JP2023109265A - 回転角度検出装置及びそれを用いた回転電機 - Google Patents

回転角度検出装置及びそれを用いた回転電機 Download PDF

Info

Publication number
JP2023109265A
JP2023109265A JP2022010685A JP2022010685A JP2023109265A JP 2023109265 A JP2023109265 A JP 2023109265A JP 2022010685 A JP2022010685 A JP 2022010685A JP 2022010685 A JP2022010685 A JP 2022010685A JP 2023109265 A JP2023109265 A JP 2023109265A
Authority
JP
Japan
Prior art keywords
axial direction
shield
rotation angle
magnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022010685A
Other languages
English (en)
Inventor
達也 北村
Tatsuya Kitamura
洋介 宇野
Yosuke Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2022010685A priority Critical patent/JP2023109265A/ja
Priority to FR2206933A priority patent/FR3132141A1/fr
Priority to US17/871,299 priority patent/US20230238860A1/en
Priority to DE102022207764.4A priority patent/DE102022207764A1/de
Publication of JP2023109265A publication Critical patent/JP2023109265A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/50Grounding or electrostatically shielding a position sensor or encoder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】磁気検出素子の磁気検出方向へ入射する信号磁束の減少、及び外乱磁束の影響を抑制して、回転速度及び回転角度の検出精度の低下を防止した回転角度検出装置を得ること。【解決手段】シャフトの軸方向一方側に設けられ、シャフトと一体回転する磁石と、磁石の軸方向一方側に、磁石とは間隔を空けて配置された磁気検出素子と、磁性体からなるシールドとを備え、シールドは、電流が流れる配線部材の軸方向の位置と、磁気検出素子の軸方向の位置との間の軸方向の位置に配置され、軸方向に見て磁石の径方向外側に配置され、軸方向に見て配線部材と重複した部分を有し、配線部材は、磁気検出素子よりも磁石の側の軸方向の位置に配置され、軸方向に見て磁石の径方向外側に配置されている。【選択図】図2

Description

本願は、回転角度検出装置及びそれを用いた回転電機に関するものである。
近年、地球温暖化を背景として自動車への燃費改善要求が高まっている。同時に、自動車の幅広い地域、人への普及拡大に向けて、自動車部品の低価格化が求められている。車両電装品で消費される電力を供給し、車載バッテリへの充電を行う界磁巻線式発電機においても、小型軽量化及び経済性の高い構成部品を採用する必要性が高まっている。一方、自動車1台当たりの電装品の数と消費電力は増加傾向にあり、車両用発電機には、より発電量が大きく、効率の高い発電及び駆動性能が求められている。また、さらなる効率向上に向けて、電力変換機能及びセンシング機能を備える制御装置をモータと一体化し、エンジンのアシストまたはアイドリングストップ機能を実現する制御装置一体型の回転電機が開発されている。
制御装置一体型の回転電機は、ロータの回転速度及び回転角度を検出するためのセンサを備えている。回転速度及び回転角度を検出するセンサの検出方法には、例えば、レゾルバ方式または磁気方式がある。磁気方式では、磁気検出素子と磁石とを組み合わせて用いる。磁気検出素子において、回転電機のシャフトと共に一体回転する磁石に起因した磁束の変化を捉え、ロータの回転速度及び回転角度を検出する。
磁気検出素子は、磁石から流出した磁束である信号磁束を検出してロータの回転速度及び回転角度を検出している。そのため、磁石からの信号磁束以外の外乱磁束が存在した場合、磁気検出素子の出力に速度誤差または角度誤差が加わることになる。センサの回転角度の検出精度は、回転電機の発電効率または駆動効率に直接影響する。センサの回転角度の検出精度が低下すると、回転電機の発電効率または駆動効率は顕著に低下する。このような課題に対して、回転速度及び回転角度の検出精度を高く保つために、外乱磁束を低減させる磁気シールドを備えた回転角度センサの構造が開示されている(例えば、特許文献1参照)。
開示された回転角度センサは、非磁性体で形成したシャフトと、強磁性体によって有底容器状に形成すると共に底部にシャフトより大径の挿通孔を設けた磁気シールドケースとを備える。回転角度センサは、磁気シールドケースの挿通孔に対して所定の間隙を以て磁石及びシャフトを挿通させ、磁石及び磁気検出素子を磁気シールドケース内に収容して配設している。回転角度センサは磁気シールドケース内に磁石及び磁気検出素子を収容しているため、外乱磁束の影響が抑制されるので、回転速度及び回転角度の検出精度の低下を防止することができる。
特許第3086563号公報
上記特許文献1においては、強磁性体からなる磁気シールドケースを設けたため、外乱磁束の影響が抑制され、回転速度及び回転角度の検出精度の低下を防止することができる。しかしながら、磁石及び磁気検出素子が磁気抵抗の低い磁気シールドケースに収容されているため、磁石からの信号磁束が磁石の周囲の磁気シールドケースに誘導されるので、磁気検出素子の磁気検出方向へ入射する信号磁束が減少しやすくなるという課題があった。また、磁気検出素子の磁気検出方向へ入射する信号磁束が減少することで、回転速度及び回転角度の検出精度が低下するという課題があった。
そこで、本願は、磁気検出素子の磁気検出方向へ入射する、信号磁束の減少及び外乱磁束の影響を抑制して、回転速度及び回転角度の検出精度の低下を防止した回転角度検出装置を得ること、また、回転角度検出装置における回転速度及び回転角度の検出精度の低下を防止して、高効率な回転電機を得ることを目的としている。
本願に開示される回転角度検出装置は、シャフトの軸方向一方側に設けられ、シャフトと一体回転する磁石と、磁石の軸方向一方側に、磁石とは間隔を空けて配置された磁気検出素子と、磁性体からなるシールドとを備え、シールドは、電流が流れる配線部材の軸方向の位置と、磁気検出素子の軸方向の位置との間の軸方向の位置に配置され、軸方向に見て磁石の径方向外側に配置され、軸方向に見て配線部材と重複した部分を有し、配線部材は、磁気検出素子よりも磁石の側の軸方向の位置に配置され、軸方向に見て磁石の径方向外側に配置されたものである。
本願に開示される回転電機は、本願に開示した回転角度検出装置と、シャフトと、配線部材と、界磁巻線及び界磁巻線が巻装された界磁鉄心を有し、シャフトと一体回転するロータと、ロータの径方向外側に配置され、電機子巻線が巻装された固定子鉄心を有したステータと、ロータ及びステータの外側を覆うと共にベアリングを介してシャフトの一端側及び他端側を保持したブラケットとを備えたものである。
本願に開示される回転角度検出装置によれば、シャフトと一体回転する磁石と、磁石とは間隔を空けて配置された磁気検出素子と、磁性体からなるシールドとを備え、シールドは、電流が流れる配線部材の軸方向の位置と、磁気検出素子の軸方向の位置との間の軸方向の位置に配置され、軸方向に見て磁石の径方向外側に配置され、軸方向に見て配線部材と重複した部分を有し、配線部材は、磁気検出素子よりも磁石の側の軸方向の位置に配置され、軸方向に見て磁石の径方向外側に配置されているため、配線部材の周囲に生じた外乱磁束がシールドに誘導され、磁気検出素子に入射する外乱磁束が低減するので、磁気検出素子の磁気検出方向へ入射する外乱磁束の影響を抑制して、回転速度及び回転角度の検出精度の低下を防止することができる。また、シールドが軸方向に見て磁石の径方向外側に配置され、磁石から生じた信号磁束のシールドへの誘導が抑制されるので、磁気検出素子の磁気検出方向に入射する信号磁束の減少を抑制して、回転速度及び回転角度の検出精度の低下を防止することができる。
本願に開示される回転電機によれば、本願に開示した回転角度検出装置と、シャフトと、配線部材と、界磁巻線及び界磁巻線が巻装された界磁鉄心を有し、シャフトと一体回転するロータと、ロータの径方向外側に配置され、電機子巻線が巻装された固定子鉄心を有したステータと、ロータ及びステータの外側を覆うと共にベアリングを介してシャフトの一端側及び他端側を保持したブラケットとを備えたため、配線部材の周囲に生じた外乱磁束がシールドに誘導され、磁気検出素子の磁気検出方向へ入射する外乱磁束の影響が抑制されると共に、磁石から生じた信号磁束のシールドへの誘導が抑制されるので、回転速度及び回転角度の検出精度の低下を防止して、高効率な回転電機を得ることができる。
実施の形態1に係る回転電機の概略を示す断面図である。 実施の形態1に係る回転電機の要部を示す斜視図である。 実施の形態1に係る回転電機の要部を示す断面図である。 実施の形態2に係る回転電機の要部を示す断面図である。 実施の形態2に係る回転電機における磁気検出素子の周囲の外乱磁束を説明する図である。 実施の形態3に係る回転電機の要部を示す斜視図である。 実施の形態3に係る別の回転電機の要部を示す斜視図である。 実施の形態3に係る別の回転電機の要部を示す断面図である。 実施の形態4に係る回転電機の要部を示す断面図である。 実施の形態5に係る回転電機の要部を示す断面図である。 実施の形態5に係る別の回転電機の要部を示す断面図である。 実施の形態5に係る別の回転電機の要部を示す断面図である。
以下、本願の実施の形態による回転角度検出装置及び回転電機を図に基づいて説明する。なお、各図において同一、または相当部材、部位については同一符号を付して説明する。
実施の形態1.
図1は実施の形態1に係る回転電機100の概略を示す断面図で、回転電機100を軸方向に切断した図、図2は回転電機100の要部を示す斜視図で、回転角度検出装置1の周囲を拡大して示した図、図3は回転電機100の要部を示す断面図で、図2を軸方向に切断した図である。図1において、回転電機100の軸方向他方側の部分は省略して示している。回転電機100は、図1に示すように、回転電機100の本体部分に加えて、制御装置である電力変換装置200を備えた制御装置一体型の回転電機である。以下、制御装置一体型の回転電機について説明するが、説明する構成を、発電機と電動機の機能を備える他の回転電機に適用することが可能である。また、回転角度検出装置1については、回転電機に限らず、電流が流れる配線部材が隣接して設けられた回転体の回転検出に適用することが可能である。
<回転電機100>
回転電機100は、回転電機100の本体部分と、電力変換装置200と、回転角度検出装置1とを備える。電力変換装置200は、図1に示すように、回転電機100の本体部分を構成するブラケット29の軸方向の一方側に配置され、ブラケット29に固定される。まず、回転電機100の本体部分について説明する。回転電機100の本体部分は、シャフト2と、シャフト2と一体回転するロータ24と、ロータ24の外側に配置されたステータ25と、これらを収容すると共にシャフト2を回転自在に保持するブラケット29とを備える。
ロータ24は、界磁巻線24a、及び界磁巻線24aが巻装された界磁鉄心24bを有する。ロータ24の径方向外側に配置されたステータ25は、複数相の電機子巻線25a、及び電機子巻線25aが巻装された固定子鉄心25bを有する。複数相の電機子巻線25aは、例えば、1組の3相電機子巻線もしくは2組の3相電機子巻線であるがこれらに限るものではなく、回転電機の種類に応じて設定される。
ハウジングを構成するブラケット29は、ロータ24及びステータ25の外側を覆う。ブラケット29は、ベアリング30を介してシャフト2の一端側及び他端側を保持する。図1では回転電機100の軸方向他方側の部分を省略しているため、シャフト2の他端側を保持するベアリングは図示していない。ブラケット29は、軽量化と生産性の観点から、例えば、アルミダイカスト成形により作製されている。
<電力変換装置200>
電力変換装置200は、外部の直流電源である車載バッテリ(図示せず)からの直流電力を交流電力に変換する。また、電力変換装置200は、電機子巻線25aからの交流電力を直流電力に変換する。電力変換装置200は、図1に示すように、2組の3相交流回路が構成されたパワー回路部10と、ロータ24の界磁巻線24aに界磁電流を供給する界磁回路部11と、制御回路基板26を有し、パワー回路部10及び界磁回路部11を制御する制御回路部9とを備える。電力変換装置200は、各部を電気的に接続し、電流が流れる配線部材、及びこれらの部材を収納するケース27、28をさらに備える。ケース27は、界磁回路部11及び制御回路部9を有した制御回路基板26を収容する。ケース28は、パワー回路部10及び配線部材の一つであるバスバー5を収容する。
電力変換装置200は、ケース28においてブラケット29に取り付けられる。パワー回路部10は、電機子巻線25aへの供給電流をオンオフするスイッチング素子(図示せず)を有する。界磁回路部11は、界磁巻線24aへの供給電流をオンオフするスイッチング素子(図示せず)を有する。バスバー5は、電力変換装置200における、車載バッテリに接続された電源端子(図示せず)とパワー回路部10のスイッチング素子とを接続する。バスバー5は、熱伝導性に優れると共に、電気伝導性を備えた銅またはアルミニウム等の金属から作製される。図2ではバスバー5は板状に形成されているが、バスバー5の形状は板状に限るものではなく、棒状であっても構わない。
ステータ25の電機子巻線25aは、例えば、位相が30度ずれた2組の3相電機子巻線により構成される。これらの3相電機子巻線は、3相電力変換回路を2組備えたパワー回路部10により、それぞれ独立して制御される。Y結線された3相の電機子巻線25aの各相の端子は、パワー回路部10における6個のスイッチング素子で構成された電力変換回路の交流側端子に接続される。パワー回路部10の直流側端子は、電源端子と平滑コンデンサ(図示せず)に接続される。パワー回路部10を構成するスイッチング素子は、MOSFET(金属酸化膜型電界効果トランジスタ、Metal Oxide Semiconductor Field Effect Transistor)などのスイッチングが可能な素子である。
界磁回路部11は2個のスイッチング素子を有し、2個のスイッチング素子は車載バッテリに接続される。界磁回路部11が有したスイッチング素子は、制御回路基板26に実装される。界磁回路部11を制御回路基板26に実装せず、界磁回路部11をケース28に収容しても構わない。本実施の形態のように界磁回路部11を制御回路基板26に搭載することで、界磁回路部11を制御回路基板26と別に構成する場合と比較して、電力変換装置200を小型化することができる。
ケース27、28は、絶縁性を備えた樹脂材で作製される。樹脂材は、例えば、ポリフェニレンサルファイドである。ケース27は、収容した制御回路基板26等への塩、及び泥水の浸入を防ぐために、防水カバー(図示せず)などにより密封された防水構造を有している。
<回転角度検出装置1>
本願の要部である回転角度検出装置1について説明する。回転角度検出装置1は、図2に示すように、磁石3、磁気検出素子4、及び磁性体からなるシールド6を備える。回転角度検出装置1は、シャフト2と共に回転する磁石3から流出した磁束である信号磁束を磁気検出素子4が検出することで、シャフト2及びロータ24の回転角度及び回転速度を検出する。シールド6は、磁気検出素子4への外乱磁束を抑制する。外乱磁束の抑制については後述する。
磁石3は、シャフト2の一方側である電力変換装置200の側の端部にホルダ7を介して設けられる。磁石3からの信号磁束を検出する磁気検出素子4は、磁石3に対向した制御回路基板26に固定される。磁気検出素子4が制御回路基板26に固定される箇所は、制御回路基板26の一方側でも他方側でも構わない。また本実施の形態では、磁気検出素子4を制御回路基板26に固定したがこれに限るものではない。回転角度検出回路を搭載した別の回路基板に磁気検出素子4を固定して、磁気検出素子4が固定された回路基板を制御回路基板26に接続しても構わない。制御回路基板26に磁気検出素子4を固定して、制御回路基板26に回転角度検出回路を搭載することで、磁気検出素子4が固定された別の回路基板が不要になるため、回転電機100を小型化でき、低コスト化することができる。また、磁気検出素子4が固定された回路基板と制御回路基板26との接続が不要になるため、回転電機100の生産性を向上させることができる。また、回転電機100を低コスト化でき、回転電機100の生産性が向上するので、経済性に優れた回転電機100を得ることができる。
回転角度検出装置1の各構成要素について説明する。磁石3は、シャフト2の軸方向一方側に設けられ、シャフト2と一体回転する。磁石3は、永久磁石である。磁石3は、軸方向に直交する方向に異なる磁極を有する。本実施の形態では、磁石3はホルダ7に保持されるが、磁石3のシャフト2への固定はホルダ7を介した固定に限るものではない。磁石3をシャフト2に直接取り付けても構わない。
ホルダ7は、磁石3をシャフト2に固定する部材である。ホルダ7は、図3に示すように、シャフト2における軸方向一方側の端部に固定され、シャフト2から軸方向一方側に延出して磁石3を保持する。ホルダ7は、パーマロイまたはフェライトなどの磁性材料から作製される。ホルダ7の材料は磁性材料に限るものではなく、樹脂材料であっても構わない。
ホルダ7は、磁石3の径方向外側を、間隔を空けて覆う筒状の周壁7aを有する。磁石3の径方向外側と周壁7aとの間に固定材8が充填され、磁石3はホルダ7に固定される。固定材8は、例えば接着剤または樹脂部材である。このように構成することで、磁石3の軸方向他方側に固定材8が設けられないため、磁石3の軸方向他方側に固定材8が不均一に充填されないので、磁石3が軸方向から傾いて固定されるのを抑制することができる。磁石3が傾いて固定されるのを抑制できるので、磁石3の信号磁束を適切に磁気検出素子4に与えることができる。また、磁気検出素子4への信号磁束がシールド6に誘導されて減少することを抑制することができる。磁石3のホルダ7への固定はこれに限るものではなく、ホルダ7と磁石3との間に間隔を設けずに、ホルダ7に磁石3を圧入して双方を嵌め合って固定しても構わない。また、磁石3の径方向外側に接着剤を塗布してホルダ7に磁石3を圧入しても構わない。
ホルダ7の周壁7aは、軸方向一方側に延出する。周壁7aの軸方向の高さは、周壁7aが磁性材料からなる場合、磁石3の軸方向の高さに一致しない高さに設けられる。本実施の形態では、周壁7aの軸方向の高さは、磁石3の軸方向の高さよりも低く設けている。このように構成することで、磁石3から流出する信号磁束が周壁7aに誘導されて減少することを抑制することができる。ホルダ7の軸方向他方側の端部に、軸方向一方側に窪む凹部7bが設けられ、凹部7bにシャフト2の軸方向一方側の端部が嵌合されている。ホルダ7のシャフト2への固定はこれに限るものではなく、双方の間に隙間を設けて接着剤により双方を固定しても構わない。
磁気検出素子4は、磁石3の軸方向一方側に、磁石3とは間隔を空けて配置される。磁気検出素子4は、例えば、磁気抵抗効果素子であり、軸方向に直交した磁気検出方向を有し、検出した信号磁束に対応する電気信号を出力する。磁気検出素子4は、図3の紙面における上下方向の、軸方向に平行な方向に感度を有さない。磁気検出素子4が軸方向に直交した磁気検出方向を有している場合、回転角度及び回転速度の検出における、軸方向の外乱磁束の影響を抑制することができる。磁気検出素子4の磁気検出方向は軸方向に直交した方向に限るものではなく、例えば磁気検出素子4の設置位置を変更すれば、磁気検出方向が軸方向に平行な方向でも構わない。磁気検出素子4は、具体的には、ホール素子、GMR(Giant Magneto Resistive:巨大磁気抵抗)素子、AMR(Anisotropic Magneto Resistive:異方性磁気抵抗)素子、またはTMR(Tunnel Magneto Resistive:トンネル磁気抵抗)素子である。磁気検出素子4は一つに限るものではなく、複数の素子を組み合わせて使用しても構わない。また、使用環境等に応じて、任意の素子を選択して構わない。
本実施の形態では、磁気検出素子4に接続された検出回路を制御回路基板26に搭載する構成としたがこれに限るものではない。磁気検出素子4と検出回路とが一体化されたチップを、磁石3に対向した制御回路基板26の位置に固定しても構わない。磁石3は、磁石3がシャフト2と共に回転することで、磁気検出素子4の感度を有した方向に磁界が変化するように着磁されている。このように磁界が変化する磁石3の着磁の例には、S極及びN極を各1極ずつ着磁した片面2極着磁、径方向着磁、または両面4極着磁がある。
シールド6は、電流が流れるバスバー5の軸方向の位置と、磁気検出素子4の軸方向の位置との間の軸方向の位置に配置される。シールド6は、軸方向に見て磁石3の径方向外側に配置される。シールド6は、SPCC(冷間圧延鋼板)または電磁鋼板などの磁性体から作製される。バスバー5は、磁気検出素子4よりも磁石3の側の軸方向の位置に配置され、軸方向に見て磁石3の径方向外側に配置される。シールド6は、軸方向に見てバスバー5と重複した部分を有している。
本実施の形態では、図2に示すように、バスバー5は、周方向に延出した周方向延出部分5aを有し、シールド6は、軸方向に見て周方向延出部分5aと重複するように、周方向に延出している部分を有している。このように構成することで、回転角度検出装置1を径方向に小型化することができる。また本実施の形態では、バスバー5は、軸方向に直交する同一平面上を湾曲した板状に形成され、板面が、軸方向に直交し、シールド6は、軸方向に直交する同一平面上を湾曲した板状に形成され、板面が、軸方向に直交している。このように構成することで、回転角度検出装置1を軸方向に小型化することができる。
<外乱磁束とその抑制>
回転速度及び回転角度の検出精度に関わる外乱磁束についてまず説明する。磁石3から流出した信号磁束を磁気検出素子4が磁気検出方向において検出することで、シャフト2及びロータ24の角度信号が生成される。そのため、磁石3から流出した信号磁束以外の磁束は、磁気検出素子4の検出対象ではない外乱磁束である。外乱磁束が磁気検出素子4への入射磁束に含まれると、磁気検出素子4の出力信号に誤差が生じる。この場合、誤った出力信号を用いて回転角度演算が行われるため、得られた回転角度に誤差が含まれるので、回転電機100の制御及び特性に悪影響を与えることになる。
本実施の形態における外乱磁束は、バスバー5に流れる電流に起因した磁束である。バスバー5に通電した際、図3に破線矢印で示すように、流れる電流量に応じた大きさの磁束がバスバー5の周囲に発生する。この磁束が磁気検出素子4に到達すると、磁気検出素子4に外乱磁束として鎖交することになる。
外乱磁束の抑制について説明する。シールド6は、磁性体であるため、空気及び樹脂などと比較して磁気抵抗が小さい。磁束は磁気抵抗が小さい経路を通るように分布する。そのため、バスバー5と磁気検出素子4との間にシールド6を配置することで、バスバー5の周囲に生じた外乱磁束をシールド6へ誘導することができる。図3において、シールド6に誘導される外乱磁束を矢印Aで示す。矢印Aを図の右側のシールド6にのみ示したが、左側のシールド6においても外乱磁束は同様に誘導される。ホルダ7が磁性体である場合、シールド6から流出する外乱磁束はホルダ7に向かう。図3において、シールド6からホルダ7に向かう外乱磁束を矢印Bで示す。ホルダ7が磁性体でない場合であっても、シールド6よりも軸方向一方側に磁性体からなる部材が配置されていないため、外乱磁束が磁気検出素子4の方向に向かうことはない。
このようにシールド6を配置したことで、バスバー5の周囲に生じた外乱磁束がシールド6に誘導されるので、磁気検出素子4に入射する外乱磁束を低減することできる。シールド6は軸方向に見てバスバー5と重複した部分を有しているため、バスバー5の周囲に生じた外乱磁束をより効果的にシールド6に誘導して、磁気検出素子4へ入射する外乱磁束の影響を抑制することができる。磁気検出素子4へ入射する外乱磁束の影響が抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下を防止することができる。また、回転速度及び回転角度の検出精度の低下が防止できるため、回転電機100の発電効率または駆動効率の低下が抑制されるので、高効率な回転電機100を得ることができる。
シールド6は、軸方向に見て磁石3の径方向外側に配置されている。そのため、磁石3から生じた信号磁束がシールド6に誘導されることを抑制することができる。信号磁束のシールド6への誘導が抑制されるので、磁気検出素子4の磁気検出方向に入射する信号磁束の減少を抑制することができる。本実施の形態では、シールド6における径方向内側の部分は、開口している。この開口の部分は、樹脂などの非磁性の部材により覆われていても構わない。シールド6を樹脂部材により成形してケース27に取り付ける場合、回転電機100の組立性が向上するので、回転電機100の生産性を向上させることができる。
本実施の形態では、シールド6は、磁石3の軸方向の位置と、磁気検出素子4の軸方向の位置との間の軸方向の位置に配置されている。そのため、磁石3から生じた信号磁束がシールド6に誘導されることをさらに抑制することができる。信号磁束のシールド6への誘導がさらに抑制されるので、磁気検出素子4に入射する信号磁束の減少をさらに抑制することができる。
本実施の形態では、シールド6の軸方向の位置と磁気検出素子4の軸方向の位置との間の軸方向の距離は、シールド6の軸方向の位置とバスバー5の軸方向の位置との間の軸方向の距離よりも小さい。そのため、バスバー5の周囲に生じた外乱磁束をより効果的にシールド6に誘導して、磁気検出素子4へ入射する外乱磁束を抑制することができる。
本実施の形態では、シールド6の軸方向の幅は、シールド6の径方向の幅よりも小さい。そのため、磁石3から生じた信号磁束がシールド6に誘導されることを抑制することができる。信号磁束のシールド6への誘導が抑制されるので、磁気検出素子4に入射する信号磁束の減少を抑制することができる。
以上のように、実施の形態1による回転角度検出装置1において、シャフト2と一体回転する磁石3と、磁石3とは間隔を空けて配置された磁気検出素子4と、磁性体からなるシールド6とを備え、シールド6は、電流が流れるバスバー5の軸方向の位置と、磁気検出素子4の軸方向の位置との間の軸方向の位置に配置され、軸方向に見て磁石3の径方向外側に配置され、軸方向に見てバスバー5と重複した部分を有し、バスバー5は、磁気検出素子4よりも磁石3の側の軸方向の位置に配置され、軸方向に見て磁石3の径方向外側に配置されているため、バスバー5の周囲に生じた外乱磁束がシールド6に誘導され、磁気検出素子4に入射する外乱磁束が低減するので、磁気検出素子4の磁気検出方向へ入射する外乱磁束の影響を抑制して、回転速度及び回転角度の検出精度の低下を防止することができる。また、シールド6が軸方向に見て磁石3の径方向外側に配置され、磁石3から生じた信号磁束のシールド6への誘導が抑制されるので、磁気検出素子4の磁気検出方向に入射する信号磁束の減少を抑制して、回転速度及び回転角度の検出精度の低下を防止することができる。
バスバー5が周方向に延出した周方向延出部分5aを有し、シールド6が軸方向に見て周方向延出部分5aと重複するように、周方向に延出している部分を有している場合、回転角度検出装置1を径方向に小型化することができる。また、バスバー5が軸方向に直交する同一平面上を湾曲した板状に形成され、板面が軸方向に直交し、シールド6が軸方向に直交する同一平面上を湾曲した板状に形成され、板面が軸方向に直交している場合、回転角度検出装置1を軸方向に小型化することができる。
シールド6が、磁石3の軸方向の位置と、磁気検出素子4の軸方向の位置との間の軸方向の位置に配置されている場合、磁石3から生じた信号磁束のシールド6への誘導がさらに抑制されるので、磁気検出素子4に入射する信号磁束の減少をさらに抑制することができる。また、シールド6の軸方向の位置と磁気検出素子4の軸方向の位置との間の軸方向の距離が、シールド6の軸方向の位置とバスバー5の軸方向の位置との間の軸方向の距離よりも小さい場合、バスバー5の周囲に生じた外乱磁束をより効果的にシールド6に誘導して、磁気検出素子4へ入射する外乱磁束を抑制することができる。
シールド6の軸方向の幅が、シールド6の径方向の幅よりも小さい場合、磁石3から生じた信号磁束のシールド6への誘導が抑制されるので、磁気検出素子4に入射する信号磁束の減少を抑制することができる。また、磁気検出素子4が、軸方向に直交した磁気検出方向を有した磁気抵抗効果素子である場合、回転角度及び回転速度の検出における、軸方向の外乱磁束の影響を抑制することができる。
磁石3を保持するホルダ7を備え、ホルダ7が、磁石3の径方向外側を間隔を空けて覆う筒状の周壁7aを有し、磁石3の径方向外側と周壁7aとの間に、固定材8が充填されている場合、磁石3の軸方向他方側に固定材8が設けられないため、磁石3の軸方向他方側に固定材8が不均一に充填されないので、磁石3が軸方向から傾いて固定されるのを抑制することができる。
実施の形態1による回転電機100において、本願に開示した回転角度検出装置1と、シャフト2と、バスバー5と、界磁巻線24a及び界磁巻線24aが巻装された界磁鉄心24bを有し、シャフト2と一体回転するロータ24と、ロータ24の径方向外側に配置され、電機子巻線25aが巻装された固定子鉄心25bを有したステータ25と、ロータ24及びステータ25の外側を覆うと共にベアリング30を介してシャフト2の一端側及び他端側を保持したブラケット29とを備えたため、バスバー5の周囲に生じた外乱磁束がシールド6に誘導され、磁気検出素子4の磁気検出方向へ入射する外乱磁束の影響が抑制されると共に、磁石3から生じた信号磁束のシールド6への誘導が抑制されるので、回転速度及び回転角度の検出精度の低下を防止して、高効率な回転電機100を得ることができる。
実施の形態2.
実施の形態2に係る回転角度検出装置1について説明する。図4は実施の形態2に係る回転電機100の要部を示す断面図で、回転角度検出装置1の周囲を拡大して軸方向に切断した図、図5は磁気検出素子4の周囲の外乱磁束を説明する図である。実施の形態2に係る回転角度検出装置1は、実施の形態1の構成に加えて、追加のシールド12を備えた構成になっている。
実施の形態1では、バスバー5の周囲に生じた外乱磁束を抑制する構成について説明した。実施の形態2では、シャフト2の周囲に生じる外乱磁束を抑制する構成について説明する。本実施の形態では、シャフト2は鉄を主成分とする合金などの磁性材料により作製される。界磁巻線24aは、シャフト2に対して周方向となる環状に通電される。そのため、シャフト2の軸方向に界磁巻線24aの通電に起因した磁束が通るので、シャフト2の端部からシャフト2を通過した磁束が流出し、流出した磁束は外乱磁束になる。外乱磁束は、界磁巻線24aに通電した際、図5に示した破線矢印(矢印C)のように発生する。追加のシールド12がない場合、この外乱磁束が磁気検出素子4に到達して、磁気検出素子4に鎖交することになる。外乱磁束が磁気検出素子4の磁気検出方向の成分を多く有して磁気検出素子4に入射した場合、磁気検出素子4の出力信号に誤差が発生するので回転角度及び回転速度の精度が低下する。
回転角度検出装置1は、磁気検出素子4の軸方向一方側に、磁気検出素子4とは間隔を空けて配置された追加のシールド12を備える。追加のシールド12は、SPCC(冷間圧延鋼板)または電磁鋼板などの磁性体から作製される。磁気検出素子4の磁気検出方向は、軸方向に直交している。磁気検出素子4は、例えば、磁気抵抗効果素子である。追加のシールド12を備えたことで、シャフト2の周囲に生じた外乱磁束は追加のシールド12に誘導される。追加のシールド12から流出する外乱磁束はシャフト2の方向に向かう。図5において、シールド6からシャフト2の方向に向かう外乱磁束を矢印Dで示す。矢印Dで示した外乱磁束は、軸方向に平行である。磁気検出素子4は軸方向に平行な方向に感度を有さないため、矢印Dで示した外乱磁束を検出しない。
このように追加のシールド12を配置したことで、シャフト2の周囲に生じた外乱磁束が追加のシールド12に誘導され、追加のシールド12から流出する外乱磁束が軸方向に平行になるので、磁気検出素子4の磁気検出方向に入射する外乱磁束を低減することできる。磁気検出素子4へ入射する外乱磁束の影響が抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下を防止することができる。また、回転速度及び回転角度の検出精度の低下が防止できるため、回転電機100の発電効率または駆動効率の低下が抑制されるので、高効率な回転電機100を得ることができる。
本実施の形態では、追加のシールド12は、板状に形成され、追加のシールド12の板面は、軸方向に直交して配置されている。このように構成することで、回転角度検出装置1を軸方向に小型化することができると共に、追加のシールド12から流出する外乱磁束を軸方向にさらに平行に揃えることができる。追加のシールド12から流出する外乱磁束が軸方向にさらに平行になるため、磁気検出素子4の磁気検出方向に入射する外乱磁束をさらに低減することできる。なお追加のシールド12は板状に限るものではなく、ブロック状など他の形状であっても構わない。
実施の形態3.
実施の形態3に係る回転角度検出装置1について説明する。図6は実施の形態3に係る回転電機100の要部を示す斜視図で、回転角度検出装置1の周囲を拡大して示した図である。実施の形態3に係る回転角度検出装置1は、実施の形態1とはシールド6の形状が異なる構成になっている。
実施の形態1に示した回転角度検出装置1において、磁性体からなるシールド6の形状がバスバー5の形状と著しく異なる場合、バスバー5の周囲に生じた外乱磁束のシールド6へ誘導される量がシールド6の部分によってばらつくことになる。そのため、磁気検出素子4の周囲における外乱磁束の分布にばらつきが生じる。磁気検出素子4の周囲における外乱磁束の分布がばらつくと、磁気検出素子4に入射する外乱磁束が不均一になるので、磁気検出素子4の出力の補正による外乱磁束の抑制が困難になる。外乱磁束の抑制が困難なため、磁気検出素子4の出力に外乱磁束の影響が重畳されるので磁気検出素子4の出力に誤差が加わり、回転角度検出装置1の回転速度及び回転角度の検出精度は低下する。なお、外乱磁束の分布が均一であれば、磁気検出素子4の出力を補正することで、外乱磁束の影響をさらに抑制することができる。
本実施の形態では、軸方向に見て、シールド6の形状は、シャフト2の周囲におけるバスバー5の形状に相似しており、軸方向に見て相互に重複している。バスバー5が周方向延出部分5aにおける径方向内側とシャフト2との間隔が同じである円環状の部分を有して配置されている場合、バスバー5の形状に相似したシールド6は、例えば、バスバー5の円環状の部分に相似し、軸方向に見てバスバー5の円環状の部分に重複した部分を有するように設けられる。シールド6の形状は、バスバー5の円環状の部分から延出した部分においてもバスバー5の形状に相似し、シールド6は、軸方向に見てバスバー5の円環状の部分から延出した部分においてもバスバー5に重複した部分を有している。
シールド6の形状がシャフト2の周囲におけるバスバー5の形状に相似し、軸方向に見て相互に重複しているため、外乱磁束はバスバー5の周囲に分布するので、外乱磁束はシールド6に均一に誘導される。外乱磁束がシールド6に均一に誘導されるため、外乱磁束は均一に低減されるので、磁気検出素子4に入射する外乱磁束を均一に低減することができる。磁気検出素子4へ入射する外乱磁束の影響が抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下を防止することができる。また、磁気検出素子4に入射する外乱磁束が均一に低減されるので、磁気検出素子4の出力を補正することで外乱磁束をさらに抑制して、回転速度及び回転角度の検出精度をさらに向上させることができる。
<変形例1>
シールド6の形状の変形例について説明する。図7は実施の形態3に係る別の回転電機100の要部を示す斜視図で、回転角度検出装置1の周囲を拡大して示した図である。シールド6は、周方向に延出する円環状である。このように構成することで、磁気検出素子4の周囲における非対称な外乱磁束の分布をさらに緩和して、磁気検出素子4の周囲における外乱磁束の分布をさらに均一に低減することができる。磁気検出素子4へ入射する外乱磁束の影響がさらに抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下をさらに防止することができる。また、磁気検出素子4に入射する外乱磁束がさらに均一に低減されるので、磁気検出素子4の出力を補正することで外乱磁束をさらに抑制して、回転速度及び回転角度の検出精度をさらに向上させることができる。
<変形例2>
シールド6の形状の別の変形例について説明する。図8は実施の形態3に係る別の回転電機100の要部を示す断面図で、回転角度検出装置1の周囲を拡大して軸方向に切断した図である。シールド6における径方向内側の端部が、軸方向の他方側に屈曲している。シールド6の軸方向の他方側に屈曲した部分は、屈曲部6aである。このように構成することで、シールド6から流出する外乱磁束(矢印E)を確実に磁気検出素子4から遠ざかる方向に流出させることができる。シールド6から流出する外乱磁束が磁気検出素子4から遠ざかる方向に流出するため、磁気検出素子4へ入射する外乱磁束の影響をさらに抑制することができる。磁気検出素子4へ入射する外乱磁束の影響がさらに抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下をさらに防止することができる。
本実施の形態では、屈曲部6aとシールド6の本体部分との間に形成される角度を90°にしたが、この角度は90°に限るものではない。シールド6とバスバー5の配置または外乱磁束の低減効果により、角度を変更して屈曲部6aを設けても構わない。また本実施の形態では、屈曲部6aの軸方向の長さを磁石3の軸方向他方側まで延出させて設けたが、屈曲部6aの軸方向の長さはこれに限るものではない。屈曲部6aの軸方向の長さはバスバー5に達する程度の長さでもよく、シールド6とバスバー5の配置または外乱磁束の低減効果により、屈曲部6aの軸方向の長さを変更して屈曲部6aを設けても構わない。
実施の形態4.
実施の形態4に係る回転角度検出装置1について説明する。図9は実施の形態4に係る回転電機100の要部を示す断面図で、回転角度検出装置1の周囲を拡大して軸方向に切断した図である。実施の形態4に係る回転角度検出装置1は、実施の形態1とは磁石3の磁極が異なる構成になっている。
実施の形態1に示した回転角度検出装置1において、磁性体からなるシールド6が信号磁束を流出する磁石3に隣接して配置された場合、磁石3から流出した信号磁束は磁気抵抗が小さいシールド6に誘導されやすくなる。信号磁束がシールド6に誘導されると、磁気検出素子4に入射する信号磁束が減少することになる。信号磁束の減少により、信号磁束と外乱磁束との比率(S/N比)は低下する。S/N比が低下することで磁気検出素子4の出力に誤差が生じ、回転角度検出装置1の回転速度及び回転角度の検出精度は低下する。
本実施の形態では、磁石3は軸方向の一方側にN(2以上の偶数)個の磁極を有し、軸方向の他方側にN個の磁極を有している。磁石3における、軸方向の一方側のN個の磁極と軸方向の他方側のN個の磁極とは、同じ周方向の位置に配置される。軸方向に隣接する2つの磁極は互いに異なり、周方向に隣接する2つの磁極が互いに異なっている。磁石3の磁極をこのように構成することで、磁石3の側面から流出する磁束が軸方向に分布するので、磁石3から流出する信号磁束(図9において破線で示した磁束)の径方向外側への流出を抑制することができる。信号磁束の径方向外側への流出が抑制されるため、信号磁束のシールド6への誘導が抑制されるので、S/N比の低下を抑制することができる。S/N比の低下が抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下を防止することができる。
また本実施の形態では、回転角度検出装置1は、シャフト2における軸方向一方側の端部に固定され、磁石3を保持するホルダ7を備える。ホルダ7は、磁石3の径方向外側を覆い、磁性材料からなる周壁7aを有している。このように構成することで、磁石3の側面から流出する磁束は周壁7aに集磁されるので、磁石3から流出する信号磁束の径方向外側への流出をさらに抑制することができる。信号磁束の径方向外側への流出がさらに抑制されるため、信号磁束のシールド6への誘導がさらに抑制されるので、S/N比の低下をさらに抑制することができる。S/N比の低下がさらに抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下をさらに防止することができる。
実施の形態5.
実施の形態5に係る回転角度検出装置1について説明する。図10は実施の形態5に係る回転電機100の要部を示す断面図で、回転角度検出装置1の周囲を拡大して軸方向に切断した図である。実施の形態5に係る回転角度検出装置1は、実施の形態1の構成に加えて、支持材21を備えた構成になっている。
実施の形態1に示した回転角度検出装置1において、振動などによりシールド6が当初の配置から意図せずに移動し、軸方向に見てシールド6とバスバー5との重複した部分がずれた場合、磁気検出素子4の周囲における外乱磁束の分布にばらつきが生じる。また、軸方向に見てシールド6とバスバー5との重複した部分がずれるので、磁気検出素子4の出力における外乱磁束の影響の補正はシールド6の当初の配置において行っているため、シールド6の移動後の配置では外乱磁束の影響の補正のパラメータが異なることになる。磁気検出素子4の周囲における外乱磁束の分布がばらつき、かつ補正のパラメータがずれると、磁気検出素子4の出力の補正による外乱磁束の抑制が困難になる。外乱磁束の抑制が困難なため、磁気検出素子4の出力に外乱磁束の影響が重畳されるので磁気検出素子4の出力に誤差が加わり、回転角度検出装置1の回転速度及び回転角度の検出精度は低下する。
本実施の形態では、回転角度検出装置1は、シールド6の軸方向の他方側とバスバー5の軸方向の一方側とを相互に固定した支持材21を備える。支持材21は、絶縁材からなり、例えば、PPS(ポリフェニレンサルファイド)樹脂、ナイロン樹脂、またはエポキシ樹脂で作製される。シールド6とバスバー5とは、電気的に絶縁されている。支持材21の固定方法は、例えば接着である。このように構成することで、軸方向に見てシールド6とバスバー5との重複した部分がずれないため、磁気検出素子4の周囲における外乱磁束の分布のばらつき、及び補正のパラメータのずれを抑制することができる。磁気検出素子4の周囲における外乱磁束の分布のばらつき、及び補正のパラメータのずれが抑制され、磁気検出素子4へ入射する外乱磁束の影響が抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下を防止することができる。また、磁気検出素子4の出力の補正により外乱磁束を抑制して、回転角度検出装置1における回転速度及び回転角度の検出精度を向上させることができる。
<変形例1>
支持材22とシールド6との固定についての変形例を説明する。図11は実施の形態5に係る別の回転電機100の要部を示す断面図で、回転角度検出装置1の周囲を拡大して軸方向に切断した図である。シールド6は、支持材22に設けられた嵌め合い部22aと嵌め合った切欠き部を有している。嵌め合い部22aは、支持材22の軸方向一方側から軸方向一方側に突出した部分である。切欠き部は、軸方向に貫通した貫通孔6bである。なお切欠き部は貫通孔6bに限るものではなく、シールド6の外周部分において、例えば径方向に切り欠かれた部分であっても構わない。嵌め合い部22aと貫通孔6bとを嵌め合うことで、支持材22とシールド6とは相互に固定される。なお、支持材22とシールド6とを一体成形することで、嵌め合い部22aと貫通孔6bとを嵌め合う構成を形成しても構わない。
このように構成することで、軸方向に見てシールド6とバスバー5との重複した部分が径方向または周方向にずれることをさらに抑制することができる。軸方向に見てシールド6とバスバー5との重複した部分のずれがさらに抑制されるので、磁気検出素子4の周囲における外乱磁束の分布のばらつき、及び補正のパラメータのずれをさらに抑制することができる。磁気検出素子4の周囲における外乱磁束の分布のばらつき、及び補正のパラメータのずれがさらに抑制され、磁気検出素子4へ入射する外乱磁束の影響がさらに抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下をさらに防止することができる。また、磁気検出素子4の出力の補正により外乱磁束を抑制して、回転角度検出装置1における回転速度及び回転角度の検出精度をさらに向上させることができる。
<変形例2>
支持材23とシールド6との固定についての別の変形例を説明する。図12は実施の形態5に係る別の回転電機100の要部を示す断面図で、回転角度検出装置1の周囲を拡大して軸方向に切断した図である。シールド6は、軸方向に貫通した貫通孔6bを有する。支持材23は、貫通孔6bの内側の部分と、貫通孔6b及び貫通孔6bの周囲のシールド6の軸方向一方側の部分とに設けられている。貫通孔6bの周囲において、支持材23は、シールド6の軸方向一方側と軸方向他方側との双方の部分に設けられる。この構成は、支持材22とシールド6とを一体成形することで形成される。なお一体成形に限るものではなく、この構成における貫通孔6bから軸方向一方側に突出した支持材23の部分を、熱カシメにより形成しても構わない。また、この構成を一体成形により形成する場合、バスバー5も含め、シールド6と支持材23とバスバー5とを一体成形しても構わない。
このように構成することで、軸方向に見てシールド6とバスバー5との重複した部分が径方向または周方向にずれること抑制するだけでなく、シールド6とバスバー5が軸方向にずれることを抑制することができる。シールド6とバスバー5の軸方向のずれが抑制されるので、磁気検出素子4の周囲における外乱磁束の分布のばらつき、及び補正のパラメータのずれをさらに抑制することができる。磁気検出素子4の周囲における外乱磁束の分布のばらつき、及び補正のパラメータのずれがさらに抑制され、磁気検出素子4へ入射する外乱磁束の影響がさらに抑制されるので、回転角度検出装置1における回転速度及び回転角度の検出精度の低下をさらに防止することができる。また、磁気検出素子4の出力の補正により外乱磁束を抑制して、回転角度検出装置1における回転速度及び回転角度の検出精度をさらに向上させることができる。
また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 回転角度検出装置、2 シャフト、3 磁石、4 磁気検出素子、5 バスバー、5a 周方向延出部分、6 シールド、6a 屈曲部、6b 貫通孔、7 ホルダ、7a 周壁、7b 凹部、8 固定材、9 制御回路部、10 パワー回路部、11 界磁回路部、12 追加のシールド、21、22、23 支持材、22a 嵌め合い部、24 ロータ、24a 界磁巻線、24b 界磁鉄心、25 ステータ、25a 電機子巻線、25b 固定子鉄心、26 制御回路基板、27、28 ケース、29 ブラケット、30 ベアリング、100 回転電機、200 電力変換装置

Claims (19)

  1. シャフトの軸方向一方側に設けられ、前記シャフトと一体回転する磁石と、
    前記磁石の軸方向一方側に、前記磁石とは間隔を空けて配置された磁気検出素子と、
    磁性体からなるシールドと、を備え、
    前記シールドは、電流が流れる配線部材の軸方向の位置と、前記磁気検出素子の軸方向の位置との間の軸方向の位置に配置され、軸方向に見て前記磁石の径方向外側に配置され、軸方向に見て前記配線部材と重複した部分を有し、
    前記配線部材は、前記磁気検出素子よりも前記磁石の側の軸方向の位置に配置され、軸方向に見て前記磁石の径方向外側に配置されている回転角度検出装置。
  2. 前記配線部材は、周方向に延出した周方向延出部分を有し、
    前記シールドは、軸方向に見て前記周方向延出部分と重複するように、周方向に延出している部分を有している請求項1に記載の回転角度検出装置。
  3. 前記配線部材は、軸方向に直交する同一平面上を湾曲した板状に形成され、板面が、軸方向に直交し、
    前記シールドは、軸方向に直交する同一平面上を湾曲した板状に形成され、板面が、軸方向に直交している請求項2に記載の回転角度検出装置。
  4. 前記磁気検出素子の軸方向一方側に、前記磁気検出素子とは間隔を空けて配置された追加のシールドを備え、
    前記シャフトは、磁束が軸方向に通る磁性材料からなり、
    前記磁気検出素子の磁気検出方向は、軸方向に直交している請求項1から3のいずれか1項に記載の回転角度検出装置。
  5. 前記追加のシールドは、板状に形成され、
    前記追加のシールドの板面は、軸方向に直交して配置されている請求項4に記載の回転角度検出装置。
  6. 前記シールドは、前記磁石の軸方向の位置と、前記磁気検出素子の軸方向の位置との間の軸方向の位置に配置されている請求項1から5のいずれか1項に記載の回転角度検出装置。
  7. 前記シールドの軸方向の位置と前記磁気検出素子の軸方向の位置との間の軸方向の距離は、前記シールドの軸方向の位置と前記配線部材の軸方向の位置との間の軸方向の距離よりも小さい請求項1から6のいずれか1項に記載の回転角度検出装置。
  8. 前記シールドの軸方向の幅は、前記シールドの径方向の幅よりも小さい請求項1から7のいずれか1項に記載の回転角度検出装置。
  9. 軸方向に見て、前記シールドの形状は、前記シャフトの周囲における前記配線部材の形状に相似しており、軸方向に見て相互に重複している請求項1から8のいずれか1項に記載の回転角度検出装置。
  10. 前記シールドは、周方向に延出する円環状である請求項1から8のいずれか1項に記載の回転角度検出装置。
  11. 前記シールドにおける径方向内側の端部が、軸方向の他方側に屈曲している請求項1から10のいずれか1項に記載の回転角度検出装置。
  12. 前記磁石は、軸方向の一方側にN(2以上の偶数)個の磁極を有し、軸方向の他方側にN個の磁極を有し、軸方向の一方側のN個の磁極と軸方向の他方側のN個の磁極とは、同じ周方向の位置に配置され、軸方向に隣接する2つの磁極は互いに異なり、周方向に隣接する2つの磁極が互いに異なる請求項1から11のいずれか1項に記載の回転角度検出装置。
  13. 前記シャフトにおける軸方向一方側の端部に固定され、前記磁石を保持するホルダを備え、
    前記ホルダは、前記磁石の径方向外側を覆い、磁性材料からなる周壁を有している請求項12に記載の回転角度検出装置。
  14. 前記磁気検出素子は、軸方向に直交した磁気検出方向を有した磁気抵抗効果素子である請求項1から13のいずれか1項に記載の回転角度検出装置。
  15. 前記シールドの軸方向の他方側と前記配線部材の軸方向の一方側とを相互に固定した支持材を備え、
    前記支持材は、絶縁材からなり、
    前記シールドと前記配線部材とは、電気的に絶縁されている請求項1から14のいずれか1項に記載の回転角度検出装置。
  16. 前記シールドは、前記支持材に設けられた嵌め合い部と嵌め合った切欠き部を有している請求項15に記載の回転角度検出装置。
  17. 前記シールドは、軸方向に貫通した貫通孔を有し、
    前記支持材は、前記貫通孔の内側の部分と、前記貫通孔及び前記貫通孔の周囲の前記シールドの軸方向一方側の部分とに設けられている請求項15または16に記載の回転角度検出装置。
  18. 前記シャフトにおける軸方向一方側の端部に固定され、前記磁石を保持するホルダを備え、
    前記ホルダは、前記磁石の径方向外側を間隔を空けて覆う筒状の周壁を有し、
    前記磁石の径方向外側と前記周壁との間に、固定材が充填されている請求項1から17のいずれか1項に記載の回転角度検出装置。
  19. 請求項1から18のいずれか1項に記載した回転角度検出装置と、
    前記シャフトと、
    前記配線部材と、
    界磁巻線及び前記界磁巻線が巻装された界磁鉄心を有し、前記シャフトと一体回転するロータと、
    前記ロータの径方向外側に配置され、電機子巻線が巻装された固定子鉄心を有したステータと、
    前記ロータ及び前記ステータの外側を覆うと共にベアリングを介して前記シャフトの一端側及び他端側を保持したブラケットと、を備えた回転電機。
JP2022010685A 2022-01-27 2022-01-27 回転角度検出装置及びそれを用いた回転電機 Pending JP2023109265A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022010685A JP2023109265A (ja) 2022-01-27 2022-01-27 回転角度検出装置及びそれを用いた回転電機
FR2206933A FR3132141A1 (fr) 2022-01-27 2022-07-07 Dispositif de detection d'angle de rotation et machine electrique rotative l'utilisant
US17/871,299 US20230238860A1 (en) 2022-01-27 2022-07-22 Rotation angle detection device and rotary electric machine using same
DE102022207764.4A DE102022207764A1 (de) 2022-01-27 2022-07-28 Drehwinkeldetektionsvorrichtung und elektrische drehmaschine, die diese verwendet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022010685A JP2023109265A (ja) 2022-01-27 2022-01-27 回転角度検出装置及びそれを用いた回転電機

Publications (1)

Publication Number Publication Date
JP2023109265A true JP2023109265A (ja) 2023-08-08

Family

ID=84369558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022010685A Pending JP2023109265A (ja) 2022-01-27 2022-01-27 回転角度検出装置及びそれを用いた回転電機

Country Status (4)

Country Link
US (1) US20230238860A1 (ja)
JP (1) JP2023109265A (ja)
DE (1) DE102022207764A1 (ja)
FR (1) FR3132141A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166410A (en) * 1980-05-27 1981-12-21 Citizen Watch Co Ltd Frictional error reducer for superminute torque gauge
JP2013228371A (ja) * 2012-03-29 2013-11-07 Nippon Soken Inc 回転角検出装置
WO2018198235A1 (ja) * 2017-04-26 2018-11-01 三菱電機株式会社 回転式アクチュエータ及びvgアクチュエータ
WO2020121566A1 (ja) * 2018-12-14 2020-06-18 パナソニックIpマネジメント株式会社 磁気センサユニット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3086563B2 (ja) 1993-02-27 2000-09-11 愛三工業株式会社 回転角度センサ
DE202007011837U1 (de) * 2007-01-08 2007-12-06 Asm Automation Sensorik Messtechnik Gmbh Winkelsensor
JP6384720B2 (ja) * 2014-07-30 2018-09-05 株式会社デンソー 回転角度検出装置
JP6260039B2 (ja) * 2014-12-16 2018-01-17 日立オートモティブシステムズ株式会社 回転角検出装置およびパワーステアリング装置
DE102016100499A1 (de) * 2016-01-13 2017-07-13 Fraba B.V. Anordnung eines Drehwinkelmesssystems an einem Gehäuse
DE102016002417B4 (de) * 2016-03-02 2017-12-14 Infineon Technologies Ag Winkelsensoranordnung und Elektrofahrrad mit einer solchen Winkelsensoranordnung
CN110291701A (zh) * 2017-02-07 2019-09-27 日本电产株式会社 马达
JP6490130B2 (ja) * 2017-03-24 2019-03-27 Tdk株式会社 磁気センサ
JP6826727B2 (ja) * 2017-03-31 2021-02-10 株式会社不二工機 電動弁
JP7140594B2 (ja) * 2018-08-10 2022-09-21 日本電産サンキョー株式会社 ステータユニットおよび真空ポンプ
DE102018221219B4 (de) * 2018-12-07 2022-03-24 Robert Bosch Gmbh Drehsensorvorrichtung für eine Lenkeinrichtung eines Kraftfahrzeugs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166410A (en) * 1980-05-27 1981-12-21 Citizen Watch Co Ltd Frictional error reducer for superminute torque gauge
JP2013228371A (ja) * 2012-03-29 2013-11-07 Nippon Soken Inc 回転角検出装置
WO2018198235A1 (ja) * 2017-04-26 2018-11-01 三菱電機株式会社 回転式アクチュエータ及びvgアクチュエータ
WO2020121566A1 (ja) * 2018-12-14 2020-06-18 パナソニックIpマネジメント株式会社 磁気センサユニット

Also Published As

Publication number Publication date
FR3132141A1 (fr) 2023-07-28
DE102022207764A1 (de) 2023-07-27
US20230238860A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
EP2905876B1 (en) Electric drive apparatus
US20140145564A1 (en) Rotary electric machine
US9444313B2 (en) Rotary electric machine and driving apparatus using the same
US9577497B2 (en) Rotating electric machine having a magnetic sensor that detects a rotation position of a rotor core
US10243432B2 (en) Rotation angle detection device
US7193343B2 (en) Electric motor
US7498701B2 (en) Controller-integrated rotating electrical machine
JP2007221976A (ja) ブラシレスモータ
JP6198775B2 (ja) 電動駆動装置
JP5505722B2 (ja) モータ、および、それを用いた電動パワーステアリング装置
JP2010104212A (ja) ブラシレスモータ
JP2007151314A (ja) モータ
JPWO2016166796A1 (ja) 電動駆動装置
JP4073759B2 (ja) 車両用回転電機
JP2010115022A (ja) ブラシレスモータ
JP7043917B2 (ja) モータ
US11670991B2 (en) Electric driving apparatus
JP2023109265A (ja) 回転角度検出装置及びそれを用いた回転電機
US11063503B2 (en) Brushless motor
US20150171688A1 (en) Vehicle brushless ac generator
JP2018197728A (ja) 液面レベルセンサ
JP7254146B1 (ja) 回転検出装置及びそれを用いた回転電機
JP2009011125A (ja) モータおよびバスバー
JPH11299200A (ja) 電動機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704