WO2018143420A1 - 液体供給システム - Google Patents

液体供給システム Download PDF

Info

Publication number
WO2018143420A1
WO2018143420A1 PCT/JP2018/003632 JP2018003632W WO2018143420A1 WO 2018143420 A1 WO2018143420 A1 WO 2018143420A1 JP 2018003632 W JP2018003632 W JP 2018003632W WO 2018143420 A1 WO2018143420 A1 WO 2018143420A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump chamber
liquid
opening
flow path
supply system
Prior art date
Application number
PCT/JP2018/003632
Other languages
English (en)
French (fr)
Inventor
清隆 古田
森 浩一
寛 ▲高▼田
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to US16/482,394 priority Critical patent/US20200032785A1/en
Priority to RU2019122417A priority patent/RU2019122417A/ru
Priority to CN201880006946.5A priority patent/CN110177944A/zh
Priority to KR1020197021572A priority patent/KR20190098228A/ko
Priority to JP2018566133A priority patent/JPWO2018143420A1/ja
Priority to EP18748795.4A priority patent/EP3578820A1/en
Publication of WO2018143420A1 publication Critical patent/WO2018143420A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/022Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/082Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0824Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention relates to a liquid supply system for supplying a liquid.
  • Patent Document 1 As a liquid supply system that circulates liquid through a circulation channel, a system using a bellows pump having a pump chamber formed by a bellows is known (see Patent Document 1).
  • This system has two pump chambers arranged vertically in the vertical direction, and the bellows constituting each pump chamber is fixed to a shaft driven in the vertical direction by an actuator, and is moved in the vertical direction in conjunction with the movement of the shaft. Extends and contracts.
  • the entire pump device is housed in a vacuum vessel for heat insulation, and an actuator is installed above the vacuum vessel. It is desirable that the suction pipe for supplying the liquid to the pump apparatus from the outside and the delivery pipe for discharging the liquid from the pump apparatus to the outside are connected to the pump apparatus at a position as far as possible from the outside air for heat insulation. Therefore, the suction pipe and the delivery pipe enter the vacuum container from above the vacuum container, extend to a position lower than the pump apparatus, and are connected to the opening at the bottom of the pump apparatus in a U shape. By making piping connected with a pump apparatus into such a shape, the high heat insulation performance with respect to the heat from the outside is implement
  • the bellows pump having such a configuration is preferably used in an application for supplying an ultra-low temperature liquid such as liquid nitrogen or liquid helium to a cooled apparatus such as a superconducting device.
  • a process of cooling the components of the pump device from the room temperature to the temperature of the cryogenic liquid is required. This is because if the temperature of the constituent member is high, the low-temperature liquid evaporates in the bellows chamber and enters a gas-liquid mixed state, and the pump does not operate properly.
  • a method for cooling the pump device there is a method in which a cryogenic liquid is poured into the pump device to cause heat exchange between the component member and the cryogenic liquid, and the temperature of the component member is gradually lowered.
  • the cryogenic liquid that has flowed in from the bottom of the pump device gradually fills the pump device, such as the lower bellows pump chamber and then the upper bellows pump chamber, and the water level of the cryogenic liquid rises. Go.
  • the pump device such as the lower bellows pump chamber and then the upper bellows pump chamber
  • the reason is that, when the water level of the cryogenic liquid in the pump device is low, the liquid contact area between the pump constituent member and the cryogenic liquid is small, so the cooling efficiency is low at the initial stage of the cooling process. Further, when the temperature of the pump constituent member is high, the cryogenic liquid evaporates and the gas stays in the pump chamber, thereby inhibiting the inflow of the cryogenic liquid. Further, since the two bellows pump chambers are arranged vertically, when the upper pump chamber is the first pump chamber and the lower pump chamber is the second pump chamber, the liquid poured into the pump device is the second pump chamber. It flows out of the discharge port of the chamber, and the water level does not easily rise above the height of the discharge port of the second pump chamber.
  • the pump component is made of a highly rigid metal material in order to obtain a high discharge pressure.
  • the gas generated by the vaporization of the cryogenic liquid is used.
  • the surface is covered. This phenomenon is called film boiling.
  • the gas layer formed on the metal surface acts as a heat insulating layer, and inhibits heat transfer between the low temperature liquid and the pump component.
  • An object of the present invention is to provide a liquid supply system that can be efficiently cooled.
  • the liquid supply system of the present invention is A container provided with a pump chamber therein and provided with a liquid inlet and outlet; A delivery pipe for guiding the liquid discharged from the delivery port to the outside; A passage through which the liquid flows from the suction port through the pump chamber, and further vertically downward from the pump chamber toward the delivery port; A first opening disposed in the flow path, a second opening provided downstream of the first opening in the flow path, and the first opening and the second opening. A venting pipe to be connected; With The second opening is arranged vertically above the first opening.
  • the liquid supply system of the present invention includes a flow path through which liquid flows vertically downward from the pump chamber. Therefore, if the liquid is accumulated in the lower part in the vertical direction, the gas in the container is not discharged when the gas is generated in the container. For example, in a cooling process before operation for using a liquid supply system in a room temperature environment for circulation of ultra-low temperature liquid, such a situation may occur if the liquid poured into the system for cooling evaporates in the container There is. According to the liquid supply system of the present invention, when gas is present in the container as described above, that is, when gas is present in the flow path passing through the pump chamber, the gas in the flow path is removed from the container through the gas vent pipe. Can be discharged.
  • the liquid supply system can be efficiently cooled by pouring the low temperature liquid. According to the present invention, the time required for the process of cooling the liquid supply system in a room temperature environment can be shortened, so that an increase in man-hours for system installation work and maintenance work can be suppressed. Moreover, the consumption of the low temperature liquid in a cooling process can be suppressed.
  • the second opening may be provided in the delivery pipe.
  • the gas accumulated in the upper part of the pump chamber can be discharged to the delivery pipe, and the gas vent mechanism provided at the delivery pipe and the liquid supply destination can be shared. Since the number of locations to be reduced can be reduced, heat exchange is unlikely to occur and consumption of the low-temperature liquid can be suppressed.
  • the present invention can be applied to a liquid supply system including a bellows pump. That is, A shaft member that reciprocates in the vertical direction in the container; A first bellows and a second bellows that are arranged side by side in the vertical direction and expand and contract with the reciprocation of the shaft member;
  • the pump chamber has A first pump chamber formed by a space surrounding an outer peripheral surface of the first bellows; A second pump chamber formed by a space surrounding the outer peripheral surface of the second bellows;
  • the flow path is A first flow path through which liquid flows from the suction port through the first pump chamber toward the delivery port; A second flow path through which liquid flows from the suction port through the second pump chamber toward the delivery port;
  • the gas vent pipe may be provided in at least one of the first flow path and the second flow path.
  • each pump chamber can be efficiently cooled by pouring low temperature liquid into the first pump chamber and the second pump chamber.
  • the first pump chamber is provided vertically above the second pump chamber,
  • the first opening may be provided vertically above the outlet of the first pump chamber.
  • the liquid supply system of the present invention can be efficiently cooled.
  • FIG. 1 is a schematic configuration diagram of a liquid supply system according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a liquid supply system according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a liquid supply system according to an embodiment of the present invention.
  • a liquid supply system according to an embodiment of the present invention will be described with reference to FIGS.
  • the liquid supply system according to the present embodiment can be suitably used, for example, to maintain the superconducting device in an ultra-low temperature state. That is, in a superconducting device, it is necessary to always cool a superconducting coil or the like. Therefore, the apparatus to be cooled is always cooled by always supplying an ultra-low temperature liquid (liquid nitrogen or liquid helium) to the apparatus to be cooled provided with a superconducting coil. More specifically, by providing a circulation flow path that passes through the apparatus to be cooled, and by attaching the liquid supply system according to the present embodiment in the circulation flow path, the ultra low temperature liquid is circulated to It becomes possible to always cool.
  • FIG. 1 and FIG. 2 are schematic configuration diagrams of the entire liquid supply system according to the embodiment of the present invention, and are sectional views showing a schematic configuration of the entire liquid supply system.
  • 1 and 2 show a schematic configuration of a cross section obtained by cutting the liquid supply system along a plane including its central axis, but for convenience of description, cross sections at different phases in the circumferential direction of the cylindrical liquid supply system. Is shown in one drawing. Specifically, on the left side of the central axis in FIGS. 1 and 2, a cross section at a phase (phase indicated by BB in FIG. 3) where the degassing pipe becomes clear is shown, and on the right side of the central axis in FIG.
  • the cross section in the phase (phase shown by DD of FIG. 3) in which the second flow path passing through the second pump chamber becomes clear is shown, and the first flow path passing through the first pump chamber is on the right side of the central axis in FIG.
  • the cross section in the phase (phase shown by CC of FIG. 3) which becomes clear is shown.
  • the liquid supply system 10 includes a liquid supply system main body (hereinafter referred to as the system main body 100), a vacuum container 200 in which the system main body 100 is installed, and piping (a suction pipe 310 and a delivery pipe 320). And. Both the suction pipe 310 and the delivery pipe 320 enter the inside of the vacuum container 200 from the outside of the vacuum container 200 and are connected to the system main body 100. The inside of the vacuum container 200 is sealed, and the space outside the system main body 100, the suction pipe 310, and the delivery pipe 320 is maintained in a vacuum state in the vacuum container 200. Thereby, this space has a heat insulating function.
  • the liquid supply system 10 is usually installed on a horizontal plane. In the state in which the liquid supply system 10 is installed, the upper side in FIGS. 1 and 2 is the upper side in the vertical direction, and the lower side in FIGS. 1 and 2 is the lower side in the vertical direction.
  • the system main body 100 includes a linear actuator 110 serving as a driving source, a shaft member 120 that reciprocates in the vertical direction by the linear actuator 110, and a container 130.
  • the linear actuator 110 is fixed at an arbitrary place, and the place to be fixed may be the container 130 or another place not shown.
  • the container 130 includes a case portion 131.
  • the shaft member 120 is installed from the outside of the container 130 so as to enter the inside of the container through an opening 131 a provided in the ceiling part of the case part 131. Further, a fluid suction port 131b and a delivery port 131c are provided at the bottom of the case portion 131.
  • the suction pipe 310 is connected to a position where the suction port 131b is provided, and the delivery pipe 320 is connected to a position where the delivery port 131c is provided.
  • a plurality of members are provided in the case portion 131, and a plurality of spaces partitioned by the plurality of members form a plurality of pump chambers, a liquid flow path, and a heat insulating vacuum chamber. ing.
  • the internal configuration of the case portion 131 will be described in more detail.
  • the shaft member 120 includes a shaft main body 121 having a hollow portion therein, a cylindrical portion 122 provided so as to surround the outer peripheral surface side of the shaft main body 121, and a connecting portion 123 that connects the shaft main body 121 and the cylindrical portion 122. And have. Further, an upper end side outward flange portion 122 a is provided at the upper end of the cylindrical portion 122, and a lower end side outward flange portion 122 b is provided at the lower end of the cylindrical portion 122.
  • the case portion 131 includes a substantially cylindrical body portion 131X and a bottom plate portion 131Y.
  • the body portion 131X is provided with a first inward flange portion 131Xa provided near the center in the height direction and a second inward flange portion 131Xb provided above.
  • a plurality of first flow paths 131Xc that are provided below the first inward flange portion 131Xa and extend in the axial direction are formed in the body portion 131X at intervals in the circumferential direction.
  • the first flow path 131Xc connects the flow path 131d and the inlet 401 of the first pump chamber P1.
  • a plurality of third flow paths 131Xg that are provided above the first inward flange portion 131Xa and extend in the axial direction are formed in the body portion 131X at intervals in the circumferential direction.
  • the third channel 131Xg is connected to the outlet 404 of the second pump chamber P2.
  • a second flow path 131Xd configured by a cylindrical space extending in the axial direction is further provided inside the body portion 131X at a radially outer side than a region where the first flow path 131Xc is provided. Yes.
  • the second flow path 131Xd is connected to the outlet 402 of the first pump chamber P1, and extends to the height of the outlet 402 of the first pump chamber P1.
  • a flow path 131d that extends outward in the radial direction and is connected to the first flow path 131Xc is uniformly formed on the bottom of the case portion 131 in a circumferential shape.
  • the bottom plate portion 131Y of the case portion 131 is uniformly formed with a circumferential channel 131e extending radially outward.
  • the channel 131e is connected to the inlet 403 of the second pump chamber P2. That is, the flow channel 131d and the flow channel 131e are configured such that liquid can flow radially in all directions from 360 ° toward the radially outer side.
  • the flow path passing through the first pump chamber P1 includes a flow path 131d, a first flow path 131Xc, and a second flow path 131Xd.
  • the flow path passing through the second pump chamber P2 includes a flow path 131e, a third flow path 131Xg, and a second flow path 131Xd.
  • a first bellows 141 and a second bellows 142 that are expanded and contracted with the reciprocation of the shaft member 120 are provided inside the container 130.
  • the first bellows 141 and the second bellows 142 are arranged side by side in the vertical direction.
  • the upper end side of the first bellows 141 is fixed to the upper end side outward flange portion 122a of the cylindrical portion 122 of the shaft member 120, and the lower end side of the first bellows 141 is fixed to the first inward flange portion 131Xa of the case portion 131.
  • the upper end side of the second bellows 142 is fixed to the first inward flange portion 131Xa of the case portion 131, and the lower end side of the second bellows 142 is the lower end side outward flange portion 122b of the cylindrical portion 122 of the shaft member 120. It is fixed to.
  • a first pump chamber P1 is formed by a space surrounding the outer peripheral surface of the first bellows 141, and a second pump chamber P2 is formed by a space surrounding the outer peripheral surface of the second bellows 142.
  • a third bellows 151 and a fourth bellows 152 that are expanded and contracted with the reciprocating movement of the shaft member 120 are also provided inside the container 130.
  • the upper end side of the third bellows 151 is fixed to the ceiling portion of the case portion 131, and the lower end side of the third bellows 151 is fixed to the shaft member 120. Thereby, the opening part 131a provided in the case part 131 is closed.
  • the upper end side of the fourth bellows 152 is fixed to a second inward flange portion 131Xb provided in the case portion 131, and the lower end side of the fourth bellows 152 is fixed to the connecting portion 123 in the shaft member 120.
  • the space K ⁇ b> 2 is connected to the third space K ⁇ b> 3 formed by the inner peripheral surface side of the first bellows 141 and the second bellows 142 and the outer peripheral surface side of the cylindrical portion 122.
  • a space formed by the first space K1, the second space K2, and the third space K3 is sealed. In the present embodiment, the sealed space formed by these is maintained in a vacuum state and has a heat insulating function.
  • first check valve 160A second check valve 160B, third check valve 160C and fourth check valve according to the position of attachment.
  • a stop valve 160D In addition, the first check valve 160A and the second check valve 160B are disposed on the opposite side (vertical direction lower side) from the linear actuator 110 via the first pump chamber P1 and the second pump chamber P2.
  • the third check valve 160C and the fourth check valve 160D are arranged on the upper side in the vertical direction than the first check valve 160A and the second check valve 160B.
  • the first check valve 160A and the third check valve 160C are provided on the flow path passing through the first pump chamber P1.
  • the first check valve 160A and the third check valve 160C play a role of stopping the backflow of the fluid flowing by the pumping action by the first pump chamber P1.
  • the first check valve 160A is provided on the upstream side with respect to the first pump chamber P1
  • the third check valve 160C is provided on the downstream side.
  • the first check valve 160 ⁇ / b> A is provided on a flow path 131 d formed at the bottom of the case portion 131.
  • the third check valve 160C is provided on a flow path formed in the vicinity of the second inward flange portion 131Xb provided in the case portion 131.
  • the upper part of the pump chamber is a position where the gas existing in the first pump chamber P1 can be discharged and the first pump chamber P1 can be filled with the liquid in the region functioning as the pump chamber from the center in the vertical direction.
  • the second check valve 160B and the fourth check valve 160D are provided on the flow path passing through the second pump chamber P2.
  • the second check valve 160B and the fourth check valve 160D play a role of stopping the backflow of the fluid flowing by the pumping action by the second pump chamber P2.
  • the second check valve 160B is provided on the upstream side with respect to the second pump chamber P2, and the fourth check valve 160D is provided on the downstream side.
  • the second check valve 160B is provided on the flow path 131e formed in the bottom plate portion 131Y of the case portion 131.
  • the fourth check valve 160D is provided on a flow path formed in the vicinity of the first inward flange portion 131Xa of the case portion 131. Specifically, it is provided in the upper part of the second pump chamber P2.
  • the upper part of the pump chamber is a position where the gas existing in the second pump chamber P2 can be discharged and the second pump chamber P2 can be filled with the liquid in the region functioning as the pump chamber from the upper side in the vertical direction.
  • the outlet of the third flow path 131Xg is provided at the same position as the height at which the fluid flows out from the third check valve 160C.
  • the liquid that has passed through the first check valve 160A passes through the first flow path 131Xc inside the body portion 131X in the case portion 131 and is sent to the first pump chamber P1. Further, since the liquid pressure in the second pump chamber P2 is increased, the second check valve 160B is closed and the fourth check valve 160D is opened. Thereby, the liquid in the second pump chamber P2 passes through the fourth check valve 160D (see arrow T12) and is sent to the third flow path 131Xg and the second flow path 131Xd. Thereafter, the liquid passes through the delivery port 131 c and is delivered to the outside of the liquid supply system 10 through the delivery pipe 320.
  • the first bellows 141 is extended and the second bellows 142 is contracted.
  • the first check valve 160A is closed, and the third check valve 160C is opened.
  • the liquid in the first pump chamber P1 passes through the third check valve 160C (see arrow T11) and is sent to the second flow path 131Xd inside the body portion 131X.
  • the liquid passes through the delivery port 131 c and is delivered to the outside of the liquid supply system 10 through the delivery pipe 320.
  • the second check valve 160B is opened and the fourth check valve 160D is closed.
  • the liquid can flow from the suction pipe 310 side to the delivery pipe 320 side both when the shaft member 120 is lowered and when it is raised. Therefore, so-called pulsation can be suppressed.
  • the flow path through which the cryogenic liquid flows from the suction port 131b through the first pump chamber P1 toward the delivery port 131c is referred to as a first flow channel, and from the suction port 131b through the second pump chamber P2 toward the delivery port 131c.
  • the flow path through which the ultra-low temperature liquid flows is referred to as a second flow path.
  • the first flow path is a flow in which the cryogenic fluid that has entered from the suction port 131b flows in the direction of arrow S11, then flows in the direction of arrow T11, and flows to the delivery port 131c. Road.
  • the second flow path is a flow path in which the ultra-low temperature fluid that has entered from the inlet 131b flows in the direction of the arrow S12, then flows in the direction of the arrow T12 and the direction of the arrow T13, and flows to the outlet 131c. is there.
  • the height of the first channel in the vertical direction from the top to the bottom (see arrow T11) and the height of the second channel in the vertical direction from the top to the bottom (see arrow T13). are configured to be the same.
  • the fluid flow when the liquid supply system 10 is driven is summarized as follows.
  • the shaft member 120 When the shaft member 120 is lowered, the fluid flows on the upstream side of the first pump chamber P1 in the first flow path, and the fluid does not flow on the downstream side. Further, in the second flow path, the fluid flows on the downstream side of the second pump chamber P2, and the fluid does not flow on the upstream side.
  • the shaft member 120 moves up, fluid flows on the downstream side of the first pump chamber P1 in the first flow path, and no fluid flows on the upstream side. Further, in the second flow path, the fluid flows on the upstream side of the second pump chamber P2, and the fluid does not flow on the downstream side.
  • FIG. 3 is a diagram schematically showing the AA cross section of FIGS. 1 and 2.
  • bolt 603 used for fastening of members are arrange
  • the gas vent pipe 602 has a first opening 601 in a space near the check valve 160C provided at the outlet 402 of the first pump chamber P1, and the inside of the container 130 is vertically The direction extends from the upper side to the lower side and reaches the outlet 131c.
  • the gas vent pipe 602 passes through the outlet 131c, is provided inside the delivery pipe 320, and extends to the second opening 604 that is higher than the first opening 601 as shown in FIG. Thereby, the gas in the vicinity of the outlet in the flow path passing through the first pump chamber P1 is discharged through the gas vent pipe 602 to a position higher than the external first opening 601.
  • the gas vent pipe 602 may be connected to a gas discharge mechanism outside the liquid supply system 10. Thereby, the gas in the container 130 can be discharged efficiently.
  • the liquid supply system 10 When the liquid supply system 10 according to the present embodiment is used for circulation of an ultra-low temperature liquid such as liquid nitrogen or liquid helium, the liquid supply system 10 in a room temperature environment is about the same as a low-temperature liquid that is a working liquid before operation. It is necessary to cool to a temperature of In this embodiment, the same liquid as the low-temperature liquid circulated when the system is operating is used for system cooling.
  • the system cooling liquid may be different from the liquid circulated when the system is operating.
  • a low-temperature liquid is poured from the suction pipe 310, heat is exchanged between the case 131 and the low-temperature liquid, which are constituent members of the liquid supply system 10, and the temperature of the constituent members is gradually lowered.
  • the suction port 131b and the delivery port 131c are provided at the bottom of the container 100, the low-temperature liquid poured in in the cooling step is gradually gradually in the order of the second pump chamber P2 and then the first pump chamber P1.
  • the water level of the cryogenic liquid rises.
  • the number of components that exchange heat with the cryogenic liquid for cooling increases, and cooling proceeds from the lower part to the upper part of the system.
  • the gas accumulated in the container can be discharged to the outside through the gas vent pipe 602. Therefore, it is possible to suppress the accumulation of gas in the upper part of the container in the initial stage of the cooling process, and the inflow of the low-temperature liquid for cooling into the container is hardly inhibited. Therefore, the rise in the water level in the container of the cryogenic liquid is less likely to be hindered, and the heat exchange between the cryogenic liquid and the system component is performed more efficiently. Accordingly, the system can be efficiently cooled by pouring the low temperature liquid. Therefore, the time required for the process for cooling the liquid supply system in the room temperature environment for operation can be shortened, and an increase in man-hours for system installation work and maintenance work can be suppressed. Moreover, the consumption of the low temperature liquid in a cooling process can be suppressed.
  • the opening of the gas vent pipe is the configuration of the liquid supply system. It is set appropriately according to It is desirable that the opening of the gas vent pipe opens at the highest position in the vertical direction or in the vicinity thereof in the flow path passing through the pump chamber.
  • the present invention is applied to a liquid supply system having a configuration in which the flow path extends downward in the vertical direction on the downstream side from the outlet of the pump chamber, and further extends upward in the vertical direction on the downstream side. .
  • the discharge pipe 320 connected to the liquid outlet 131c provided at the bottom of the container is illustrated as an example.
  • the flow path having a shape extending downward from the pump chamber outlet and extending upward again is not limited to this example.
  • the present invention can be applied to a liquid supply system having a configuration in which a flow path is folded in a U shape inside a container.
  • the present invention is applied to a liquid supply system having a bellows pump in which two pump chambers surrounding the outer peripheral surface of the bellows are arranged in series vertically in the vertical direction (bellows expansion and contraction direction) has been described.
  • the liquid supply system to which the invention is applicable is not limited to this.
  • INDUSTRIAL APPLICABILITY The present invention can be generally applied to a pump that sucks and delivers liquid, and has a preferable effect when applied to a liquid supply system having a structure in which liquid is discharged from a bottom surface of a container provided with a pump chamber and guided to a position higher than the bottom surface. can get.
  • the liquid supply system having such a structure, since the liquid is discharged to the outside of the container using the U-shaped pipe, it is difficult for the liquid to be discharged to the outside when the gas is accumulated inside the container.
  • the gas accumulated inside the container can be easily discharged to the outside.
  • a configuration is adopted in which the outside of the system main body 100, the suction pipe 310, and the delivery pipe 320 is evacuated to provide a heat insulating function. Further, in this embodiment, a configuration is adopted in which the sealed space formed by the first space K1, the second space K2, and the third space K3 is evacuated to have a heat insulating function. However, it is also possible to maintain the temperature of the liquid flowing through the circulation channel at a low temperature by flowing an ultra-low temperature liquid in these spaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

効率良く冷却することが可能な液体供給システムを提供する。内部にポンプ室P1、P2が備えられ、かつ液体の吸入口131b及び送出口131cが設けられている容器130と、前記容器130の送出口131cから排出される前記液体を外部へ導く送出管320と、前記吸入口131bから前記ポンプ室P1,P2を通り、更に、前記ポンプ室P1,P2から前記送出口131cに向けて鉛直方向下方に前記液体が流れる流路と、前記流路内に配置される第1開口部601と、前記第1開口部601よりも前記流路内の下流側に設けられる第2開口部604と、前記第1開口部601と前記第2開口部604とを接続するガス抜き管602と、を備え、前記第1開口部601よりも前記第2開口部604が鉛直方向上方に配置されていることを特徴とする液体供給システム。

Description

液体供給システム
 本発明は、液体を供給する液体供給システムに関する。
 循環流路に対して液体を循環させる液体供給システムとして、ベローズにより形成されたポンプ室を有するベローズポンプを用いたものが知られている(特許文献1参照)。このシステムは、鉛直上下方向に並べられた2つのポンプ室を有し、各ポンプ室を構成するベローズは、アクチュエータによって上下方向に駆動される軸に固定され、軸の運動に連動して上下方向に伸縮する。
 ポンプ装置の全体は断熱のために真空容器に収容され、真空容器の上方にアクチュエータが設置される。ポンプ装置に外部から液体を供給する吸入管と、ポンプ装置からの液体を外部へ排出する送出管は、断熱のために外気からできるだけ離した位置でポンプ装置に接続することが望ましい。そのため、吸入管及び送出管は、真空容器の上方から真空容器内に入り、ポンプ装置より低い位置まで延び、U字形状でポンプ装置の底部の開口に接続される。ポンプ装置と接続される配管をこのような形状にすることで、外部からの熱に対する高い断熱性能が実現される。このような構成のベローズポンプは、液体窒素や液体ヘリウム等の超低温液体を超伝導機器等の被冷却装置に供給する用途で好適に用いられる。
 ところで、常温環境下で組み立てられたりメンテナンスされたりしたベローズポンプを低温液体の供給に用いるべく稼働させる場合、まずポンプ装置の構成部材を常温から低温液体の温度まで冷却する工程が必要になる。構成部材の温度が高いとベローズ室内で低温液体が蒸発し、気液混合状態となり、ポンプが適切に作動しないからである。ポンプ装置を冷却する方法としては、ポンプ装置に低温液体を流し込んで構成部材と低温液体との間で熱交換を行わせ、徐々に構成部材の温度を下げていく方法がある。この方法では、ポンプ装置の底部から流入した低温液体は、まず下部のベローズポンプ室、次いで上部のベローズポンプ室、といったように徐々にポンプ装置内を満たしていき、低温液体の水位が上昇していく。しかしながら、この冷却方法でベローズポンプを稼働可能な温度まで冷却するためには長大な時間を要するという課題がある。
 その理由は、ポンプ装置内の低温液体の水位が低い状態では、ポンプ構成部材と低温液体との接液面積が小さいため、冷却工程の初期では冷却効率が低い。また、ポンプ構成部材の温度が高い状態では、低温液体が蒸発してポンプ室内にガスが滞留し、低温液体の流入を阻害する。また、2つのベローズポンプ室が上下に並べられた構成のため、上のポンプ室を第1ポンプ室、下のポンプ室を第2ポンプ室とすると、ポンプ装置に流し込まれた液体が第2ポンプ室の排出口から流出してしまい、第2ポンプ室の排出口の高さより上に水位が上昇しにくい。そのため、第2ポンプ室の排出口より上に第1ポンプ室がある場合、第1ポンプ室の冷却に時間がかかる。また、ポンプ構成部材は高吐出圧を得るために高剛性の金属材料が用いられるが、熱伝導率の高い金属の表面に低温液体が接すると、低温液体が気化して生じたガスにより金属の表面が覆われる。この現象は膜沸騰と呼ばれる。この金属表面に形成されるガス層が断熱層として作用し、低温液体とポンプ構成部材との熱伝達を阻害する。
国際公開第2016/006648号
 本発明の目的は、効率良く冷却することが可能な液体供給システムを提供することにある。
 本発明は、上記課題を解決するために以下の手段を採用した。
 すなわち、本発明の液体供給システムは、
 内部にポンプ室が備えられ、かつ液体の吸入口及び送出口が設けられている容器と、
 前記送出口から排出される前記液体を外部へ導く送出管と、
 前記吸入口から前記ポンプ室を通り、更に、前記ポンプ室から前記送出口に向けて鉛直方向下方に前記液体が流れる流路と、
 前記流路内に配置される第1開口部と、前記第1開口部よりも前記流路内の下流側に設けられる第2開口部と、前記第1開口部と前記第2開口部とを接続するガス抜き管と、
を備え、
 前記第1開口部よりも前記第2開口部が鉛直方向上方に配置されていることを特徴とする。
 本発明の液体供給システムは、ポンプ室から鉛直方向下方に液体が流れる流路を含むことになる。従って、鉛直方向下方に液体が溜まっていると、容器内にガスが生じた場合に、容器内のガスが排出されなくなる。例えば常温環境下にある液体供給システムを超低温液体の循環に用いるための稼働前の冷却工程において、冷却用にシステムに流し込んだ液体が容器内で蒸発することで、このような状況が生じる可能性がある。
 本発明の液体供給システムによれば、このように容器内にガスが存在する場合、すなわちポンプ室を通る流路内にガスが存在する場合、ガス抜き管を通して流路内のガスを容器の外部に排出することができる。従って、容器内にガスが溜まることを抑制できる。容器内にガスが溜まっていると、低温液体を流し込んでシステムを冷却する場合に、低温液体を流し込みにくくなり、冷却工程に要する時間が長くなることがあるが、本発明によれば、容器内にガスが溜まることを抑制できるため、冷却工程に要する時間を短縮できる。従って、低温液体を流し込むことにより液体供給システムを効率良く冷却することができる。本発明によれば、常温環境下にある液体供給システムを冷却する工程に要する時間を短縮できるので、システムの設置作業やメンテナンス作業の工数増加を抑制できる。また、冷却工程における低温液体の消費量を抑制できる。
 前記第2開口部が前記送出管内に設けられているとよい。
 これにより、ポンプ室の上部に溜まるガスを送出管に排出することができ、送出管や液体が供給された先に設けられるガス抜き機構を共有することができ、システム全体として液体が外部に接触する箇所を少なくすることができるため、熱交換が起こり難く、低温液体の消費量を抑制できる。
 本発明は、ベローズポンプを備える液体供給システムに適用できる。すなわち、
 前記容器内において、鉛直方向に往復移動する軸部材と、
 鉛直方向に並べて配置され、かつ前記軸部材の往復移動に伴って伸縮する第1ベローズ及び第2ベローズと、
を有し、前記ポンプ室は、
 前記第1ベローズの外周面を囲む空間により形成される第1ポンプ室と、
 前記第2ベローズの外周面を囲む空間により形成される第2ポンプ室と、
からなり、前記流路は、
 前記吸入口から前記第1ポンプ室を通り前記送出口に向けて液体が流れる第1流路と、
 前記吸入口から前記第2ポンプ室を通り前記送出口に向けて液体が流れる第2流路と、
を含み、
 前記ガス抜き管は、前記第1流路及び前記第2流路のうち少なくとも一方に設けられている構成としてもよい。
 この液体供給システムでは、鉛直上方にあるポンプ室にガスが溜まりやすい。上記構成によれば、第1流路及び第2流路の少なくとも一方にガス抜き管が設けられるので、上方にあるポンプ室を通る流路に溜まったガスを容易に外部に排出することができる。この液体供給システムによれば、低温液体を第1ポンプ室及び第2ポンプ室に流し込むことにより各ポンプ室を効率良く冷却することができる。
 前記第1ポンプ室は前記第2ポンプ室より鉛直方向上方に設けられ、
 前記第1開口部は、前記第1ポンプ室の出口より鉛直方向上方に設けられる構成としてもよい。
 この液体供給システムでは、鉛直方向上方にある第1ポンプ室の出口の近傍の領域に、ガスが溜まりやすい。上記構成によれば、この第1ポンプ室の出口より鉛直方向上方にガス抜き管の第1開口部が設けられるので、容器内のガスを容易に排出することができる。
 なお、上記各構成は、可能な限り組み合わせて採用し得る。
 以上説明したように、本発明の液体供給システムは、効率良く冷却することができる。
図1は本発明の実施例に係る液体供給システムの概略構成図である。 図2は本発明の実施例に係る液体供給システムの概略構成図である。 図2は本発明の実施例に係る液体供給システムの模式的断面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (実施例)
 図1~図3を参照して、本発明の実施例に係る液体供給システムについて説明する。本実施例に係る液体供給システムは、例えば、超電導機器を超低温状態に維持させるために好適に用いることができる。すなわち、超電導機器においては、超電導コイルなどを常時冷却させる必要がある。そこで、超電導コイルなどが備えられた被冷却装置に超低温の液体(液体窒素や液体ヘリウム)を常時供給することで、被冷却装置は常時冷却される。より具体的には、被冷却装置を通る循環流路を設け、かつ、この循環流路中に本実施例に係る液体供給システムを取り付けることにより、超低温の液体を循環させて、被冷却装置を常時冷却させることが可能となる。
 <液体供給システムの全体構成>
 図1、図2は本発明の実施例に係る液体供給システム全体の概略構成図であり、液体供給システム全体の概略構成を断面的に示した図である。なお、図1、図2は、液体供給システムをその中心軸線を含む面で切断した断面による概略構成を示しているが、説明の便宜上、円筒形状の液体供給システムの周方向の異なる位相における断面を1枚の図面で表している。具体的には、図1、図2の中心軸線より左側には、ガス抜き管が明確になる位相(図3のBBで示す位相)における断面を示し、図1の中心軸線より右側には、第2ポンプ室を通る第2流路が明確になる位相(図3のDDで示す位相)における断面を示し、図2の中心軸線より右側には、第1ポンプ室を通る第1流路が明確になる位相(図3のCCで示す位相)における断面を示している。
 本実施例に係る液体供給システム10は、液体供給システム本体(以下、システム本体100と称する)と、システム本体100が内部に設置される真空容器200と、配管(吸入管310及び送出管320)とを備えている。吸入管310及び送出管320は、いずれも真空容器200の外部から真空容器200の内部に入り込み、システム本体100に接続されている。真空容器200の内部は密閉されており、真空容器200の内部のうち、システム本体100,吸入管310及び送出管320の外側の空間は真空状態が維持されている。これにより、この空間は断熱機能を備えている。液体供給システム10は、通常、水平面上に設置される。液体供給システム10が設置された状態において、図1、図2における上方が鉛直方向上方となり、図1、図2における下方が鉛直方向下方となる。
 システム本体100は、駆動源となるリニアアクチュエータ110と、リニアアクチュエータ110により鉛直方向に往復移動する軸部材120と、容器130とを備えている。なお、リニアアクチュエータ110は任意の箇所に固定され、固定される箇所は容器130でもよいし、他の図示しない箇所でもよい。容器130は、ケース部131を備えている。軸部材120は、容器130の外部から、ケース部131の天井部に設けられた開口部131aを介して容器内部に入り込むように設置されている。また、ケース部131の底部には、流体の吸入口131b及び送出口131cが設けられている。上記の吸入管310は吸入口131bが設けられた位置に接続され、送出管320は、送出口131cが設けられた位置に接続されている。
 ケース部131の内部においては、複数の部材が備えられており、これら複数の部材により区画された複数の空間によって、複数のポンプ室と、液体の流路と、断熱用の真空室が形成されている。以下、このケース部131の内部の構成について、より詳細に説明する。
 軸部材120は、内部に中空部を有する軸本体部121と、軸本体部121の外周面側を囲むように設けられる円筒部122と、軸本体部121と円筒部122を連結する連結部123とを有している。また、円筒部122の上端には上端側外向きフランジ部122aが設けられ、円筒部122の下端には下端側外向きフランジ部122bが設けられている。
 ケース部131は、略円筒状の胴体部131Xと、底板部131Yとを備えている。また、胴体部131Xには、高さ方向の中央付近に設けられる第1内向きフランジ部131Xaと、上方に設けられる第2内向きフランジ部131Xbとが設けられている。
 胴体部131Xの内部には、第1内向きフランジ部131Xaよりも下方に備えられ、軸方向に延びる第1流路131Xcが、周方向に間隔を空けて複数形成されている。第1流路131Xcは、流路131dと第1ポンプ室P1の入口401とを接続する。
 また、胴体部131Xの内部には、第1内向きフランジ部131Xaよりも上方に備えられ、軸方向に延びる第3流路131Xgが、周方向に間隔を空けて複数形成されている。第3流路131Xgは、第2ポンプ室P2の出口404に接続する。
 また、胴体部131Xの内部には、第1流路131Xcが設けられている領域よりも更に径方向外側において、軸方向に伸びる円筒状の空間で構成された第2流路131Xdも設けられている。第2流路131Xdは第1ポンプ室P1の出口402に接続し、第1ポンプ室P1の出口402の高さまで伸びる。
 また、ケース部131の底部には、径方向外側に向かって伸び、第1流路131Xcに繋がる流路131dが円周状に一様に形成されている。
 更に、ケース部131における底板部131Yには、径方向外側に向かって伸びる流路131eが円周状に一様に形成されている。流路131eは、第2ポンプ室P2の入口403に接続する。
 つまり、これらの流路131d及び流路131eは、中心軸線側から径方向外側に向かって、放射状に360°全ての方向に液体が流れ得るように構成されている。第1ポンプ室P1を通る流路は、流路131dと、第1流路131Xcと、第2流路131Xdと、からなる。第2ポンプ室P2を通る流路は、流路131eと、第3流路131Xgと、第2流路131Xdと、からなる。
 また、容器130の内部には、軸部材120の往復移動に伴って伸縮する第1ベローズ141及び第2ベローズ142が設けられている。これらの第1ベローズ141及び第2ベローズ142は、鉛直方向に並べて配置されている。第1ベローズ141の上端側は軸部材120における円筒部122の上端側外向きフランジ部122aに固定されており、第1ベローズ141の下端側はケース部131の第1内向きフランジ部131Xaに固定されている。また、第2ベローズ142の上端側はケース部131の第1内向きフランジ部131Xaに固定されており、第2ベローズ142の下端側は軸部材120における円筒部122の下端側外向きフランジ部122bに固定されている。そして、第1ベローズ141の外周面を囲む空間により第1ポンプ室P1が形成されており、第2ベローズ142の外周面を囲む空間により第2ポンプ室P2が形成されている。
 また、容器130の内部には、軸部材120の往復移動に伴って伸縮する第3ベローズ151及び第4ベローズ152も設けられている。第3ベローズ151の上端側はケース部131の天井部に固定されており、第3ベローズ151の下端側は軸部材120に固定されている。これにより、ケース部131に設けられた開口部131aが塞がれている。第4ベローズ152の上端側はケース部131に設けられた第2内向きフランジ部131Xbに固定されており、第4ベローズ152の下端側は軸部材120における連結部123に固定されている。そして、軸部材120の軸本体部121の内部の中空部により形成される第1空間K1と、第3ベローズ151の外周面側及び第4ベローズ152の内周面側などにより形成される第2空間K2と、第1ベローズ141及び第2ベローズ142の内周面側と円筒部122の外周面側により形成される第3空間K3は繋がっている。これら第1空間K1と第2空間K2と第3空間K3により形成される空間は密閉されている。本実施例では、これらにより形成される密閉空間は真空状態が維持されており、断熱機能を備えている。
 更に、容器130の内部には、4つの逆止弁160(取り付けられた位置に応じて、適宜、第1逆止弁160A,第2逆止弁160B,第3逆止弁160C及び第4逆止弁160Dと称する)が設けられている。また、第1逆止弁160Aと第2逆止弁160Bは、第1ポンプ室P1及び第2ポンプ室P2を介してリニアアクチュエータ110とは反対側(鉛直方向下方側)に配置されている。そして、第3逆止弁160Cと第4逆止弁160Dは、第1逆止弁160Aと第2逆止弁160Bよりも鉛直方向上方側に配置されている。
 また、第1逆止弁160Aと第3逆止弁160Cは、第1ポンプ室P1を通る流路上に設けられている。これら第1逆止弁160A及び第3逆止弁160Cは、第1ポンプ室P1によるポンプ作用によって流れる流体の逆流を止める役割を担っている。より具体的には、第1ポンプ室P1に対して、上流側に第1逆止弁160Aが設けられ、下流側に第3逆止弁160Cが設けられている。更に具体的には、第1逆止弁160Aは、ケース部131の底部に形成された流路131d上に設けられている。また、第3逆止弁160Cは、ケース部131に設けられた第2内向きフランジ部131Xbの付近に形成される流路上に設けられている。具体的には、第1ポンプ室P1の上部に設けられる。ポンプ室の上部とは、ポンプ室として機能する領域において鉛直方向中央から上側、或いは、第1ポンプ室P1に存在する気体を排出し第1ポンプ室P1を液体で満たすことができる位置である。
 そして、第2逆止弁160Bと第4逆止弁160Dは、第2ポンプ室P2を通る流路上に設けられている。これら第2逆止弁160B及び第4逆止弁160Dは、第2ポンプ室P2によるポンプ作用によって流れる流体の逆流を止める役割を担っている。より具体的には、第2ポンプ室P2に対して、上流側に第2逆止弁160Bが設けられ、下流側に第4逆止弁160Dが設けられている。更に具体的には、第2逆止弁160Bは、ケース部131の底板部131Yに形成された流路131e上に設けられている。また、第4逆止弁160Dは、ケース部131の第1内向きフランジ部131Xaの付近に形成された流路上に設けられている。具体的には、第2ポンプ室P2の上部に設けられる。ポンプ室の上部とは、ポンプ室として機能する領域において鉛直方向中央から上側、或いは、第2ポンプ室P2に存在する気体を排出し第2ポンプ室P2を液体で満たすことができる位置である。この第3流路131Xgの出口は、第3逆止弁160Cから流体が流出する高さと同じ位置に設けられている。
 <液体供給システム全体の動作説明>
 液体供給システム全体の動作について説明する。リニアアクチュエータ110によって、軸部材120が下降する際においては、第1ベローズ141は縮み、第2ベローズ142は伸びる。このとき、第1ポンプ室P1の液体圧力は低くなるため、第1逆止弁160Aは弁が開き、第3逆止弁160Cは弁が閉じた状態となる。これにより、液体供給システム10の外部から吸入管310により送られる液体(矢印S10参照)は、吸入口131bから容器130内に吸入されて、第1逆止弁160Aを通り抜けていく(矢印S11参照)。そして、第1逆止弁160Aを通り抜けた液体は、ケース部131における胴体部131Xの内部の第1流路131Xcを通り、第1ポンプ室P1へと送られる。また、第2ポンプ室P2の液体圧力は高くなるため、第2逆止弁160Bは弁が閉じ、第4逆止弁160Dは弁が開いた状態となる。これにより、第2ポンプ室P2内の液体は、第4逆止弁160Dを通り抜けて(矢印T12参照)、第3流路131Xg、第2流路131Xdへと送られる。その後、液体は、送出口131cを通り、送出管320により液体供給システム10の外部へと送出される。
 そして、リニアアクチュエータ110によって、軸部材120が上昇する際においては、第1ベローズ141は伸び、第2ベローズ142は縮む。このとき、第1ポンプ室P1の液体圧力は高くなるため、第1逆止弁160Aは弁が閉じ、第3逆止弁160Cは弁が開いた状態となる。これにより、第1ポンプ室P1内の液体は、第3逆止弁160Cを通り抜けて(矢印T11参照)、胴体部131Xの内部の第2流路131Xdへと送られる。その後、液体は、送出口131cを通り、送出管320により液体供給システム10の外部へと送出される。また、第2ポンプ室P2の液体圧力は低くなるため、第2逆止弁160Bは弁が開き、第4逆止弁160Dは弁が閉じた状態となる。これにより、液体供給システム10の外部から吸入管310により送られる液体(矢印S10参照)は、吸入口131bから容器130内に吸入されて、第2逆止弁160Bを通り抜けていく(矢印S12参照)。そして、第2逆止弁160Bを通り抜けた液体は、第2ポンプ室P2へと送られる。
 以上のように、本実施例に係る液体供給システム10においては、軸部材120が下降する際及び上昇する際のいずれにおいても、吸入管310側から送出管320側に液体を流すことができる。従って、いわゆる脈動を抑制することができる。
 ここで、吸入口131bから第1ポンプ室P1を通り送出口131cに向けて超低温液体が流れる流路を第1流路と称し、吸入口131bから第2ポンプ室P2を通り送出口131cに向けて超低温液体が流れる流路を第2流路と称する。第1流路は、上記の説明から明らかなように、吸入口131bから進入した超低温流体が、矢印S11方向に流れた後に、矢印T11方向に流れていき、送出口131cへと流れていく流路である。また、第2流路は、吸入口131bから進入した超低温流体が、矢印S12方向に流れた後に、矢印T12方向及び矢印T13方向へと流れていき、送出口131cへと流れていく流路である。
 本実施例においては、第1流路において鉛直方向上方から下方に転じる位置の高さ(矢印T11参照)と、第2流路において鉛直方向上方から下方に転じる位置の高さ(矢印T13参照)が同一となるように構成されている。
 液体供給システム10が駆動している場合における流体の流れをまとめると次の通りである。軸部材120が下降する際においては、第1流路のうち第1ポンプ室P1よりも上流側では流体が流れ、下流側は流体が流れない。また、第2流路のうち第2ポンプ室P2よりも下流側では流体が流れ、上流側は流体が流れない。これに対して、軸部材120が上昇する際においては、第1流路のうち第1ポンプ室P1よりも下流側では流体が流れ、上流側は流体が流れない。また、第2流路のうち第2ポンプ室P2よりも上流側では流体が流れ、下流側は流体が流れない。
<ガス抜き管>
 図1~図3を参照して、本実施例に係る液体供給システムに備えられたガス抜き管について説明する。図3は、図1、図2のAA断面を模式的に示す図である。
 図3に示すように、第2ポンプ室P2の径方向外側には、周方向に等間隔を空けて、ガス抜き管602と、第2ポンプ室P2の出口404に接続される第3流路131Xgと、第1ポンプ室P1の入口401に接続される第1流路131Xcと、部材同士の締結に用いられるボルト603とが配置されている。
 ガス抜き管602は、図1、図2に示すように、第1ポンプ室P1の出口402に設けられる逆止弁160Cの近傍の空間に第1開口部601を有し、容器130内を鉛直方向上方から下方へ延び、送出口131cに至る。更に、ガス抜き管602は、送出口131cを通り、送出管320の内部に設けられ、図1に示すように、第1開口部601より高い位置にある第2開口部604まで延びる。これにより、第1ポンプ室P1を通る流路内の出口近傍にあるガスは、ガス抜き管602を通して、外部の第1開口部601より高い位置まで排出される。ガス抜き管602は、液体供給システム10の外部において、ガス排出機構に接続されるとよい。これにより、効率的に容器130内のガスを排出することができる。
<液体供給システムの冷却>
 本実施例に係る液体供給システム10を、液体窒素や液体ヘリウム等の超低温液体の循環に使用する場合、常温環境下にある液体供給システム10を、稼働前に作動液体である低温液体と同程度の温度まで冷却する必要がある。本実施例では、システム稼働時に流通させる低温液体と同じ液体をシステム冷却用に用いる。なお、システム冷却用の液体と、システム稼働時に流通させる液体とは異なるものであってもよい。
 システム冷却は、吸入管310から低温液体を流し込み、液体供給システム10の構成部材であるケース部131等と低温液体との間で熱交換を行わせ、徐々に構成部材の温度を下げていくことで行う。本実施例では、容器100の底部に吸入口131b及び送出口131cが設けられているため、冷却工程において流し込まれた低温液体は、まず第2ポンプ室P2、次いで第1ポンプ室P1の順に徐々にシステム内を満たしていき、低温液体の水位が上昇していく。水位の上昇に伴い、冷却用の低温液体と熱交換する構成部材が増加していき、システムの下部から上部へと冷却が進んでいく。
 <本実施例に係る液体供給システムの優れた点>
 本実施例の液体供給システム10において、上記のように低温液体の循環に用いるための稼働前冷却を行う場合、冷却工程の初期段階では、容器内で低温液体が蒸発し、生じたガスが容器内の上部に滞留し、気液混合状態となる。本実施例の場合、第1ポンプ室P1の出口402近傍の空間からガスが溜まっていき、ガスの量が増加すると第1ポンプ室P1や第2ポンプ室P2もガスが溜まる可能性がある。そうすると、吸入管310から低温液体を流し込んでシステムを冷却しようとしても、ガスの存在により低温液体の流入が阻害され、容器内の低温液体の水位が上昇しにくくなる。低温液体を流し込むことによるシステム冷却は、システム構成部材と低温液体とが接触して熱交換することにより行われるので、水位の上昇が阻害されると冷却は効率的に行われない。
 本実施例の液体供給システム10によれば、ガス抜き管602を通して、容器内に溜まったガスを外部に排出することができる。従って、冷却工程の初期段階で容器の上部にガスが溜まることを抑制でき、冷却用の低温液体の容器内への流入が阻害されにくくなる。そのため、低温液体の容器内での水位の上昇が阻害されにくくなり、低温液体とシステム構成部材との熱効交換がより効率良く行われる。従って、低温液体を流し込むことによるシステム冷却を効率良く行うことができる。よって、常温環境下にある液体供給システムを稼働のために冷却するための工程に要する時間を短縮でき、システムの設置作業やメンテナンス作業の工数増加を抑制できる。また、冷却工程における低温液体の消費量を抑制できる。
 (その他)
 本実施例では、ガス抜き管602の第1開口部601が、第1ポンプ室P1の出口402の近傍の空間に設けられる例を説明したが、ガス抜き管の開口部は液体供給システムの構成に応じて適宜設定される。ガス抜き管の開口部は、ポンプ室を通る流路内で、鉛直方向で最も高い位置又はその近傍の位置に開口するのが望ましい。このような構成とすることで、容器内の水位が上昇した場合でも、容器内の上部に残るガスを確実に排出することができ、また容器内の液体がガス抜き管に流れ込んでしまうことを抑制できる。また、ガス抜き管は排出管320の内部に配置されるため、ガス抜き管に流入したガスがガス抜き管内部で液化しないように、ガス抜き管の内部が排出管320を流通する液体の温度の影響を受けにくい断熱構造とするのが好ましい。また、本発明は、ポンプ室出口から下流側において流路が鉛直方向下方に延び、更に下流側において鉛直方向上方に延びる形状になっている構成の液体供給システムに適用して上述した効果を奏する。本実施例では、ポンプ室出口から下方に延び、再び上方に延びる形状の流路の一例として、容器の底部に設けられる液体の送出口131cに接続される排出管320を例示し、排出管の内部にガス抜き管が設けられる例を示した。しかし、ポンプ室出口から下方に延び、再び上方に延びる形状の流路は、この例に限らない。例えば、容器内部において流路がU字形状に折り返される構成を有する液体供給システムにも、本発明を適用することができる。
 本実施例では、ベローズの外周面を囲むポンプ室が2つ鉛直方向上下(ベローズ伸縮方向)に直列に配置されたベローズポンプを有する液体供給システムに本発明を適用した例を説明したが、本発明が適用可能な液体供給システムはこれに限定されない。本発明は液体を吸入して送出するポンプ一般に適用でき、ポンプ室が備えられた容器の底面から液体が排出され、底面より高い位置まで導かれる構造の液体供給システムに適用して好適な効果が得られる。このような構造の液体供給システムでは、U字形状の配管を用いて液体が容器の外部へ排出されるため、容器内部にガスが溜まると外部に排出されにくい。本発明を適用することにより、容器内部に溜まったガスを容易に外部に排出することができる。
 本実施例においては、真空容器200の内部のうち、システム本体100,吸入管310及び送出管320の外側を真空状態にして断熱機能を備えさせる構成を採用している。また、本実施例においては、第1空間K1と第2空間K2と第3空間K3により形成される密閉空間を真空状態にして断熱機能を備えさせる構成を採用している。しかしながら、これらの空間にも超低温液体を流すことで、循環流路を流れる液体の温度を低温に維持させることも可能である。
 10 液体供給システム
 100 システム本体
 110 リニアアクチュエータ
 120 軸部材
 121 軸本体部
 122 円筒部
 122a 上端側外向きフランジ部
 122b 下端側外向きフランジ部
 123 連結部
 130 容器
 131 ケース部
 131a 開口部
 131b 吸入口
 131c 送出口
 131d 流路
 131e 流路
 131X 胴体部
 131Xa 第1内向きフランジ部
 131Xb 第2内向きフランジ部
 131Xc 第1流路
 131Xd 第2流路
 131Xg 第3流路
 131Y 底板部
 141 第1ベローズ
 142 第2ベローズ
 151 第3ベローズ
 152 第4ベローズ
 160 逆止弁
 160A 第1逆止弁
 160B 第2逆止弁
 160C 第3逆止弁
 160D 第4逆止弁
 200 真空容器
 310 吸入管
 320 送出管
 401 第1ポンプ室入口
 402 第1ポンプ室出口
 403 第2ポンプ室入口
 404 第2ポンプ室出口
 601 第1開口部
 602 ガス抜き管
 603 ボルト
 604 第2開口部
 P1 第1ポンプ室
 P2 第2ポンプ室

Claims (4)

  1.  内部にポンプ室が備えられ、かつ液体の吸入口及び送出口が設けられている容器と、
     前記送出口から排出される前記液体を外部へ導く送出管と、
     前記吸入口から前記ポンプ室を通り、更に、前記ポンプ室から前記送出口に向けて鉛直方向下方に前記液体が流れる流路と、
     前記流路内に配置される第1開口部と、前記第1開口部よりも前記流路内の下流側に設けられる第2開口部と、前記第1開口部と前記第2開口部とを接続するガス抜き管と、
    を備え、
     前記第1開口部よりも前記第2開口部が鉛直方向上方に配置されていることを特徴とする液体供給システム。
  2.  前記第2開口部が前記送出管内に設けられていることを特徴とする請求項1に記載の液体供給システム。
  3.  前記容器内において、鉛直方向に往復移動する軸部材と、
     鉛直方向に並べて配置され、かつ前記軸部材の往復移動に伴って伸縮する第1ベローズ及び第2ベローズと、
    を有し、前記ポンプ室は、
     前記第1ベローズの外周面を囲む空間により形成される第1ポンプ室と、
     前記第2ベローズの外周面を囲む空間により形成される第2ポンプ室と、
    からなり、前記流路は、
     前記吸入口から前記第1ポンプ室を通り前記送出口に向けて液体が流れる第1流路と、
     前記吸入口から前記第2ポンプ室を通り前記送出口に向けて液体が流れる第2流路と、
    を含み、
     前記ガス抜き管は、前記第1流路及び前記第2流路のうち少なくとも一方に設けられていることを特徴とする液体供給システム。
  4.  前記第1ポンプ室は前記第2ポンプ室より鉛直方向上方に設けられ、
     前記第1開口部は、前記第1ポンプ室の出口より鉛直方向上方に設けられる請求項3に記載の液体供給システム。
PCT/JP2018/003632 2017-02-03 2018-02-02 液体供給システム WO2018143420A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/482,394 US20200032785A1 (en) 2017-02-03 2018-02-02 Liquid supply system
RU2019122417A RU2019122417A (ru) 2017-02-03 2018-02-02 Система подачи жидкости
CN201880006946.5A CN110177944A (zh) 2017-02-03 2018-02-02 液体供给系统
KR1020197021572A KR20190098228A (ko) 2017-02-03 2018-02-02 액체 공급 시스템
JP2018566133A JPWO2018143420A1 (ja) 2017-02-03 2018-02-02 液体供給システム
EP18748795.4A EP3578820A1 (en) 2017-02-03 2018-02-02 Liquid supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-019040 2017-02-03
JP2017019040 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143420A1 true WO2018143420A1 (ja) 2018-08-09

Family

ID=63040771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003632 WO2018143420A1 (ja) 2017-02-03 2018-02-02 液体供給システム

Country Status (7)

Country Link
US (1) US20200032785A1 (ja)
EP (1) EP3578820A1 (ja)
JP (1) JPWO2018143420A1 (ja)
KR (1) KR20190098228A (ja)
CN (1) CN110177944A (ja)
RU (1) RU2019122417A (ja)
WO (1) WO2018143420A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021003639A1 (de) * 2021-07-14 2023-01-19 Hydac Technology Gmbh Fördereinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113858A (ja) * 2003-10-10 2005-04-28 Nippon Pillar Packing Co Ltd ベローズを有する流体機器及びその流体機器内の残留空気排出方法
JP2012107559A (ja) * 2010-11-17 2012-06-07 Nippon Pillar Packing Co Ltd 液体用容積型ポンプ
WO2016006648A1 (ja) 2014-07-10 2016-01-14 イーグル工業株式会社 液体供給システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041136C2 (de) * 1990-12-21 1994-06-30 Andris Raimund Gmbh & Co Kg Dosier- und Spraypumpe zur Abgabe flüssiger, niederviskoser und pastöser Stoffe
JP2001153053A (ja) * 1999-11-29 2001-06-05 Nippon Pillar Packing Co Ltd ベローズを有する流体機器
JP2005214014A (ja) * 2004-01-27 2005-08-11 Iwaki Co Ltd 連動シャフトを備えた2連往復動ベローズポンプ
JP4324568B2 (ja) * 2005-01-26 2009-09-02 日本ピラー工業株式会社 ベローズポンプ
JP4982515B2 (ja) * 2009-02-24 2012-07-25 日本ピラー工業株式会社 ベローズポンプ
CN103261817B (zh) * 2011-03-15 2015-04-01 伊格尔工业股份有限公司 液体供给系统
CN103388577A (zh) * 2012-05-09 2013-11-13 日本皮拉工业株式会社 液体用容积型泵

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113858A (ja) * 2003-10-10 2005-04-28 Nippon Pillar Packing Co Ltd ベローズを有する流体機器及びその流体機器内の残留空気排出方法
JP2012107559A (ja) * 2010-11-17 2012-06-07 Nippon Pillar Packing Co Ltd 液体用容積型ポンプ
WO2016006648A1 (ja) 2014-07-10 2016-01-14 イーグル工業株式会社 液体供給システム

Also Published As

Publication number Publication date
JPWO2018143420A1 (ja) 2019-11-21
US20200032785A1 (en) 2020-01-30
CN110177944A (zh) 2019-08-27
EP3578820A1 (en) 2019-12-11
RU2019122417A (ru) 2021-03-03
KR20190098228A (ko) 2019-08-21
RU2019122417A3 (ja) 2021-03-03

Similar Documents

Publication Publication Date Title
KR101885017B1 (ko) 액체 공급 시스템
WO2018143420A1 (ja) 液体供給システム
WO2018143419A1 (ja) 液体供給システム
WO2018143417A1 (ja) 液体供給システム
JP5275947B2 (ja) 四方切換弁
WO2018143422A1 (ja) 液体供給システム
WO2018143421A1 (ja) 液体供給システム
WO2018143426A1 (ja) 液体供給システム
JP2006194534A (ja) エジェクタサイクル
WO2020179564A1 (ja) 液体供給システム
US8356617B2 (en) Poppet valve with dual flow area gain
KR101817227B1 (ko) 냉매가스 안정화 장치
JP2007285201A (ja) 気体抜き構造
WO2018143425A1 (ja) 断熱構造及び液体供給システム
JP2023080698A (ja) 往復ポンプ
JP2006057609A (ja) 往復動ポンプ
JP2015021451A (ja) ロータリ圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566133

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021572

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748795

Country of ref document: EP

Effective date: 20190903