電子機器。
  6.  請求項1から5のいずれか一項に記載の電子機器において、
     前記導電体は、前記同軸ケーブルと結合する位置において、前記同軸ケーブルの延伸方向と略直交する方向に延伸している
     ことを特徴とする電子機器。
  7.  請求項1から6のいずれか一項に記載の電子機器において、
     前記導電体は、直線形状を有する
     ことを特徴とする電子機器。
  8.  請求項1から6のいずれか一項に記載の電子機器において、
     前記導電体は、途中で屈曲した形状を有する
     ことを特徴とする電子機器。
  9.  請求項1から8のいずれか一項に記載の電子機器において、
     前記同軸ケーブルの外部導体に、帯状に形成された複数の導電体が電気的に結合されている
     ことを特徴とする電子機器。
  10.  請求項1から9のいずれか一項に記載の電子機器において、
     前記導電体の前記一端は、前記同軸ケーブルから3mm以上離れた位置に配置されている
     ことを特徴とする電子機器。
  11.  請求項1から10のいずれか一項に記載の電子機器において、
     前記導電体が前記同軸ケーブルに結合する位置と前記アンテナとの間の前記同軸ケーブルの長さが、前記アンテナの通信周波数に対応する電磁波の波長の4分の1を超えている
     ことを特徴とする電子機器。
PCT/JP2017/005337 2017-02-14 2017-02-14 電子機器 WO2018150468A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/482,183 US11171398B2 (en) 2017-02-14 2017-02-14 Electronic device
EP17896773.3A EP3584880B1 (en) 2017-02-14 2017-02-14 Electronic device
CN201780085886.6A CN110268578A (zh) 2017-02-14 2017-02-14 电子设备
PCT/JP2017/005337 WO2018150468A1 (ja) 2017-02-14 2017-02-14 電子機器
JP2019500071A JP6887483B2 (ja) 2017-02-14 2017-02-14 電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005337 WO2018150468A1 (ja) 2017-02-14 2017-02-14 電子機器

Publications (1)

Publication Number Publication Date
WO2018150468A1 true WO2018150468A1 (ja) 2018-08-23

Family

ID=63170539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005337 WO2018150468A1 (ja) 2017-02-14 2017-02-14 電子機器

Country Status (5)

Country Link
US (1) US11171398B2 (ja)
EP (1) EP3584880B1 (ja)
JP (1) JP6887483B2 (ja)
CN (1) CN110268578A (ja)
WO (1) WO2018150468A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
EP1150601B1 (en) 1998-11-20 2009-08-19 Intuitive Surgical, Inc. System for performing cardiac surgery without cardioplegia
EP2359767B1 (en) 2002-12-06 2017-08-30 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199402A (ja) * 1984-10-19 1986-05-17 Mitsubishi Electric Corp インピ−ダンス整合器
JPS62177106U (ja) * 1986-04-28 1987-11-10
JPH11340710A (ja) * 1998-05-25 1999-12-10 Nippon Antenna Co Ltd 整合方法および整合装置
WO2013047033A1 (ja) * 2011-09-26 2013-04-04 株式会社フジクラ アンテナ装置及びアンテナの実装方法
JP2015073239A (ja) * 2013-10-04 2015-04-16 日立金属株式会社 アンテナ装置及び無線通信機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177106A (ja) 1986-01-30 1987-08-04 Kobe Steel Ltd 複合弁体の製造方法
JPH07245518A (ja) * 1994-03-07 1995-09-19 Harada Ind Co Ltd 無線通信用ダイバシティアンテナ
JP3165653B2 (ja) * 1997-02-20 2001-05-14 日本アンテナ株式会社 八木宇田アンテナ
JP3622959B2 (ja) 2001-11-09 2005-02-23 日立電線株式会社 平板アンテナの製造方法
JP2004343193A (ja) 2003-05-13 2004-12-02 Nippon Antenna Co Ltd アンテナ装置
JP2005191792A (ja) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd アンテナ装置及びそれを用いた無線通信装置
JP5371792B2 (ja) 2010-01-05 2013-12-18 中国電力株式会社 避雷装置
CN102959802B (zh) * 2011-04-11 2015-11-25 松下电器(美国)知识产权公司 天线装置和无线通信装置
EP2710668B1 (en) 2011-05-02 2019-07-31 CommScope Technologies LLC Tri-pole antenna element and antenna array
US9466888B2 (en) * 2013-08-26 2016-10-11 Honeywell International Inc. Suppressing modes in an antenna feed including a coaxial waveguide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199402A (ja) * 1984-10-19 1986-05-17 Mitsubishi Electric Corp インピ−ダンス整合器
JPS62177106U (ja) * 1986-04-28 1987-11-10
JPH11340710A (ja) * 1998-05-25 1999-12-10 Nippon Antenna Co Ltd 整合方法および整合装置
WO2013047033A1 (ja) * 2011-09-26 2013-04-04 株式会社フジクラ アンテナ装置及びアンテナの実装方法
JP2015073239A (ja) * 2013-10-04 2015-04-16 日立金属株式会社 アンテナ装置及び無線通信機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584880A4 *

Also Published As

Publication number Publication date
EP3584880A4 (en) 2020-10-28
US20200044302A1 (en) 2020-02-06
EP3584880B1 (en) 2023-03-29
EP3584880A1 (en) 2019-12-25
CN110268578A (zh) 2019-09-20
JP6887483B2 (ja) 2021-06-16
JPWO2018150468A1 (ja) 2019-12-19
US11171398B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
US7750861B2 (en) Hybrid antenna including spiral antenna and periodic array, and associated methods
TWI420739B (zh) 輻射場型隔離器及其天線系統與使用該天線系統的通訊裝置
US8803755B2 (en) Low passive intermodulation chokes for electrical cables
JP6489534B2 (ja) アンテナ及び電気機器
US20150303564A1 (en) Chokes for electrical cables
US8624791B2 (en) Chokes for electrical cables
TWI487191B (zh) 天線系統
JP2011176560A (ja) アンテナ装置、及び無線端末装置
WO2015057986A1 (en) Electrical connectors with low passive intermodulation
WO2018150468A1 (ja) 電子機器
US20110043421A1 (en) Portable electronic device and antenna thereof
JP5104131B2 (ja) 無線装置および無線装置が備えるアンテナ
US7598912B2 (en) Planar antenna structure
JP6474121B2 (ja) 同軸ケーブル・マイクロストリップ線路変換器
JP6386403B2 (ja) アンテナ装置
JP2015073239A (ja) アンテナ装置及び無線通信機器
CN114616718A (zh) 无线通信装置
EP2533437A2 (en) Cylindrical electromagnetic bandgap structure and coaxial cable having the same
US10847891B2 (en) Antenna device and wireless communication apparatus
US10777942B2 (en) Signal transmission cable
CN109586029B (zh) 天线装置及电子设备
KR20220128278A (ko) Uwb 안테나장치
JP2013214795A (ja) アンテナ
JP2012239107A (ja) 電子機器
JPH06283911A (ja) ピン・ストリップ線路垂直変換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017896773

Country of ref document: EP

Effective date: 20190916