WO2018147012A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2018147012A1
WO2018147012A1 PCT/JP2018/001078 JP2018001078W WO2018147012A1 WO 2018147012 A1 WO2018147012 A1 WO 2018147012A1 JP 2018001078 W JP2018001078 W JP 2018001078W WO 2018147012 A1 WO2018147012 A1 WO 2018147012A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
axial direction
flange
shield member
stator
Prior art date
Application number
PCT/JP2018/001078
Other languages
English (en)
French (fr)
Inventor
拓也 金子
卓寛 上谷
徳幸 飯尾
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880010357.4A priority Critical patent/CN110291701A/zh
Priority to US16/472,255 priority patent/US10958138B2/en
Priority to JP2018566810A priority patent/JP7036040B2/ja
Priority to DE112018000707.3T priority patent/DE112018000707T5/de
Publication of WO2018147012A1 publication Critical patent/WO2018147012A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a motor.
  • the motor in order to detect the rotational position of the rotor, the motor has a magnetic sensor such as a resolver.
  • a magnetic sensor such as a resolver detects the rotational position of a rotor using magnetism. Therefore, when the magnetic flux generated in the rotor and the stator flows into the magnetic sensor, the detection accuracy of the magnetic sensor decreases.
  • Patent Document 1 discloses a brushless motor having a resolver holder as a shielding member that shields magnetic flux flowing into a resolver (magnetic sensor).
  • a resolver holder is disposed as a shielding member between the resolver stator and the field coil of the stator.
  • the resolver holder includes a cylindrical holder portion in which the resolver stator is accommodated, and a bottom wall portion formed on one end side of the holder portion and disposed between the resolver stator and the field coil.
  • a through hole through which the rotor shaft passes is provided in the bottom wall portion.
  • the magnetic flux generated in the stator can be prevented from flowing into the resolver (magnetic sensor) by the resolver holder disposed between the resolver stator and the field coil of the stator. .
  • the above resolver holder has a through-hole through which the rotor shaft passes in the bottom wall portion.
  • magnetic flux leakage magnetic flux
  • the magnetic flux flowing from the rotor to the magnetic sensor cannot be sufficiently suppressed.
  • An object of the present invention is to obtain a configuration capable of suppressing magnetic flux flowing from a rotor to the magnetic sensor while suppressing an increase in size of the motor in a motor including a magnetic sensor.
  • a motor is disposed so as to face in a radial direction with respect to an axially extending shaft, a rotor that can rotate together with the shaft, and that has a field magnet.
  • the shield member is at least partially positioned between the rotor and the magnetic sensor in the axial direction, and has a bottom portion having a through hole through which the shaft passes, and extends from the bottom portion to the other side in the axial direction.
  • a convex portion is positioned radially inward from the outer peripheral portion of the field magnet as viewed from the axial direction.
  • the motor of one embodiment of the present invention it is possible to obtain a configuration capable of suppressing the magnetic flux flowing from the rotor to the magnetic sensor while suppressing an increase in size of the motor.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of the motor according to the first embodiment.
  • FIG. 2 is a view of the motor as viewed from one side in the axial direction.
  • FIG. 3 is an enlarged cross-sectional view of the configuration around the shield member in the motor.
  • FIG. 4 is a perspective view showing the configuration of the shield member.
  • FIG. 5 is a view corresponding to FIG. 3 of the motor according to the second embodiment.
  • FIG. 6 is a view corresponding to FIG. 3 of a motor according to another embodiment.
  • FIG. 7 is a view corresponding to FIG. 3 of a motor according to another embodiment.
  • FIG. 8 is a view corresponding to FIG. 3 of a motor according to another embodiment.
  • the direction parallel to the central axis of the rotor is “axial direction”
  • the direction orthogonal to the central axis is “radial direction”
  • the direction along the arc centered on the central axis is “circumferential direction”.
  • axial direction the direction parallel to the central axis of the rotor
  • radial direction the direction orthogonal to the central axis
  • circumferential direction the direction along the arc centered on the central axis
  • the axial resolver side (upper side in FIG. 1) is “one side in the axial direction”, and the axial rotor side (lower side in FIG. 1) is “the other side in the axial direction”.
  • FIG. 1 shows a schematic configuration of a motor 1 according to Embodiment 1 of the present invention.
  • the motor 1 includes a shaft 2, a rotor 3, a stator 4, a resolver 5 (magnetic sensor, rotation angle sensor), a casing 6, and a shield member 7.
  • the rotor 3 rotates about the central axis P (axis) with respect to the stator 4.
  • the motor 1 is a so-called inner rotor type motor in which a rotor 3 is disposed in a cylindrical stator 4 so as to be rotatable about a central axis P.
  • the motor may be a so-called outer rotor type motor in which a cylindrical rotor is rotatably disposed around a central axis on the outer side in the radial direction of a columnar stator.
  • the rotor 3 includes a rotor core 31 and a field magnet 32.
  • the rotor core 31 has a cylindrical shape extending along the central axis P.
  • the rotor core 31 is configured by laminating a plurality of electromagnetic steel sheets formed in a predetermined shape in the thickness direction.
  • a shaft 2 extending along the central axis P passes through the rotor core 31 in the axial direction. Thereby, the rotor 3 rotates together with the shaft 2.
  • a plurality of field magnets 32 are arranged on the outer peripheral surface of the rotor core 31 at predetermined intervals in the circumferential direction.
  • the field magnet 32 may be a ring magnet connected in the circumferential direction.
  • the field magnet 32 is a substantially semi-cylindrical magnet having a length from one end of the rotor core 31 in the axial direction to the other end. That is, the field magnet 32 has a length equivalent to the axial length of the rotor core 31.
  • the outer surface of the field magnet 32 in the radial direction of the rotor 3 has N-pole or S-pole magnetism. Field magnets 32 having N poles on the outer surface and field magnets 32 having S poles on the outer surface are alternately arranged in the circumferential direction of the rotor core 31.
  • the stator 4 is disposed to face the rotor 3 in the radial direction. That is, the rotor 3 is disposed inward of the stator 4 so as to be rotatable about the central axis P.
  • the stator 4 includes a stator core 41 and a stator coil 42.
  • the stator core 41 has a cylindrical shape extending in the axial direction.
  • the stator core 41 is configured by laminating a plurality of electromagnetic steel plates formed in a predetermined shape in the thickness direction. Although not particularly illustrated, the stator core 41 has a plurality of teeth extending radially inward.
  • the stator coil 42 is wound around the teeth of the stator core 41.
  • the axial length of the stator core 41 is larger than the axial length of the field magnet 32 of the rotor 3. Thereby, torque ripple generated in the motor 1 can be reduced.
  • the resolver 5 is a rotation detection sensor that detects the rotation of the shaft 2, that is, the rotation of the rotor 3, using magnetism.
  • the resolver 5 is disposed on one side in the axial direction with respect to the rotor 3.
  • the resolver 5 includes a resolver rotor 51 (sensor rotor) that rotates with the shaft 2 and a cylindrical resolver stator 55 (sensor stator).
  • the resolver rotor 51 has a cylindrical shape extending along the central axis P.
  • the resolver rotor 51 is configured by laminating a plurality of electromagnetic steel sheets formed in a predetermined shape in the thickness direction.
  • a shaft 2 extending along the central axis P is fixed to the resolver rotor 51 in a state of penetrating in the axial direction. That is, the resolver rotor 51 is fixed on the outer peripheral surface of the shaft 2 on one side in the axial direction with respect to the rotor 3. As a result, the resolver rotor 51 can rotate together with the shaft 2.
  • the resolver rotor 51 has a plurality of salient pole portions protruding in the radial direction at predetermined intervals in the circumferential direction in a cross section orthogonal to the axial direction.
  • the resolver stator 55 is disposed so as to face the resolver rotor 51 in the radial direction.
  • the resolver rotor 51 is disposed inside the cylindrical resolver stator 55 so as to be rotatable about the central axis P.
  • the resolver stator 55 has a resolver stator core 56 and a resolver stator coil 57.
  • the resolver stator coil 57 is wound around the resolver stator core 56.
  • the outer diameter of the resolver stator 55 is smaller than the outer diameter of the rotor 3. Therefore, the resolver 5 has a size overlapping the rotor 3 when viewed from the axial direction.
  • the resolver 5 when a predetermined voltage is applied to the resolver stator coil 57, a magnetic field is generated in the resolver stator core 56 around which the resolver stator coil 57 is wound.
  • the resolver rotor 51 since the resolver rotor 51 has a plurality of salient pole portions, the distance between the plurality of salient pole portions and the resolver stator core 56 changes when the resolver rotor 51 rotates together with the shaft 2. Thereby, the magnetic field generated between the resolver rotor 51 and the resolver stator core 56 changes.
  • the resolver 5 detects the rotational position of the shaft 2 using the magnetic fluctuation generated between the resolver rotor 51 and the resolver stator core 56 when the resolver rotor 51 rotates together with the shaft 2.
  • the casing 6 is a cylindrical member in which the shaft 2, the rotor 3, the stator 4 and the resolver 5 are accommodated. On one side of the casing 6 in the axial direction, the shaft 2 penetrates and protrudes outward.
  • the casing 6 includes a bottomed cylindrical housing 61 extending in the axial direction, a plate-like flange 62, and a bearing holder 63.
  • the side surface of the housing 61 has an inner diameter that can accommodate the rotor 3 and the stator 4.
  • a bearing 21 that rotatably supports the other side of the shaft 2 in the axial direction is disposed at the bottom of the housing 61.
  • the flange 62 is a plate-like member that covers the opening of the housing 61. Although not particularly illustrated, the flange 62 is fixed to the housing 61 by being connected to a mounting portion provided at an opening of the housing 61 by a bolt or the like.
  • the flange 62 has an insertion hole 62a in the center portion in plan view.
  • a bearing holder 63 is disposed in the insertion hole 62a.
  • the bearing holder 63 is connected to the flange 62 by a position adjusting bolt 67.
  • the flange 62 has a cylindrical flange protrusion 62b extending toward the other side in the axial direction on the peripheral edge 62d facing the insertion hole 62a.
  • the outer peripheral surface of the bearing holder 63 is in contact with the inner peripheral surface of the flange protrusion 62b.
  • a protrusion 74a of the shield member 7 described later is disposed on the radially outer side of the flange protrusion 62b.
  • the peripheral edge 62d is a portion of the flange 62 that faces the insertion hole 62a, and is a portion that surrounds the insertion hole 62a when viewed from the axial direction.
  • the flange 62 is provided with a recess 62c on the outer surface of the casing 6 so as to surround the insertion hole 62a when viewed from the axial direction. That is, the flange 62 is a first surface 62e located on one side in the axial direction of the casing 6, and a second surface 62f located on the other side in the axial direction from the first surface 62e and constituting the bottom surface of the recess 62c. Have. A holder protrusion 66, which will be described later, of the bearing holder 63 is disposed in the recess 62c.
  • a fixing bolt 68 for fixing a shield member 7 described later passes through the second surface 62f of the flange 62.
  • the shield member 7 is fixed to the inside of the casing 6 at the flange 62.
  • the head 68 a of the fixing bolt 68 is located inside the casing 6.
  • the shaft portion 68 b of the fixing bolt 68 extends from the head portion 68 a located inside the casing 6 toward the outside of the casing 6. That is, the shield member 7 is fixed to the flange 62 from the inside of the casing 6 by the fixing bolt 68.
  • a portion of the flange 62 where the recess 62 c is provided is provided with a screw hole that is fastened to the shaft portion 68 b of the fixing bolt 68.
  • the bearing holder 63 covers the insertion hole 62 a of the flange 62 and holds the bearing 22 and the resolver stator 55.
  • the bearing 22 rotatably supports one side of the shaft 2 in the axial direction.
  • the bearing holder 63 includes a bearing support portion 64, a holder extension portion 65, and a holder protrusion portion 66.
  • the bearing support part 64, the holder extension part 65, and the holder protrusion part 66 are integrally formed.
  • the bearing support portion 64 has a cylindrical shape having a hole portion 64a in which the bearing 22 is accommodated in a central portion in plan view.
  • the shaft 2 that is rotatably supported by the bearing 22 is inserted through the hole 64a.
  • a part of the bearing support portion 64 is located in the insertion hole 62 a of the flange 62. Therefore, a part of the outer peripheral surface of the bearing support portion 64 is in contact with the inner peripheral surface of the flange protrusion 62 b of the flange 62. Thereby, the bearing holder 63 can be accurately arranged in the radial direction with respect to the flange 62.
  • the flange protrusion 62b of the flange 62 extends toward the other side in the axial direction, thereby suppressing the end of the other side in the axial direction of the bearing holder 63 from being displaced in the radial direction. it can.
  • the holder extension portion 65 has a cylindrical shape extending from the bearing support portion 64 to the other side (rotor side) in the axial direction.
  • a resolver stator 55 is fixed on the inner peripheral surface of the holder extension 65. Thereby, the resolver stator 55 is located between the bearing 22 and the rotor 3 in the axial direction.
  • the outer peripheral surface of the holder extension 65 is in contact with the inner peripheral surface of a cylindrical shield member 7 described later.
  • the shield member 7 can be accurately arranged in the radial direction with respect to the holder extension portion 65. Moreover, since the bearing holder 63 holds the bearing 22, the degree of coaxiality with the shaft 2 is high. By arranging the shield member 7 with respect to the holder extension 65 as described above, the shield member 7 can be arranged based on the holder extension 65 having a high degree of coaxiality with the shaft 2. Thereby, the shift
  • the holder protrusion 66 protrudes radially outward from one axial end of the bearing support 64.
  • the holder protrusion 66 is arranged on one side in the axial direction with respect to the flange 62. Thereby, the bearing holder 63 can be accurately arranged in the axial direction with respect to the flange 62.
  • FIG. 2 is a view of the motor 1 as viewed from one side in the axial direction.
  • the holder protrusion 66 has a long hole 66 a for a position adjusting bolt through which the position adjusting bolt 67 is inserted.
  • the position adjusting bolt elongated hole 66a extends in the circumferential direction about the central axis P as viewed from the axial direction.
  • a plurality of position adjusting bolt elongated holes 66 a are provided in the holder protrusion 66 according to the number of position adjusting bolts 67.
  • the holder protrusion 66 has a fixing bolt elongated hole 66b through which the shaft portion 68b of the fixing bolt 68 is inserted.
  • the fixing bolt elongated hole 66b extends in the circumferential direction about the central axis P when viewed from the axial direction.
  • a plurality of fixing bolt long holes 66 b are provided in the holder protrusion 66 according to the number of fixing bolts 68.
  • the holder projecting portion 66 is provided with the position adjusting bolt long hole 66a and the fixing bolt long hole 66b, so that the position of the bearing holder 63 in the circumferential direction with respect to the flange 62 is adjusted while the bearing holder 63 is flanged. 62 can be fixed. Accordingly, the circumferential position of the resolver stator 55 fixed to the bearing holder 63 can be adjusted with respect to the resolver rotor 51 fixed to the shaft 2. Therefore, even when a dimensional error or the like occurs in the resolver 5, the position adjustment between the resolver rotor 51 and the resolver stator 55 can be easily performed.
  • FIG. 3 is an enlarged cross-sectional view showing a configuration around the shield member 7.
  • FIG. 4 is a perspective view showing the configuration of the shield member 7.
  • the shield member 7 is a bottomed cylindrical member made of a metal magnetic material such as iron.
  • the shield member 7 covers the other side in the axial direction of the holder extension 65 of the bearing holder 63. As described above, the resolver 5 is accommodated in the holder extension portion 65. Thereby, the shield member 7 is located between the resolver 5 and the rotor 3.
  • the shield member 7 made of a magnetic material between the resolver 5 and the rotor 3, the magnetic flux (leakage magnetic flux) generated in the rotor 3 and the stator 4 is absorbed by the shield member 7. can do. Therefore, the shield member 7 suppresses the magnetic flux generated in the rotor 3 and the stator 4 from flowing into the resolver 5.
  • the shield member 7 has a cylindrical part 71, a tapered part 71 a, a bottom part 72, a convex part 73, and a fixing part 74.
  • the cylinder part 71, the taper part 71a, the bottom part 72, the convex part 73, and the fixing part 74 are integrally formed.
  • the cylinder portion 71 has a cylindrical shape extending in the axial direction.
  • the inner peripheral surface of the cylindrical portion 71 is in contact with the outer peripheral surface of the holder extension portion 65 of the bearing holder 63. Thereby, the shield member 7 can be accurately arranged in the radial direction with respect to the bearing holder 63.
  • the taper portion 71a is located at the end of the cylindrical portion 71 on the other side in the axial direction, and has a tapered shape with a smaller outer diameter toward the tip.
  • the tapered portion 71 a is located between the cylindrical portion 71 and the bottom portion 72. In addition, you may connect the cylinder part 71 and the bottom part 72, without providing the taper part 71a.
  • the axial length of the stator core 41 is larger than the axial length of the field magnet 32 of the rotor 3.
  • the outer diameter of the cylindrical portion 71 of the shield member 7 is larger than the inner diameter of the stator 4, and the bottom portion 72 of the shield member 7 is larger than the end portion on one side of the stator coil 42 in the axial direction. Located on the other side in the axial direction.
  • the shield member 7 since the shield member 7 has the tapered portion 71a between the cylindrical portion 71 and the bottom portion 72 as described above, the shield member 7 can be prevented from coming into contact with the stator 4. Therefore, the shield member 7 can be disposed in the motor 1 capable of reducing torque ripple generated in the motor 1 without interfering with the stator 4.
  • the cylinder 71 is provided with an opening 71b through which a wiring (not shown) or the like is inserted (see FIG. 4).
  • the wiring and the like electrically connect the resolver 5 and the like to a control device (not shown) outside the motor 1.
  • the fixing portion 74 is provided at an end portion on one side of the cylindrical portion 71 in the axial direction.
  • the fixed portion 74 protrudes radially outward and toward one side in the axial direction.
  • a pair of fixing portions 74 are provided on the opposite side of the cylindrical portion 71 with the central axis P in between when the shield member 7 is viewed from the axial direction.
  • the fixed part 74 has a first protrusion 74a, a second protrusion 74b, and an attachment part 74c.
  • the first protrusion 74 a protrudes radially outward from one axial end of the cylindrical portion 71.
  • the second protruding portion 74b extends from the radially outer end of the first protruding portion 74a to one side in the axial direction, and is positioned more radially outward than the flange protruding portion 62b. Thereby, the circumferential positioning of the shield member 7 can be performed with the flange 62 as a reference.
  • the mounting portion 74c is located at one end portion in the axial direction of the second projecting portion 74b, and protrudes radially outward from the one end portion.
  • the attachment portion 74c has a semicircular shape at the tip portion located radially outward as viewed from the axial direction.
  • the attachment portion 74c has an attachment hole 74d.
  • the shield member 7 can be fixed to the flange 62 by fastening the fixing bolt 68 to the mounting hole 74 d and the screw hole of the flange 62.
  • the bottom 72 has a circular shape when viewed from the axial direction. Further, the bottom portion 72 covers at least a part of the end portion side in the axial direction of the resolver 5 when viewed from the other side in the axial direction. That is, the bottom portion 72 is located between the resolver stator 55 and the rotor 3. Thereby, it is possible to suppress the magnetic flux generated in the rotor 3 and the stator 4 from flowing into the resolver 5.
  • the bottom portion 72 has a through hole 72a in the center portion in plan view.
  • the shaft 2 is inserted through the through hole 72a.
  • the hole diameter of the through hole 72 a is larger than the outer diameter of the resolver rotor 51. That is, the through hole 72a has a hole diameter through which the resolver rotor 51 can pass.
  • the shaft 2 and the resolver rotor 51 can pass through the through hole 72a in a state where the resolver rotor 51 is fixed on the shaft 2. Therefore, when the motor 1 is assembled, the resolver rotor 51 fixed on the shaft 2 is inserted through the through hole 72 a in a state where the shield member 7 is fixed to the flange 62 and the resolver stator 55 is fixed to the bearing holder 63. And can be arranged in the resolver stator 55. Therefore, the assembly workability of the motor 1 can be improved.
  • the through hole 72a as described above is provided in the bottom portion 72, a gap through which the resolver rotor 51 can be inserted is formed between the peripheral edge portion 72b facing the through hole 72a and the outer peripheral surface of the shaft 2. . That is, the hole diameter of the through hole 72 a of the shield member 7 is larger than the outer diameter of the resolver rotor 51. Then, the magnetic flux generated by the field magnet 32 of the rotor 3 may flow into the resolver 5 from the gap.
  • the shield member 7 has the convex part 73 located in the peripheral part 72b facing the through-hole 72a of the bottom part 72, and extended toward the other side of an axial direction.
  • the magnetic flux generated by the field magnet 32 of the rotor 3 can be absorbed by the convex portion 73. Therefore, it is possible to suppress the magnetic flux generated by the field magnet 32 of the rotor 3 from flowing into the resolver 5 through the through hole 72 a of the bottom portion 72.
  • the convex portion 73 extends in a direction orthogonal to the bottom portion 72 and has an annular shape surrounding the through hole 72a in a cross section orthogonal to the axial direction. Thereby, it can suppress more that the magnetic flux produced in the field magnet 32 of the rotor 3 flows into the through-hole 72a.
  • the tip portion of the convex portion 73 is positioned radially inward of the rotor 3 from the radially outermost peripheral portion (outer peripheral portion) of the field magnet 32 when viewed from the axial direction.
  • tip part of the convex part 73 is located in the radial inside of the rotor 3 rather than the innermost peripheral part (inner peripheral part) of the radial direction of the field magnet 32 seeing from an axial direction. Thereby, it is possible to further suppress the magnetic flux generated by the field magnet 32 from flowing into the through hole 72 a of the bottom portion 72.
  • the convex portion 73 has a substantially rectangular shape in a cross section including the central axis P. In the axial direction, the protruding length of the protrusion 73 is equal to the plate thickness of the shield member 7.
  • the motor 1 is disposed so as to face the rotor 3 in the radial direction with respect to the shaft 2 that extends in the axial direction, the rotor 3 that can rotate with the shaft 2, and that has the field magnet 32.
  • the shield member 7 is positioned at least partially between the rotor 3 and the resolver 5 in the axial direction, and has a bottom 72 having a through hole 72a through which the shaft 2 passes, and from the bottom 72 to the other side in the axial direction.
  • a projecting portion 73 that extends. The distal end portion of the convex portion 73 is located radially inward from the outer peripheral portion of the field magnet 32 when viewed from the axial direction.
  • the shield member 7 extends to the bottom 72 of the shield member 7 from the bottom 72 to the other in the axial direction, and is inward of the outer periphery of the field magnet 32 in the radial direction of the rotor 3 when viewed from the axial direction.
  • the convex part 73 located in is provided. Thereby, the magnetic flux of the field magnet 32 is absorbed by the convex portion 73 of the shield member 5. Therefore, the magnetic flux of the field magnet 32 can be prevented from flowing into the resolver 5.
  • the tip end portion of the convex portion 73 is located radially inward of the rotor 3 with respect to the inner peripheral portion of the field magnet 32 when viewed from the axial direction. Accordingly, the magnetic flux flowing from the field magnet 32 of the rotor 3 to the resolver 5 can be further suppressed by the convex portion 73 provided on the bottom portion 72 of the shield member 7. That is, with the above-described configuration, the magnetic flux of the field magnet 32 is more absorbed by the convex portion 73. Thereby, it can suppress more that a magnetic flux flows in from the field magnet 32 in the through-hole 72a provided in the bottom part 72 of the shield member 7.
  • the convex portion 73 is located at a part of the peripheral edge portion 72b facing the through hole 72a in the bottom portion 72 of the shield member 7, and extends toward the other side in the axial direction.
  • the convex portion 73 has a shape surrounding the through hole 72a in a cross section orthogonal to the axial direction. Thereby, it is possible to further suppress the magnetic flux from flowing from the field magnet 32 of the rotor 3 into the through hole 72 a provided in the bottom 72 of the shield member 7.
  • the rotor 3 is located radially inward of the stator 4.
  • the resolver 5 includes a resolver rotor 51 and a resolver stator 55.
  • the resolver rotor 51 is located inward of the resolver stator 55 in the radial direction.
  • the rotor 3 and the resolver rotor 51 are fixed to the outer side in the radial direction of the shaft 2 so as to be rotatable together with the shaft 2.
  • the hole diameter of the through hole 72 a of the shield member 7 is larger than the outer diameter of the resolver rotor 51.
  • the diameter of the through hole 72 a of the shield member 7 positioned between the rotor 3 and the resolver 5 is set to the motor 1. It is necessary to increase the size so that the resolver rotor 51 can pass during assembly.
  • the through hole 72a of the shield member 7 is enlarged, the magnetic flux of the field magnet 32 easily passes through the through hole 72a. Therefore, the magnetic flux easily flows from the field magnet 32 into the resolver 5.
  • the convex portion 73 on the bottom portion 72 of the shield member 7 as in the above-described configurations, it is possible to suppress the magnetic flux from flowing into the through hole 72a of the shield member 7 from the field magnet 32. Therefore, the assembly workability of the motor 1 can be improved by enlarging the through hole 72a of the shield member 7 without reducing the detection accuracy of the resolver 5.
  • the motor 1 houses at least the rotor 3 and the stator 4 and has a bottomed cylindrical housing 61 having an opening, and an insertion hole 62a that is fixed to the housing 61 and through which the shaft 2 is inserted.
  • a holder 63 The resolver stator 55 is fixed to the bearing holder 63.
  • the bearing holder 63 is fixed to the flange 62 so that its position can be adjusted in the circumferential direction around the central axis P of the shaft 2.
  • the bearing holder 63 has a hole 64 a and a part of the bearing holder 63 is positioned in the insertion hole 62 a of the flange 62, and extends from the bearing support 64 to the other side in the axial direction. It has a cylindrical holder extension 65 and a holder protrusion 66 that protrudes radially outward from the bearing support 64 and is positioned on one side in the axial direction with respect to the flange 62.
  • a resolver stator 55 is fixed on the inner peripheral surface of the holder extension portion 65.
  • the holder protrusion 66 is fixed to the flange 62 so that its position can be adjusted in the circumferential direction around the central axis P of the shaft 2.
  • the resolver 5 detects the rotation angle of the rotor 3 by the resolver rotor 51 and the resolver stator 55. Therefore, it is necessary to align the resolver rotor 51 and the resolver stator 55 with high accuracy so that the rotation angle of the rotor 3 can be detected with high accuracy.
  • the resolver rotor 51 and the resolver stator 55 can be aligned even when a dimensional error or the like occurs. Therefore, with the above-described configuration, the detection accuracy of the resolver 5 provided in the motor 1 can be improved.
  • the shield member 7 is fixed to the flange 62 or the bearing holder 63. Thereby, the shield member 7 can be fixed to the casing 6. Therefore, the bottom portion 72 of the shield member 7 can be accurately placed between the rotor 3 and the resolver 5.
  • the shield member 7 includes the cylindrical portion 71 that extends from the bottom portion 72 to one side in the axial direction and covers a part of the bearing holder 63, and the fixing portion 74 provided on the cylindrical portion 71. .
  • the fixing portion 74 is fixed to the flange 62 or the bearing holder 63.
  • the shield member 7 can be fixed to the flange 62 or the bearing holder 63. Moreover, the cylindrical portion 71 of the shield member 7 can suppress the magnetic flux generated in the stator 4 from flowing into the resolver 5. Therefore, it can suppress that the magnetic flux flows into the resolver 5 from the rotor 3 and the stator 4, and the detection accuracy of the resolver 5 falls.
  • the flange 62 has the flange protrusion 62b extending on the other side in the axial direction on the flange peripheral edge 62d facing the insertion hole 62a.
  • the fixed portion 74 includes a first projecting portion 74a projecting radially outward from one end portion in the axial direction of the tubular portion 71, and one axial end portion from the radially outer end portion of the first projecting portion 74a.
  • a second projecting portion 74b extending to the end of the second projecting portion 74b, and a mounting portion 74c that is positioned at one end of the second projecting portion 74b in the axial direction and is fixed to the flange 62.
  • the 2nd protrusion part 74b is located in the radial direction outer side rather than the flange protrusion part 62b.
  • the second protrusion 74b of the shield member 7 can be positioned with respect to the flange protrusion 62b of the flange 62. Therefore, the shield member 7 can be positioned with respect to the flange 62. Thereby, since the shield member 7 can be positioned at a predetermined position with respect to the resolver 5, the shield member 7 can further suppress the flow of magnetic flux from the field magnet 32 of the rotor 3 to the resolver 5.
  • FIG. 5 is a cross-sectional view of the motor 101 according to the second embodiment.
  • the motor 101 according to the second embodiment is different from the motor 1 according to the first embodiment in the configuration of a member that covers the opening of the housing 61.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only portions different from those in the first embodiment are described.
  • the motor 101 has a lid 102 that covers the opening of the housing 61.
  • the lid 102 is fixed to the opening of the housing 61 with a bolt or the like (not shown).
  • the lid portion 102 is a disk-like member, and has a hole portion 102a in which the bearing 22 is accommodated in a central portion in plan view.
  • the lid portion 102 has a plate portion 103 having a hole portion 102a in the center portion in plan view, and a cylindrical extension portion 104 extending from the plate portion 103 to the other side in the axial direction.
  • the plate portion 103 is fixed to the opening of the housing 61.
  • An attachment portion 74 c of the shield member 7 is fixed to the plate portion 103 by a fixing bolt 68.
  • a resolver stator 55 is fixed to the inner peripheral surface of the extending portion 104. In other words, the resolver 5 is disposed inside the extending portion 104.
  • the shield member 7 covers the extending portion 104 in which the resolver 5 is disposed from the other side in the axial direction.
  • the attachment portion 74 c of the shield member 7 is fixed to the housing 61 side of the lid portion 102 by a fixing bolt 68.
  • the fixing bolt 68 is also fastened to the shield member 7 and the lid 102 from the inside of the casing as in the first embodiment.
  • the lid portion 102 of this embodiment is a member in which the flange 62 and the bearing holder 63 in the first embodiment are integrated. Therefore, since the number of parts can be reduced as compared with the configuration of the first embodiment, the assembly workability of the motor 101 can be improved.
  • the motor 1 has the resolver 5.
  • the motor 1 may have a magnetic sensor other than the resolver. That is, you may arrange
  • the magnetic sensor include a hall type sensor and an MR sensor.
  • the convex portion 73 has an annular shape in a cross section orthogonal to the axial direction.
  • the protrusion 73 may have a shape other than an annular shape as long as it surrounds the through hole 72a in the cross section.
  • the convex part 73 may not be the shape surrounding the through-hole 72a, but may be provided only in a part of the peripheral part 72b facing the through-hole 72a.
  • the convex portion 73 is provided on the peripheral edge portion 72 b facing the through hole 72 a in the bottom portion 72 of the shield member 7.
  • the protrusion 73 may be provided at a position other than the peripheral edge 72b facing the through hole 72a as long as it can absorb the magnetic flux generated by the field magnet 32 of the rotor 3 at the bottom 72.
  • the convex portion 73 may be provided at a position between the outer peripheral portion and the through hole 72 a in the bottom portion 72 of the shield member 7.
  • the convex portion 73 extends in a direction orthogonal to the bottom portion 72.
  • the convex portion 73 may extend obliquely as long as the convex portion 73 extends toward the other side in the axial direction with respect to the bottom portion 72.
  • the attachment portion 74 c of the shield member 7 is fixed to the flange 62 by the fixing bolt 68.
  • the attachment portion 74 c may be fixed to the flange 62 by a fixing method other than the fixing bolt 68.
  • the mounting portion 74c may be fixed to the flange 62 by a method such as adhesive, heat welding, or caulking.
  • the attaching part 74c may be directly attached to the flange 62, or may be attached to the flange 62 via another member. That is, the shield member 7 may be fixed directly or indirectly to the flange 62. Further, the shield member 7 may be fixed to the bearing holder 63 instead of the flange 62.
  • the shield member 7 includes the cylindrical portion 71, the bottom portion 72, the convex portion 73, and the fixing portion 74.
  • the shield member does not need to have a fixed part.
  • the cylindrical portion 271 may be fixed on the outer peripheral surface of the holder extension portion 65 of the bearing holder 63.
  • the configuration of the motor is the same as the configuration of the first embodiment except that the shield member 207 does not have a fixed portion.
  • symbol 272 is a bottom part
  • symbol 273 is a convex part
  • symbol 272a is a through-hole.
  • the shield member does not have to have a cylindrical portion and a fixed portion.
  • the holder extension portion 365 of the bearing holder 363 is provided so as to cover the resolver 5, and the bottom portion 372 is fixed to the other end portion in the axial direction of the holder extension portion 365. do it.
  • the configuration of the motor is the same as the configuration of the first embodiment except that the shield member 307 does not have a cylindrical portion and a fixed portion and the configuration of the holder extension portion 365.
  • reference numeral 373 is a convex portion
  • reference numeral 372a is a through hole.
  • the inner peripheral surface of the cylindrical portion 71 of the shield member 7 is in contact with the outer peripheral surface of the holder extending portion 65 of the bearing holder 63.
  • the cylindrical portion 71 of the shield member 7 and the holder extending portion 65 of the bearing holder 63 may face each other with a gap in the radial direction.
  • a protrusion 465 a that protrudes radially outward may be provided on the outer peripheral surface of the holder extension 465 of the bearing holder 463.
  • the shield member 7 can be fixed to the bearing holder 463 by press-fitting the cylindrical portion 71 of the shield member 7 into the holder extension portion 465. Therefore, the fixing by the fixing bolt 68 as in the above embodiments is not necessary.
  • a projection may be provided on the inner peripheral surface of the shield member as long as a gap is formed between the shield member and the holder extension portion of the bearing holder.
  • You may provide a recessed part in at least one of the internal peripheral surface of a member, and the outer peripheral surface of a holder extension part.
  • you may provide a clearance gap between a shield member and a bearing holder by arrange
  • the bearing holder 63 is provided with the elongated hole 66a for the position adjusting bolt and the elongated hole 66b for the fixing bolt.
  • the position of the bearing holder 63 with respect to the flange 62 can be adjusted in the circumferential direction about the central axis P. That is, the position of the resolver stator 55 fixed to the bearing holder 63 in the circumferential direction with respect to the resolver rotor 51 can be adjusted.
  • the structure which adjusts the position of the flange 62 and the bearing holder 63 is not limited to the structure having the long hole as described above, and may be another structure.
  • any configuration can be used as long as the position of the flange 62 and the bearing holder 63 can be adjusted in the circumferential direction, such as by providing a plurality of bolt holes in the bearing holder and changing the fastening position of the bolt. Also good.
  • the field magnet 32 of the rotor 3 is disposed on the outer peripheral surface of the rotor core 31.
  • the field magnet 32 may be disposed inside the rotor core 31.
  • the shape of the field magnet 32 is not limited to a semi-cylindrical shape, and may be a rectangular parallelepiped or a polygonal column.
  • the field magnet 32 is substantially semi-cylindrical in the configuration in which the field magnet 32 is arranged on the outer peripheral surface of the rotor core 31, but the field magnet 32 is arranged inside the rotor core 31 as described above. In the structure which was made, rectangular parallelepiped shape and polygonal column shape may be sufficient.
  • the motors 1 and 101 are inner rotor type motors in which the columnar rotor 2 is rotatably disposed in the cylindrical stator 3.
  • the motor may be an outer rotor type motor in which a columnar stator is disposed in a cylindrical rotor.
  • the present invention can be used for a motor equipped with a magnetic sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

モータ1は、軸方向に延びるシャフト2と、界磁用マグネット32を有するロータ3と、ステータ4と、ロータ3及びステータ4よりも軸方向の一方側に位置するレゾルバ5と、軸方向において、少なくとも一部がロータ3とレゾルバ5との間に位置するシールド部材7と、を備える。シールド部材7は、軸方向において、少なくとも一部がロータ3とレゾルバ5との間に位置し、且つ、シャフト2が貫通する貫通孔72aを有する底部72と、底部72から軸方向の他方側に延びる凸部73と、を有する。凸部73の先端部は、軸方向から見て、界磁用マグネット32の外周部よりもロータ3の径方向内方に位置する。

Description

モータ
 本発明は、モータに関する。
 従来、ロータの回転位置を検出するために、モータは、レゾルバなどの磁気センサを有する。一般的に、レゾルバなどの磁気センサは、磁気を用いてロータの回転位置を検出する。そのため、ロータ及びステータで生じた磁束が前記磁気センサに流れ込んだ場合、前記磁気センサの検出精度が低下する。
 これに対し、ステータと磁気センサとの間に、前記磁気センサに流れ込む磁束を遮蔽する遮蔽部材が配置された構成が知られている。例えば特許文献1には、レゾルバ(磁気センサ)に流れ込む磁束を遮蔽する遮蔽部材としてレゾルバホルダを有するブラシレスモータが開示されている。
 具体的には、前記特許文献1に開示されているブラシレスモータでは、レゾルバステータとステータの界磁コイルとの間に、遮蔽部材としてレゾルバホルダが配置されている。このレゾルバホルダは、前記レゾルバステータが収容される円筒形状のホルダ部と、該ホルダ部の一端側に形成され、前記レゾルバステータと前記界磁コイルとの間に配置される底壁部とを有する。前記特許文献1に開示されている構成では、前記底壁部に、ロータシャフトが貫通する貫通孔が設けられている。
国際公開第2008/035755号
 上述の特許文献1に開示されている構成では、レゾルバステータとステータの界磁コイルとの間に配置されたレゾルバホルダによって、前記ステータで生じた磁束がレゾルバ(磁気センサ)に流れ込むことを抑制できる。
 しかしながら、上述のレゾルバホルダは、底壁部にロータシャフトが貫通する貫通孔を有する。そのため、上述の構成では、前記ステータの径方向内側に位置するロータの界磁用マグネットで生じた磁束(漏れ磁束)が、前記貫通孔から、レゾルバ(磁気センサ)側に流れ込む可能性がある。すなわち、上述の構成では、前記ロータから磁気センサに流れ込む磁束を十分に抑制できない可能性がある。
 これに対し、ロータから磁気センサに磁束が流れ込まないように、ロータに対してレゾルバホルダをロータの軸方向に所定の距離をあけて配置することが考えられる。しかしながら、この場合には、モータの軸方向寸法が大きくなるため、モータが大型化する。
 本発明の目的は、磁気センサを備えたモータにおいて、モータの大型化を抑制しつつ、ロータから前記磁気センサに流れ込む磁束を抑制可能な構成を得ることにある。
 本発明の一実施形態に係るモータは、軸方向に延びるシャフトと、前記シャフトとともに回転可能であり、且つ、界磁用マグネットを有するロータと、前記ロータに対して径方向に対向して配置されたステータと、前記ロータ及び前記ステータよりも軸方向の一方側に位置する磁気センサと、軸方向において、少なくとも一部が前記ロータと前記磁気センサとの間に位置するシールド部材と、を備える。前記シールド部材は、軸方向において、少なくとも一部が前記ロータと前記磁気センサとの間に位置し、且つ、前記シャフトが貫通する貫通孔を有する底部と、前記底部から軸方向の他方側に延びる凸部と、を有する。前記凸部の先端部は、軸方向から見て、前記界磁用マグネットの外周部よりも径方向内方に位置する。
 本発明の一実施形態に係るモータによれば、モータの大型化を抑制しつつ、ロータから磁気センサに流れ込む磁束を抑制可能な構成を得ることができる。
図1は、実施形態1に係るモータの概略構成を示す断面図である。 図2は、モータを軸方向の一方側から見た場合の図である。 図3は、モータにおけるシールド部材周辺の構成を拡大して示す断面図である。 図4は、シールド部材の構成を示す斜視図である。 図5は、実施形態2に係るモータの図3相当図である。 図6は、その他の実施形態に係るモータの図3相当図である。 図7は、その他の実施形態に係るモータの図3相当図である。 図8は、その他の実施形態に係るモータの図3相当図である。
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 なお、以下の説明では、ロータの中心軸と平行な方向を「軸方向」、中心軸に直交する方向を「径方向」、中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。ただし、この方向の定義により、本発明に係るロータ及びモータの使用時の向きを限定する意図はない。
 また、以下の説明では、モータにおいて、軸方向のレゾルバ側(図1の上側)を「軸方向の一方側」、軸方向のロータ側(図1の下側)を「軸方向の他方側」、とそれぞれ称する。
 また、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等されている場合だけでなく、他の部材を介して固定等されている場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。
  [実施形態1]
 (全体構成)
 図1に、本発明の実施形態1に係るモータ1の概略構成を示す。モータ1は、シャフト2と、ロータ3と、ステータ4と、レゾルバ5(磁気センサ、回転角センサ)と、ケーシング6と、シールド部材7とを備える。モータ1は、ステータ4に対して、ロータ3が中心軸P(軸線)を中心として回転する。本実施形態では、モータ1は、円筒状のステータ4内に、ロータ3が中心軸Pを中心として回転可能に配置された、いわゆるインナーロータ型のモータである。なお、モータは、柱状のステータの径方向外方に、円筒状のロータが中心軸を中心として回転可能に配置された、いわゆるアウターロータ型のモータであってもよい。
 ロータ3は、ロータコア31と、界磁用マグネット32とを備える。
 ロータコア31は、中心軸Pに沿って延びる円筒状である。ロータコア31は、所定の形状に形成された電磁鋼板を、厚み方向に複数枚、積層することによって構成されている。ロータコア31には、中心軸Pに沿って延びるシャフト2が軸方向に貫通している。これにより、ロータ3は、シャフト2とともに回転する。また、ロータコア31の外周面上には、周方向に所定の間隔で複数の界磁用マグネット32が配置されている。なお、界磁用マグネット32は、周方向に繋がるリングマグネットであっても良い。
 界磁用マグネット32は、ロータコア31における軸方向の一方の端部から他方の端部までの長さを有する略半円柱状のマグネットである。すなわち、界磁用マグネット32は、ロータコア31の軸方向の長さと同等の長さを有する。特に図示しないが、ロータ3の径方向において、界磁用マグネット32の外側の面は、N極またはS極の磁性を有する。前記外側の面の磁性がN極の界磁用マグネット32と、前記外側の面の磁性がS極の界磁用マグネット32とが、ロータコア31の周方向に交互に配置されている。
 ステータ4は、ロータ3に対して径方向に対向して配置されている。すなわち、ロータ3は、ステータ4の内方に中心軸Pを中心として回転可能に配置されている。ステータ4は、ステータコア41と、ステータコイル42とを備える。ステータコア41は、軸方向に延びる円筒状である。ステータコア41は、所定の形状に形成された電磁鋼板を、厚み方向に複数枚、積層することによって構成されている。特に図示しないが、ステータコア41は、径方向内方に延びる複数のティースを有する。ステータコイル42は、ステータコア41のティースに巻かれている。
 なお、本実施形態では、ステータコア41の軸方向の長さは、ロータ3の界磁用マグネット32の軸方向の長さよりも大きい。これにより、モータ1に生じるトルクリップルを低減できる。
 レゾルバ5は、シャフト2の回転、すなわちロータ3の回転を、磁気を利用して検出する回転検出センサである。レゾルバ5は、ロータ3に対して、軸方向の一方側に配置されている。レゾルバ5は、シャフト2とともに回転するレゾルバロータ51(センサ用ロータ)と、円筒状のレゾルバステータ55(センサ用ステータ)とを有する。
 レゾルバロータ51は、中心軸Pに沿って延びる円筒状である。レゾルバロータ51は、所定の形状に形成された電磁鋼板を、厚み方向に複数枚、積層することによって構成されている。レゾルバロータ51には、中心軸Pに沿って延びるシャフト2が軸方向に貫通した状態で固定されている。すなわち、レゾルバロータ51は、ロータ3に対して、軸方向の一方側でシャフト2の外周面上に固定されている。これにより、レゾルバロータ51は、シャフト2とともに回転可能である。
 特に図示しないが、レゾルバロータ51は、軸方向に直交する断面において、周方向に所定間隔で径方向に突出する複数の突極部を有する。
 レゾルバステータ55は、レゾルバロータ51に対して径方向に対向して配置されている。すなわち、レゾルバロータ51は、円筒状のレゾルバステータ55の内方に中心軸Pを中心として回転可能に配置されている。
 レゾルバステータ55は、レゾルバステータコア56と、レゾルバステータコイル57とを有する。レゾルバステータコイル57は、レゾルバステータコア56に巻かれている。なお、レゾルバステータ55の外径は、ロータ3の外径よりも小さい。よって、軸方向から見て、レゾルバ5は、ロータ3と重なる大きさを有する。
 レゾルバ5は、レゾルバステータコイル57に所定の電圧が印加されることにより、レゾルバステータコイル57が巻かれたレゾルバステータコア56に磁界が生じる。上述のようにレゾルバロータ51は複数の突極部を有するため、レゾルバロータ51がシャフト2とともに回転することにより、前記複数の突極部とレゾルバステータコア56との距離が変化する。これにより、レゾルバロータ51とレゾルバステータコア56との間に生じる磁界が変化する。レゾルバ5は、レゾルバロータ51がシャフト2とともに回転した際に、レゾルバロータ51とレゾルバステータコア56との間に生じる磁気的な変動を利用して、シャフト2の回転位置を検出する。
 ケーシング6は、シャフト2、ロータ3、ステータ4及びレゾルバ5が内部に収容された円柱状の部材である。ケーシング6の軸方向の一方側では、シャフト2が貫通して外方に突出している。ケーシング6は、軸方向に延びる有底円筒状のハウジング61と、板状のフランジ62と、ベアリングホルダ63とを有する。
 ハウジング61の側面は、ロータ3及びステータ4を収容可能な内径を有する。ハウジング61の底部には、シャフト2の軸方向の他方側を回転可能に支持する軸受21が配置されている。
 フランジ62は、ハウジング61の開口部を覆う板状の部材である。特に図示しないが、フランジ62は、ハウジング61の開口部に設けられた取付部とボルト等によって接続されることにより、ハウジング61に対して固定されている。
 フランジ62は、平面視で中央部分に挿通孔62aを有する。挿通孔62a内には、ベアリングホルダ63が配置されている。ベアリングホルダ63は、フランジ62に対して位置調整ボルト67によって接続されている。
 また、図3に拡大して示すように、フランジ62は、挿通孔62aに面する周縁部62dに、軸方向の他方側に向かって延びる筒状のフランジ突出部62bを有する。フランジ突出部62bの内周面には、ベアリングホルダ63の外周面が接触している。フランジ突出部62bの径方向外側には、後述するシールド部材7の突出部74aが配置されている。これにより、フランジ62及びベアリングホルダ63に対して、すなわちケーシング6に対して、シールド部材7を位置決めすることができる。よって、後述するシールド部材7の凸部73を、ロータ3とレゾルバ5との間に精度良く配置することができる。
 なお、周縁部62dは、フランジ62において、挿通孔62aに面する部分であり、軸方向から見て挿通孔62aを囲む部分である。
 フランジ62には、ケーシング6の外側の面に、軸方向から見て、挿通孔62aを囲んで凹部62cが設けられている。すなわち、フランジ62は、ケーシング6の軸方向の一方側に位置する第一面62eと、第一面62eよりも軸方向の他方側に位置し、凹部62cの底面を構成する第二面62fと、を有する。凹部62c内には、ベアリングホルダ63の後述するホルダ突出部66が配置されている。
 フランジ62の第二面62fには、後述するシールド部材7を固定する固定ボルト68が貫通している。シールド部材7は、フランジ62におけるケーシング6の内側に固定されている。固定ボルト68の頭部68aは、ケーシング6の内方に位置する。固定ボルト68の軸部68bは、ケーシング6の内方に位置する頭部68aからケーシング6の外方に向かって延びている。すなわち、シールド部材7は、固定ボルト68によって、ケーシング6の内側からフランジ62に固定されている。なお、フランジ62のうち凹部62cが設けられている部分には、固定ボルト68の軸部68bと締結されるネジ穴が設けられている。
 ベアリングホルダ63は、フランジ62の挿通孔62aを覆い、且つ、軸受22及びレゾルバステータ55を保持する。軸受22は、シャフト2の軸方向の一方側を回転可能に支持する。
 詳しくは、ベアリングホルダ63は、ベアリング支持部64と、ホルダ延出部65と、ホルダ突出部66とを有する。ベアリング支持部64、ホルダ延出部65及びホルダ突出部66は、一体で形成されている。
 ベアリング支持部64は、平面視で中央部分に、軸受22が収容される穴部64aを有する円筒状である。穴部64aには、軸受22によって回転可能に支持されたシャフト2が挿通している。ベアリング支持部64の一部は、フランジ62の挿通孔62a内に位置する。よって、ベアリング支持部64の外周面の一部は、フランジ62のフランジ突出部62bの内周面に接触している。これにより、フランジ62に対してベアリングホルダ63を径方向に精度良く配置することができる。しかも、既述のようにフランジ62のフランジ突出部62bが軸方向の他方側に向かって延びていることにより、ベアリングホルダ63の軸方向の他方側の端部が径方向に変位することを抑制できる。
 ホルダ延出部65は、ベアリング支持部64から軸方向の他方側(ロータ側)に延びる円筒状である。ホルダ延出部65の内周面上には、レゾルバステータ55が固定されている。これにより、レゾルバステータ55は、軸方向において、軸受22とロータ3との間に位置する。ホルダ延出部65の外周面は、後述する円筒状のシールド部材7の内周面に接触している。
 これにより、ホルダ延出部65に対してシールド部材7を径方向に精度良く配置することができる。しかも、ベアリングホルダ63は、軸受22を保持しているため、シャフト2との同軸度が高い。上述のようにホルダ延出部65に対してシールド部材7を配置することにより、シャフト2との同軸度が高いホルダ延出部65を基準としてシールド部材7を配置することができる。これにより、シャフト2に対するシールド部材7の径方向の取付位置のずれを抑制できる。よって、ロータ3及びレゾルバロータ51に対して、シールド部材7を径方向に精度良く配置することができる。
 ホルダ突出部66は、ベアリング支持部64における軸方向の一方側の端部から径方向外側に突出している。ホルダ突出部66は、フランジ62に対して軸方向の一方側に配置されている。これにより、フランジ62に対して、ベアリングホルダ63を軸方向に精度良く配置することができる。
 図2は、モータ1を軸方向の一方側から見た図である。図2に示すように、ホルダ突出部66は、位置調整ボルト67が挿通する位置調整ボルト用長穴66aを有する。位置調整ボルト用長穴66aは、軸方向から見て、中心軸Pを中心として周方向に延びている。位置調整ボルト用長穴66aは、位置調整ボルト67の数に応じて、ホルダ突出部66に複数、設けられている。
 また、ホルダ突出部66は、固定ボルト68の軸部68bが挿通する固定ボルト用長穴66bを有する。固定ボルト用長穴66bは、軸方向から見て、中心軸Pを中心として周方向に延びている。固定ボルト用長穴66bは、固定ボルト68の数に応じて、ホルダ突出部66に複数、設けられている。
 以上のように、ホルダ突出部66に、位置調整ボルト用長穴66a及び固定ボルト用長穴66bを設けることにより、フランジ62に対するベアリングホルダ63の周方向の位置を調整しつつベアリングホルダ63をフランジ62に対して固定することができる。これにより、シャフト2に固定されたレゾルバロータ51に対して、ベアリングホルダ63に固定されたレゾルバステータ55の周方向の位置を調整することができる。よって、レゾルバ5に寸法誤差等が生じた場合でも、レゾルバロータ51とレゾルバステータ55との位置調整を容易に行うことができる。
 (シールド部材)
 次に、シールド部材7の構成について、図3及び図4を用いて以下で説明する。図3は、シールド部材7の周辺の構成を拡大して示す断面図である。図4は、シールド部材7の構成を示す斜視図である。
 シールド部材7は、鉄などの金属の磁性材料によって構成された有底円筒状の部材である。シールド部材7は、ベアリングホルダ63のホルダ延出部65の軸方向の他方側を覆っている。既述のように、ホルダ延出部65内には、レゾルバ5が収容されている。これにより、シールド部材7は、レゾルバ5とロータ3との間に位置する。
 上述のように、磁性材料によって構成されたシールド部材7を、レゾルバ5とロータ3との間に配置することにより、ロータ3及びステータ4で生じた磁束(漏れ磁束)を、シールド部材7によって吸収することができる。よって、シールド部材7は、ロータ3及びステータ4で発生した磁束がレゾルバ5に流れ込むことを抑制する。
 シールド部材7は、筒部71と、テーパ部71aと、底部72と、凸部73と、固定部74とを有する。筒部71、テーパ部71a、底部72、凸部73及び固定部74は、一体に形成されている。
 筒部71は、軸方向に延びる円筒状である。筒部71の内周面は、ベアリングホルダ63のホルダ延出部65の外周面に接触している。これにより、ベアリングホルダ63に対して、シールド部材7を径方向に精度良く配置することができる。
 テーパ部71aは、筒部71の軸方向の他方側の端部に位置し、先端に向かうほど外径が小さいテーパ状である。テーパ部71aは、筒部71と底部72との間に位置する。なお、テーパ部71aを設けずに、筒部71と底部72とを接続してもよい。
 既述のように、本実施形態では、ステータコア41の軸方向の長さは、ロータ3の界磁用マグネット32の軸方向の長さよりも大きい。しかも、本実施形態では、シールド部材7の筒部71の外径がステータ4の内径よりも大きく、且つ、シールド部材7の底部72が、ステータコイル42における軸方向の一方側の端部よりも軸方向の他方側に位置する。
 これに対し、上述のようにシールド部材7が筒部71と底部72との間にテーパ部71aを有することにより、シールド部材7がステータ4と接触することを防止できる。したがって、モータ1に生じるトルクリップルを低減可能なモータ1内に、ステータ4と干渉することなく、シールド部材7を配置することができる。
 なお、筒部71には、図示しない配線等が挿通する開口部71bが設けられている(図4参照)。前記配線等は、レゾルバ5等とモータ1の外部の図示しない制御装置とを電気的に接続する。
 図3及び図4に示すように、固定部74は、筒部71の軸方向の一方側の端部に設けられている。固定部74は、径方向外側且つ軸方向の一方側に向かって突出している。固定部74は、シールド部材7を軸方向から見て、筒部71に、中心軸Pを挟んで反対側に一対設けられている。固定部74は、第一突出部74aと、第二突出部74bと、取付部74cとを有する。第一突出部74aは、筒部71における軸方向の一方側の端部から、径方向外側に突出している。第二突出部74bは、第一突出部74aの径方向外側の端部から軸方向の一方側に延び、フランジ突出部62bよりも径方向外側に位置する。これにより、フランジ62を基準としてシールド部材7の周方向の位置決めを行うことができる。
 取付部74cは、第二突出部74bの軸方向の一方側の端部に位置し、該一方側の端部から径方向外側に向かって突出している。取付部74cは、軸方向から見て、径方向外側に位置する先端部分の形状が半円形状である。取付部74cは、取付穴74dを有する。この取付穴74d及びフランジ62のネジ穴に、固定ボルト68を締結させることにより、シールド部材7をフランジ62に固定することができる。
 底部72は、軸方向から見て、円形状である。また、底部72は、軸方向の他方側から見て、レゾルバ5の軸方向の端部側の少なくとも一部を覆っている。すなわち、底部72は、レゾルバステータ55とロータ3との間に位置する。これにより、ロータ3及びステータ4で生じた磁束がレゾルバ5に流れ込むことを抑制できる。
 底部72は、平面視で中央部分に貫通孔72aを有する。貫通孔72aには、シャフト2が挿通している。貫通孔72aの孔径は、レゾルバロータ51の外径よりも大きい。すなわち、貫通孔72aは、レゾルバロータ51が通過可能な孔径を有する。これにより、シャフト2上にレゾルバロータ51が固定された状態で、シャフト2及びレゾルバロータ51が貫通孔72aを通過することができる。よって、モータ1を組み立てる際に、フランジ62にシールド部材7が固定され且つベアリングホルダ63にレゾルバステータ55が固定された状態で、シャフト2上に固定されたレゾルバロータ51を、貫通孔72aを挿通させてレゾルバステータ55内に配置できる。したがって、モータ1の組み立て作業性を向上できる。
 ところで、上述のような貫通孔72aを底部72に設けた場合、貫通孔72aの面する周縁部72bとシャフト2の外周面との間には、レゾルバロータ51が挿通可能な隙間が形成される。すなわち、シールド部材7の貫通孔72aの孔径は、レゾルバロータ51の外径よりも大きい。そうすると、ロータ3の界磁用マグネット32で生じた磁束が、前記隙間からレゾルバ5に流れ込む可能性がある。
 これに対し、本実施形態では、シールド部材7は、底部72の貫通孔72aに面する周縁部72bに位置し、且つ、軸方向の他方側に向かって延びる凸部73を有する。これにより、ロータ3の界磁用マグネット32で生じた磁束を凸部73によって吸収することができる。よって、ロータ3の界磁用マグネット32で生じた磁束が、底部72の貫通孔72aを介してレゾルバ5に流れ込むことを抑制できる。
 凸部73は、底部72に対して直交する方向に延び、且つ、軸方向に直交する断面において、貫通孔72aを囲む円環状である。これにより、ロータ3の界磁用マグネット32で生じた磁束が貫通孔72a内に流れ込むことを、より抑制できる。
 また、本実施形態では、凸部73の先端部は、軸方向から見て、界磁用マグネット32の径方向の最外周部分(外周部)よりもロータ3の径方向内方に位置する。これにより、界磁用マグネット32で生じた磁束が凸部73によって吸収されるため、前記磁束が底部72の貫通孔72a内に流れ込むことを抑制できる。
 なお、凸部73の先端部は、軸方向から見て、界磁用マグネット32の径方向の最内周部分(内周部)よりもロータ3の径方向内方に位置することが好ましい。これにより、界磁用マグネット32で生じた磁束が底部72の貫通孔72a内に流れ込むことをより抑制できる。
 凸部73は、中心軸Pを含む断面において、略矩形状である。また、軸方向において、凸部73の突出長さは、シールド部材7の板厚と同等である。
 本実施形態に係るモータ1は、軸方向に延びるシャフト2と、シャフト2とともに回転可能であり、且つ、界磁用マグネット32を有するロータ3と、ロータ3に対して径方向に対向して配置されたステータ4と、ロータ3及びステータ4よりも軸方向の一方側に位置するレゾルバ5と、軸方向において、少なくとも一部がロータ3とレゾルバ5との間に位置するシールド部材7と、を備える。シールド部材7は、軸方向において、少なくとも一部がロータ3とレゾルバ5との間に位置し、且つ、シャフト2が貫通する貫通孔72aを有する底部72と、底部72から軸方向の他方側に延びる凸部73と、を有する。凸部73の先端部は、軸方向から見て、界磁用マグネット32の外周部よりも径方向内方に位置する。
 上述の構成により、ロータ3に設けられた界磁用マグネット32からレゾルバ5に磁束が流れることを抑制できる。
 具体的には、シールド部材7の底部72に、底部72から軸方向の他方に延び、且つ、軸方向から見て、ロータ3の径方向において、界磁用マグネット32の外周部よりも内方に位置する凸部73が設けられている。これにより、界磁用マグネット32の磁束は、シールド部材5の凸部73に吸収される。よって、レゾルバ5に界磁用マグネット32の磁束が流れ込むことを抑制できる。
 よって、シャフト2の軸方向において、界磁用マグネット32とレゾルバ5との距離を狭くした場合であっても、界磁用マグネット32からレゾルバ5に磁束が流れることを抑制できる。したがって、レゾルバ5の検出精度に対する界磁用マグネット32の磁束の影響を低減しつつ、モータ1の軸方向のサイズが大型化することを防止できる。
 凸部73の先端部は、軸方向から見て、界磁用マグネット32の内周部よりもロータ3の径方向内方に位置することが好ましい。これにより、ロータ3の界磁用マグネット32からレゾルバ5に磁束が流れることを、シールド部材7の底部72に設けられた凸部73によって、より抑制できる。すなわち、上述の構成により、界磁用マグネット32の磁束は、凸部73によって、より吸収される。これにより、シールド部材7の底部72に設けられた貫通孔72a内に、界磁用マグネット32から磁束が流れ込むことをより抑制できる。
 上述の構成では、凸部73は、シールド部材7の底部72における貫通孔72aに面する周縁部72bの一部に位置し、且つ、軸方向の他方側に向かって延びている。これにより、シールド部材7の底部72に設けられた貫通孔72a内に、ロータ3の界磁用マグネット32から磁束が流れ込むことをより抑制できる。よって、界磁用マグネット32からレゾルバ5に磁束が流れ込むことをより抑制できる。
 上述の構成では、凸部73は、軸方向に直交する断面において、貫通孔72aを囲む形状を有する。これにより、シールド部材7の底部72に設けられた貫通孔72a内に、ロータ3の界磁用マグネット32から磁束が流れ込むことをさらに抑制できる。
 上述の構成では、ロータ3は、ステータ4の径方向内方に位置する。レゾルバ5は、レゾルバロータ51と、レゾルバステータ55と、を有する。レゾルバロータ51は、レゾルバステータ55の径方向内方に位置する。ロータ3及びレゾルバロータ51は、シャフト2の径方向外方に、シャフト2とともに回転可能に固定されている。シールド部材7の貫通孔72aの孔径は、レゾルバロータ51の外径よりも大きい。
 上述のように、シャフト2の外周面上にロータ3及びレゾルバロータ51が固定されている構成では、ロータ3とレゾルバ5との間に位置するシールド部材7の貫通孔72aの孔径を、モータ1の組み立ての際にレゾルバロータ51が通過可能なように大きくする必要がある。しかしながら、シールド部材7の貫通孔72aを大きくした場合、界磁用マグネット32の磁束が貫通孔72aを通過しやすくなる。よって、界磁用マグネット32からレゾルバ5に磁束が流れ込みやすくなる。
 これに対し、上述の各構成のように、シールド部材7の底部72に凸部73を設けることにより、界磁用マグネット32からシールド部材7の貫通孔72a内に磁束が流れ込むことを抑制できる。よって、レゾルバ5の検出精度を低下させることなく、シールド部材7の貫通孔72aを大きくしてモータ1の組み立て作業性を向上できる。
 上述の構成では、モータ1は、少なくともロータ3及びステータ4を内部に収容し、開口部を有する有底筒状のハウジング61と、ハウジング61に固定され、且つ、シャフト2が挿通する挿通孔62aを有する平板状のフランジ62と、シャフト2を回転可能に支持する軸受22と、少なくとも一部がフランジ62の挿通孔62a内に位置し、且つ、軸受22が収容される穴部43aを有するベアリングホルダ63と、をさらに備える。レゾルバステータ55は、ベアリングホルダ63に固定されている。ベアリングホルダ63は、フランジ62に、シャフト2の中心軸Pを中心として周方向に位置調整可能に固定されている。
 具体的には、ベアリングホルダ63は、穴部64aを有し、且つ、一部がフランジ62の挿通孔62a内に位置するベアリング支持部64と、ベアリング支持部64から軸方向の他方側に延びる円筒状のホルダ延出部65と、ベアリング支持部64から径方向外側に向かって突出し、且つ、フランジ62に対して軸方向の一方側に位置するホルダ突出部66と、を有する。ホルダ延出部65には、内周面上にレゾルバステータ55が固定されている。ホルダ突出部66は、フランジ62に、シャフト2の中心軸Pを中心として周方向に位置調整可能に固定されている。
 レゾルバ5は、レゾルバロータ51とレゾルバステータ55とによって、ロータ3の回転角を検出する。そのため、ロータ3の回転角を精度良く検出できるように、レゾルバロータ51とレゾルバステータ55とを精度良く位置合わせする必要がある。
 これに対し、上述の構成により、寸法誤差等が生じた場合でも、レゾルバロータ51とレゾルバステータ55との位置合わせを行うことができる。よって、上述の構成により、モータ1に設けられるレゾルバ5の検出精度を向上することができる。
 上述の構成では、シールド部材7は、フランジ62またはベアリングホルダ63に固定されている。これにより、シールド部材7をケーシング6に対して固定することができる。よって、シールド部材7の底部72を、ロータ3とレゾルバ5との間に精度良く配置することができる。
 上述の構成では、シールド部材7は、底部72から軸方向の一方側に延び、且つ、ベアリングホルダ63の一部を覆う筒部71と、筒部71に設けられた固定部74と、を有する。固定部74は、フランジ62またはベアリングホルダ63に固定されている。
 これにより、シールド部材7をフランジ62またはベアリングホルダ63に固定することができる。しかも、シールド部材7の筒部71によって、ステータ4で生じた磁束がレゾルバ5に流れ込むことを抑制できる。よって、レゾルバ5にロータ3及びステータ4から磁束が流れ込んでレゾルバ5の検出精度が低下することを抑制できる。
 上述の構成では、フランジ62は、挿通孔62aに面するフランジ周縁部62dに、軸方向の他方側に延びるフランジ突出部62bを有する。固定部74は、筒部71における軸方向の一方側の端部から、径方向外側に突出する第一突出部74aと、第一突出部74aの径方向外側の端部から軸方向の一方側に延びる第二突出部74bと、第二突出部74bの軸方向の一方側の端部に位置し、且つ、フランジ62に固定される取付部74cとを有する。第二突出部74bは、フランジ突出部62bよりも径方向外側に位置する。
 これにより、フランジ62のフランジ突出部62bに対し、シールド部材7の第二突出部74bを位置決めすることができる。よって、フランジ62に対してシールド部材7を位置決めすることができる。これにより、シールド部材7を、レゾルバ5に対して所定の位置に位置付けることができるため、シールド部材7によって、ロータ3の界磁用マグネット32からレゾルバ5に磁束が流れることをより抑制できる。
 [実施形態2]
 図5に、実施形態2に係るモータ101の断面図を示す。実施形態2に係るモータ101は、ハウジング61の開口部を覆う部材の構成が実施形態1に係るモータ1とは異なる。以下で、実施形態1と同様の構成については同一の符号を付して説明を省略し、実施形態1と異なる部分についてのみ説明する。
 図5に示すように、モータ101は、ハウジング61の開口部を覆う蓋部102を有する。蓋部102は、ハウジング61の開口部に、図示しないボルト等によって固定されている。蓋部102は、円盤状の部材であり、平面視で中央部分に、軸受22が収容される穴部102aを有する。
 蓋部102は、平面視で中央部分に穴部102aを有する板部103と、板部103から軸方向の他方側に延びる円筒状の延出部104とを有する。板部103は、ハウジング61の開口部に固定されている。板部103には、シールド部材7の取付部74cが固定ボルト68によって固定されている。延出部104の内周面には、レゾルバステータ55が固定されている。すなわち、延出部104の内部には、レゾルバ5が配置されている。
 シールド部材7は、内部にレゾルバ5が配置された延出部104を、軸方向の他方側から覆っている。シールド部材7の取付部74cは、固定ボルト68によって、蓋部102のハウジング61側に固定されている。なお、固定ボルト68も、実施形態1と同様、ケーシングの内側から、シールド部材7及び蓋部102に締結されている。
 本実施形態の蓋部102は、実施形態1におけるフランジ62及びベアリングホルダ63を一体化した部材である。よって、実施形態1の構成に比べて部品数を減らすことができるため、モータ101の組立作業性を向上できる。
 (その他の実施形態)
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記各実施形態では、モータ1はレゾルバ5を有する。しかしながら、モータ1は、レゾルバ以外の磁気センサを有していてもよい。すなわち、前記各実施形態のような凸部73を有するシールド部材7を、ロータと磁気センサとの間に配置してもよい。前記磁気センサとして、例えば、ホール式センサやMRセンサなどが挙げられる。
 前記各実施形態では、凸部73は、軸方向に直交する断面において、円環状である。しかしながら、凸部73は、前記断面において、貫通孔72aを囲む形状であれば、円環状以外の形状であってもよい。また、凸部73は、貫通孔72aを囲む形状ではなく、貫通孔72aに面する周縁部72bの一部のみに設けられていてもよい。
 前記各実施形態では、凸部73は、シールド部材7の底部72における貫通孔72aに面する周縁部72bに設けられている。しかしながら、凸部73は、底部72においてロータ3の界磁用マグネット32で生じた磁束を吸収可能な位置であれば、貫通孔72aに面する周縁部72b以外の位置に設けられていてもよい。例えば、凸部73は、シールド部材7の底部72において、外周部分と貫通孔72aとの間の位置に設けられていてもよい。
 前記各実施形態では、凸部73は、底部72に対して直交する方向に延びている。なお、凸部73は、底部72に対して凸部73が軸方向の他方側に向かって延びていれば、斜めに延びていてもよい。
 前記各実施形態では、シールド部材7の取付部74cは、固定ボルト68によってフランジ62に固定されている。しかしながら、取付部74cは、固定ボルト68以外の固定方法によって、フランジ62に固定されていてもよい。例えば、取付部74cは、接着剤や熱溶着、かしめなどの方法によって、フランジ62に固定されていてもよい。また、取付部74cは、フランジ62に直接、取り付けられていてもよいし、他の部材を介してフランジ62に取り付けられていてもよい。すなわち、シールド部材7は、フランジ62に直接的または間接的に固定されていればよい。さらに、シールド部材7は、フランジ62ではなく、ベアリングホルダ63に固定されていてもよい。
 前記各実施形態では、シールド部材7は、筒部71と、底部72と、凸部73と、固定部74とを有する。しかしながら、シールド部材は、固定部を有していなくてもよい。この場合には、図6に示すように、筒部271をベアリングホルダ63のホルダ延出部65の外周面上に固定すればよい。図6において、モータの構成は、シールド部材207が固定部を有さない以外、実施形態1の構成と同様である。なお、図6において、符号272は底部であり、符号273は凸部であり、符号272aは貫通孔である。
 また、シールド部材は、筒部及び固定部を有していなくてもよい。この場合には、図7に示すように、レゾルバ5を覆うようにベアリングホルダ363のホルダ延出部365を設けるとともに、底部372をホルダ延出部365の軸方向の他方側の端部に固定すればよい。図7において、モータの構成は、シールド部材307が筒部及び固定部を有さない点及びホルダ延出部365の構成以外、実施形態1の構成と同様である。なお、図7において、符号373は凸部であり、符号372aは貫通孔である。
 前記各実施形態では、シールド部材7の筒部71の内周面は、ベアリングホルダ63のホルダ延出部65の外周面に接触している。しかしながら、シールド部材7の筒部71とベアリングホルダ63のホルダ延出部65とが径方向に隙間をあけて対向していてもよい。具体的には、図8に示すように、ベアリングホルダ463のホルダ延出部465の外周面上に、径方向外方に突出する突起部465aを設けてもよい。これにより、シールド部7の筒部71の内周面が突起部465aに接触するため、筒部71の内周面とホルダ延出部465の外周面との間には隙間465bが形成される。
 上述の構成により、ロータ3の界磁用マグネット32から、シールド部材7及びホルダ延出部465を介して、レゾルバステータ55に磁束が流れることをより抑制できる。すなわち、上述の構成のように、シールド部材7の筒部71とベアリングホルダ463のホルダ延出部465との間に径方向に隙間465bを設けることにより、隙間465bにおける径方向への磁束の流れが抑制される。これにより、ロータ3の界磁用マグネット32からレゾルバステータ55に磁束が流れることをより抑制できる。
 なお、上述の構成では、ホルダ延出部465に対してシールド部材7の筒部71を圧入することによって、ベアリングホルダ463に対してシールド部材7を固定することができる。したがって、前記各実施形態のような固定ボルト68による固定が不要になる。
 また、上述の構成に限らず、シールド部材とベアリングホルダのホルダ延出部との間に隙間が形成される構成であれば、シールド部材の内周面に突起部を設けてもよいし、シールド部材の内周面及びホルダ延出部の外周面の少なくとも一方に凹部を設けてもよい。さらに、シールド部材とベアリングホルダのホルダ延出部との間に別部材を配置することにより、シールド部材とベアリングホルダとの間に隙間を設けてもよい。
 前記各実施形態では、ベアリングホルダ63に位置調整ボルト用長穴66a及び固定ボルト用長穴66bが設けられている。これにより、フランジ62に対し、ベアリングホルダ63を、中心軸Pを中心に周方向に位置調整することができる。すなわち、ベアリングホルダ63に固定されたレゾルバステータ55を、レゾルバロータ51に対して周方向の位置を調整することができる。このようにフランジ62とベアリングホルダ63との位置調整を行う構成は、上述のような長穴を有する構成に限らず、他の構成であってもよい。例えば、ベアリングホルダに複数のボルト穴を設けて、ボルトの締結位置を変更するなど、フランジ62とベアリングホルダ63との位置を周方向に調整可能な構成であれば、どのような構成であってもよい。
 前記各実施形態では、ロータ3の界磁用マグネット32は、ロータコア31の外周面上に配置されている。しかしながら、界磁用マグネット32は、ロータコア31の内部に配置されていてもよい。また、界磁用マグネット32の形状は半円柱状に限らず、直方体であっても、多角柱であってもよい。なお、界磁用マグネット32は、ロータコア31の外周面上に界磁用マグネット32が配置された構成では、略半円柱状だが、上述のようにロータコア31の内部に界磁用マグネット32が配置された構成では、直方体状や多角柱状であってもよい。
 前記各実施形態では、モータ1,101は、円筒状のステータ3内に、円柱状のロータ2が回転可能に配置されたインナーロータ型のモータである。しかしながら、モータは、円筒状のロータ内に、円柱状のステータが配置されたアウターロータ型のモータであってもよい。
 本発明は、磁気センサを備えたモータに利用可能である。
1、101 モータ
2 シャフト
3 ロータ
4 ステータ
5 レゾルバ(磁気センサ)
6 ケーシング
7、107、207、307 シールド部材
21、22 軸受
31 ロータコア
32 界磁用マグネット
41 ステータコア
42 ステータコイル
51 レゾルバロータ(センサ用ロータ)
55 レゾルバステータ(センサ用ステータ)
61 ハウジング
62 フランジ
62a 挿通孔
62b フランジ突出部
62c 凹部
63、363、463 ベアリングホルダ
64 ベアリング支持部
64a 穴部
65、365、465 ホルダ延出部
66 ホルダ突出部
66a 位置調整ボルト用長穴
66b 固定ボルト用長穴
67 位置調整ボルト
71、271 筒部
71a テーパ部
72、272、372 底部
72a、272a、372a 貫通孔
73、273、373 凸部
74 固定部
74a 第一突出部
74b 第二突出部
74c 取付部
74d 取付穴
102 蓋部
102a 穴部
103 板部
104 延出部
465a 突起部
465b 隙間
P 中心軸

Claims (13)

  1.  軸方向に延びるシャフトと、
     前記シャフトとともに回転可能であり、且つ、界磁用マグネットを有するロータと、
     前記ロータに対して径方向に対向して配置されたステータと、
     前記ロータ及び前記ステータよりも軸方向の一方側に位置する磁気センサと、
     軸方向において、少なくとも一部が前記ロータと前記磁気センサとの間に位置するシールド部材と、
    を備え、
     前記シールド部材は、
      軸方向において、少なくとも一部が前記ロータと前記磁気センサとの間に位置し、且つ、前記シャフトが貫通する貫通孔を有する底部と、
      前記底部から軸方向の他方側に延びる凸部と、
    を有し、
     前記凸部の先端部は、軸方向から見て、前記界磁用マグネットの外周部よりも径方向内方に位置する、モータ。
  2.  請求項1に記載のロータにおいて、
     前記凸部の先端部は、軸方向から見て、前記界磁用マグネットの内周部よりも径方向内方に位置する、モータ。
  3.  請求項1または2に記載のモータにおいて、
     前記凸部は、前記シールド部材の底部において前記貫通孔に面する周縁部の一部に位置し、且つ、軸方向の他方側に向かって延びる、モータ。
  4.  請求項3に記載のモータにおいて、
     前記凸部は、軸方向に直交する断面において、前記貫通孔を囲む形状を有する、モータ。
  5.  請求項1から4のいずれか一つに記載のモータにおいて、
     前記ロータは、前記ステータの径方向内方に位置し、
     前記磁気センサは、回転角センサであり、
     前記回転角センサは、
      センサ用ロータと、
      センサ用ステータと、
     を有し、
     前記センサ用ロータは、前記センサ用ステータの径方向内方に位置し、
      前記ロータ及び前記センサ用ロータは、前記シャフトの径方向外方に、前記シャフトとともに回転可能に固定されていて、
     前記シールド部材の貫通孔の孔径は、前記センサ用ロータの外径よりも大きい、モータ。
  6.  請求項5に記載のモータにおいて、
     少なくとも前記ロータ及び前記ステータを内部に収容し、開口部を有する有底筒状のハウジングと、
     前記ハウジングに固定され、且つ、前記シャフトが挿通する挿通孔を有する平板状のフランジと、
     前記シャフトを回転可能に支持する軸受と、
     少なくとも一部が前記フランジの前記挿通孔内に位置し、且つ、前記軸受が収容される穴部を有するベアリングホルダと、
    をさらに備え、
     前記センサ用ステータは、前記ベアリングホルダに固定され、
     前記ベアリングホルダは、前記フランジに、前記シャフトの軸線を中心として周方向に位置調整可能に固定される、モータ。
  7.  請求項6に記載のモータにおいて、
     前記ベアリングホルダは、
      前記穴部を有し、且つ、一部が前記フランジの前記挿通孔内に位置するベアリング支持部と、
      前記ベアリング支持部から軸方向の他方側に延びる円筒状のホルダ延出部と、
      前記ベアリング支持部から径方向外側に向かって突出し、且つ、前記フランジに対して軸方向の一方側に位置する突出部と、
     を有し、
     前記ホルダ延出部には、内周面上に前記センサ用ステータが固定され、
     前記突出部は、前記フランジに、前記シャフトの軸線を中心として周方向に位置調整可能に固定される、モータ。
  8.  請求項6または7に記載のモータにおいて、
     前記シールド部材は、前記フランジまたは前記ベアリングホルダに固定される、モータ。
  9.  請求項8に記載のモータにおいて、
     前記シールド部材は、
      前記底部から軸方向の一方側に延び、且つ、前記ベアリングホルダの一部を覆う筒部と、
      前記筒部に設けられた固定部と、
     を有し、
     前記固定部は、前記フランジまたは前記ベアリングホルダに固定される、モータ。
  10.  請求項9に記載のモータにおいて、
     前記シールド部材の前記筒部と前記ベアリングホルダの前記ホルダ延出部とは、径方向に隙間をあけて対向する、モータ。
  11.  請求項9または10に記載のモータにおいて、
     前記フランジは、前記挿通孔に面するフランジ周縁部に、軸方向の他方側に延びるフランジ突出部を有し、
     前記固定部は、
      前記筒部における前記軸方向の一方側の端部から径方向外側に突出する第一突出部と、
      前記第一突出部の径方向外側の端部から軸方向の一方側に延びる第二突出部と、
      前記第二突出部の軸方向の一方側の端部に位置し、且つ、前記フランジに固定される取付部と、
    を有し、
     前記第二突出部は、前記フランジ突出部よりも径方向外側に位置する、モータ。
  12.  請求項5に記載のモータにおいて、
     少なくとも前記ロータ及び前記ステータを内部に収容し、開口部を有する有底筒状のハウジングと、
     前記シャフトを回転可能に支持する軸受と、
     前記ハウジングの開口部に固定され、且つ、前記軸受が収容された穴部を有する蓋部と、
    をさらに備え、
     前記蓋部は、
      前記穴部を有する板部と、
      前記板部から軸方向の他方に延びる円筒状の延出部と、
     を有し、
     前記センサ用ステータは、前記延出部に固定され、
     前記シールド部材は、前記蓋部に固定される、モータ。
  13.  請求項12に記載のモータにおいて、
     前記シールド部材は、前記底部から軸方向の一方側に延び、且つ、前記蓋部における前記延出部の一部を覆う筒部を有し、
     前記筒部と前記延出部とは、径方向に隙間をあけて対向する、モータ。
PCT/JP2018/001078 2017-02-07 2018-01-16 モータ WO2018147012A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880010357.4A CN110291701A (zh) 2017-02-07 2018-01-16 马达
US16/472,255 US10958138B2 (en) 2017-02-07 2018-01-16 Motor
JP2018566810A JP7036040B2 (ja) 2017-02-07 2018-01-16 モータ
DE112018000707.3T DE112018000707T5 (de) 2017-02-07 2018-01-16 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020060 2017-02-07
JP2017-020060 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147012A1 true WO2018147012A1 (ja) 2018-08-16

Family

ID=63107627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001078 WO2018147012A1 (ja) 2017-02-07 2018-01-16 モータ

Country Status (5)

Country Link
US (1) US10958138B2 (ja)
JP (1) JP7036040B2 (ja)
CN (1) CN110291701A (ja)
DE (1) DE112018000707T5 (ja)
WO (1) WO2018147012A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137374A (ja) * 2019-02-25 2020-08-31 株式会社デンソー 回転電機
JP2022531519A (ja) * 2020-04-07 2022-07-07 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド レゾルバステータの位置決め押え片及び位置決め構造

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195338B2 (ja) * 2018-12-19 2022-12-23 三菱電機株式会社 乗り物用制御装置一体型回転電機
JP7323435B2 (ja) * 2019-11-19 2023-08-08 ニデックインスツルメンツ株式会社 ステータ、モータおよびステータの製造方法
DE102021209125A1 (de) * 2021-08-19 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Antriebseinrichtung, Druckerzeuger für eine Bremsanlage
JP2023109265A (ja) * 2022-01-27 2023-08-08 三菱電機株式会社 回転角度検出装置及びそれを用いた回転電機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320189A (ja) * 2005-04-11 2006-11-24 Nippon Densan Corp ブラシレスモータ
JP2008160909A (ja) * 2006-12-21 2008-07-10 Nsk Ltd 検出器内蔵モータ
JP2009247167A (ja) * 2008-03-31 2009-10-22 Sanyo Denki Co Ltd 電磁ブレーキ付きモータ
US20140070672A1 (en) * 2012-09-07 2014-03-13 Remy Technologies, Llc Variable reluctance resolver having integral electromagnetic interference shield and rotary electric machine having same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448640A (zh) * 2002-03-12 2003-10-15 美蓓亚株式会社 锥形流体动力枢轴轴承
US6834996B2 (en) * 2002-05-15 2004-12-28 Sankyo Seiki Mfg. Co., Ltd. Motor with dynamic pressure bearing
JP5112321B2 (ja) 2006-09-22 2013-01-09 株式会社ミツバ ブラシレスモータ
JP5007581B2 (ja) * 2007-03-01 2012-08-22 日本電産株式会社 モータ
JP5488569B2 (ja) * 2011-11-10 2014-05-14 株式会社デンソー 電動機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320189A (ja) * 2005-04-11 2006-11-24 Nippon Densan Corp ブラシレスモータ
JP2008160909A (ja) * 2006-12-21 2008-07-10 Nsk Ltd 検出器内蔵モータ
JP2009247167A (ja) * 2008-03-31 2009-10-22 Sanyo Denki Co Ltd 電磁ブレーキ付きモータ
US20140070672A1 (en) * 2012-09-07 2014-03-13 Remy Technologies, Llc Variable reluctance resolver having integral electromagnetic interference shield and rotary electric machine having same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137374A (ja) * 2019-02-25 2020-08-31 株式会社デンソー 回転電機
WO2020175333A1 (ja) * 2019-02-25 2020-09-03 株式会社デンソー 回転電機
CN113474976A (zh) * 2019-02-25 2021-10-01 株式会社电装 旋转电机
JP7092066B2 (ja) 2019-02-25 2022-06-28 株式会社デンソー 回転電機
CN113474976B (zh) * 2019-02-25 2024-01-05 株式会社电装 旋转电机
JP2022531519A (ja) * 2020-04-07 2022-07-07 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド レゾルバステータの位置決め押え片及び位置決め構造
JP7238118B2 (ja) 2020-04-07 2023-03-13 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド レゾルバステータの位置決め押え片及び位置決め構造

Also Published As

Publication number Publication date
US20190326799A1 (en) 2019-10-24
CN110291701A (zh) 2019-09-27
JP7036040B2 (ja) 2022-03-15
DE112018000707T5 (de) 2019-11-14
JPWO2018147012A1 (ja) 2019-11-21
US10958138B2 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2018147012A1 (ja) モータ
US9577497B2 (en) Rotating electric machine having a magnetic sensor that detects a rotation position of a rotor core
JP6511137B2 (ja) ブラシレスモータ
JP5262583B2 (ja) レゾルバ一体型回転電機及びロータコア
EP2546963A2 (en) Motor
JP2014107973A (ja) 回転電機
US20040090132A1 (en) Electric rotating machine for vehicle
JP5728704B2 (ja) レゾルバの取付構造
JP5390836B2 (ja) 始動発電機
JP2019068522A (ja) モータ
JP2007282403A (ja) 着磁方法及び着磁装置
JP6469415B2 (ja) モータおよび回転軸への従動部材の固定構造
JP2009296718A (ja) レゾルバを備えた電動機
US11095199B2 (en) Rotating electrical machine unit and resolver stator
WO2019026419A1 (ja) モータ
JP2013223281A (ja) 電動モータ
WO2018087887A1 (ja) 回転電機の固定子およびその製造方法
CN108696087B (zh) 旋转变压器定子
JP2007288903A (ja) 電動機
JP2012196090A (ja) レゾルバ
JP5290608B2 (ja) アキシャルギャップモータ
KR102165575B1 (ko) Sr 모터
JP7151168B2 (ja) モータ
JP2019058015A (ja) モータ及びモータの製造方法
CN112970175B (zh) 电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566810

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18751776

Country of ref document: EP

Kind code of ref document: A1