WO2018143417A1 - 液体供給システム - Google Patents
液体供給システム Download PDFInfo
- Publication number
- WO2018143417A1 WO2018143417A1 PCT/JP2018/003624 JP2018003624W WO2018143417A1 WO 2018143417 A1 WO2018143417 A1 WO 2018143417A1 JP 2018003624 W JP2018003624 W JP 2018003624W WO 2018143417 A1 WO2018143417 A1 WO 2018143417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- pump chamber
- bellows
- supply system
- liquid supply
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/06—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
- F04B15/08—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/02—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
- F04B45/022—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/08—Machines, pumps, or pumping installations having flexible working members having tubular flexible members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/06—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
- F04B15/08—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
- F04B2015/081—Liquefied gases
- F04B2015/082—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/06—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
- F04B15/08—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
- F04B2015/081—Liquefied gases
- F04B2015/0824—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/10—Kind or type
- F05B2210/11—Kind or type liquid, i.e. incompressible
Definitions
- the present invention relates to a liquid supply system for supplying a liquid.
- the entire pump device is housed in a vacuum vessel for heat insulation, and an actuator is installed above the vacuum vessel. It is desirable that the suction pipe for supplying the liquid to the pump apparatus from the outside and the delivery pipe for discharging the liquid from the pump apparatus to the outside are connected to the pump apparatus at a position as far as possible from the outside air for heat insulation. Therefore, the suction pipe and the delivery pipe enter the vacuum container from above the vacuum container, extend to a position lower than the pump apparatus, and are connected to the opening at the bottom of the pump apparatus in a U shape. By making piping connected with a pump apparatus into such a shape, the high heat insulation performance with respect to the heat from the outside is implement
- the bellows pump having such a configuration is preferably used in an application for supplying an ultra-low temperature liquid such as liquid nitrogen or liquid helium to a cooled apparatus such as a superconducting device.
- the reason is that, when the water level of the cryogenic liquid in the pump device is low, the liquid contact area between the pump constituent member and the cryogenic liquid is small, so the cooling efficiency is low at the initial stage of the cooling process. Further, when the temperature of the pump constituent member is high, the cryogenic liquid evaporates and the gas stays in the pump chamber, thereby inhibiting the inflow of the cryogenic liquid. Further, since the two bellows pump chambers are arranged vertically, when the upper pump chamber is the first pump chamber and the lower pump chamber is the second pump chamber, the liquid poured into the pump device is the second pump chamber. It flows out of the discharge port of the chamber, and the water level does not easily rise above the height of the discharge port of the second pump chamber.
- the pump component is made of a highly rigid metal material in order to obtain a high discharge pressure.
- the gas generated by the vaporization of the cryogenic liquid is used.
- the surface is covered. This phenomenon is called film boiling.
- the gas layer formed on the metal surface acts as a heat insulating layer, and inhibits heat transfer between the low temperature liquid and the pump component.
- An object of the present invention is to provide a liquid supply system that can be efficiently cooled.
- the liquid supply system of the present invention is A container having a pump chamber therein and provided with a liquid inlet and outlet, a supply passage for supplying the liquid flowing from the inlet to the pump chamber, and being discharged from the pump chamber
- a liquid supply system having a discharge passage for guiding the liquid to the delivery port,
- a portion of the inner wall surface of the liquid supply system in contact with the liquid has a shape along the direction in which the liquid flows and has a surface area increasing structure that increases the liquid contact area.
- the inner wall surface provided with the surface area increasing structure has a larger area in contact with the liquid than the inner wall surface not provided with the surface area increasing structure.
- This surface area increasing structure is provided at a site that contacts the liquid on the inner wall surface of the liquid supply system. Therefore, when the low-temperature liquid flows into the liquid supply system of the present invention, heat exchange between the low-temperature liquid and the components of the liquid supply system is more efficiently performed as compared with the conventional liquid supply system that does not have the surface area increasing structure. . Therefore, the liquid supply system can be efficiently cooled by pouring the low temperature liquid.
- the time required for the process of cooling the liquid supply system in a room temperature environment can be shortened, so that an increase in man-hours for system installation work and maintenance work can be suppressed. Moreover, the consumption of the low temperature liquid in a cooling process can be suppressed.
- the surface area increasing structure may be an uneven shape. Thereby, a surface area increasing structure can be realized with a simple shape.
- the surface area increasing structure may be provided in the pump chamber.
- the inner wall surface of the pump chamber provided with the surface area increasing structure has a larger area in contact with the liquid flowing in the pump chamber than the inner wall surface not provided with the surface area increasing structure. Therefore, when the cryogenic liquid flows into the pump chamber of the present invention, heat exchange between the cryogenic liquid and the components of the pump chamber is more efficiently performed as compared with a conventional liquid supply system that does not have a surface area increasing structure. Therefore, the pump chamber can be efficiently cooled by pouring the low temperature liquid. According to the present invention, since the pump chamber can be efficiently cooled, it is possible to quickly eliminate the situation where the gas of the cryogenic liquid stays in the pump chamber, and to reduce the time required for the cooling process for the operation of the liquid supply system. It can be shortened.
- the pump chamber has a substantially axisymmetric shape, A pump inlet to which the supply passage is connected is provided on one side in the axial direction of the pump chamber, and a pump outlet to which the discharge passage is connected is provided on the other side in the axial direction of the pump chamber;
- the surface area increasing structure may be provided uniformly along the axial direction in the pump chamber.
- the surface area increasing structure may be provided in the supply passage and the discharge passage. Thereby, the member which comprises a liquid supply system can be cooled more efficiently.
- the liquid supply system of the present invention can be efficiently cooled.
- FIG. 1 is a schematic configuration diagram of a liquid supply system according to an embodiment of the present invention.
- FIG. 2 is a schematic sectional view showing an example of the surface area increasing structure according to the embodiment of the present invention.
- a liquid supply system according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
- the liquid supply system according to the present embodiment can be suitably used, for example, to maintain the superconducting device in an ultra-low temperature state. That is, in a superconducting device, it is necessary to always cool a superconducting coil or the like. Therefore, the apparatus to be cooled is always cooled by always supplying an ultra-low temperature liquid (liquid nitrogen or liquid helium) to the apparatus to be cooled provided with a superconducting coil. More specifically, by providing a circulation flow path that passes through the apparatus to be cooled, and by attaching the liquid supply system according to the present embodiment in the circulation flow path, the ultra low temperature liquid is circulated to It becomes possible to always cool.
- FIG. 1 is a schematic configuration diagram of an entire liquid supply system according to an embodiment of the present invention, and is a diagram showing a schematic configuration of the entire liquid supply system in cross-section.
- the liquid supply system 10 includes a liquid supply system main body (hereinafter referred to as the system main body 100), a vacuum container 200 in which the system main body 100 is installed, and piping (a suction pipe 310 and a delivery pipe 320). And. Both the suction pipe 310 and the delivery pipe 320 enter the inside of the vacuum container 200 from the outside of the vacuum container 200 and are connected to the system main body 100.
- the system main body 100 includes a linear actuator 110 serving as a driving source, a shaft member 120 that reciprocates in the vertical direction by the linear actuator 110, and a container 130.
- the linear actuator 110 is fixed at an arbitrary place, and the place to be fixed may be the container 130 or another place not shown.
- the container 130 includes a case portion 131.
- the shaft member 120 is installed from the outside of the container 130 so as to enter the inside of the container through an opening 131 a provided in the ceiling part of the case part 131.
- a liquid suction port 131b and a delivery port 131c are provided at the bottom of the case portion 131.
- the suction pipe 310 is connected to a position where the suction port 131b is provided, and the delivery pipe 320 is connected to a position where the delivery port 131c is provided.
- a plurality of members are provided in the case portion 131, and a plurality of spaces partitioned by the plurality of members form a plurality of pump chambers, a liquid flow path, and a heat insulating vacuum chamber. ing.
- the internal configuration of the case portion 131 will be described in more detail.
- a plurality of first flow paths 131Xc that are provided below the first inward flange portion 131Xa and extend in the axial direction are formed in the body portion 131X at intervals in the circumferential direction.
- a second flow path 131Xd configured by a cylindrical space extending in the axial direction is further provided inside the body portion 131X at a radially outer side than a region where the first flow path 131Xc is provided. Yes.
- a flow path 131d that extends outward in the radial direction and is connected to the first flow path 131Xc is uniformly formed on the bottom of the case portion 131 in a circumferential shape.
- the bottom plate portion 131Y of the case portion 131 is uniformly formed with a circumferential channel 131e extending radially outward. That is, the flow channel 131d and the flow channel 131e are configured such that liquid can flow radially in all directions from 360 ° toward the radially outer side.
- a third bellows 151 and a fourth bellows 152 that are expanded and contracted with the reciprocating movement of the shaft member 120 are also provided inside the container 130.
- the upper end side of the third bellows 151 is fixed to the ceiling portion of the case portion 131, and the lower end side of the third bellows 151 is fixed to the shaft member 120. Thereby, the opening part 131a provided in the case part 131 is closed.
- the upper end side of the fourth bellows 152 is fixed to a second inward flange portion 131Xb provided in the case portion 131, and the lower end side of the fourth bellows 152 is fixed to the connecting portion 123 in the shaft member 120.
- first check valve 160A second check valve 160B, third check valve 160C and fourth check valve according to the position of attachment.
- a stop valve 160D Further, the first check valve 160A and the second check valve 160B are disposed on the opposite side (lower side) from the linear actuator 110 via the first pump chamber P1 and the second pump chamber P2.
- the third check valve 160C and the fourth check valve 160D are disposed above the first check valve 160A and the second check valve 160B.
- the first check valve 160A and the third check valve 160C are provided on the flow path passing through the first pump chamber P1.
- the first check valve 160A and the third check valve 160C play a role of stopping the backflow of the liquid flowing by the pumping action by the first pump chamber P1.
- the first check valve 160A is provided on the upstream side with respect to the first pump chamber P1
- the third check valve 160C is provided on the downstream side.
- the first check valve 160 ⁇ / b> A is provided on a flow path 131 d formed at the bottom of the case portion 131.
- the third check valve 160C is provided on a flow path formed in the vicinity of the second inward flange portion 131Xb provided in the case portion 131.
- the second check valve 160B and the fourth check valve 160D are provided on the flow path passing through the second pump chamber P2.
- the second check valve 160B and the fourth check valve 160D play a role of stopping the backflow of the liquid flowing by the pumping action by the second pump chamber P2.
- the second check valve 160B is provided on the upstream side with respect to the second pump chamber P2, and the fourth check valve 160D is provided on the downstream side.
- the second check valve 160B is provided on the flow path 131e formed in the bottom plate portion 131Y of the case portion 131.
- the fourth check valve 160D is provided on a flow path formed in the vicinity of the first inward flange portion 131Xa of the case portion 131.
- the first bellows 141 is extended and the second bellows 142 is contracted.
- the first check valve 160A is closed, and the third check valve 160C is opened.
- the liquid in the first pump chamber P1 passes through the third check valve 160C (see arrow T11) and is sent to the second flow path 131Xd inside the body portion 131X.
- the liquid passes through the delivery port 131 c and is delivered to the outside of the liquid supply system 10 through the delivery pipe 320.
- the second check valve 160B is opened and the fourth check valve 160D is closed.
- the liquid can flow from the suction pipe 310 side to the delivery pipe 320 side both when the shaft member 120 is lowered and when it is raised. Therefore, so-called pulsation can be suppressed.
- the liquid supply system 10 When the liquid supply system 10 according to the present embodiment is used for circulation of an ultra-low temperature liquid such as liquid nitrogen or liquid helium, the liquid supply system 10 in a room temperature environment is about the same as a low-temperature liquid that is a working liquid before operation. It is necessary to cool to a temperature of In this embodiment, the same liquid as the low-temperature liquid circulated when the system is operating is used for system cooling.
- the system cooling liquid may be different from the liquid circulated when the system is operating.
- a low-temperature liquid is poured from the suction pipe 310, heat is exchanged between the case 131 and the low-temperature liquid, which are constituent members of the liquid supply system 10, and the temperature of the constituent members is gradually lowered.
- the suction port 131b and the delivery port 131c are provided at the bottom of the container 100, the low-temperature liquid poured in in the cooling step is gradually gradually in the order of the second pump chamber P2 and then the first pump chamber P1.
- the water level of the cryogenic liquid rises.
- the number of components that exchange heat with the cryogenic liquid for cooling increases, and cooling proceeds from the lower part to the upper part of the system.
- FIG. 2 is a diagram schematically showing an AA cross section of FIG. 2 shows only the cross section of the first bellows 141 and the inner wall 131Xe of the first pump chamber P1 for the sake of simplicity, and omits the cross sections of the fourth bellows 152, the cylindrical portion 122, and the shaft main body portion 121 that are originally present in the inner diameter direction. is doing.
- the first pump chamber P1 is a space surrounded by the outer peripheral surface of the first bellows 141 and the inner wall surface 180 of the inner wall 131Xe facing the first bellows 141.
- the inner wall 131Xe is in contact with the liquid flowing through the first pump chamber P1 and is a part of the case portion 131, and exchanges heat with members constituting the system main body 100.
- a surface area increasing structure 400 is provided on the inner wall surface 180 of the inner wall 131Xe along the direction in which the liquid flows through the first pump chamber P1 (arrow L1). In the present embodiment, the surface area increasing structure 400 has an uneven shape provided uniformly on the inner wall surface 180 along the axial direction.
- the first pump chamber P1 is substantially axisymmetric with respect to the central axis of the shaft member 120, and the pump inlet 401 through which the liquid flows into the first pump chamber P1 is arranged in the axial direction of the first pump chamber P1.
- a pump outlet 402 that is provided on one side (lower side) and from which the liquid flows out from the first pump chamber P1 is provided on the other side (upper side) in the axial direction of the first pump chamber P1.
- the uneven shape forming the surface area increasing structure 400 is provided on the inner wall surface 180 of the inner wall 131Xe. It is a linear groove that is substantially parallel to the expansion / contraction direction of the bellows 141 (that is, the vertical direction).
- the same surface area increasing structure is also provided in the second pump chamber P2. That is, in the second pump chamber P2, an axial linear groove is formed on the inner wall surface 181 of the inner wall 131Xf facing the second bellows 142 along the direction in which the liquid flows in the second pump chamber P2 (arrow L2). A surface area increasing structure is provided.
- the surface area increasing structure 400 increases the liquid contact area of the inner wall surface 180 of the inner wall 131Xe.
- the inner wall surface 180 exchanges heat with members constituting the first pump chamber P1 and members constituting the system main body 100. Therefore, when the cryogenic liquid flows into the first pump chamber P1, heat exchange between the cryogenic liquid and the system components is performed more efficiently than in the conventional structure that does not have the surface area increasing structure 400. Accordingly, the system can be efficiently cooled by pouring the low temperature liquid.
- the surface area increasing structure 400 is a structure in which linear grooves along the direction of the liquid flow in the first pump chamber P1 are uniformly provided on the inner wall surface. The flow of the liquid in the pump chamber P1 is not easily inhibited. Also in the second pump chamber P2, the same surface area increasing structure as that of the first pump chamber P1 is provided, so that the low-temperature liquid and system configuration can be efficiently performed without hindering the flow of the liquid in the second pump chamber P2. Heat exchange with the member can be performed.
- the example in which the surface area increasing structure 400 is provided on the inner wall surfaces 180X and 181 of the inner wall 131Xe and the inner wall 131Xf respectively constituting the first pump chamber P1 and the second pump chamber P2 has been described. May be provided in any other part as long as it is a part that exchanges heat with the constituent members of the system main body 100 and is in contact with the cryogenic liquid.
- the inner wall surface of the supply passage connected to the inlet 401 of the first pump chamber P1 the inner wall surface of the discharge passage connected to the outlet 402 of the first pump chamber P1, and the inlet 403 of the second pump chamber P2.
- the inner wall surface of the supply passage and the inner wall surface of the discharge passage connected to the outlet 404 of the second pump chamber P2 may be provided with a surface area increasing structure.
- a surface area increase structure the specific shape of a surface area increase structure increases a wetted area rather than the case where a surface area increase structure is not provided.
- the shape is not limited to a straight groove as long as it can be shaped.
- a spiral groove or an annular groove substantially coaxial with the shaft member 120 may be used.
- the present invention is applied to a liquid supply system having a bellows pump in which two pump chambers surrounding the outer peripheral surface of the bellows are arranged in series vertically in the vertical direction (bellows expansion and contraction direction) has been described.
- the liquid supply system to which the invention is applicable is not limited to this.
- INDUSTRIAL APPLICABILITY The present invention can be generally applied to a pump that sucks and delivers a liquid, and increases a liquid contact area in a portion that exchanges heat with a constituent member of a pump chamber (or a liquid supply system main body) in an inner wall surface that contacts the liquid in the pump chamber.
- a configuration is adopted in which the outside of the system main body 100, the suction pipe 310, and the delivery pipe 320 is evacuated to provide a heat insulating function. Further, in this embodiment, a configuration is adopted in which the sealed space formed by the first space K1, the second space K2, and the third space K3 is evacuated to have a heat insulating function. However, it is also possible to maintain the temperature of the liquid flowing through the circulation channel at a low temperature by flowing an ultra-low temperature liquid in these spaces.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
Abstract
Description
すなわち、本発明の液体供給システムは、
内部にポンプ室が備えられ、かつ液体の吸入口及び送出口が設けられている容器と、前記吸入口から流入する前記液体を前記ポンプ室に供給する供給通路と、前記ポンプ室から排出される前記液体を前記送出口へ導く排出通路と、を有する液体供給システムであって、
前記液体供給システムの内壁面において前記液体と接する部位に、前記液体が流れる方向に沿った形状であって、接液面積を増加させる表面積増加構造を有することを特徴とする。
これにより、単純な形状で表面積増加構造を実現できる。
これにより、表面積増加構造が設けられたポンプ室の内壁面は、表面積増加構造が設けられていない内壁面よりも、ポンプ室内を流れる液体と接触する面積が大きい。よって、本発明のポンプ室に低温液体が流入すると、表面積増加構造を有しない従来の液体供給システムと比較して、低温液体とポンプ室の構成部材との熱交換がより効率良く行われる。従って、低温液体を流し込むことによりポンプ室を効率良く冷却することができる。本発明によれば、ポンプ室を効率的に冷却することができるため、ポンプ室に低温液体のガスが滞留する状況を早期に解消でき、液体供給システムの稼働のための冷却工程に要する時間を短縮することができる。
前記供給通路が接続されるポンプ入口が前記ポンプ室の軸方向の一方側に設けられ、かつ前記排出通路が接続されるポンプ出口が前記ポンプ室の軸方向の他方側に設けられており、
前記表面積増加構造は、前記ポンプ室内の軸方向に沿って一様に設けられてもよい。
これにより、液体供給システムを構成する部材をより効率良く冷却することができる。
前記容器内において、鉛直方向に往復移動する軸部材と、
鉛直方向に並べて配置され、かつ前記軸部材の往復移動に伴って伸縮する第1ベローズ及び第2ベローズと、
を有し、前記ポンプ室は、
前記第1ベローズの外周面を囲む空間により形成される第1ポンプ室と、
前記第2ベローズの外周面を囲む空間により形成される第2ポンプ室と、
からなり、
前記表面積増加構造は、
前記第1ポンプ室内において前記第1ベローズの外周面を囲む空間の内壁面に設けられた前記第1ベローズの伸縮方向と略平行の凹凸形状と、
前記第2ポンプ室内において前記第2ベローズの外周面を囲む空間の内壁面に設けられた前記第2ベローズの伸縮方向と略平行の凹凸形状と、
を有する構成としてもよい。
図1及び図2を参照して、本発明の実施例に係る液体供給システムについて説明する。本実施例に係る液体供給システムは、例えば、超電導機器を超低温状態に維持させるために好適に用いることができる。すなわち、超電導機器においては、超電導コイルなどを常時冷却させる必要がある。そこで、超電導コイルなどが備えられた被冷却装置に超低温の液体(液体窒素や液体ヘリウム)を常時供給することで、被冷却装置は常時冷却される。より具体的には、被冷却装置を通る循環流路を設け、かつ、この循環流路中に本実施例に係る液体供給システムを取り付けることにより、超低温の液体を循環させて、被冷却装置を常時冷却させることが可能となる。
図1は本発明の実施例に係る液体供給システム全体の概略構成図であり、液体供給システム全体の概略構成を断面的に示した図である。本実施例に係る液体供給システム10は、液体供給システム本体(以下、システム本体100と称する)と、システム本体100が内部に設置される真空容器200と、配管(吸入管310及び送出管320)とを備えている。吸入管310及び送出管320は、いずれも真空容器200の外部から真空容器200の内部に入り込み、システム本体100に接続されている。真空容器200の内部は密閉されており、真空容器200の内部のうち、システム本体100,吸入管310及び送出管320の外側の空間は真空状態が維持されている。これにより、この空間は断熱機能を備えている。液体供給システム10は、通常、水平面上に設置される。液体供給システム10が設置された状態において、図1における上方が鉛直方向上方となり、図1における下方が鉛直方向下方となる。
液体供給システム全体の動作について説明する。リニアアクチュエータ110によって、軸部材120が下降する際においては、第1ベローズ141は縮み、第2ベローズ142は伸びる。このとき、第1ポンプ室P1の液体圧力は低くなるため、第1逆止弁160Aは弁が開き、第3逆止弁160Cは弁が閉じた状態となる。これにより、液体供給システム10の外部から吸入管310により送られる液体(矢印S10参照)は、吸入口131bから容器130内に吸入されて、第1逆止弁160Aを通り抜けていく(矢印S11参照)。そして、第1逆止弁160Aを通り抜けた液体は、ケース部131における胴体部131Xの内部の第1流路131Xcを通り、第1ポンプ室P1へと送られる。また、第2ポンプ室P2の液体圧力は高くなるため、第2逆止弁160Bは弁が閉じ、第4逆止弁160Dは弁が開いた状態となる。これにより、第2ポンプ室P2内の液体は、第4逆止弁160Dを通り抜けて、胴体部131Xの内部の第2流路131Xdへと送られる(矢印T12参照)。その後、液体は、送出口131cを通り、送出管320により液体供給システム10の外部へと送出される。
本実施例に係る液体供給システム10を、液体窒素や液体ヘリウム等の超低温液体の循環に使用する場合、常温環境下にある液体供給システム10を、稼働前に作動液体である低温液体と同程度の温度まで冷却する必要がある。本実施例では、システム稼働時に流通させる低温液体と同じ液体をシステム冷却用に用いる。なお、システム冷却用の液体と、システム稼働時に流通させる液体とは異なるものであってもよい。
図1及び図2を参照して、本実施例に係る表面積増加構造について説明する。図2は、図1のAA断面を模式的に示す図である。なお、図2は、簡単のため第1ベローズ141及び第1ポンプ室P1の内壁131Xeの断面のみ示し、本来内径方向に存在する第4ベローズ152、円筒部122、軸本体部121の断面を省略している。
本実施例の液体供給システム10によれば、表面積増加構造400により、内壁131Xeの内壁面180の接液面積が大きくなる。内壁面180は、第1ポンプ室P1を構成する部材、そしてシステム本体100を構成する部材と熱交換する。よって、第1ポンプ室P1に低温液体が流入すると、表面積増加構造400を有しない従来構造と比較して、低温液体とシステム構成部材との熱交換がより効率良く行われる。従って、低温液体を流し込むことによるシステム冷却を効率良く行うことができる。よって、常温環境下にある液体供給システムを稼働のために冷却するための工程に要する時間を短縮でき、システムの設置作業やメンテナンス作業の工数増加を抑制できる。また、冷却工程における低温液体の消費量を抑制できる。表面積増加構造400は、第1ポンプ室P1内の液体の流れの方向に沿った直線的な溝が内壁面に一様に設けられた構造であるため、表面積増加構造400の存在により、第1ポンプ室P1内の液体の流れは阻害されにくい。第2ポンプ室P2においても、第1ポンプ室P1と同様の表面積増加構造が設けられていることにより、第2ポンプ室P2内の液体の流れを阻害することなく、効率良く低温液体とシステム構成部材との熱交換を行うことができる。
本実施例では、表面積増加構造400が、第1ポンプ室P1及び第2ポンプ室P2をそれぞれ構成する内壁131Xe及び内壁131Xfそれぞれの内壁面180及び181に設けられる例を説明したが、表面積増加構造は、システム本体100の構成部材と熱交換し、かつ低温液体と接する部位であれば、その他のどの部分に設けられていても良い。例えば、第1ポンプ室P1の入口401に接続される供給通路の内壁面、第1ポンプ室P1の出口402に接続される排出通路の内壁面、第2ポンプ室P2の入口403に接続される供給通路の内壁面、第2ポンプ室P2の出口404に接続される排出通路の内壁面にも、表面積増加構造を設けても良い。また、表面積増加構造として、軸方向に沿った直線的な溝を内壁面に設ける例を説明したが、表面積増加構造の具体的形状は、表面積増加構造を設けない場合より接液面積を増加させることができる形状であれば、直線的な溝に限らない。例えば螺旋形状の溝や、軸部材120と略同軸の環状溝でもよい。
100 システム本体
110 リニアアクチュエータ
120 軸部材
121 軸本体部
122 円筒部
122a 上端側外向きフランジ部
122b 下端側外向きフランジ部
123 連結部
130 容器
131 ケース部
131a 開口部
131b 吸入口
131c 送出口
131d 流路
131e 流路
131X 胴体部
131Xa 第1内向きフランジ部
131Xb 第2内向きフランジ部
131Xc 第1流路
131Xd 第2流路
131Xe 内壁
131Xf 内壁
131Y 底板部
141 第1ベローズ
142 第2ベローズ
151 第3ベローズ
152 第4ベローズ
160 逆止弁
160A 第1逆止弁
160B 第2逆止弁
160C 第3逆止弁
160D 第4逆止弁
180 内壁面
181 内壁面
190 内壁面
200 真空容器
310 吸入管
320 送出管
400 表面積増加構造
401 第1ポンプ室入口
402 第1ポンプ室出口
403 第2ポンプ室入口
404 第2ポンプ室出口
L1 第1ポンプ室の液体の流れ
L2 第2ポンプ室の液体の流れ
P1 第1ポンプ室
P2 第2ポンプ室
Claims (6)
- 内部にポンプ室が備えられ、かつ液体の吸入口及び送出口が設けられている容器と、前記吸入口から流入する前記液体を前記ポンプ室に供給する供給通路と、前記ポンプ室から排出される前記液体を前記送出口へ導く排出通路と、を有する液体供給システムであって、
前記液体供給システムの内壁面において前記液体と接する部位に、前記液体が流れる方向に沿った形状であって、接液面積を増加させる表面積増加構造を有することを特徴とする液体供給システム。 - 前記表面積増加構造は、凹凸形状である請求項1に記載の液体供給システム。
- 前記表面積増加構造は、前記ポンプ室内に設けられる請求項1又は2に記載の液体供給システム。
- 前記ポンプ室内は、略軸対称の形状であり、
前記供給通路が接続されるポンプ入口が前記ポンプ室の軸方向の一方側に設けられ、かつ前記排出通路が接続されるポンプ出口が前記ポンプ室の軸方向の他方側に設けられており、
前記表面積増加構造は、前記ポンプ室の軸方向に沿って一様に設けられる請求項3に記載の液体供給システム。 - 前記表面積増加構造は、前記供給通路及び前記排出通路に設けられる請求項1~4のいずれか1項に記載の液体供給システム。
- 前記容器内において、鉛直方向に往復移動する軸部材と、
鉛直方向に並べて配置され、かつ前記軸部材の往復移動に伴って伸縮する第1ベローズ及び第2ベローズと、
を有し、前記ポンプ室は、
前記第1ベローズの外周面を囲む空間により形成される第1ポンプ室と、
前記第2ベローズの外周面を囲む空間により形成される第2ポンプ室と、
からなり、
前記表面積増加構造は、
前記第1ポンプ室内において前記第1ベローズの外周面を囲む空間の内壁面に設けられた前記第1ベローズの伸縮方向と略平行の凹凸形状と、
前記第2ポンプ室内において前記第2ベローズの外周面を囲む空間の内壁面に設けられた前記第2ベローズの伸縮方向と略平行の凹凸形状と、
を有することを特徴とする請求項1~5のいずれか1項に記載の液体供給システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18747736.9A EP3578813A1 (en) | 2017-02-03 | 2018-02-02 | Liquid supply system |
JP2018566130A JPWO2018143417A1 (ja) | 2017-02-03 | 2018-02-02 | 液体供給システム |
CN201880006961.XA CN110177942A (zh) | 2017-02-03 | 2018-02-02 | 液体供给系统 |
US16/482,676 US20200011323A1 (en) | 2017-02-03 | 2018-02-02 | Liquid supply system |
KR1020197021571A KR20190098227A (ko) | 2017-02-03 | 2018-02-02 | 액체 공급 시스템 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017019047 | 2017-02-03 | ||
JP2017-019047 | 2017-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018143417A1 true WO2018143417A1 (ja) | 2018-08-09 |
Family
ID=63039833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003624 WO2018143417A1 (ja) | 2017-02-03 | 2018-02-02 | 液体供給システム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200011323A1 (ja) |
EP (1) | EP3578813A1 (ja) |
JP (1) | JPWO2018143417A1 (ja) |
KR (1) | KR20190098227A (ja) |
CN (1) | CN110177942A (ja) |
WO (1) | WO2018143417A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220403509A1 (en) * | 2021-06-17 | 2022-12-22 | Tokyo Electron Limited | Vacuum processing apparatus and oxidizing gas removal method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56151293A (en) * | 1980-04-23 | 1981-11-24 | Teisan Kk | Starting device for transfer pump for low-temperature liquefied gas |
JP2005504927A (ja) * | 2001-10-05 | 2005-02-17 | ウエストポート リサーチ インコーポレイテッド | 貯蔵タンクから低温流体を供給するための高圧ポンプ・システム |
JP2012163105A (ja) * | 2005-01-07 | 2012-08-30 | Mitsubishi Heavy Ind Ltd | 低温流体用昇圧装置 |
JP2014001663A (ja) * | 2012-06-18 | 2014-01-09 | Koganei Corp | 液体供給装置 |
WO2016006648A1 (ja) | 2014-07-10 | 2016-01-14 | イーグル工業株式会社 | 液体供給システム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062971A (ja) * | 1992-06-22 | 1994-01-11 | Aisin Seiki Co Ltd | スターリング機関一体型圧縮機 |
JP4665713B2 (ja) * | 2005-10-25 | 2011-04-06 | 日立電線株式会社 | 内面溝付伝熱管 |
JP4982515B2 (ja) * | 2009-02-24 | 2012-07-25 | 日本ピラー工業株式会社 | ベローズポンプ |
JP5720888B2 (ja) * | 2011-03-30 | 2015-05-20 | 株式会社イワキ | ベローズポンプ |
CN202204346U (zh) * | 2011-07-21 | 2012-04-25 | 苏州唐峰金属制品有限公司 | 一种新型热交换器 |
CA2809504C (en) * | 2013-03-15 | 2014-07-22 | Westport Power Inc. | Check valve with improved response time |
-
2018
- 2018-02-02 EP EP18747736.9A patent/EP3578813A1/en not_active Withdrawn
- 2018-02-02 CN CN201880006961.XA patent/CN110177942A/zh active Pending
- 2018-02-02 US US16/482,676 patent/US20200011323A1/en not_active Abandoned
- 2018-02-02 JP JP2018566130A patent/JPWO2018143417A1/ja active Pending
- 2018-02-02 WO PCT/JP2018/003624 patent/WO2018143417A1/ja unknown
- 2018-02-02 KR KR1020197021571A patent/KR20190098227A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56151293A (en) * | 1980-04-23 | 1981-11-24 | Teisan Kk | Starting device for transfer pump for low-temperature liquefied gas |
JP2005504927A (ja) * | 2001-10-05 | 2005-02-17 | ウエストポート リサーチ インコーポレイテッド | 貯蔵タンクから低温流体を供給するための高圧ポンプ・システム |
JP2012163105A (ja) * | 2005-01-07 | 2012-08-30 | Mitsubishi Heavy Ind Ltd | 低温流体用昇圧装置 |
JP2014001663A (ja) * | 2012-06-18 | 2014-01-09 | Koganei Corp | 液体供給装置 |
WO2016006648A1 (ja) | 2014-07-10 | 2016-01-14 | イーグル工業株式会社 | 液体供給システム |
Also Published As
Publication number | Publication date |
---|---|
US20200011323A1 (en) | 2020-01-09 |
EP3578813A1 (en) | 2019-12-11 |
JPWO2018143417A1 (ja) | 2019-12-12 |
KR20190098227A (ko) | 2019-08-21 |
CN110177942A (zh) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101885017B1 (ko) | 액체 공급 시스템 | |
WO2018143417A1 (ja) | 液体供給システム | |
WO2018143420A1 (ja) | 液体供給システム | |
JPWO2018143419A1 (ja) | 液体供給システム | |
US20120312032A1 (en) | Cryopump and cryogenic refrigerator | |
WO2018143422A1 (ja) | 液体供給システム | |
JP5275947B2 (ja) | 四方切換弁 | |
WO2018143426A1 (ja) | 液体供給システム | |
JP2020020283A (ja) | ダイヤフラム式圧縮機、冷却機、プロジェクター及び流体の圧縮方法 | |
WO2018143421A1 (ja) | 液体供給システム | |
WO2020179564A1 (ja) | 液体供給システム | |
KR101817227B1 (ko) | 냉매가스 안정화 장치 | |
JP2004239258A (ja) | 真空ポンプ装置 | |
KR102273289B1 (ko) | 다단 냉각식 열교환장치 및 그 제어방법 | |
CN212899748U (zh) | 挡板阀门及具有其的真空机组 | |
US20200003196A1 (en) | Heat insulation structure and liquid supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18747736 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018566130 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197021571 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018747736 Country of ref document: EP Effective date: 20190903 |