JP2011176560A - アンテナ装置、及び無線端末装置 - Google Patents

アンテナ装置、及び無線端末装置 Download PDF

Info

Publication number
JP2011176560A
JP2011176560A JP2010038584A JP2010038584A JP2011176560A JP 2011176560 A JP2011176560 A JP 2011176560A JP 2010038584 A JP2010038584 A JP 2010038584A JP 2010038584 A JP2010038584 A JP 2010038584A JP 2011176560 A JP2011176560 A JP 2011176560A
Authority
JP
Japan
Prior art keywords
antenna
antenna device
antenna element
stubs
feeding point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010038584A
Other languages
English (en)
Inventor
Yasumitsu Ban
泰光 伴
Hisashi Yamagashiro
尚志 山ヶ城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010038584A priority Critical patent/JP2011176560A/ja
Priority to US13/020,175 priority patent/US20110207422A1/en
Priority to EP11154488A priority patent/EP2363914A1/en
Publication of JP2011176560A publication Critical patent/JP2011176560A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2275Supports; Mounting means by structural association with other equipment or articles used with computer equipment associated to expansion card or bus, e.g. in PCMCIA, PC cards, Wireless USB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Abstract

【課題】省スペース化又は小型化を図るようにしたアンテナ装置、及び無線端末装置を提供すること。また、一定の特性が得られるようにしたアンテナ装置、及び無線端末装置を提供すること。
【解決手段】アンテナ装置において、基板と、前記基板上に配置され、無線信号を送信又は受信するアンテナ素子と、前記アンテナ素子に接続されて前記アンテナ素子に電流又は電圧を給電するための給電点と、一端が前記基板上の一部に形成されたグランドパターンと接続された配線パターンとを備え、前記アンテナ素子と前記給電点、及び前記配線パターンを1つのセットとし、前記アンテナ素子と前記給電点、及び前記配線パターンは2セット以上備える。
【選択図】図1

Description

本発明は、アンテナ装置、及び無線端末装置に関する。
従来から、アンテナ装置として、例えば2本のアンテナにより同一の無線信号が受信され、電波状況の優れたアンテナからの受信信号が優先的に用いられるようにしたダイバシティアンテナがある。
また、例えば、導電性の接続素子が2つのアンテナ素子間に接続されることで、一方のアンテナ素子の給電点に流れる電流がバイパスされて、2つのアンテナ素子を電気的に絶縁させるようにしたマルチモードアンテナ構造が知られている。
更に、例えば、グランドパターンの端部に切り欠き部が形成されることで、アンテナ素子間の結合度を低減させるようにした一体型平板多素子及び電子機器も知られている。
更に、例えば、上部接地導体の縁部を切り欠いた凹部に可変リアクタンス又はスイッチが設けられ、スイッチ等により上部接地導体における複数の突片の先端部分に設けられたアンテナ素子間の相関関係を低下させるようにした無線受信用小型携帯端末装置も知られている。
WO 2008/131157 A1 特開2007‐13643号公報 特開2007‐243455号公報
しかしながら、上述した従来技術において、アンテナ素子間に接続素子が直接接続された場合、アンテナ素子の特性が変化する。そのため、アンテナ装置に更に整合回路が配置させることで、特性の変化に対応させ、受信周波数又は送信周波数を所定の範囲にすることができる。しかし、アンテナ装置に整合回路が配置されると、部品点数がその分増加し、アンテナ装置内の各種素子等の設置スペースが少なくなる。部品点数の増加や設置スペースの減少は、アンテナ装置の省スペース化又は小型化を実現することが困難となる。
また、上述した従来技術において、グランドパターンの端部に切り欠きを設け、又は上部接地導体に凹部を設けた場合、切り欠きや凹部の面積が一定以上の大きさのとき、切り欠き等の分だけ、グランドパターン上に設置される各種素子等の設置スペースが少なくなる。
一方、アンテナ素子間の結合又は相関等、アンテナ素子の特性を一定以上とすることで、アンテナ装置の受信特性等を向上させることもできる。
そこで、本発明の一目的は、省スペース化又は小型化を図るようにしたアンテナ装置及び無線端末装置を提供することにある。
また、本発明の他の目的は、一定の特性が得られるようにしたアンテナ装置及び無線端末装置を提供することにある。
一態様によれば、アンテナ装置において、基板と、前記基板上に配置され、無線信号を送信又は受信するアンテナ素子と、前記アンテナ素子に接続されて前記アンテナ素子に電流又は電圧を給電するための給電点と、一端が前記基板上の一部に形成されたグランドパターンと接続された配線パターンとを備え、前記アンテナ素子と前記給電点、及び前記配線パターンを1つのセットとし、前記アンテナ素子と前記給電点、及び前記配線パターンは2セット以上備える。
また、他の態様によれば、無線信号を送信又は受信する無線端末装置において、筺体と、前記筺体に収容されたアンテナ装置とを備え、前記アンテナ装置は、基板と、前記基板上に配置され前記無線信号を送信又は受信するアンテナ素子と、前記アンテナ素子に接続されて前記アンテナ素子に電流又は電圧を給電するための給電点と、一端が前記基板上の一部に形成されたグランドパターンと接続された配線パターンとを備え、前記アンテナ素子と前記給電点、及び前記配線パターンを1つのセットとし、前記アンテナ素子と前記給電点、及び前記配線パターンは2セット以上備える。
省スペース化又は小型化を図るようにしたアンテナ装置及び無線端末装置を提供することができる。また、一定の特性が得られるようにしたアンテナ装置及び無線端末装置を提供することができる。
図1はアンテナ装置の斜視図である。 図2(A)はアンテナ装置の部分拡大図、図2(B)及び図2(C)は断面図を夫々示す図である。 図3はS11に関するシミュレーション結果の例を示す図である。 図4はアンテナ効率に関するシミュレーション結果の例を示す図である。 図5(A)及び図5(B)は放射パターンのシミュレーション結果の例を示す図である。 図6は相関係数に関するシミュレーション結果の例を示す図である。 図7はS21に関するシミュレーション結果の例を示す図である。 図8はシミュレーション対象のアンテナ装置の部分拡大図である。 図9は電流分布の例を示す図である。 図10(A)はS11、図10(B)はリアクタンスに関する各シミュレーション結果の例を示す図である。 図11はスミスチャートの例を示す図である。 図12(A)はスタブがない場合、図12(B)はスタブの折り返しが1つある場合の、夫々のアンテナ装置の部分拡大図である。 図13はアンテナ装置の部分拡大図である。 図14はS11、S21に関するミュレーション結果の例を示す図である。 図15(A)はS11、図15(B)はS21に関するシミュレーション結果の例を夫々示す図である。 図16(A)及び図16(B)は電流分布の例を夫々示す図である。 図17(A)は放射パターン、図17(B)は相関係数のシミュレーション結果の例を夫々示す図である。 図18はアンテナ装置の部分拡大図である。 図19(A)はS11、S21、図19(B)は電流分布のシミュレーション結果の例を夫々示す図である。 図20(A)は電流分布、図20(B)は相関係数に関するシミュレーション結果の例を夫々示す図である。 図21(A)はアンテナ装置の斜視図、図21(B)及び図21(C)はアンテナ装置の断面図である。 図22(A)はS11、図22(B)はS21に関するシミュレーション結果の例を夫々示す図である。 図23は相関係数に関するシミュレーション結果の例を示す図である。 図24はアンテナ装置の斜視図である。 図25(A)はアンテナ装置の拡大図、図25(B)及び図25(C)はアンテナ装置の断面図である。 図26はアンテナ装置の正面図である。 図27はアンテナ装置の正面図である。 図28(A)はS11、図28(B)はS21に関するシミュレーション結果の例を示す図である。 図29(A)及び図29(B)は無線端末装置の斜視図である。 図30(A)及び図30(B)はアンテナ装置の斜視図である。 図31はアンテナ装置の斜視図である。 図32(A)及び図32(B)は無線端末装置の例を示す図である。 図33はアンテナ装置の部分拡大図である。 図34(A)はS11、S21、図34(B)は相関関係に関するシミュレーション結果の例を示す図である。 図35はアンテナ装置の部分拡大図である。 図36(A)はS11、S21、図36(B)は相関関係に関するシミュレーション結果の例を示す図である。
本実施の形態について以下説明する。
<第1の実施例>
第1の実施例について説明する。図1はアンテナ装置10の斜視図である。アンテナ装置10は、例えば、カードタイプのアンテナ装置であり、パーソナルコンピュータ又は携帯電話等の無線端末装置に装填又は収容させることができる。図32(A)及び同図(B)は、無線端末装置100の例を示す図で、同図(A)は無線端末装置100として携帯電話、同図(B)はパーソナルコンピュータの例を示す図である。アンテナ装置10は携帯電話100の筺体101内に収容されて、無線基地局等と無線信号を送受信できる。また、アンテナ装置10は、パーソナルコンピュータ100の筺体101内に装填されて、無線基地局等と無線信号を送受信できる。
アンテナ装置10の構成例について説明する。図1はアンテナ装置10の斜視図、図2(A)はアンテナ装置10の部分拡大図である。また、図2(B)は、図2(A)において線分K−K’でアンテナ装置10を切断し、Cy方向から見たときの断面図であり、図2(C)は線分M−M’でアンテナ装置10を切断し、同じくCy方向から見たときの断面図である。
アンテナ装置10は、図1に示すように、誘電体基板(以下、「基板」)12と、2つのアンテナ素子14‐1,14‐2(又は、第1及び第2のアンテナ素子14‐1,14‐2)と、2つの給電点16‐1,16‐2(又は、第1及び第2の給電点16‐1,16‐2)、及び2つのスタブ18‐1,18‐2(又は、第1及び第2のスタブ18‐1,18‐2)を備える。
基板12は、y軸方向の長さが「V+h」(例えば、「80mm」)であり、x軸方向の長さが「H」(例えば、「30mm」)、z軸方向の長さ(又は厚さ)は「d1」(例えば、「1mm」)である。基板12は、表面の一部に金属平板(又は金属平面)、例えば銅層13、裏面に各種素子を備える。
銅層13は、面積がV×H、その厚さがd2(例えば、「35μm」)であり、基板12上の各種素子等に対してグランドパターン15を形成する。尚、アンテナ素子14‐1,14‐2も、導電性の金属平板、例えば銅層13により構成される。
アンテナ素子14‐1,14‐2は、他のアンテナ装置から送信された無線信号を受信し、他のアンテナ装置に無線信号を送信する。アンテナ素子14‐1,14‐2は、基板12に固定された固定部14‐1a,14‐2a(又は、第1及び第2の固定部14‐1a,14‐2a)と、固定部14‐1a,14‐2aからL字状に折れ曲がった折り曲げ部14‐1b,14‐2b(又は、第1及び第2の折り曲げ部14‐1b,14‐2b)とを夫々備える。
折り曲げ部14‐1b,14‐2bは、夫々y1軸及びy2軸を中心に回転可能で、基板12(又はアンテナ装置10)の幅H内に収容させることができる。折り曲げ部14‐1b,14‐2bの詳細は後述する。
給電点(又は給電部)16‐1,16‐2は、基板12上であって、アンテナ素子14‐1,14‐2の固定部14‐1a,14‐2aとグランドパターン15との間において、固定部14‐1a,14‐2aに接するように夫々配置される。給電点16‐1,16‐2は、給電線(例えば同軸ケーブル又はストリップ線など)を介して電源等と接続され、アンテナ素子14‐1,14‐2に電流又は電圧を給電する。
スタブ18‐1,18‐2は、例えば、導電性の配線パターンであって、高周波回路における分布定数線路である。スタブ18‐1,18‐2は、図2(A)に示すように、ミアンダ部(又はミアンダライン、又は、第1及び第2のミアンダ部)18‐1a,18‐2aを備える。
ミアンダ部18‐1a,18‐2aは、銅層13が凹状又は凸状に交互に折れ曲がって形成される。ミアンダ部18‐1a,18‐2aのy軸方向(又は長辺方向)の長さは、図2等の例では「h」となっている。また、ミアンダ部18‐1a,18‐2aは、接続部18‐1b,18‐2bにおいてグランドパターン15と接続され、先端部18‐1c,18‐2cまで形成される。先端部18‐1c,18‐2cは互いに離間し、グランドパターン15からも離間している。アンテナ素子14‐1,14‐2の固定部14‐1a,14‐2aに最も近いミアンダ部18‐1a,18‐2aは、固定部14‐1a,14‐2aからのx軸方向における距離が閾値href以内に設けられている。
アンテナ装置10は、図1及び図2(A)に示すように、更に、グランドパターン15の一部にスリット21‐1,21‐2(又は、第1及び第2のスリット21‐1,21‐2)が配置される。スリット21‐1,21‐2により、アンテナ素子14‐1,14‐2間の結合等、特性が更に改善される。
このように、本アンテナ装置10は、第1のアンテナ素子14‐1と第1の給電点16‐1、及び第1のスタブ18‐1を1つのセットとし、更に、第2のアンテナ14‐2と第2の給電点16‐2、及び第2のスタブ18‐2を1つのセットとして、2つのセットを備えている。
このような本アンテナ装置10に対して、本願発明者は種々のシミュレーションを行った。本アンテナ装置10に対するシミュレーション結果について以下説明する。図3〜図12(B)はシミュレーション結果の例等を示す図である。
このうち、図3はSパラメータのうちパラメータS11(又は「反射係数」或いは「整合」)に関するシミュレーション結果の例を示す図である。
図3に示すシミュレーションは、例えば、図1等に示すアンテナ装置10において、第1の給電点16‐1から交流電圧が印加される。このとき、当該交流電圧の周波数を変化させたとき、当該電圧と第1の給電点16‐1(又は第1のアンテナ素子14‐1)で反射する電圧とを測定することで得られたシミュレーション結果である。電圧源は、例えば、グランドパターン15と第1の給電点16‐1との間にあるものとする。図3において、横軸は周波数、縦軸はパラメータS11(デシベル表示)を夫々示し、破線はスタブ18‐1,18‐2がないアンテナ装置10、実線はスタブ18‐1,18‐2のあるアンテナ装置10に対する各シミュレーション結果である。
図3に示すようにパラメータS11に関して、周波数が「1.7GHz」から「2.5GHz」に亘り、スタブ18‐1,18‐2があるアンテナ装置10の方がスタブ18‐1,18‐2のないアンテナ装置10よりも低いシミュレーション結果を得た。従って、スタブ18‐1,18‐2のあるアンテナ装置10は、スタブ18‐1,18‐2のない場合と比較して、これらの周波数帯域において、反射電圧を小さくし、パラメータS11を改善させることができる。このシミュレーション結果から、本アンテナ装置10は、例えば、送信又は受信される無線信号の周波数が「1.5GHz」から「2.5GHz」のとき、整合に関して一定以上の特性を得ることができる。
図4は、アンテナ効率に関するシミュレーション結果の例を示す図である。アンテナ効率は、例えば、各アンテナ素子14‐1,14‐2に印加した電力と放射電力の比を表わす。例えば、第1の給電点16‐1に交流電圧が印加され、印加する交流電圧の周波数を変化させたとき、第1のアンテナ素子14‐1において空間に放射される電力を測定等することによりシミュレートしたものである。「アンテナ素子」が「一本」の場合と、「アンテナ素子2本」で「スタブなし」の場合、及び「アンテナ素子2本」で「スタブあり」の場合において、交流電圧の周波数を「1.7GHz」、「2.0GHz」、「2.3GHz」と変化させてシミュレートした。
図4に示すように、アンテナ効率は、周波数「1.7GHz」を含む各周波数において、スタブ18‐1,18‐2のあるアンテナ装置10の方がスタブ18‐1,18‐2のないアンテナ装置10と比較して高いシミュレーション結果を得た。このシミュレーション結果から、本アンテナ装置10は、アンテナ素子14‐1,14‐2で送受信される無線信号の周波数が例えば「1.7GHz」のとき、スタブ18‐1,18‐2のないアンテナ装置10よりもアンテナ効率を高めることができる。
図5(A)及び同図(B)は放射パターン、図6は相関係数に関するシミュレーション結果の例を夫々示す図である。
図5(A)に示す放射パターンは、例えば、アンテナ装置10における第1の給電点16‐1に周波数「2.2GHz」の交流電圧を印加し、第2の給電点16‐2には電圧を印加しない場合の指向性分布を示す。また、図5(B)に示す放射パターンは、例えば、第2の給電点16‐2に周波数「2.2GHz」の交流電圧を印加し、第1の給電点16‐1には印加しない場合の指向性分布を示す。
第1の給電点16‐1に交流電圧が印加された場合、図5(A)に示すように、y軸の第2象限であってW1方向に他と比較して電力の高い部分が分布している。一方、第2の給電点16‐2に交流電圧が印加された場合、図5(B)に示すように、y軸の第2象限であってW2方向に他と比較して電力の高い部分が分布している。
このように、2つの放射パターンは夫々逆方向(W1方向とW2方向)を向いているシミュレーション結果を得た。
図6は、印加される交流電圧の周波数を変化させたときの放射パターン等に基づいて、相関係数をシミュレーションした結果を示す。相関係数は、例えば、第1の給電点16‐1から給電したときの放射パターン(例えば、図5(A))と、第2の給電点16‐2から給電したときの放射パターン(例えば、図5(B))とがどれだけ一致しているかを示す指標でもある。図6において、横軸が周波数、縦軸が相関係数を夫々示し、実線はスタブ18‐1,18‐2がある場合、破線はスタブ18‐1,18‐2がない場合のシミュレーション結果である。
図6に示すように、スタブ18‐1,18‐2のあるアンテナ装置10の相関係数は、スタブ18‐1,18‐2のない場合と比較して、「1.5GHz」から「1.7GHz」、及び「2.2GHz」から「2.5GHz」等に亘り低いシミュレーション結果を得た。よって、相関係数についても、本アンテナ装置10は、スタブ18‐1,18‐2のないアンテナ装置と比較して、これらの周波数帯域において改善されたシミュレーション結果を得ることができた。このシミュレーション結果から、本アンテナ装置10は、送信又は受信される無線信号の周波数が「1.5GHz」から「1.7GHz」、「2.2GHz」から「2.5GHz」において、相関について一定以上の特性を得ることができる。
図7は、SパラメータのうちパラメータS21(又は「結合」或いは「アイソレーション」)に関するシミュレーション結果を示す図である。本シミュレーションは、例えば、図1等に示すアンテナ装置10において、第1の給電点16‐1から第1のアンテナ素子14‐1に交流電圧が印加され、当該電圧の周波数を変化させる。本シミュレーションは、このとき、当該電圧と第2の給電点16‐2から出力される電圧とを測定等することによりパラメータS21をシミュレートしたものである。電圧源は、例えば、グランドパターン15と第1の給電点16‐1との間にあるものとする。図7において、横軸は周波数を示し、縦軸はS21(デシベル表示)を示す。また、同図において、破線はスタブ18‐1,18‐2のないアンテナ装置10、実線はスタブ18‐1,18‐2のあるアンテナ装置10の夫々に対するシミュレーション結果を示す。
図7に示すように、スタブ18‐1,18‐2のあるアンテナ装置10のパラメータS21と、スタブ18‐1,18‐2のないアンテナ装置10のパラメータS21とは、ともに、基準閾値(例えば、「−6dB」)よりも低い数値で推移している。この基準閾値は、例えば、アンテナ素子14‐1,14‐2の結合に関して許容できる最大のパラメータS21を示す。図7に示すように、スタブ18‐1,18‐2のあるアンテナ装置10のパラメータS21は、周波数が「1.5GHz」から「2.5GHz」に亘りこの基準閾値以下で推移している。
このシミュレーション結果から、例えば、本アンテナ装置10は、アンテナ素子14‐1,14‐2で送受信される無線信号の周波数が「1.5GHz」から「2.5GHz」に亘り、結合に関して一定以上の特性を得ることができる。
図1等に示すスタブ18‐1,18‐2について更にシミュレーションした結果について以下説明する。図8〜図11(B)はシミュレーション結果の例等を示す図である。
図8はシミュレーション対象のアンテナ装置10の部分拡大図である。スタブ18‐1,18‐2の特性をシミュレーションするために第1の給電点16‐1が、第1の接続部18‐1bに配置される。
図9は第1の給電点16‐1から交流電圧を印加させたときの電流分布の例を示す。同図は交流電圧の周波数が「1.4GHz」のときのシミュレーション結果の例を示し、矢印の大きさ及び太さが電流の大きさを示す。
図9に示すように、第1の給電点16‐1から給電したため、第1のスタブ18‐1では、第1のスタブ18‐2等と比較して大きな電流が流れている。本アンテナ装置10において、スタブ18‐1,18‐2を図1等に示す形状とすることで、交流電圧の周波数が「1.4GHz」において他の周波数と比較して大きな電流が流れるシミュレーション結果を得た。次にこのように大きな電流が「1.4GHz」の周波数において流れる理由について説明する。
図10(A)は、図8に示すアンテナ装置10において、第1の給電点16‐1から交流電圧を給電したときの第1のアンテナ素子14‐1におけるパラメータS11のシミュレーション結果を示す図である。また、図10(B)は、スタブ18‐1,18‐2の合成インピーダンスの虚数部(リアクタンス)に関するシミュレーション結果を示す図である。図10(A)及び図10(B)は、共に、給電する交流電圧の周波数を「0.5GHz」から「2.5GHz」まで変化させたときのシミュレーション結果である。
図10(A)に示すように、パラメータS11は周波数「1.4GHz」において他の周波数と比較して大幅に低いシミュレーション結果を得た。また、同図(B)に示すように、周波数「1.4GHz」においてリアクタンスが「0」になるシミュレーション結果を得た。
このことから、スタブの形状を図2及び図8のようにすることで、スタブ18‐1,18‐2は、周波数が「1.4GHz」において並列共振状態となる。かかる状態のため、図9に示すように、第1の給電点16‐1から給電する交流電圧の周波数が「1.4GHz」において一定以上の大きな電流が流れるシミュレーション結果を得ることができる。
上述したように、整合(パラメータS11)に関して、本アンテナ装置10は改善されたシミュレーション結果を得たが(例えば、図3等)、次にこの改善理由について説明する。
図11は、スタブ18‐1,18‐2のあるアンテナ装置10と、スタブ18‐1,18‐2のないアンテナ装置10、及び折り返しのないミアンダラインを備えるアンテナ装置10の各々において、インピーダンスの変化例を示すスミスチャートである。
シミュレーション対象であるスタブ18‐1,18‐2のあるアンテナ装置10は、例えば、図8に示すアンテナ装置10とした。このようにしたのは、上述した例と同様にスタブ18‐1,18‐2の特性を確認するためである。
また、図12(A)は、シミュレーション対象である、スタブ18‐1,18‐2のないアンテナ装置10の構成例、図12(B)はシミュレーション対象であるの折り返しのないミアンダラインを備えるアンテナ装置10の構成例を夫々示す図である。同図(B)に示すように、折り返しのないミアンダラインを備えるアンテナ装置10は、例えば、アンテナ素子14‐1,14‐2に最も近いミアンダ部18‐11a,18‐21aが折り返されていない直線状の構造を有するものである。
本シミュレーションは、例えば、アンテナ装置10の第1の給電点16‐1から交流電圧が印加され、当該交流電圧の周波数を「1.5GHz」から「2.5GHz」に変化させたとき、第1のアンテナ素子14‐1に対するインピーダンスの変化を測定したものである。図11の横軸はインピーダンスの実部(又は純抵抗)、縦軸の上半分はインダクティブな領域、下半分はキャパシティブな領域を各々示す。また、図11において、実線がスタブ18‐1,18‐2のあるアンテナ装置10(例えば図8)、破線がスタブ18‐1,18‐2のないアンテナ装置10(例えば、図12(A))に対するシミュレーション結果である。一点鎖線が、折り返しのないミアンダラインを備えるアンテナ装置10(例えば、図12(B))に対するシミュレーション結果を示す。
図11に示すように、スタブ18‐1,18‐2のないアンテナ装置10(「スタブなし」)のシミュレーション結果は、他と比較して、純抵抗が「1」の点から最も遠い位置で推移している。次いで、折り返しのないミアンダラインを備えるアンテナ装置10(「折り返しのないミアンダラインを備えるスタブ」)が純抵抗「1」の点から遠い位置で推移している。最も純抵抗「1」に近いものが、スタブ18‐1,18‐2のあるアンテナ装置10(「スタブあり」)のシミュレーション結果である。
このシミュレーション結果から、スタブ18‐1,18‐2のあるアンテナ装置10は、他と比較して純抵抗「1」に最も近いため、最も整合をとることができる。従って、図3で示したように、2つのスタブ18‐1,18‐2を備えるアンテナ装置10の方が、スタブ18‐1,18‐2のないアンテナ装置よりも、反射係数が低くなり、パラメータS11が低くなるシミュレーション結果を得ることができる。
尚、図2等に示すように、各アンテナ素子14‐1,14‐2の近傍(例えば、距離href以内)に金属面を設けることで、放射抵抗等が一定値以下の低い値となり、スミスチャート上のグラフは図11のW3方向に移動することが知られている。本アンテナ装置10においてもスタブ18‐1,18‐2のミアンダ部18‐1a,18‐2aがアンテナ素子14‐1,14‐2近傍(閾値href以下)に設置されるため、放射抵抗が一定値以下の低い値となり、整合等も改善される。
このように本第1の実施例のアンテナ装置10は、アンテナ素子14‐1,14‐2間に第1及び第2のスタブ18‐1,18‐2を設け、第1のスタブ18‐1と第1の給電点16‐1、及び第1のアンテナ素子14‐1を1つのセットとし、2つのセットを備えている。このように構成することで、本アンテナ装置10は、送信又は受信される無線信号の周波数が例えば「1.7GHz」、又は「2.2GHz」から「2.5GHz」のとき、整合、結合、及び相関係数に関して一定以上の特性を得ることができる。
また、本アンテナ装置10は、特開2007‐13643号公報及び特開2007‐243455号公報に示された一定以上の大きさの切り欠きやスリット等がないため、アンテナ装置10の小型化又は省スペース化を図ることができる。更に、スタブ18‐1,18‐2はアンテナ素子14‐1,14‐2に直接接続されず、その一端がグランドパターン15に直接接続される。よって、アンテナ素子14‐1,14‐2の特性を変化させず、別途整合回路等を設けなくてもよい。従って、本アンテナ装置10はコスト削減等を図ることもできる。
<第2の実施例>
次に第2の実施例を説明する。第1の実施例では、スタブ18‐1,18‐2におけるミアンダ部18‐1a,18‐2aのy軸方向の長さ(又は高さ)はどれも同じものとして説明した。例えば、この長さが、アンテナ素子14‐1,14‐2の固定部14‐1a,14‐2aに最も近いところで他と比較して短く、アンテナ素子14‐1,14‐2から離れるに従い長くなるようにしてもよい。これにより、スタブ18‐1,18‐2の接続部18‐1b,18‐2cから先端部18‐1c,18‐2cまでの長さを短くすることができる。
図13は、かかるアンテナ装置10の部分拡大図である。図13に示す例は、アンテナ素子14‐1,14‐2の固定部14‐1a,14‐2aに最も近いミアンダ部18‐11a,18‐21aのy軸方向の長さは「h1」、中間付近のミアンダ部18‐1a,18‐2aのy軸方向の長さは「h2」(h1<h2)となっている。そして、固定部14‐1a,14‐2aから最も離れたミアンダ部18‐13a,18‐23aの長さは「h」(h2<h)となっている。
次にこのように構成されたアンテナ装置10のシミュレーション結果について説明する。図14は、パラメータS11(又は「整合」)、S21(又は「結合」)のシミュレーション結果の例を示す図である。図14は、第1の実施例と同様に、例えば、第1の給電点16‐1から交流電圧を給電し、第1の給電点16‐1からの放射電圧を測定、又は第2の給電点16‐2からの出力電圧を測定する等により、シミュレーションをしたものである。図14において、実線はパラメータS11、破線はパラメータS21の各シミュレーション結果を示す。
図14に示すように、2つのパラメータS11、S21は、ともに周波数「1.7GHz」以上の周波数において、第1の実施例と同様に基準閾値「−6dB」以下の低い数値で推移している。また、2つのパラメータS11、S21は、周波数「1.7GHz」において他の周波数と比較して大幅に低い数値のシミュレーション結果を得た。
図15(A)は、パラメータS11に関し、スタブ18‐1,18‐2のないアンテナ装置10(例えば、図12(A))と比較したシミュレーション結果である。また、図15(B)はパラメータS21に関して、スタブ18‐1,18‐2のないアンテナ装置10と比較したシミュレーション結果である。図15(A)及び図15(B)において「スタブあり」と示されたグラフは、図14における「S11」と「S21」のグラフと夫々同じものである。
図15(A)に示すように、本アンテナ装置10(例えば図13)は、「1.7GHz」以上の周波数で、パラメータS11に関し、スタブ18‐1,18‐2のないアンテナ装置と比較して低いシミュレーション結果を得た。また、図15(B)に示すように、パラメータS21に関しは、図15(B)に示すように、「1.7GHz」の周波数において、スタブ18‐1,18‐2のあるアンテナ装置10の方がスタブ18‐1,18‐2のないアンテナ装置10よりも大幅に低いシミュレーション結果を得た。
これらのシミュレーション結果から、第2の実施例におけるアンテナ装置10は、送信又は受信される無線信号の周波数が「1.7GHz」以上のとき、整合及び結合に関して、平均的に一定、又は一定以上の特性を得ることができる。
図16は相関係数のシミュレーション結果の例を示す図である。図16は、第1の実施例と同様に、第1の給電点16‐1から給電したときの放射パターンと、第2の給電点16‐2から給電したときの放射パターンとがどれだけ一致しているかについて、給電する交流電流の周波数を変化させたときのシミュレーション結果である。
図16に示すように、本第2の実施例のアンテナ装置10は、スタブ18‐1,18‐2のないアンテナ装置と比較して、「1.7GHz」以上の周波数において相関係数が低い結果を得た。
尚、アンテナ効率についても第1の実施例と同様にシミュレーションした結果、周波数「1.7GHz」において、「−1.45dB」の数値を得た。図4の「アンテナ素子2本 スタブなし」の場合、周波数「1.7GHz」において「−1.59dB」であり、これと比較すると本アンテナ装置10のアンテナ効率は高いシミュレーション結果を得た。本第2の実施例のアンテナ装置10は、アンテナ効率について第1の実施例のアンテナ装置10よりも更に改善されたシミュレーション結果を得た。
相関係数とアンテナ効率に関するシミュレーション結果から、第2の実施例におけるアンテナ装置10は、送信又は受信される無線信号の周波数が「1.7GHz」以上のとき、結合とアンテナ効率に関して一定以上の特性を得ることができる。
次に、このようにアンテナ効率と結合が改善される理由について説明する。図17(A)及び図17(B)は、給電する交流電圧の周波数が「1.7GHz」のときの電流分布のシミュレーション結果を夫々示す図である。図17(A)はスタブ18‐1,18‐2のないアンテナ装置10、図17(B)は本第2の実施例におけるアンテナ装置10の電流分布である。本シミュレーションは、第1の実施例(図9)と同様に、第1の給電点16‐1から給電し、第2の給電点16‐2から給電しないようにしたものである。図17(A)及び図17(B)、ともに矢印の大きさが電流の強さを示す。
給電されていない第2のアンテナ素子14‐2に着目すると、スタブ18‐1,18‐2のないアンテナ装置10(図17(A))の方が、スタブ18‐1,18‐2のあるアンテナ装置10(図17(B))よりも強い電流が流れている。この強い電流により、スタブ18‐1,18‐2のないアンテナ装置10は、第2のアンテナ素子14‐2と第1のアンテナ素子14‐1の結合が一定以上に大きくなる。また、この強い電流により、スタブ18‐1,18‐2のないアンテナ装置10は、第2の給電点16‐2において一定以上の大きな電力(又はエネルギー)が消費され、アンテナ効率が一定以下に劣化する。
一方、スタブ18‐1,18‐2のあるアンテナ装置10(図17(B))は、スタブ18‐1,18‐2に一定以上の強い電流が流れ、給電していない第2のアンテナ素子14‐2には、スタブ18‐1,18‐2のある方と比較して弱い電流が流れている。この弱い電流により、スタブ18‐1,18‐2のあるアンテナ装置10は、第1及び第2のアンテナ素子14‐1,14‐2の結合が一定以下に弱くなる。また、この弱い電流により、スタブ18‐1,18‐2のあるアンテナ装置10は、第2の給電点16‐2で消費される電力が一定以下となり、アンテナ効率が一定以上に改善される。
以上から、本第2の実施例におけるアンテナ装置10は、送信又は受信される無線信号の周波数が例えば「1.7GHz」から「2.5GHz」において、整合、結合、及び相関係数について一定以上の特性を得ることができる。また、本第2の実施例におけるアンテナ装置10は、アンテナ素子14‐1,14‐2の特性を得るための整合回路等を別途設けることがなく、第1の実施例と同様にコスト削減等を図ることができる。更に、本第2の実施例におけるアンテナ装置10は、特開2007‐13643号公報及び特開2007‐243455号公報に示された一定の大きさ以上のスリット等もないため、省スペース化及び小型化を図ることができる。
尚、図14及び図17等に示すように、給電する交流電圧の周波数が「1.7GHz」のとき、スタブ18‐1,18‐2は共振状態となった。このため、スタブ18‐1,18‐2に流れる電流は図17(B)に示すように、一定以上の強い電流が流れた。第2の実施例におけるアンテナ装置10のスタブ18‐1,18‐2の長さは、第1の実施例におけるスタブ18‐1,18‐2の長さより短い。このように、スタブ18‐1,18‐2の長さを調整することで、共振周波数を第1の実施例の「1.4GH」から第2の実施例の「1.7GHz」に調整することができた。このことから、スタブ18‐1,18‐2の長さが調整されることで、結合、相関係数等に関し、一定以上の特性が得られる周波数の帯域を変化させることも可能である。
<第3の実施例>
次に第3の実施例について説明する。第2の実施例におけるアンテナ装置10は、ミアンダ部18‐1a,18‐2aのy軸方向の長さが、アンテナ素子14‐1,14‐2から離れるに従い長くなるよう設けた。例えば、アンテナ素子14‐1,14‐2に最も近いミアンダ部18‐11a,18‐21aにおけるy軸方向の長さが、y軸方向の長さが最も短いミアンダ部18‐12a,18‐22aの当該長さよりも、長くするようにすることもできる。
図18は本第3の実施例におけるアンテナ装置10の部分拡大図である。図18に示すように、ミアンダ部18‐1a,18‐2aのうち、アンテナ素子14‐1,14‐2に最も近いミアンダ部18‐11a,18‐21aのy軸方向の長さを「h’」とする。このとき、y軸方向の長さが最も短いミアンダ部18‐12a,18‐22aのy軸方向の長さを「h1」とすると、h’>h1となるように、ミアンダ部18‐11a,18‐21aを設置する。図18の例では、長さh’は、最もy軸方向の長さの長いスタブ18‐13a,18‐23aの長さ「h」と同じ長さとなっている。アンテナ素子14‐1,14‐2に最も近いミアンダ部18‐11a,18‐21a以外は、アンテナ素子14‐1,14‐2から離れるに従いy軸方向の長さが長くなるようにする。
このような本第3の実施例におけるアンテナ装置10のシミュレーション結果について説明する。図19(A)はパラメータS11(整合)、パラメータS21(結合)に関するシミュレーション結果の例を示す図である。例えば、第1の実施例等と同様に、第1の給電点16‐1に周波数の異なる交流電圧を給電し、第1の給電点16‐1の反射電圧又は第2の給電点16‐2からの出力電圧を測定する等によりシミュレーションを行った。
図19(A)に示すように、2つのパラメータS11、パラメータS21は、周波数「1.6GHz」から「2.5GHz」に亘り、基準閾値「−6dB」よりも低くシミュレーション結果を得た。
図19(B)は相関係数に関するシミュレーション結果の例を示す図である。シミュレーションは第1の実施例等と同様に、第1の給電点16‐1に給電したときの放射パターンと第2の給電点16‐2に給電したときの放射パターンとに基づいて行ったものである。
図19(B)に示すように、相関係数についても周波数「1.6GHz」から「2.5GHz」に亘り、図18に示すスタブ18‐1,18‐2のあるアンテナ装置10の方が、スタブ18‐1,18‐2のないアンテナ装置よりも低い数値で推移している。
以上のシミュレーション結果から、第3の実施例におけるアンテナ装置10は、送信又は受信される無線信号の周波数が「1.6GHz」から「2.5GHz」に亘り、整合、結合、相関係数について一定以上の特性を得ることができる。
第2の実施例のアンテナ装置10は、周波数が「1.7GHz」以上で一定の特性を得ることができたが、本第3の実施例のアンテナ装置10は、スタブ18‐1,18‐2の長さを更に調整することで、更に広い帯域の無線信号に対して一定以上の特性を得ることができる。
図20は本アンテナ装置10における電流分布のシミュレーション結果の例を示す図である。本シミュレーションも、第2の実施例と同様に、第1の給電点16‐1から「1.7GHz」の周波数を有する交流電圧が印加された場合の電流分布の例である。
スタブ18‐1,18‐2のない電流分布のシミュレーション例を示す図17(A)と比較すると、図20の例では、給電されていない側の第2のアンテナ素子14‐2に弱い電流が流れている。第2の実施例と同様に、この弱い電流によって、2つのアンテナ素子14‐1,14‐2間の結合は一定以下に低くなり、アンテナ効率も一定以上に向上する。
尚、本第3の実施例におけるアンテナ装置20のアンテナ効率は「−1.29dB」となり、第1の実施例等よりも更に高い数値を得た。
本第3の実施例におけるアンテナ装置10も第1の実施例等と同様に、アンテナ素子14‐1,14‐2に対する整合回路を設けることがないため、コスト削減等を図ることもできる。更に、本第3の実施例におけるアンテナ装置10も第1の実施例等と同様に、特開2007‐13643号公報及び特開2007‐243455号公報に示された一定の大きさ以上のスリット等もないため、省スペース化及び小型化を図ることができる。
<第4の実施例>
次に第4の実施例を説明する。第4の実施例は、例えば、第1の実施例等のアンテナ装置10がパーソナルコンピュータ等の無線端末装置100に装填又は収容された場合の例である。
図21(A)はアンテナ装置10が無線端末装置100に装填等された場合の斜視図、図21(B)は図21(A)に示す無線端末装置100においてCy方向から見たときの断面図、図21(C)はCx方向から見たときの無線端末装置100の断面図を夫々示す。
図21(A)等に示すように、無線端末装置100は、x軸方向の長さが「H’」、y軸方向の長さが「V’」、z軸方向の長さ(厚さ)が「d3」の導体(例えば、金属平板)102を備える。導体102は、アンテナ装置10のアンテナ素子14‐1,14‐2に対してグランドパターンを形成する。
アンテナ装置10はz軸方向の長さ(厚さ)が導体102と同じ「d3」であり、図21(A)の一点鎖線で示すように、アンテナ装置10が導体102の一部に装填等されている。
アンテナ装置10が無線端末装置10に装填等されたとき、アンテナ装置10のアンテナ素子14‐1,14‐2は、導体102から距離「a」だけ突出する。また、アンテナ素子14‐1,14‐2は、x軸方向において間隔「d」だけ離れて設置されている。アンテナ素子14‐1,14‐2も導体で構成される。
アンテナ装置10における給電点16‐1,16‐2は、アンテナ素子14‐1,14‐2と導体102との接続点に夫々配置される。
本第4の実施例のアンテナ装置10も、第1の実施例等と同様に、2つのスタブ18‐1,18‐2を備えているが、図21(A)等に示すように、導体102から距離「b」(例えば、b<a)だけz軸方向に延びるように設置されている。第1及び第2のスタブ18‐1,18‐2の間隔「d’」は、例えば、アンテナ素子14‐1,14‐2の間隔「d」よりも短い。このように、スタブ18‐1,18‐2は、グランドパターン15が形成されるxy平面に対して直交する平面内(例えば、yz平面内)において所定長延びるように設置されてもよい。
このようなアンテナ装置10を含む無線端末装置100についてのシミュレーション結果について以下説明する。図22(A)はパラメータS11、図22(B)はパラメータS21、図23は相関係数に関する各シミュレーション結果の例を夫々示す図である。
シミュレーションは、第1の実施例等と同様に、例えば、第1の給電点16‐1から周波数の異なる交流電圧が印加され、第1の給電点16‐1からの反射電圧を測定、又は第2の給電点16‐1からの出力電圧を測定等することにより行われたものである。どのシミュレーションについても、図21(A)等に示すスタブ18‐1,18‐2のあるアンテナ装置10を含む無線端末装置100と、スタブ18‐1,18‐2のない無線端末装置100とに対して行った。
図22(A)に示すように、パラメータS11に関して、スタブ18‐1,18‐2のある無線端末装置100の方とスタブ18‐1,18‐2のない無線端末装置100とを比較すると、周波数が「600MHz」から「750MHz」まで略同じ数値で推移している。ただし、周波数が「750MHz」以上でスタブ18‐1,18‐2のある方がない方よりも低い数値となった。
また、パラメータS21に関して、図22(B)に示すように、周波数「600MHz」から「1GHz」に亘り、スタブ18‐1,18‐2のある無線端末装置100も、スタブ18‐1,18‐2のない無線端末装置も平均的に同じ数値で推移するシミュレーション結果を得た。
更に、相関係数について図23に示すように、周波数「850MHz」でやや劣化するものの、周波数が「700MHz」から「900MHz」に亘り、スタブ18‐1,18‐2のある無線端末装置100の方がない方と比較して低いシミュレーション結果を得た。
以上から、図21に示す無線端末装置100は、送信又は受信される無線信号の周波数が「700MHz」から「900MHz」において、整合、結合、及び相関係数について、平均的に一定、又は一定以上の特性を得ることができる。
また、第4の実施例におけるアンテナ装置10については、第1の実施例と同様に、アンテナ素子14‐1,14‐2間に対する整合回路等を別途設けることがなく、コスト削減等をはかることができる。更に、本アンテナ装置10も、第1の実施例等と同様に、特開2007‐13643号公報及び特開2007‐243455号公報に示された一定の大きさ以上のスリット等もないため、省スペース化及び小型化を図ることができる。
<第5の実施例>
次に第5の実施例について説明する。第1の実施例等では、2つのスタブ18‐1,18‐2を備えるアンテナ装置10について説明した。例えば、3つ以上のスタブを備えるアンテナ装置10でもよい。本第5の実施例は、このように3つ以上のスタブを備えるアンテナ装置10の例である。
図24は、第5の実施例におけるアンテナ装置10の斜視図、図25(A)は部分拡大図である。また、図25(B)は図25(A)において線分P−P’でアンテナ装置10を切断しCy方向からの断面図、図25(C)は線分Q−Q’で切断してCy方向からの断面図である。
本アンテナ装置10は、図24等に示すように、更に、第3〜第6のスタブ18‐3〜18‐6を備える。
第3及び第4のスタブ18‐3,18‐4は、図24等に示すように、給電点16‐1,16‐2に最も近いグランドパターン15の端部G1,G2からz軸方向に向けて所定長延びるように、夫々設けられている。
また、第5及び第6のスタブ18‐5,18‐6も同様に、グランドパターン15の端部G1,G2からx軸方向に向けて所定長延びるように、夫々設けられている。
第3〜第6のスタブ18‐3〜18‐6も、第1及び第2のスタブ18‐1,18‐2と同様に、例えば銅層13により構成される。また、第3及び第4のスタブ18‐3,18‐4のx軸方向の長さ、及びy軸方向の長さは、例えば、銅層13と同じ「d2」とすることができる。更に、第5及び第6のスタブ18‐5,18‐6のz軸方向の長さも、例えば「d2」とすることができる。
第1及び第2のスタブ18‐1,18‐2は、第1の実施例等と同様に接続部18‐1b,18‐2bにおいてグランドパターン15と接続する。第1のスタブ18‐1は、図25(A)等に示すように、第1のアンテナ素子14‐1から離れるに従い、第2のアンテナ素子14‐2の第2折り曲げ部14‐2bに向けて、xy平面上の斜め方向に直線状に延びている。また、第2のスタブ18‐2は、第2のアンテナ素子14‐2から離れるに従い、第1のアンテナ素子14‐1の第1の折り曲げ部14‐1bに向けて、xy平面上の斜め方向に直線状に延びている。第1及び第2のスタブ18‐1,18‐2は、接続部18‐1b,18‐2bから最も遠い先端部18‐1c,18‐2cにおいて、互いに離間して設けられている。
図24等に示す例は一例であり、例えば、グランドパターン15に接続されるスタブの個数を4個とすることもできる。この場合、第3及び第4のスタブ18‐3,18‐4、又は、第5及び第6のスタブ18‐5,18‐6を削除すればかかるアンテナ装置10を構成することができる。また、第3のスタブ18‐3と第4のスタブ18‐4、及び第6のスタブ18‐6を削除することで、全部で3つのスタブ18‐1,18‐2,18‐5を備えるアンテナ装置10とすることもできる。このように、本アンテナ装置10は、2つ以上の任意の個数のスタブ18‐1,18‐2,・・・を備えるようにすることができる。
<第6の実施例>
次に第6の実施例を説明する。第6の実施例では、上述した第1〜第5の実施例において、アンテナ素子14‐1,14‐2の形状をL字型としたときの特性について説明する。
図26及び図27はシミュレーション対象のアンテナ装置10の構成例を示す図であり、このうち図26はアンテナ素子14‐1,14‐2の形状が直線状のアンテナ装置10、図27は第1の実施例等で説明したアンテナ素子14‐1,14‐2がL字型のアンテナ装置10の構成例である。
直線型のアンテナ素子14‐1,14‐2は、図26に示すように、固定部14‐1a,14‐2aと、固定部14‐1a,14‐2aからy軸方向に向けて直線部14‐1c,14‐2cとを備える。
一方、L字型のアンテナ素子14‐1,14‐2は、図27及び図2(A)等に示すように、固定部14‐1a,14‐2aと、折り曲げ部14‐1b,14‐2bとを備える。
尚、スタブ18‐1,18‐2の形状は、どちらも第3の実施例と同様、アンテナ素子14‐1,14‐2の固定部14‐1a,14‐2aに最も近いミアンダ部18‐11a,18‐21aのy軸方向の長さは、最も短いものよりも長い。そして、ミアンダ部18‐1a,18‐2aのy軸方向の長さは、固定部14‐1a,14‐2aから離れるに従いその長さが除々に長くなる。
図28(A)はパラメータS11、図28(B)はパラメータS21に関するシミュレーション結果の例を夫々示す。シミュレーションの方法はどちらも第1の実施例等と同様である。
図28(A)に示すように、パラメータS11に関しては、第1の給電点16‐1から給電させる交流電圧の周波数が「1.9GHz」から「2.5GHz」のとき、L字型のアンテナ素子14‐1,14‐2の方が、直線型のアンテナ素子14‐1,14‐2よりも低い数値を得た。また、「1.7GHz」以上の周波数において、パラメータS11は基準閾値「−6dB」以下となった。
図28(B)に示すように、パラメータS21に関しては、周波数が「1.5GHz」から「2.3GHz」に亘り、L字型の方が直線型よりも低い数値を得た。結合について、整合よりも、広い周波数帯域に亘り、L字型の方が直線型よりも改善されたシミュレーション結果を得ることができた。また、「1.5GHz」から「2.5GHz」に亘り、パラメータS21は基準閾値「−6dB」以下の数値で推移している。
よって、L字型のアンテナ素子14‐1,14‐2を備えるアンテナ装置10は、送信又は受信される無線信号の周波数が「1.7GHz」から「2.5GHz」のとき、整合に関して、平均的に一定、又は一定以上の特性を得ることができる。また、L字型のアンテナ素子14‐1,14‐2を備えるアンテナ装置10は、送信又は受信される無線信号の周波数が「1.5GHz」から「2.5GHz」のとき、結合に関して、平均的に一定又は一定以上の特性を得ることができる。
<第7の実施例>
次に第7の実施例を説明する。第7の実施例では、アンテナ装置10を含む無線端末装置100に関する例である。
図29(A)及び同図(B)は無線端末装置100の斜視図であり、回転の様子を示す図である。無線端末装置100は、筺体103とアンテナ部24‐1,24‐2とを備える。
筺体103は、その内部にアンテナ装置10を収容する。
アンテナ部24‐1,24‐2(又は、第1のアンテナ部24‐1,24‐2)は、筺体103のうち、アンテナ素子14‐1,14‐2の折り曲げ部14‐1b,14‐2bを収容する部分である。アンテナ部24‐1,24‐2は、図29(A)に示すように、各々、y1軸,y2軸(又は固定部14‐1a,14‐1b)を中心に、W4方向,W5方向に回転可能である。また、アンテナ部24‐1,24‐2は、図29(B)に示すように、回転により無線端末装置100の幅H1内に収められることができる。そのため、第1のアンテナ部24‐1におけるy軸方向の長さh3は、第2のアンテナ部24‐1におけるy軸方向の長さh4よりも長くなっている。尚、アンテナ部24‐1,24‐2は幅H1内に収容できればよいため、第2のアンテナ部24‐1の長さh4が、第1のアンテナ部24‐1の長さh3よりも長くしてもよい。
図30(A)及び図30図(B)はアンテナ装置10の斜視図であり、回転の様子を示す図である。アンテナ素子14‐1,14‐2の折り曲げ部14‐1b,14‐2bは、図30(A)に示すように、アンテナ部24‐1,24‐2の回転に伴い、各々、y1軸,y2軸を中心にW4方向,W5方向に回転することができる。折り曲げ部14‐1b,14‐2bは、同図(B)に示すように、回転によりアンテナ装置10の幅H内に収めることができる。このため、第1の固定部14‐1aにおけるy軸方向の長さh5は、第2の固定部14‐2aにおけるy軸方向の長さh6よりも長くなっている。尚、折り曲げ部14‐1b,14‐2bは、幅H内に収めることができればよいため、第2の固定部14‐2aのy軸方向における長さh6の方が、第1の固定部14‐1aの長さh5よりも長くてもよい。
<第8の実施例>
次に第8の実施例を説明する。上述した例では、アンテナ装置10は、第1のアンテナ素子14‐1と第1の給電点16‐1、及び第1のスタブ18‐1と1セットとして、2セットの例について説明した。更に、アンテナ装置10は、3セット以上を備えるようにしてもよい。
図31は4セットを備えるアンテナ装置10の斜視図である。アンテナ装置10は、y軸方向においてグランドパターンの下部に、更に、アンテナ素子14‐1’,14‐2’と、給電点16‐1’,16‐2’と、スタブ18‐1’,18‐2’とを備える。
アンテナ素子14‐1’,14‐2’も、y1軸、y2軸を中心に回転可能に夫々設けられている。また、給電点16‐1’,16‐2’も、基板12上であって、アンテナ素子14‐1’,14‐2’に接するように夫々設けられている。更に、スタブ18‐1’,18‐2’も、上述した各実施例と同様の形状を有する。この場合、アンテナ装置10は、例えば、グランドパターン15の中央部に無線端末装置100の筺体に接続するコネクタを備え、当該コネクタにより無線端末装置100内に装填又は収納される。
図31に示す例は、4セットあるが、例えば、アンテナ素子14‐2’と給電点16‐2’、及びスタブ18‐2’を削除することで、3セットを備えるアンテナ装置10とすることもできる。また、グランドパターン15の側部に、更に、アンテナ素子、給電点、スタブを備えるようにすることで、5セット以上のセット数を備えるアンテナ装置10とすることもできる。このように、本アンテナ装置10は、2セット以上のアンテナ素子、給電点、スタブを備えるようにすることもできる。
<第9の実施例>
次に第9の実施例について説明する。第9の実施例は、スタブ18‐1,18‐2の形状に関する他の例である。図33はアンテナ装置10の部分拡大図である。
図33に示すように、アンテナ素子14‐1,14‐2の固定部14‐1a,14‐2aに最も近いミアンダ部18‐11a,18‐21aのy軸方向(又は長辺方向)の長さhは他と比較して最も長い。また、その長さは、アンテナ素子14‐1,14‐2から離れるに従い除々に短くなり、アンテナ素子14‐1,14‐2から最も離れたミアンダ部18‐13a,18‐23aのy軸方向における長さh7は他と比較して最も短い。図33の例では、y軸方向の長さは、h7<h8<h9<hの関係となっている。
図34(A)は、かかるアンテナ装置10のパラメータS11、S21に関するシミュレーション結果、図35は相関係数に関するシミュレーション結果の例を夫々示す図である。シミュレーションは第1の実施例と同様に行った。
図34(A)において実線はパラメータS11、破線はパラメータS21に関するシミュレーション結果の例を示す。第1の実施例等と同様にアンテナ素子14‐1,14‐2の整合又は結合に関して許容できる最大の閾値を「−6dB」(基準閾値)とすると、同図(A)は「1.7GHz」以上においてこの基準閾値以下で推移している。よって、第9の実施例におけるアンテナ装置10は、「1.7GHz」以上の周波数を有する無線信号を送信又は受信しても一定以上の特性を得ることができる。
また、図34(B)に示すように、相関係数についても、スタブ18‐1,18‐2のないアンテナ装置10(例えば図6の破線)と比較して、「1.6GHz」以上の周波数において相関係数が低いシミュレーション結果を得た。よって、第9の実施例のアンテナ装置10は、送信又は受信する無線信号の周波数が「1.6GHz」以上のとき、相関について一定以上の特性を得ることができる。
<第10の実施例>
次に第10の実施例について説明する。第10の実施例も、スタブ18‐1,18‐2の形状に関する他の例である。図35はアンテナ装置10の部分拡大図である。
図35に示すように、アンテナ素子14‐1,14‐2の固定部14‐1a,14‐2aに最も近いミアンダ部18‐11a,18‐21aと、最も遠いミアンダ部18‐13a,18‐23aとの間にあるミアンダ部18‐1a,18‐2aとする。このミアンダ部18‐14a,18‐24aのy軸方向(又は長辺方向)の長さhは他と比較して最も長い。図35の例では、ミアンダ部18‐11a,18‐21aとミアンダ部18‐13a,23aとのy軸方向の長さは同じh10(h10<h)としているが、異なる長さでもよい。
図36(A)及び同図(B)は、パラメータS11、S21と相関係数に関するシミュレーション結果の例を夫々示す図である。
図36(A)に示すように、2つのパラメータS11、S21は基準閾値「−6dB」以下で推移している。また、2つのパラメータS11、S21ともに、周波数「1.7GHz」において他の周波数よりも非常に低い結果を得た。このことから、本第10の実施例におけるアンテナ装置10は、「1.7GHz」以上の周波数を有する無線信号を送信又は受信しても一定以上の特性を得ることができる。また、本第10の実施例のアンテナ装置10は「1.7GHz」の周波数の無線信号を送信又は受信したとき他の周波数よりも良好な特性を得ることができる。
また、図36(B)に示すように、相関係数についてもスタブ18‐1,18‐2のないアンテナ装置(例えば図6の破線)と比較して、「1.7GHz」以上の周波数において相関係数の低いシミュレーション結果を得た。よって、第10の実施例におけるアンテナ装置10も、送信又は受信する無線信号の周波数が「1.7GHz」以上のとき、相関について一定以上の特性を得ることができる。
<その他の実施例>
また、上述した各実施例において、アンテナ装置10は一枚の基板12を備えるものとして説明した。アンテナ装置10は、複数の基板12を備えるようにしてもよい。このうち、ある基板12が例えば図1等に示すようにグランドパターン15とアンテナ素子14‐1,14‐2等を備え、当該グランドパターン15が他の基板12上の素子等に対してグランドを形成することになる。
更に、上述した各実施例において、基板12の表面にアンテナ素子14‐1,14‐2、給電点16‐1,16‐2、及びスタブ18‐1,18‐2が配置されるものとして説明した。例えば、基板12の表面にアンテナ素子14‐1,14‐2と給電点16‐1,16‐2が配置され、裏面にスタブ18‐1,18‐2とグランドパターン15とが配置されるようにすることもできる。
以上まとめると付記のようになる。
(付記1)
基板と、
前記基板上に配置され、無線信号を送信又は受信するアンテナ素子と、
前記アンテナ素子に接続されて前記アンテナ素子に電流又は電圧を給電するための給電点と、
一端が前記基板上の一部に形成されたグランドパターンと接続された配線パターンとを備え、
前記アンテナ素子と前記給電点、及び前記配線パターンを1つのセットとし、前記アンテナ素子と前記給電点、及び前記配線パターンは2セット以上備えることを特徴するアンテナ装置。
(付記2)
前記配線パターンの一部はミアンダラインにより形成されることを特徴とする付記1記載のアンテナ装置。
(付記3)
前記ミアンダラインのうち前記アンテナ素子に最も近いミアンダラインと前記アンテナ素子との距離は閾値以下であることを特徴とする付記2記載のアンテナ装置。
(付記4)
前記グランドパターンはスリットを備えることを特徴とする付記1記載のアンテナ装置。
(付記5)
前記ミアンダラインの長辺方向における各々の長さは全て同じであることを特徴とする付記2記載のアンテナ装置。
(付記6)
前記ミアンダラインの長辺方向における各々の長さは、前記アンテナ素子から離れるに従い長くなることを特徴とする付記2記載のアンテナ装置。
(付記7)
前記ミアンダラインのうち前記アンテナ素子に最も近い第1のミアンダラインにおける長辺方向の長さは、前記長辺方向における長さが最も短い第2のミアンダラインの当該長さよりも長く、前記第1及び第2のミアンダライン以外の他の前記ミアンダラインの長辺方向における各々の長さは、前記アンテナ素子から離れるに従い長くなることを特徴とする付記2記載のアンテナ装置。
(付記8)
前記各セット内において前記グランドパターンに接続された配線パターンの数は1以上であることを特徴とする付記1記載のアンテナ装置。
(付記9)
前記アンテナ素子は、前記アンテナ装置に固定された固定部と、L字状に折れ曲がった折り曲げ部とを備え、
前記折り曲げ部は、前記固定部を軸として回転可能であり、前記折り曲げ部の回転により前記アンテナ装置の幅内に収容されることを特徴とする付記1記載のアンテナ装置。
(付記10)
前記配線パターンは前記グランドパターンと同一平面内に配置されることを特徴とする付記1記載のアンテナ装置。
(付記11)
前記配線パターンは前記グランドパターンと直交する平面内に配置されることを特徴とする付記1記載のアンテナ装置。
(付記12)
前記配線パターンは導電性の金属平面により形成されることを特徴とする付記1記載のアンテナ装置。
(付記13)
前記配線パターンはスタブであることを特徴とする付記1記載のアンテナ装置。
(付記14)
前記グランドパターンは導電性の金属平面により形成されることを特徴とする付記1記載のアンテナ装置。
(付記15)
前記ミアンダラインの長辺方向における各々の長さは、前記アンテナ素子から離れるに従い短くなることを特徴とする付記2記載のアンテナ装置。
(付記16)
前記ミアンダラインのうち、前記アンテナ素子に最も近い第1のミアンダラインと前記アンテナ素子から最も遠い第2のミアンダラインとの間にある第3のミアンダラインにおいて、当該第3のミアンダラインの長辺方向における長さが他の前記ミアンダラインの長辺方向の長さと比較して最も長いことを特徴とする付記2記載のアンテナ装置。
(付記17)
無線信号を送信又は受信する無線端末装置において、
筺体と、
筺体に収容されたアンテナ装置とを備え、
前記アンテナ装置は、基板と、前記基板上に配置され前記無線信号を送信又は受信するアンテナ素子と、前記アンテナ素子に接続されて前記アンテナ素子に電流又は電圧を給電するための給電点と、一端が前記基板上の一部に形成されたグランドパターンと接続された配線パターンとを備え、前記アンテナ素子と前記給電点、及び前記配線パターンを1つのセットとし、前記アンテナ素子と前記給電点、及び前記配線パターンは2セット以上備えることを特徴する無線端末装置。
10:アンテナ装置 12:基板
13:銅層
14‐1,14‐2:アンテナ素子(第1のアンテナ素子,第2のアンテナ素子)
14‐1a,14‐2a:固定部(第1の固定部,第2の固定部)
14‐1b,14‐2b:折り曲げ部
14‐1c,14‐2c:直線部(第1の直線部、第1の直線部)
15:グランドパターン
16‐1,16‐2:給電点(第1の給電点,第2の給電点)
18‐1〜18‐6:スタブ(第1〜第6のスタブ)
18‐1a,18‐2a:ミアンダ部(第1のミアンダ部、第2のミアンダ部)
18‐1b,18‐2b:接続部(第1の接続部、第2の接続部)
18‐1c,18‐2c:先端部(第1の先端部、第2の先端部)
21‐1,21‐2:スリット(第1のスリット、第2のスリット)
100:無線端末装置 101,103:筺体
102:導体

Claims (10)

  1. 基板と、
    前記基板上に配置され、無線信号を送信又は受信するアンテナ素子と、
    前記アンテナ素子に接続されて前記アンテナ素子に電流又は電圧を給電するための給電点と、
    一端が前記基板上の一部に形成されたグランドパターンと接続された配線パターンとを備え、
    前記アンテナ素子と前記給電点、及び前記配線パターンを1つのセットとし、前記アンテナ素子と前記給電点、及び前記配線パターンは2セット以上備えることを特徴するアンテナ装置。
  2. 前記配線パターンの一部はミアンダラインにより形成されることを特徴とする請求項1記載のアンテナ装置。
  3. 前記ミアンダラインのうち前記アンテナ素子に最も近いミアンダラインと前記アンテナ素子との距離は閾値以下であることを特徴とする請求項2記載のアンテナ装置。
  4. 前記グランドパターンはスリットを備えることを特徴とする請求項1記載のアンテナ装置。
  5. 前記ミアンダラインの長辺方向における各々の長さは全て同じであることを特徴とする請求項2記載のアンテナ装置。
  6. 前記ミアンダラインの長辺方向における各々の長さは、前記アンテナ素子から離れるに従い長くなることを特徴とする請求項2記載のアンテナ装置。
  7. 前記ミアンダラインのうち前記アンテナ素子に最も近い第1のミアンダラインにおける長辺方向の長さは、前記長辺方向における長さが最も短い第2のミアンダラインの当該長さよりも長く、前記第1及び第2のミアンダライン以外の他の前記ミアンダラインの長辺方向における各々の長さは、前記アンテナ素子から離れるに従い長くなることを特徴とする請求項2記載のアンテナ装置。
  8. 前記各セット内において前記グランドパターンに接続された配線パターンの数は1以上であることを特徴とする請求項1記載のアンテナ装置。
  9. 前記アンテナ素子は、前記アンテナ装置に固定された固定部と、L字状に折れ曲がった折り曲げ部とを備え、
    前記折り曲げ部は、前記固定部を軸として回転可能であり、前記折り曲げ部の回転により前記アンテナ装置の幅内に収容されることを特徴とする請求項1記載のアンテナ装置。
  10. 無線信号を送信又は受信する無線端末装置において、
    筺体と、
    前記筺体に収容されたアンテナ装置とを備え、
    前記アンテナ装置は、基板と、前記基板上に配置され前記無線信号を送信又は受信するアンテナ素子と、前記アンテナ素子に接続されて前記アンテナ素子に電流又は電圧を給電するための給電点と、一端が前記基板上の一部に形成されたグランドパターンと接続された配線パターンとを備え、前記アンテナ素子と前記給電点、及び前記配線パターンを1つのセットとし、前記アンテナ素子と前記給電点、及び前記配線パターンは2セット以上備えることを特徴する無線端末装置。
JP2010038584A 2010-02-24 2010-02-24 アンテナ装置、及び無線端末装置 Pending JP2011176560A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010038584A JP2011176560A (ja) 2010-02-24 2010-02-24 アンテナ装置、及び無線端末装置
US13/020,175 US20110207422A1 (en) 2010-02-24 2011-02-03 Antenna apparatus and radio terminal apparatus
EP11154488A EP2363914A1 (en) 2010-02-24 2011-02-15 Antenna apparatus and radio terminal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038584A JP2011176560A (ja) 2010-02-24 2010-02-24 アンテナ装置、及び無線端末装置

Publications (1)

Publication Number Publication Date
JP2011176560A true JP2011176560A (ja) 2011-09-08

Family

ID=43857626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038584A Pending JP2011176560A (ja) 2010-02-24 2010-02-24 アンテナ装置、及び無線端末装置

Country Status (3)

Country Link
US (1) US20110207422A1 (ja)
EP (1) EP2363914A1 (ja)
JP (1) JP2011176560A (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20096251A0 (sv) * 2009-11-27 2009-11-27 Pulse Finland Oy MIMO-antenn
GB2500209B (en) * 2012-03-13 2016-05-18 Microsoft Technology Licensing Llc Antenna isolation using a tuned ground plane notch
US10361480B2 (en) 2012-03-13 2019-07-23 Microsoft Technology Licensing, Llc Antenna isolation using a tuned groundplane notch
JP2013197682A (ja) * 2012-03-16 2013-09-30 Nippon Soken Inc アンテナ装置
TWI531122B (zh) * 2013-04-24 2016-04-21 宏碁股份有限公司 通訊裝置
EP3016031B1 (en) * 2013-06-25 2019-03-06 Toppan Printing Co., Ltd. Dual ic card
EP3014702A4 (en) * 2013-06-28 2017-03-01 Nokia Technologies OY Method and apparatus for an antenna
CN104466354B (zh) * 2013-09-18 2019-06-18 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
NL2015592B1 (en) * 2015-10-09 2017-05-02 The Antenna Company International N V Antenna suitable for integration in a laptop or tablet computer.
CN108155478B (zh) * 2017-12-06 2021-10-08 青岛海信电子设备股份有限公司 应用于移动终端的天线和移动终端
CN108400430B (zh) * 2018-02-06 2021-08-17 中兴通讯股份有限公司 一种天线装置及终端

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD242863S (en) * 1975-06-26 1976-12-28 Middlemark Marvin P Four element indoor television antenna
SE509638C2 (sv) * 1996-06-15 1999-02-15 Allgon Ab Meanderantennanordning
JPH11239020A (ja) * 1997-04-18 1999-08-31 Murata Mfg Co Ltd 円偏波アンテナおよびそれを用いた無線装置
KR20020053690A (ko) * 2001-04-12 2002-07-05 장응순 휴대폰용 스윙 안테나
US6549170B1 (en) * 2002-01-16 2003-04-15 Accton Technology Corporation Integrated dual-polarized printed monopole antenna
US6642893B1 (en) * 2002-05-09 2003-11-04 Centurion Wireless Technologies, Inc. Multi-band antenna system including a retractable antenna and a meander antenna
US6956530B2 (en) * 2002-09-20 2005-10-18 Centurion Wireless Technologies, Inc. Compact, low profile, single feed, multi-band, printed antenna
US7084813B2 (en) * 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
USD517055S1 (en) * 2005-04-27 2006-03-14 Cisco Technology, Inc. Multiple antenna cluster
JP2007013643A (ja) 2005-06-30 2007-01-18 Lenovo Singapore Pte Ltd 一体型平板多素子アンテナ及び電子機器
US7408512B1 (en) * 2005-10-05 2008-08-05 Sandie Corporation Antenna with distributed strip and integrated electronic components
US20070091005A1 (en) * 2005-10-21 2007-04-26 Tsui Ernest T Multi-band loopole antennae
TW200719520A (en) * 2005-11-09 2007-05-16 Coretronic Corp Wireless transmission apparatus
JP4651110B2 (ja) 2006-03-07 2011-03-16 国立大学法人横浜国立大学 無線受信用小型携帯端末装置
JP4804447B2 (ja) * 2006-12-05 2011-11-02 パナソニック株式会社 アンテナ装置及び無線通信装置
US8866691B2 (en) * 2007-04-20 2014-10-21 Skycross, Inc. Multimode antenna structure
US7688273B2 (en) * 2007-04-20 2010-03-30 Skycross, Inc. Multimode antenna structure
US7688275B2 (en) * 2007-04-20 2010-03-30 Skycross, Inc. Multimode antenna structure
JP4738380B2 (ja) * 2007-05-10 2011-08-03 株式会社東芝 電子機器
US20100066609A1 (en) * 2008-09-15 2010-03-18 Chung-Wen Yang Digital television antenna

Also Published As

Publication number Publication date
US20110207422A1 (en) 2011-08-25
EP2363914A1 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP2011176560A (ja) アンテナ装置、及び無線端末装置
JP5482171B2 (ja) アンテナ装置、及び無線端末装置
JP4868128B2 (ja) アンテナ装置及びそれを用いた無線通信機器
TWI425713B (zh) 諧振產生之三頻段天線
EP2040329A2 (en) Antenna device and electronic apparatus
US7956812B2 (en) Wide-band antenna and manufacturing method thereof
US7453402B2 (en) Miniature balanced antenna with differential feed
US7050009B2 (en) Internal antenna
JP5998974B2 (ja) アンテナ
JP5381463B2 (ja) アンテナとそれを有する通信装置
TWI487191B (zh) 天線系統
JP6733477B2 (ja) アンテナ装置、及び、電子機器
JP6478510B2 (ja) アンテナ
JP2011119949A (ja) カードデバイス
JP5104131B2 (ja) 無線装置および無線装置が備えるアンテナ
KR100899293B1 (ko) 이중공진에 의한 광대역 안테나
Parkash et al. Design and development of CPW-fed microstrip antenna for WLAN/WiMAX applications
US8274435B2 (en) Antenna apparatus
JPH05299929A (ja) アンテナ
JP6233319B2 (ja) マルチバンドアンテナ及び無線装置
CN113540763B (zh) 一种天线及设备
TW201421797A (zh) 印刷式寬頻單極天線模組
TWI467853B (zh) 雙頻天線及應用該雙頻天線之無線通訊裝置
EP4307481A1 (en) Antenna
CN115336105A (zh) 用于发送和/或接收电磁信号的天线

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318