WO2018145344A1 - 一种氯化氢转化催化剂 - Google Patents

一种氯化氢转化催化剂 Download PDF

Info

Publication number
WO2018145344A1
WO2018145344A1 PCT/CN2017/076427 CN2017076427W WO2018145344A1 WO 2018145344 A1 WO2018145344 A1 WO 2018145344A1 CN 2017076427 W CN2017076427 W CN 2017076427W WO 2018145344 A1 WO2018145344 A1 WO 2018145344A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
hydrogen chloride
catalyst
conversion catalyst
chloride conversion
Prior art date
Application number
PCT/CN2017/076427
Other languages
English (en)
French (fr)
Inventor
杨建明
惠丰
袁俊
吕剑
赵锋伟
张前
李亚妮
李江伟
余秦伟
王为强
梅苏宁
Original Assignee
西安近代化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安近代化学研究所 filed Critical 西安近代化学研究所
Publication of WO2018145344A1 publication Critical patent/WO2018145344A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/125Halogens; Compounds thereof with scandium, yttrium, aluminium, gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride

Definitions

  • the invention belongs to the field of catalysts, and in particular relates to a conversion catalyst for chlorine gas produced by hydrogen chloride oxidation.
  • Chlorine is an important chemical raw material widely used in new materials industries such as polyurethane, silicone, chlorinated hydrocarbon, epoxy resin, chlorinated rubber and chlorinated high polymer. It is used in new energy industries such as polysilicon manufacturing. In the fine chemical industry, such as disinfectants, detergents, food additives, cosmetic auxiliaries, etc., it is used in the synthesis of glycerol, chlorobenzene series, chloroacetic acid, benzyl chloride, PCl 3 and other pesticides/pharmaceutical industries, as well as in papermaking, textile, Metallurgical and petrochemical industries.
  • the active component mainly uses a metal element such as copper, chromium, ruthenium or gold.
  • ruthenium and gold catalysts are expensive; the active components of copper catalysts are prone to loss at high temperature; chromium catalysts have the advantages of better activity, higher stability and lower price, but there are certain environmental pollution problems. It can be seen that how to develop a catalyst that is cheap, environmentally friendly, and stable at high temperatures while meeting high conversion requirements is a challenging technical problem.
  • the present invention proposes a hydrogen chloride conversion catalyst by compounding a metal as a main active component.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the above background art, and an object of the invention is to provide a low conversion, environmentally friendly, high temperature stable high conversion hydrogen chloride conversion catalyst.
  • the catalyst can ensure the high conversion rate without using conventional metal elements such as copper, chromium, ruthenium and gold as active components while ensuring the stability of the catalyst.
  • the catalyst of the present invention overcomes the deficiencies of existing copper, chromium, ruthenium and gold-based metal catalysts by compounding one or more metals of Nb, Mo, Ta, W; by adding an auxiliary agent K + or Cs + enhances the performance and stability of the catalyst; the specific surface area of the catalyst is increased by pyrolysis of ammonium fluoride by high temperature decomposition.
  • the catalyst uses silicon oxide as a filling pore-forming agent and ammonium fluoride as a fluorinating agent.
  • ammonium fluoride is decomposed into ammonia gas and hydrogen fluoride gas, and hydrogen fluoride reacts with silicon oxide to form silicon tetrafluoride and water vapor.
  • a hydrogen chloride conversion catalyst characterized in that the catalyst precursor mass percentage composition is: component A: 85% to 90%, component B: 5% to 10%, component C: 1% to 2%, component D : 3% to 5%, component E: 1% to 2%; wherein component A is activated alumina, component B is one or more of Nb, Mo, Ta, W, and component C is K + or Cs + , component D is ammonium fluoride, and component E is silicon oxide.
  • the hydrogen chloride conversion catalyst of the present invention is prepared by the following method:
  • the homemade activated alumina is placed in a mortar and ground for 15 minutes, and dried;
  • step b) mixing the solid powder obtained in step a) with one or more oxides containing Nb, Mo, Ta, W, placed in a mortar for 15 minutes, and dried;
  • step b) adding the solid powder obtained in the step b) to a solution containing one or more of Nb 5+ , Mo 5+ , Ta 5+ , W 6+ , the mass ratio of the solid powder to the solution is 1:10 , stirring for 60 min;
  • step d) The material obtained in step d) is uniformly mixed with ammonium fluoride and silicon oxide, granulated and pressed, and the catalyst precursor is calcined at a temperature of 300-700 ° C for 8-12 h to obtain a hydrogen chloride conversion catalyst.
  • the hydrogen chloride conversion catalyst is suitable for the oxidation reaction of hydrogen chloride gas to form chlorine gas.
  • the hydrogen chloride conversion catalyst of the present invention has high reactivity. After 24 h of reaction, the hydrogen chloride reaction selectivity was close to 100% and the conversion was about 98%.
  • the hydrogen chloride conversion catalyst of the present invention is less expensive than the rhodium and gold catalysts.
  • the hydrogen chloride conversion catalyst of the present invention is less polluting than the chromium catalyst.
  • the hydrogen chloride conversion catalyst of the present invention has higher temperature stability than the copper catalyst.
  • the hydrogen chloride conversion catalyst activity evaluation device is a conventional fixed bed tubular reactor, and the reactor size is The catalyst is charged into the reactor, heated to the reaction temperature, and the gas is fed through a pressure reducing valve and a flow meter, and the sample is analyzed after the reaction is stabilized.
  • the reactor outlet is mainly a mixture of chlorine, oxygen, hydrogen chloride and water vapor.
  • the amount of oxidizing chlorine is measured based on the principle that chlorine gas is easily absorbed by the potassium iodide solution, or by the reducing property of iodide ions.
  • the gas sample is passed through the potassium iodide solution, the chlorine gas is absorbed, the iodine is replaced, and the precipitated iodine is titrated with the sodium thiosulfate standard solution, which is the iodometric method (or the indirect iodometric method, the titration iodine method).
  • the titration process uses starch as an indicator. Since HCl is extremely soluble in water, HCl is also absorbed while Cl 2 is absorbed by the KI solution. After completion of the titration with the sodium thiosulfate solution, the amount of HCl can be titrated with a sodium hydroxide standard solution using phenolphthalein as an indicator.
  • the specific operation steps are as follows: After the system operation is stable, prepare a 100% KI solution 100ml at regular intervals, switch the reactor outlet three-way valve, and pass the mixed gas after the reaction to the constant volume (100 Mg) in potassium iodide solution, absorb for 3 minutes, after absorption, transfer the absorption liquid into the Erlenmeyer flask, titrate with 0.1mol/l sodium thiosulfate standard solution, use starch as indicator; then, use phenolphthalein as indicator Unreacted HCl was titrated with a 0.1 mol/l sodium hydroxide standard solution.
  • d indicates the number of milliliters of NaOH solution used for titration, ml
  • a fixed bed tubular reactor is charged with a quantity of catalyst, the components of which are carried out as follows:
  • component A is activated alumina
  • component B is Nb 2 O 5 and NbCl 5
  • component C is K +
  • component D is ammonium fluoride
  • component E is silicon oxide.
  • the hydrogen chloride conversion catalyst of the present invention is produced by the following method.
  • step b) mixing the solid powder obtained in step a) with Nb 2 O 5 , placing it in a mortar for 15 minutes, and drying;
  • step b) the solid powder obtained in step b) is added to the solution containing NbCl 5 , the mass ratio of the solid powder to the Nb 5 + solution is 1:10, stirred for 15 min;
  • step d) The material obtained in the step d) is uniformly mixed with ammonium fluoride and silicon oxide, granulated and pressed, and the catalyst precursor is calcined at a temperature of 300 ° C for 8 hours to obtain a hydrogen chloride conversion catalyst.
  • the hydrogen chloride conversion catalyst precursor of the present invention is carried out in the following weight percentages:
  • component A is activated alumina
  • component B is WO 3 and MoCl 5
  • component C is K +
  • component D is ammonium fluoride
  • component E is silicon oxide.
  • the hydrogen chloride conversion catalyst of the present invention is produced by the following method.
  • step b) mixing the solid powder obtained in step a) with WO 3 , placing it in a mortar for 15 minutes, and drying;
  • step b) the solid powder obtained in step b) is added to the solution containing NbCl 5 , the mass ratio of the solid powder to the Nb 5 + solution is 1:10, stirred for 15 min;
  • step d) The material obtained in the step d) is uniformly mixed with ammonium fluoride and silicon oxide, granulated and pressed, and the catalyst precursor is calcined at a temperature of 600 ° C for 12 h to obtain a hydrogen chloride conversion catalyst.
  • the hydrogen chloride conversion catalyst precursor of the present invention is carried out in the following weight percentages:
  • component A is activated alumina
  • component B is MoO 3 and TaCl 5
  • component C is K +
  • component D is ammonium fluoride
  • component E is silicon oxide.
  • the preparation procedure of the hydrogen chloride conversion catalyst of the present invention is the same as that of the first embodiment except that the component B is MoO 3 and TaCl 5 , and the calcination treatment is carried out for 10 hours at a temperature of 450 ° C in the step e, and the obtained hydrogen chloride conversion catalyst is labeled as C.
  • the hydrogen chloride conversion catalyst precursor of the present invention is carried out in the following weight percentages:
  • component A is activated alumina
  • component B is Ta 2 O 5 and WCl 6
  • component C is Cs +
  • component D is ammonium fluoride
  • component E is silicon oxide.
  • the preparation procedure of the hydrogen chloride conversion catalyst of the invention is the same as that of the first embodiment, except that the component B is Ta 2 O 5 and WCl 6 , the component C is Cs + , and the temperature is 700 ° C in the step e, the calcination treatment is carried out for 10 h, and the obtained hydrogen chloride is obtained.
  • the conversion catalyst is labeled D.
  • the hydrogen chloride conversion catalyst precursor of the present invention is carried out in the following weight percentages:
  • component A is activated alumina
  • component B is Nb 2 O 5 , MoO 3 and NbCl 5
  • component C is Cs +
  • component D is ammonium fluoride
  • component E is silicon oxide.
  • the preparation procedure of the hydrogen chloride conversion catalyst of the invention is the same as that of the first embodiment, except that the component B is Nb 2 O 5 , MoO 3 and NbCl 5 , the component C is Cs + , and the calcination treatment is carried out for 12 hours in the step e at a temperature of 500 ° C.
  • the resulting hydrogen chloride conversion catalyst is labeled E.
  • the hydrogen chloride conversion catalyst precursor of the present invention is carried out in the following weight percentages:
  • component A is activated alumina
  • component B is Ta 2 O 5 , MoO 3 and NbCl 5
  • component C is K +
  • component D is ammonium fluoride
  • component E is silicon oxide.
  • the preparation procedure of the hydrogen chloride conversion catalyst of the present invention is the same as that of Example 1, except that the component B is Ta 2 O 5 , MoO 3 and NbCl 5 , and the obtained hydrogen chloride conversion catalyst is labeled F.
  • the hydrogen chloride conversion catalyst precursor of the present invention is carried out in the following weight percentages:
  • component A is activated alumina
  • component B is Nb 2 O 5 and MoCl 5 , WCl 6
  • component C is Cs +
  • component D is ammonium fluoride
  • component E is silicon oxide.
  • the preparation procedure of the hydrogen chloride conversion catalyst of the invention is the same as that of the first embodiment, except that the component B is Sb 3+ , Bi 3+ and Pb 4+ , the component C is Cs + , and the calcination treatment is carried out in the step e at a temperature of 700 ° C. At 8 h, the resulting hydrogen chloride conversion catalyst was labeled G.
  • the hydrogen chloride conversion catalysts A, B, C, D, E, F, and G prepared in Examples 1 to 7 were charged into a fixed bed tubular reactor, the catalyst loading amount was 60 mL, and the reaction was heated to 330 ° C under N 2 protection. The material was fed through a pressure reducing valve. The molar ratio of hydrogen chloride to oxygen was 1:2, the temperature in the reactor was 380 ° C, and the pressure was 0.1 MPa. The reaction was analyzed after 24 hours of stable reaction. The statistics are shown in Table 1. .
  • the hydrogen chloride conversion catalyst of the present invention has high reactivity. After 24 h of reaction, the hydrogen chloride reaction selectivity was close to 100% and the conversion was about 98%.
  • the hydrogen chloride conversion catalyst of the present invention is less expensive than the rhodium and gold catalysts.
  • the hydrogen chloride conversion catalyst of the present invention is less polluting than the chromium catalyst.
  • the hydrogen chloride conversion catalyst of the present invention has higher temperature stability than the copper catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种氯化氢转化催化剂,其特征在于催化剂前驱体质量百分组成为:组分A:85%~90%、组分B:5%~10%、组分C:1%~2%、组分D:3%~5%、组分E:1%~2%,其中组分A为活性氧化铝,组分B为Nb、Mo、Ta、W中的一种或多种,组分C为K +或Cs +,组分D为氟化铵,组分E为氧化硅。催化剂的制备步骤包括:首先,采用组分A与部分组分B进行混合研磨,焙烧,制得催化剂粉末;然后,采用剩余组分B复配组分C对催化剂粉末进行浸渍改性;最后,再与组分D和组分E混合、造粒、压制成型,焙烧后得到高转化率的氯化氢转化催化剂。该催化剂适用于氯化氢气相氧化反应生成氯气。

Description

一种氯化氢转化催化剂 技术领域
本发明属于催化剂领域,具体涉及一种氯化氢氧化制氯气的转化催化剂。
背景技术
氯气是一种重要的化工基础原料,广泛应用于聚氨酯、有机硅、氯化烃、环氧树脂、氯化橡胶、氯化高聚物等新材料行业,应用于多晶硅制造等新能源行业,应用于消毒剂、洗涤剂、食品添加剂、化妆品助剂等生活精细化工行业,应用于合成甘油、氯苯系列、氯乙酸、氯化苄、PCl3等农药/医药行业,以及应用于造纸、纺织、冶金和石油化工等行业。
工业上几乎所有的氯气都是通过电解氯化钠水溶液的方法产生,该方法有两个很大的问题:首先是其耗电量达到2760kWh/吨,整个氯碱工业耗电约占全国总工业耗电的5%左右;其次是在生产氯气的同时联产氢氧化钠,由于最近几年耗氯行业的快速发展,已经导致了大量的氢氧化钠产能过剩。因此寻找一个新的氯气来源,对于耗氯行业的进一步发展扩张来说是一个必要的条件。
另一方面,由于大部分耗氯行业中,氯往往作为反应介质的方式使用,并不进入最终主产品立面,而以副产氯化氢的形式排出反应体系。而随着耗氯行业的快速发展,氯化氢的出路已经越来越难。制成副产盐酸的附加值低,运输和储存成本高、销售困难,而且其在后续使用中还会产生20~50倍的废水排放,对环境产生极大的压力;而联产PVC的话,目前来说国内的PVC产能已经大量过剩,出口量、价格和开工率一直不容乐观。因此,在目前形势下,氯化氢出路难已经成为了约束耗氯行业进一步发展的瓶颈问题之一。
如果能把副产的氯化氢直接制成氯气,那么就能够实现“氯”的闭环式循环,从而在根本上解决耗氯行业的上下游两个瓶颈。以氧气或空气作为氧化剂氧化氯化氢制造氯气,是一个很好的途径。其化学计量式可以表示为:
Figure PCTCN2017076427-appb-000001
目前能够实现该过程的工业过程有三类,分别是催化氧化法、循环氧化法以及氧化电解法。其中循环氧化法的典型代表是杜邦公司,该过程用硫酸作为循环的氧化介质,使用硝酸为催化剂,因此设备投足非常大、操作复杂、运行成本高、灵活性差。氧化电解法能够很好的缓解目前氯碱行业中氯碱不平衡的问题,但是其耗电量仍然超过1700kWh/吨,并没有在根本上解决氯气生产的高耗电问题,而且相对离子膜电解来说,氧化电解盐酸的方法的设备更复杂,经济性和可操作性均没有优势。
尽管氯化氢催化氧化的设备投资较大,但是根据现有技术,可估算其耗电大约只有230kWh/吨,并且是一个绿色环保的化工过程。
在已报道的氯化氢转化催化剂中,活性组分主要采用铜、铬、钌、金等金属元素。其中钌、金系催化剂价格昂贵;铜系催化剂活性组分高温时易于流失;铬系催化剂具有活性较好、稳定性较高、价格低廉等优点,但存在一定的环境污染问题。可见,如何开发出廉价、环保、高温稳定而又同时满足高转化率需求的催化剂是具有挑战性的技术难题。
基于以上背景,本发明提出了一种通过复配金属作为主要活性组分的氯化氢转化催化剂。
发明内容
本发明所要解决的技术问题是克服上述背景技术的不足,目的是提供一种廉价、环保、高温稳定的高转化率氯化氢转化催化剂。
催化剂如何在保证高转化率的情况下,不使用传统的铜、铬、钌、金等金属元素作为活性组分,同时保证催化剂的稳定性,是本发明的重点。
本发明中的催化剂通过对Nb、Mo、Ta、W中的一种或多种金属进行复配,克服了现有铜、铬、钌、金系金属催化剂的不足;通过添加助剂K+或 Cs+,增强了催化剂的性能和稳定性;通过氟化铵高温分解造孔,增大了催化剂的比表面积。
催化剂通过使用氧化硅作为填充造孔剂,使用氟化铵作为氟化剂,在催化剂焙烧过程中氟化铵分解为氨气和氟化氢气体,氟化氢与氧化硅反应生成四氟化硅和水蒸汽,从而在催化剂中制造出大量微孔道,增大催化剂比表面积,反应方程式如下:
SiO2+4NH4F→SiF4↑+4NH3↑+2H2O↑
本发明技术方案如下:
一种氯化氢转化催化剂,其特征在于催化剂前驱体质量百分组成为:组分A:85%~90%、组分B:5%~10%、组分C:1%~2%、组分D:3%~5%、组分E:1%~2%;其中组分A为活性氧化铝,组分B为Nb、Mo、Ta、W中的一种或多种,组分C为K+或Cs+,组分D为氟化铵、组分E为氧化硅。本发明的氯化氢转化催化剂通过下述方法制备得到:
a)将自制的活性氧化铝置入研钵中研磨15min,烘干;
b)将步骤a)所得的固体粉末与含有Nb、Mo、Ta、W中的一种或多种氧化物混合,置入研钵中研磨15min,烘干;
c)将步骤b)所得的固体粉末加入到含有Nb5+、Mo5+、Ta5+、W6+中的一种或多种的溶液中,固体粉末与溶液的质量比为1:10,搅拌60min;
d)将含K+或Cs+的溶液加入上述步骤c)所得的溶液中,固体粉末与K+或Cs+溶液的质量比为1:1,80℃浸渍8h,过滤,洗涤,烘干;
e)步骤d)所得的物料与氟化铵和氧化硅混合均匀,造粒,压制成型,该催化剂前驱体在温度300-700℃条件下,焙烧处理8-12h,得到氯化氢转化催化剂。
所述氯化氢转化催化剂适用于氯化氢气相氧化反应生成氯气。
本发明具有以下优点:
(1)本发明的氯化氢转化催化剂反应活性高。在反应24h后,氯化氢反应选择性接近100%,转化率约98%。
(2)本发明的氯化氢转化催化剂,相比钌、金类催化剂价格低廉。
(3)本发明的氯化氢转化催化剂,相比铬类催化剂对环境污染小。
(4)本发明的氯化氢转化催化剂,相比铜类催化剂高温稳定性更好。
具体实施方式
下面结合实施例对本发明做进一步详细说明。
本发明中,氯化氢转化催化剂活性评价装置为普通固定床管式反应器,反应器尺寸为
Figure PCTCN2017076427-appb-000002
将催化剂装填进反应器,加热至反应温度,气体通过减压阀和流量计后进料,稳定反应后取样分析。
氯化氢转化催化剂活性评价实验条件:反应温度300-400℃,氯化氢与氧气的摩尔比/体积比为1:0.5-3,反应压力常压或微正压。
反应器出口主要为氯气、氧气、氯化氢和水蒸汽的混合物,分析其中的氯气含量并计算一定时间间隔内氯气的生成量,就可以计算反应的转化率,以考察催化剂的活性和反应条件的影响规律。
根据氯气易被碘化钾溶液吸收的原理,或者说利用碘离子的还原性,测定具有氧化性的氯的量。当气体试样通入碘化钾溶液时,氯气被吸收,置换出碘,析出的碘再用硫代硫酸钠标准溶液滴定,此即为碘量法(或间接碘量法、滴定碘法)。
滴定过程采用淀粉作为指示剂。由于HCl极易溶于水,所以在Cl2被KI溶液吸收的同时,HCl也被同时吸收。用硫代硫酸钠溶液滴定结束后,可用氢氧化钠标准溶液滴定HCl的量,该滴定分析用酚酞作指示剂。
具体操作步骤如下:体系操作稳定后,每隔一定时间配制一份20%的KI溶液100ml,切换反应器出口三通阀,将反应后混合气体通入到定容的(100 ml)碘化钾溶液中,吸收3分钟,吸收后将吸收液移入锥形瓶中,用0.1mol/l的硫代硫酸钠标准溶液滴定,以淀粉作指示剂;之后接着,以酚酞作指示剂,用0.1mol/l氢氧化钠标准溶液滴定未反应的HC1。
HCl转化率:
Conv%=b/(b+d)*100%
b表示滴定耗用Na2S2O3溶液毫升数,ml
d表示滴定耗用NaOH溶液毫升数,ml
下面结合实施例对本发明做进一步详细说明。
实施例1
在固定床管式反应器中装入一定量的催化剂,催化剂的组分按照如下重量百分比实施:
Figure PCTCN2017076427-appb-000003
其中组分A为活性氧化铝;组分B为Nb2O5和NbCl5;组分C为K+,组分D为氟化铵,组分E为氧化硅。
本发明的氯化氢转化催化剂通过下述方法制备得到。
a)将活性氧化铝置入研钵中研磨15min,烘干;
b)将步骤a)所得的固体粉末与Nb2O5混合,置入研钵中研磨15min,烘干;
c)将步骤b)所得的固体粉末加入到含有NbCl5的溶液中,固体粉末与Nb5+溶液的质量比为1:10,搅拌15min;
d)将含有K+的溶液加入上述步骤c)所得的溶液中固体粉末与K+溶液的 质量比为1:1,80℃浸渍8h,过滤,洗涤,烘干;
e)步骤d)所得的物料与氟化铵和氧化硅混合均匀,造粒,压制成型,该催化剂前驱体在温度300℃条件下,焙烧处理8h,得到氯化氢转化催化剂。
实施例2
本发明氯化氢转化催化剂前驱体按照如下重量百分比实施:
Figure PCTCN2017076427-appb-000004
其中组分A为活性氧化铝;组分B为WO3和MoCl5;组分C为K+,组分D为氟化铵,组分E为氧化硅。本发明的氯化氢转化催化剂通过下述方法制备得到。
a)将活性氧化铝置入研钵中研磨15min,烘干;
b)将步骤a)所得的固体粉末与WO3混合,置入研钵中研磨15min,烘干;
c)将步骤b)所得的固体粉末加入到含有NbCl5的溶液中,固体粉末与Nb5+溶液的质量比为1:10,搅拌15min;
d)将含有K+的溶液加入上述步骤c)所得的溶液中,固体粉末与K+溶液的质量比为1:1,80℃浸渍8h,过滤,洗涤,烘干;
e)步骤d)所得的物料与氟化铵和氧化硅混合均匀,造粒,压制成型,该催化剂前驱体在温度600℃条件下,焙烧处理12h,得到氯化氢转化催化剂。
实施例3
本发明氯化氢转化催化剂前驱体按照如下重量百分比实施:
Figure PCTCN2017076427-appb-000005
其中组分A为活性氧化铝;组分B为MoO3和TaCl5;组分C为K+,组分D为氟化铵,组分E为氧化硅。
本发明氯化氢转化催化剂制备步骤同实施例1,所不同的是组分B为MoO3和TaCl5,步骤e中温度为450℃条件下焙烧处理10h,所得氯化氢转化催化剂标记为C。
实施例4
本发明氯化氢转化催化剂前驱体按照如下重量百分比实施:
Figure PCTCN2017076427-appb-000006
其中组分A为活性氧化铝,组分B为Ta2O5和WCl6,组分C为Cs+,组分D为氟化铵,组分E为氧化硅。
本发明氯化氢转化催化剂制备步骤同实施例1,所不同的是组分B为Ta2O5和WCl6,组分C为Cs+,步骤e中温度为700℃条件下焙烧处理10h,所得氯化氢转化催化剂标记为D。
实施例5
本发明氯化氢转化催化剂前驱体按照如下重量百分比实施:
Figure PCTCN2017076427-appb-000007
Figure PCTCN2017076427-appb-000008
其中组分A为活性氧化铝;组分B为Nb2O5、MoO3和NbCl5;组分C为Cs+,组分D为氟化铵,组分E为氧化硅。
本发明氯化氢转化催化剂制备步骤同实施例1,所不同的是组分B为Nb2O5,MoO3和NbCl5,组分C为Cs+,步骤e中温度为500℃条件下焙烧处理12h,所得氯化氢转化催化剂标记为E。
实施例6
本发明氯化氢转化催化剂前驱体按照如下重量百分比实施:
Figure PCTCN2017076427-appb-000009
其中组分A为活性氧化铝,组分B为Ta2O5、MoO3和NbCl5,组分C为K+,组分D为氟化铵,组分E为氧化硅。
本发明氯化氢转化催化剂制备步骤同实施例1,所不同的是组分B为Ta2O5、MoO3和NbCl5,所得氯化氢转化催化剂标记为F。
实施例7
本发明氯化氢转化催化剂前驱体按照如下重量百分比实施:
Figure PCTCN2017076427-appb-000010
Figure PCTCN2017076427-appb-000011
其中组分A为活性氧化铝;组分B为Nb2O5和MoCl5、WCl6;组分C为Cs+,组分D为氟化铵,组分E为氧化硅。
本发明氯化氢转化催化剂制备步骤同实施例1,所不同的是组分B为Sb3+、Bi3+和Pb4+,组分C为Cs+,步骤e中温度为700℃条件下焙烧处理8h,所得氯化氢转化催化剂标记为G。
将实施例1~7所制备的氯化氢转化催化剂A、B、C、D、E、F、G装填进固定床管式反应器,催化剂装填量为60mL,N2保护下加热至330℃,反应物料通过减压阀进料,进料为氯化氢与氧气的摩尔比为1:2,反应器中的温度为380℃,压力为0.1MPa,稳定反应24h后分析反应结果,统计如表1所示。
表1氯化氢转化催化剂反应结果
氯化氢氧化制氯气催化剂 转化率% 选择性%
A 98.3 100.0
B 97.9 99.9
C 98.2 100.0
D 97.8 100.0
E 98.2 99.9
F 97.7 100.0
G 98.3 100.0
工业实用性
(1)本发明的氯化氢转化催化剂反应活性高。在反应24h后,氯化氢反应选择性接近100%,转化率约98%。
(2)本发明的氯化氢转化催化剂,相比钌、金类催化剂价格低廉。
(3)本发明的氯化氢转化催化剂,相比铬类催化剂对环境污染小。
(4)本发明的氯化氢转化催化剂,相比铜类催化剂高温稳定性更好。

Claims (2)

  1. 一种氯化氢转化催化剂,催化剂前驱体质量百分组成为:组分A:85%~90%、组分B:5%~10%、组分C:1%~2%、组分D:3%~5%、组分E:1%~2%;其中组分A为活性氧化铝,组分B为Nb、Mo、Ta、W中的一种或多种,组分C为K+或Cs+,组分D为氟化铵、组分E为氧化硅;其特征在于使用以下方法制备:
    a)将自制的活性氧化铝置入研钵中研磨15min,烘干;
    b)将步骤a)所得的固体粉末与含有Nb、Mo、Ta、W中的一种或多种氧化物混合,置入研钵中研磨15min,烘干;
    c)将步骤b)所得的固体粉末加入到含有Nb5+、Mo5+、Ta5+、W6+中的一种或多种的溶液中,固体粉末与溶液的质量比为1:10,搅拌60min;
    d)将含K+或Cs+的溶液加入上述步骤c)所得的溶液中,固体粉末与K+或Cs+溶液的质量比为1:1,80℃浸渍8h,过滤,洗涤,烘干;
    e)步骤d)所得的物料与氟化铵和氧化硅混合均匀,造粒,压制成型,该催化剂前驱体在温度300-700℃条件下,焙烧处理8-12h,得到氯化氢转化催化剂。
  2. 如权利1所述的氯化氢转化催化剂,其特征在于催化剂适用于氯化氢气相氧化反应生成氯气。
PCT/CN2017/076427 2017-02-09 2017-03-13 一种氯化氢转化催化剂 WO2018145344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710071486.1 2017-02-09
CN201710071486.1A CN106902848B (zh) 2017-02-09 2017-02-09 一种氯化氢转化催化剂

Publications (1)

Publication Number Publication Date
WO2018145344A1 true WO2018145344A1 (zh) 2018-08-16

Family

ID=59208330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076427 WO2018145344A1 (zh) 2017-02-09 2017-03-13 一种氯化氢转化催化剂

Country Status (2)

Country Link
CN (1) CN106902848B (zh)
WO (1) WO2018145344A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097232B (zh) * 2017-12-18 2020-10-02 万华化学集团股份有限公司 一种用于氯化氢氧化制氯气的催化剂及其制备方法和应用
CN109675582B (zh) * 2018-12-25 2021-11-23 西安近代化学研究所 一种氯化氢氧化制氯气催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123389A (en) * 1977-02-02 1978-10-31 Allied Chemical Corporation Pyrogenic silica or titania or alpha-alumina cuprous chloride catalyst of hydrogen chloride/oxygen reaction
CN1684903A (zh) * 2002-09-26 2005-10-19 巴斯福股份公司 用于氯化氢催化氧化的催化剂
CN101070140A (zh) * 2007-06-18 2007-11-14 南京工业大学 一种氯化氢氧化与脱水耦合生产氯气的方法
CN105289631A (zh) * 2015-11-25 2016-02-03 上海氯碱化工股份有限公司 氯化氢催化氧化制氯气的催化剂及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1194383B (de) * 1963-02-07 1965-06-10 Knapsack Ag Verfahren zur Herstellung von Alkali- und/oder Erdalkaliphosphaten
FR1430215A (fr) * 1965-01-07 1966-03-04 Kuhlmann Ets Procédé pour l'obtention de chlore et d'acide sulfurique à partir d'acide chlorhydrique et d'anhydride sulfureux
DE102005040286A1 (de) * 2005-08-25 2007-03-01 Basf Ag Mechanisch stabiler Katalysator auf Basis von alpha-Aluminiumoxid
DE102009034773A1 (de) * 2009-07-25 2011-01-27 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation an nanostrukturierten Rutheniumträgerkatalysatoren
RU2485046C1 (ru) * 2012-01-10 2013-06-20 Учреждение Российской академии наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН) Способ получения хлора из хлороводорода с помощью вольфрамсодержащих соединений
CN103285882B (zh) * 2012-02-27 2015-04-15 清华大学 失活催化剂的再生方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123389A (en) * 1977-02-02 1978-10-31 Allied Chemical Corporation Pyrogenic silica or titania or alpha-alumina cuprous chloride catalyst of hydrogen chloride/oxygen reaction
CN1684903A (zh) * 2002-09-26 2005-10-19 巴斯福股份公司 用于氯化氢催化氧化的催化剂
CN101070140A (zh) * 2007-06-18 2007-11-14 南京工业大学 一种氯化氢氧化与脱水耦合生产氯气的方法
CN105289631A (zh) * 2015-11-25 2016-02-03 上海氯碱化工股份有限公司 氯化氢催化氧化制氯气的催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106902848B (zh) 2019-06-28
CN106902848A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
Lv et al. Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis
Hu et al. Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions
CN102000583B (zh) 一种氯化氢氧化制氯气的催化剂及其制备方法
Liu et al. Achieving ultrahigh electrocatalytic NH 3 yield rate on Fe-doped Bi 2 WO 6 electrocatalyst
Han et al. Cobalt polyoxometalate-derived CoWO4 oxygen-evolving catalysts for efficient electrochemical and photoelectrochemical water oxidation
CN101357337B (zh) 一种氯化氢氧化催化剂及其制备方法
CN102125849B (zh) 一种合成甲烷催化剂的制备方法和催化剂前驱体
CN106861707B (zh) 一种氯化氢氧化制氯气催化剂的制备方法
WO2018145344A1 (zh) 一种氯化氢转化催化剂
JP6573494B2 (ja) アンモニア合成触媒用組成物およびその製造方法、ならびにアンモニアの合成方法
CN115155632B (zh) 一种氯化氢氧化催化剂的制备方法
CN100503034C (zh) 一种用于制备催化剂时的二氧化钛负载方法及用该方法制备的双功能硫磺回收催化剂
KR960010775B1 (ko) 염화수소의 산화에 의한 염소제조용 염화세륨-삼산화이크롬 촉매 및 이의 제조방법
CN113663697A (zh) 一种异质结型类芬顿催化剂、制备方法及专用系统和方法
CN104326940A (zh) 一种氨氧化合成2,6-二氯苯腈的方法
CN112536032A (zh) 一种用于氯化氢氧化制氯气的抗高温烧结催化剂及其制备方法
CN109675582B (zh) 一种氯化氢氧化制氯气催化剂及其制备方法
CN112657524A (zh) 一种用于乙炔氢氯化制氯乙烯的非汞催化剂及其制备和使用方法
CN108585055A (zh) 一种过渡金属钒硫化物mv2s4的制备方法
WO2022183513A1 (zh) 一种电解槽出口淡盐水的催化脱氯工艺
CN101489919A (zh) 通过气相氧化反应制备氯的方法
CN108786866A (zh) 一种用于乙炔法合成氯乙烯的无汞催化剂及其制备方法
CN105664949A (zh) 一种铜锌催化剂的制备方法
CN104496849A (zh) 一种氨氧化合成3,4-二氯苯腈的方法
JPS62191403A (ja) 塩素の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895791

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17895791

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2020).

122 Ep: pct application non-entry in european phase

Ref document number: 17895791

Country of ref document: EP

Kind code of ref document: A1