WO2018142908A1 - ポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体 - Google Patents

ポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体 Download PDF

Info

Publication number
WO2018142908A1
WO2018142908A1 PCT/JP2018/000881 JP2018000881W WO2018142908A1 WO 2018142908 A1 WO2018142908 A1 WO 2018142908A1 JP 2018000881 W JP2018000881 W JP 2018000881W WO 2018142908 A1 WO2018142908 A1 WO 2018142908A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyketone
group
carbon atoms
film
hydrocarbon group
Prior art date
Application number
PCT/JP2018/000881
Other languages
English (en)
French (fr)
Inventor
松谷 寛
古川 直樹
石川 洋平
昌大 松永
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020197022894A priority Critical patent/KR20190109433A/ko
Priority to JP2018566024A priority patent/JPWO2018142908A1/ja
Priority to US16/481,945 priority patent/US20200247948A1/en
Priority to CN201880009091.1A priority patent/CN110249003A/zh
Publication of WO2018142908A1 publication Critical patent/WO2018142908A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/04Polyanhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L73/00Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D173/00Coating compositions based on macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C09D159/00 - C09D171/00; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polyketone composition, a polyketone film, a substrate with a polyketone film, an optical element, an image display device, a covering member, and a molded body.
  • An aromatic polyketone having an aromatic ring and a carbonyl group in the main chain has excellent heat resistance and mechanical properties and is used as an engineering plastic.
  • Most of the polymers belonging to the aromatic polyketone are aromatic polyether ketones polymerized using a nucleophilic aromatic substitution reaction, and have an ether bond in the main chain.
  • aromatic polyketone having no ether bond in the main chain is superior in heat resistance and chemical resistance to aromatic polyether ketone (for example, Patent Document 1 and Patent Document 2).
  • the present invention has been made in view of the above situation, and when used as a film, the polyketone composition, polyketone film, and polyketone film with high surface hardness and low coefficient of thermal expansion are maintained while maintaining transparency and heat resistance. It aims at providing a base material, an optical element, an image display apparatus, a covering member, and a molded object.
  • a polyketone containing a structural unit represented by the following general formula (I) and inorganic particles, and the content of the inorganic particles with respect to 100 parts by mass of the total amount of the polyketone and the inorganic particles Is a polyketone composition wherein the inorganic particles have an average particle diameter of 10 nm to 200 nm.
  • each X independently represents a divalent group having 1 to 50 carbon atoms which may have a substituent
  • Y each independently has a substituent.
  • a divalent hydrocarbon group having 1 to 30 carbon atoms, and n represents an integer of 1 to 1500.
  • each X independently includes at least one selected from the group consisting of the following general formulas (II-1) to (II-3): The polyketone composition according to any one of 4>.
  • each R 1 independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 30 carbon atoms
  • each R 2 independently represents A hydrocarbon group having 1 to 30 carbon atoms which may have a substituent
  • each m independently represents an integer of 0 to 3.
  • each R 1 independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 30 carbon atoms
  • each R 2 independently represents An optionally substituted hydrocarbon group having 1 to 30 carbon atoms
  • m independently represents an integer of 0 to 3
  • Z represents an oxygen atom or the following general formula (III-1) And a divalent group represented by (III-7).
  • each R 1 independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent
  • R 2 Each independently represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent
  • R 3 and R 4 may each independently have a hydrogen atom or a substituent.
  • m represents an integer of 0 to 3
  • each independently represents an integer of 0 to 4
  • p represents each independently 0 Indicates an integer of ⁇ 2.
  • each R 5 independently represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, and n represents each independently 0 to 4 Indicates an integer.
  • ⁇ 6> The polyketone composition according to any one of ⁇ 1> to ⁇ 5>, wherein Y in the general formula (I) includes a divalent saturated hydrocarbon group.
  • Y in the general formula (I) includes a divalent saturated alicyclic hydrocarbon group.
  • Y has 6 to 30 carbon atoms.
  • ⁇ 9> The polyketone composition according to any one of ⁇ 1> to ⁇ 8>, wherein the inorganic particles are silica particles.
  • ⁇ 11> A polyketone film formed from the polyketone composition according to any one of ⁇ 1> to ⁇ 10>.
  • An image display device comprising the polyketone film according to ⁇ 11>, the base material with a polyketone film according to ⁇ 12>, or the optical element according to ⁇ 13>.
  • a covering member comprising a member and a coating film formed from the polyketone composition according to any one of ⁇ 1> to ⁇ 10> provided on at least a part of the surface of the member.
  • a polyketone composition, a polyketone film, a substrate with a polyketone film, an optical element, and an image display that exhibit high surface hardness and low thermal expansion coefficient while maintaining transparency and heat resistance when formed into a film.
  • An apparatus, a covering member, and a molded body can be provided.
  • numerical ranges indicated using “to” indicate ranges including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of substances present in the composition unless otherwise specified. Means the total content or content.
  • the term “layer” or “film” includes only a part of the region in addition to the case where the layer or film is formed over the entire region. The case where it is formed is also included.
  • laminate indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the “average particle size” has the same meaning as the “average primary particle size” unless otherwise specified.
  • “excellent in transparency” means that the transmittance of visible light (transmittance of visible light having a wavelength of 400 nm) is 85% or more (in terms of a film thickness of 1 ⁇ m).
  • “heat resistance” means that the glass transition temperature (Tg) of the member containing polyketone is at least 180 ° C.
  • “high surface hardness” means that the pencil hardness of the formed film is 2H or more.
  • “low thermal expansion coefficient” means that the thermal expansion coefficient of the formed film is 50 ppm / ° C. or less.
  • the polyketone composition of the present embodiment contains a polyketone (hereinafter, also referred to as “specific polyketone”) containing a structural unit represented by the following general formula (I), and inorganic particles, and the polyketone and the inorganic particles
  • the content of the inorganic particles is 10 parts by mass to 70 parts by mass with respect to the total amount of 100 parts by mass, and the average particle diameter of the inorganic particles is 10 nm to 200 nm.
  • each X independently represents a divalent group having 1 to 50 carbon atoms that may have a substituent, and each Y independently has a substituent. And a divalent hydrocarbon group having 1 to 30 carbon atoms, and n represents an integer of 1 to 1500.
  • the polyketone composition of the present embodiment exhibits a high surface hardness and a low thermal expansion coefficient while maintaining transparency and heat resistance when formed into the above-described configuration.
  • the reason is not clear, but is presumed as follows. Since the specific polyketone contains a carbonyl group, it has excellent heat resistance and transparency.
  • the content of the inorganic particles is 10 parts by mass to 70 parts by mass with respect to the total amount of the specific polyketone and the inorganic particles of 100 parts by mass, and the average particle diameter of the inorganic particles Is 10 nm to 200 nm, high surface hardness and low thermal expansion coefficient are achieved while maintaining the transparency of the film.
  • the specific polyketone is formed with almost C—C bonds, the molecular chain itself has an advantage that it is excellent in stability against a chemical solution.
  • each component will be described.
  • the polyketone composition contains a specific polyketone.
  • the specific polyketone includes a structural unit represented by the following general formula (I).
  • each X independently represents a divalent group having 1 to 50 carbon atoms which may have a substituent.
  • Y independently represents a divalent hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
  • n represents an integer of 1 to 1500, preferably 2 to 1000, and more preferably 5 to 500.
  • the carbon number of these groups shall not include the carbon number of a substituent. The same applies thereafter.
  • the number of carbon atoms of the divalent group represented by X is 1 to 50, preferably 1 to 30, and more preferably 1 to 24.
  • the substituent that X may have is not particularly limited, and specific examples include a halogen atom, an alkoxy group having 1 to 5 carbon atoms, an acyl group having 2 to 5 carbon atoms, and the like.
  • the divalent group represented by X is preferably a hydrocarbon group, more preferably a hydrocarbon group containing an aromatic ring.
  • X is a hydrocarbon group having an aromatic ring, the heat resistance tends to be further improved.
  • X is preferably a divalent group having 6 to 50 carbon atoms including an aromatic ring from the viewpoint of improving heat resistance.
  • the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a naphthacene ring, a chrysene ring, a pyrene ring, a triphenylene ring, a pentacene ring, and a benzopyrene ring.
  • X preferably contains a plurality of aromatic rings, and the plurality of aromatic rings are non-conjugated with each other or are divalent groups having a weak conjugated relationship (hereinafter also referred to as “specific aromatic ring groups”). ) Is more preferable. This makes it possible to achieve good diacylation at a low reaction temperature during the synthesis of the polyketone, resulting in a polyketone having a high molecular weight and excellent heat resistance.
  • the specific aromatic ring group preferably has 12 to 50 carbon atoms.
  • a plurality of aromatic rings are non-conjugated with each other or have a weak conjugated relationship
  • a plurality of aromatic rings are bonded via an ether bond or a methylene bond; It means that conjugation between aromatic rings is suppressed by steric hindrance by a substituent such as 2′-substituted biphenyl.
  • X includes divalent groups represented by the following general formulas (II-1) to (II-3).
  • each R 1 independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 30 carbon atoms
  • each R 2 independently represents a substituted group.
  • the part with a wavy line means a bond. The same applies thereafter.
  • the hydrocarbon group represented by R 1 has 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • Examples of the hydrocarbon group represented by R 1 include a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, and an alicyclic hydrocarbon group.
  • saturated aliphatic hydrocarbon group represented by R 1 examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, and n-pentyl.
  • Group, isopentyl group, sec-pentyl group, neo-pentyl group, t-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-icosanyl group Examples include an n-triacontanyl group.
  • the saturated aliphatic hydrocarbon group may have an alicyclic hydrocarbon group described below at the terminal portion.
  • Examples of the unsaturated aliphatic hydrocarbon group represented by R 1 include an alkenyl group such as a vinyl group and an allyl group, and an alkynyl group such as an ethynyl group. Further, the unsaturated aliphatic hydrocarbon group may have an alicyclic hydrocarbon group to be described later at its terminal portion.
  • Examples of the alicyclic hydrocarbon group represented by R 1 include cycloalkyl groups such as cyclohexyl group, cycloheptyl group, cyclooctyl group and norbornyl group, and cycloalkenyl groups such as cyclohexenyl group. Further, the alicyclic hydrocarbon group may include at least one selected from the group consisting of a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group in the alicyclic ring.
  • the substituent that the hydrocarbon group represented by R 1 may have is not particularly limited, and examples thereof include a halogen atom, an alkoxy group having 1 to 5 carbon atoms, and an acyl group having 2 to 5 carbon atoms.
  • each R 2 independently represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
  • the hydrocarbon group represented by R 2 preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms represented by R 2 include those similar to the hydrocarbon group having 1 to 30 carbon atoms exemplified for R 1 .
  • examples of the substituent that the hydrocarbon group represented by R 2 may have include a halogen atom, an alkoxy group having 1 to 5 carbon atoms, and an acyl group having 2 to 5 carbon atoms.
  • each m independently represents an integer of 0 to 3, preferably an integer of 0 to 2, and more preferably 0 or 1.
  • each R 1 independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 30 carbon atoms
  • each R 2 independently represents a substituted group.
  • each R 1 independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 30 carbon atoms
  • R 2 represents Each independently represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent
  • R 3 and R 4 each independently represents a carbon atom which may have a hydrogen atom or a substituent.
  • m independently represents an integer of 0 to 3
  • n independently represents an integer of 0 to 4
  • p independently represents an integer of 0 to 2, respectively.
  • R 3 and R 4 in the general formula (III-1) are preferably a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent from the viewpoint of heat resistance.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms represented by R 3 and R 4 include the same hydrocarbon groups having 1 to 30 carbon atoms as exemplified for R 1 in the general formula (II-1). It is done.
  • Examples of the substituent that R 3 and R 4 may have include a halogen atom, an alkoxy group having 1 to 5 carbon atoms, and an acyl group having 2 to 5 carbon atoms.
  • N in the general formulas (III-2) and (III-3) each independently represents an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0 or 1.
  • P in the general formulas (III-4), (III-5) and (III-7) each independently represents an integer of 0 to 2, and is preferably 0 or 1.
  • R 1, R 2, and m in formula (II-2), is the same as R 1, R 2, and m in Formula (II-1).
  • each R 5 independently represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, and n is each independently an integer of 0 to 4 Indicates.
  • the hydrocarbon group represented by R 5 preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 5 include the same hydrocarbon groups having 1 to 30 carbon atoms as exemplified for R 1 in formula (II-1).
  • the substituent that R 5 may have include a halogen atom, an alkoxy group having 1 to 5 carbon atoms, and an acyl group having 2 to 5 carbon atoms.
  • each n independently represents an integer of 0 to 4, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, or 1 or 2. More preferably.
  • each Y independently represents a divalent hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
  • the hydrocarbon group represented by Y has 1 to 30 carbon atoms, preferably 4 to 30 carbon atoms, and more preferably 6 to 30 carbon atoms from the viewpoint of heat resistance.
  • the hydrocarbon group represented by Y preferably contains a saturated hydrocarbon group from the viewpoint of transparency.
  • the saturated hydrocarbon group may be a saturated aliphatic hydrocarbon group or a saturated alicyclic hydrocarbon group.
  • the hydrocarbon group represented by Y preferably includes a saturated alicyclic hydrocarbon group. Since the alicyclic hydrocarbon group is bulkier than the aliphatic hydrocarbon group having the same carbon number, it tends to be excellent in solubility in a nitrogen-containing compound and a solvent while maintaining high heat resistance and transparency.
  • the hydrocarbon group represented by Y may include a plurality of types of saturated aliphatic hydrocarbon groups or a plurality of types of saturated alicyclic hydrocarbon groups. Y may contain a combination of a saturated aliphatic hydrocarbon group and a saturated alicyclic hydrocarbon group.
  • the saturated aliphatic hydrocarbon group represented by Y has 1 to 30 carbon atoms, and preferably 3 to 30 carbon atoms.
  • Saturated aliphatic hydrocarbon groups include methylene, ethylene, trimethylene, methylethylene, tetramethylene, 1-methyltrimethylene, 2-methyltrimethylene, ethylethylene, 1,1-dimethylethylene Group, 1,2-dimethylethylene group, pentylene group, 1-methyltetramethylene group, 2-methyltetramethylene group, 1-ethyltrimethylene group, 2-ethyltrimethylene group, 1,1-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, propylethylene group, ethylmethylethylene group, hexylene group, 1-methylpentylene group, 2-methylpentylene group, 3-methylpentylene group 1-ethyltetramethylene group, 2-ethyltetramethylene group, 1-propyltrimethylene
  • the saturated aliphatic hydrocarbon group includes hexylene group, methylpentylene group, ethyltetramethylene group, propyltrimethylene group, butylethylene group, dimethyltetramethylene group, trimethyltrimethylene group, ethylmethyltrimethylene group. It preferably contains at least one selected from the group consisting of a methylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an icosanylene group, and a triacontanilene group.
  • the saturated alicyclic hydrocarbon group represented by Y has 3 to 30 carbon atoms, preferably 4 to 30 carbon atoms, more preferably 6 to 30 carbon atoms.
  • the saturated alicyclic hydrocarbon group includes a cyclopropane skeleton, a cyclobutane skeleton, a cyclopentane skeleton, a cyclohexane skeleton, a cycloheptane skeleton, a cyclooctane skeleton, a cubane skeleton, a norbornane skeleton, and a tricyclo [5.2.1.0] decane skeleton.
  • examples of the saturated alicyclic hydrocarbon group include a cyclohexane skeleton, a cycloheptane skeleton, a cyclooctane skeleton, a cubane skeleton, a norbornane skeleton, a tricyclo [5.2.1.0] decane skeleton, an adamantane skeleton, It is preferable to include at least one divalent group having a skeleton selected from the group consisting of an adamantane skeleton, a bicyclo [2.2.2] octane skeleton, and a decahydronaphthalene skeleton.
  • Examples of the substituent that the hydrocarbon group represented by Y may have include an amino group, an oxo group, a hydroxyl group, and a halogen atom.
  • Y preferably contains at least one divalent group selected from the group consisting of the following general formula (IV) and the following general formulas (V-1) to (V-3). It is more preferable that at least the divalent hydrocarbon group represented is included.
  • the hydrogen atoms of the skeleton may be each independently substituted with a hydrocarbon group, an amino group, an oxo group, a hydroxyl group or a halogen atom.
  • Z is each independently a single bond or a carbon number of 1 which may have a substituent. Represents a divalent saturated hydrocarbon group of ⁇ 10.
  • each Z is preferably independently a divalent saturated hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, from the viewpoint of heat resistance.
  • Z is preferably a divalent saturated hydrocarbon group having 1 to 5 carbon atoms.
  • Examples of the divalent saturated hydrocarbon group represented by Z include a methylene group, an ethylene group, a trimethylene group, a methylethylene group, a tetramethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, an ethylethylene group, 1,1-dimethylethylene group, 1,2-dimethylethylene group, pentylene group, 1-methyltetramethylene group, 2-methyltetramethylene group, 1-ethyltrimethylene group, 2-ethyltrimethylene group, 1,1 -Dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, propylethylene group, ethylmethylethylene group, hexylene group, 1-methylpentylene group, 2-methylpentylene group, 3-methylpentylene group, 1-ethyltetramethylene group, 2-ethyltetramethylene group, 1-propyltrimethyl group Tylene group, 2-propylt
  • Examples of the substituent that Z may have include a halogen atom, an alkoxy group having 1 to 5 carbon atoms, and an acyl group having 2 to 5 carbon atoms.
  • Z has a substituent
  • the carbon number of the divalent saturated hydrocarbon group of Z does not include the carbon number of the substituent. The same applies hereinafter.
  • the divalent group represented by the general formula (IV) may be the following general formula (IV-1).
  • the divalent group represented by the general formula (V-1) may be the following general formula (VI-1).
  • the divalent group represented by the general formula (V-2) may be the following general formula (VI-2).
  • the divalent group represented by the general formula (V-3) may be the following general formula (VI-3).
  • Z in the general formulas (IV-1), (VI-1), (VI-2) and (VI-3) is the general formula (IV), (V-1), (V-2) and ( Examples thereof are the same as Z in V-3).
  • Y includes a structural unit represented by the general formula (I) including the general formula (IV) and at least one selected from the group consisting of the general formulas (V-1) to (V-3). It may be a polyketone containing both the structural unit represented by the general formula (I).
  • the content of the general formula (IV) is not particularly limited. From the viewpoint of heat resistance and film formability, the mass ratio is preferably 5:95 to 95: 5, and more preferably 5:95 to 90:10.
  • the weight average molecular weight (Mw) of the specific polyketone is preferably 500 or more in terms of polystyrene standard GPC (gel permeation chromatography), from the viewpoint of higher heat resistance. More preferably, it is 10,000 to 1,000,000. When higher heat resistance is required, the weight average molecular weight (Mw) is more preferably 20,000 to 1,000,000.
  • the weight average molecular weight (Mw) of the specific polyketone refers to a value measured by the method described in Examples.
  • Specific polyketone may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, the polyketone composition may contain other polyketones other than the specific polyketone. Hereinafter, the specific polyketone and other polyketones may be collectively referred to as “polyketone”. From the viewpoint of heat resistance and transparency when formed into a film, the content of the specific polyketone relative to the total amount of polyketone is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass. % Or more is more preferable.
  • the total content of polyketone is preferably 30 parts by mass to 90 parts by mass with respect to 100 parts by mass of the total amount of polyketone and inorganic particles, and 40 parts by mass to 80 parts by mass. More preferably, it is part by mass.
  • inorganic particles examples include silica, alumina, natural mica, synthetic mica, talc, calcium oxide, calcium carbonate, zirconium oxide, titanium oxide, antimony oxide, barium titanate, kaolin, bentonite, diatomaceous earth, boron nitride, aluminum nitride, Examples include silicon carbide, zinc oxide, cerium oxide, cesium oxide, magnesium oxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, and graphite particles. From the viewpoint of transparency, it is preferable to use silica particles. An inorganic particle may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the shape of the inorganic particles is not particularly limited, and is preferably spherical from the viewpoint of the transparency of the polyketone composition.
  • the inorganic particles can be produced by a known method such as a flame hydrolysis method, a flame pyrolysis method, or a plasma method described in International Publication No. 96/31572, for example.
  • nano colloidal sols of stabilized colloidal inorganic particles can be preferably used, colloidal silica manufactured by Admatechs Co., Ltd., TiO 2 sol manufactured by Merck Co., Ltd., SiO manufactured by Nissan Chemical Industries, Ltd.
  • Commercial products such as 2 , ZrO 2 , Al 2 O 3 and Sb 2 O 3 sol, and silica (product name, Aerosil) manufactured by Nippon Aerosil Co., Ltd. are available.
  • the inorganic particles may have a modified surface.
  • the surface modification of the inorganic particles can be performed using a known surface modifier.
  • a surface modifier for example, a compound capable of interacting with a functional group present on the surface of inorganic particles such as a covalent bond or complex formation, a compound capable of interacting with a polymer matrix, or the like may be used. it can.
  • examples of such surface modifiers include carboxy groups, (primary, secondary or tertiary) amino groups, quaternary ammonium groups, carbonyl groups, glycidyl groups, vinyl groups, )
  • a compound having a functional group such as acryloxy group or mercapto group can be used.
  • the surface modifier is preferably liquid under standard temperature and pressure conditions.
  • Surface modifiers include formic acid, acetic acid, propionic acid, butyric acid, pentanoic acid, hexanoic acid, acrylic acid, methacrylic acid, crotonic acid, citric acid, adipic acid, succinic acid, glutaric acid, oxalic acid, maleic acid, fumaric acid Saturated or unsaturated mono- and polycarboxylic acids having 1 to 12 carbon atoms such as acids (preferably monocarboxylic acids); esters thereof (preferably alkyl esters having 1 to 4 carbon atoms such as methyl methacrylate); Amides; ⁇ -dicarbonyl compounds such as acetylacetone, 2,4-hexanedione, 3,5-heptanedione, acetoacetate, alkyl acetoacetates having 1 to 4 carbon atoms; and silane coupling agents.
  • acids preferably monocarboxylic acids
  • esters thereof preferably alkyl esters having 1 to 4 carbon atom
  • the average particle size of the inorganic particles is 10 nm to 200 nm, preferably 10 nm to 150 nm, more preferably 10 nm to 100 nm. If it is 10 nm or more, a desired surface hardness can be easily obtained, and if it is 200 nm or less, an increase in haze tends to be suppressed. Inorganic particles having an average particle diameter of less than 10 nm are difficult to produce due to dispersion stability and are difficult to obtain.
  • the average particle diameter of the inorganic particles is a value measured after film formation using the method described in the examples.
  • the content of the inorganic particles is 10 to 70 parts by mass, preferably 20 to 60 parts by mass with respect to 100 parts by mass of the total amount of polyketone and inorganic particles. If it is 10 parts by mass or more, the surface hardness of the polyketone film tends to be effectively improved, and if it is 70 parts by mass or less, the polyketone film has excellent transparency, haze increase is suppressed, and toughness tends to be excellent. .
  • a dispersion containing inorganic particles may be used as it is.
  • the polyketone composition may further contain a solvent.
  • the solvent is not particularly limited as long as it dissolves or disperses each component.
  • Solvents include ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, butyl acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, 3-methylmethoxypropionate, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphorylamide, tetramethylene sulfone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, cyclopentanone, cyclohexanone, propylene glycol monomethyl Ether, propylene glycol monopropyl ether, propylene glycol
  • the content of the solvent is preferably 5 parts by mass to 95 parts by mass with respect to 100 parts by mass of the total amount of polyketone, inorganic particles, and solvent, and 10 parts by mass to 90 parts by mass. More preferably, it is part by mass.
  • the polyketone composition may further contain other additives.
  • additives include adhesion assistants, surfactants, leveling agents, antioxidants, and UV degradation inhibitors.
  • the polyketone film of this embodiment is formed from the polyketone composition of this embodiment.
  • membrane of this embodiment is not specifically limited.
  • the polyketone composition of the present embodiment containing a solvent is applied to the surface of the substrate to form a composition layer, and if necessary, the solvent is removed from the composition layer by drying to remove the solvent of the present embodiment.
  • a polyketone film can be produced.
  • the produced polyketone film may be used as a base material with a polyketone film without being separated from the base material, or may be used after being separated from the base material.
  • a method for applying the polyketone composition to the substrate is not particularly limited, and examples thereof include a dipping method, a spray method, a screen printing method, a bar coating method, and a spin coating method.
  • the polyketone composition when it contains a solvent, it may be dried.
  • the drying method is not particularly limited, and examples thereof include a heat treatment method using an apparatus such as a hot plate and an oven, and a natural drying method.
  • the conditions for drying by heat treatment are not particularly limited as long as the solvent in the polyketone composition is sufficiently volatilized, and is usually about 50 to 150 ° C. for about 1 to 90 minutes.
  • the dried polyketone film of the present embodiment may be further heat-treated in order to remove the remaining solvent.
  • the heat treatment method is not particularly limited, and is a box dryer, hot air conveyor dryer, quartz tube furnace, hot plate, rapid thermal annealing, vertical diffusion furnace, infrared curing furnace, electron beam curing furnace, microwave curing furnace. It can be carried out using an oven such as a vacuum dryer. Moreover, it does not specifically limit as atmospheric conditions in a heat treatment process, In air
  • the conditions for performing the heat treatment are not particularly limited, and are 150 ° C. to 250 ° C. for about 1 minute to 90 minutes. Further, by performing heat treatment, the resulting polyketone film tends to increase in film density.
  • the haze of the polyketone film is preferably less than 1% when the film has a thickness of 10 ⁇ m.
  • the polyketone film preferably has a visible light transmittance of 400 nm of 85% or more in terms of a film thickness of 1 ⁇ m.
  • the base material with a polyketone film of this embodiment has a base material and the polyketone film of this embodiment provided on at least a part of the surface of the base material.
  • the base material with a polyketone film of this embodiment may have a polyketone film on one surface of the base material or may have a polyketone film on both surfaces.
  • the polyketone film formed on the substrate may have a single-layer structure or a multilayer structure in which two or more layers are laminated.
  • the type of base material is not particularly limited.
  • a resin substrate such as an olefin resin can be used.
  • the substrate may be transparent or not transparent.
  • the shape of the substrate is not particularly limited, and examples thereof include a plate shape and a film shape.
  • optical element and the image display device of the present embodiment each have the polyketone film or the substrate with the polyketone film of the present embodiment. If the substrate is a transparent substrate, it can be suitably used for an optical element.
  • the optical element and the image display device can be obtained, for example, by attaching a base material with a polyketone film to an application site such as an LCD (liquid crystal display) or an ELD (electroluminescence display) via an adhesive, an adhesive, or the like. .
  • Various optical elements such as a polarizing plate using a polyketone film or a substrate with a polyketone film can be preferably used for various image display devices such as a liquid crystal display device.
  • the image display device may have the same configuration as that of a conventional image display device except that the polyketone film of the present embodiment or the substrate with a polyketone film is used.
  • the image display device is a liquid crystal display device, by appropriately assembling each component such as a liquid crystal cell, an optical element such as a polarizing plate, and an illumination system (backlight, etc.) as necessary, and incorporating a drive circuit, etc. Can be manufactured.
  • the liquid crystal cell is not particularly limited, and various types such as a TN type, an STN type, and a ⁇ type can be used.
  • the use of the image display device is not particularly limited, and is an OA device such as a desktop personal computer, a notebook personal computer, and a copy machine, a mobile device such as a mobile phone, a clock, a digital camera, a personal digital assistant (PDA), a portable game machine, and a video.
  • Household electrical equipment such as cameras, televisions and microwave ovens, back monitors, car navigation system monitors, car audio equipment and other in-vehicle equipment, display equipment such as information monitors for commercial stores, surveillance equipment such as surveillance monitors, nursing care Care devices such as medical monitors, and medical devices such as medical monitors.
  • the covering member of this embodiment has a member and the film formed from the polyketone composition of this embodiment provided in at least one part of the surface of the said member.
  • the member to be covered is not particularly limited, and is an OA device such as a desktop personal computer, a notebook personal computer, a copying machine, a mobile phone, a digital camera, a personal digital assistant (PDA), a portable device such as a portable game machine, a video camera, a television, Various displays, window glass, in-vehicle glass, camera lenses and the like can be mentioned.
  • the method for forming the covering member using the polyketone composition is not particularly limited.
  • the coating may be formed by adhering the polyketone film to a member to be coated by a method such as laminating.
  • the covering member may be formed by applying an object to the member to be coated and then drying.
  • the molded body of this embodiment is formed from the polyketone composition of this embodiment.
  • the method for producing the molded body is not particularly limited, and a method known in the technical field can be used. For example, extrusion molding method, injection molding method, calendar molding method, blow molding method, FRP (Fiber Reinforced Plastic) molding method, laminate molding method, casting method, powder molding method, solution casting method, vacuum molding method, pressure forming method Method, extrusion composite molding method, stretch molding method, and foam molding method.
  • Additives include sliding agents (polytetrafluoroethylene particles, etc.), light diffusing agents (acrylic crosslinked particles, silicone crosslinked particles, ultrathin glass flakes, calcium carbonate particles, etc.), fluorescent dyes, inorganic phosphors (aluminic acid) Phosphors with a salt as a mother crystal), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents, photocatalytic antifouling agents (titanium oxide particles, zinc oxide particles, etc.), crosslinking agents, curing agents, reaction acceleration Agents, infrared absorbers (heat ray absorbers), photochromic agents and the like.
  • the molecular weight (weight average molecular weight and number average molecular weight) of the polyketone was measured by gel permeation chromatograph (GPC) method using tetrahydrofuran (THF) as an eluent, and determined in terms of standard polystyrene. Details are as follows.
  • the resulting polyketone PK-1 had a weight average molecular weight of 20,000 and a number average molecular weight of 8,000.
  • a weight average molecular weight and a number average molecular weight are measured and calculated by the above-mentioned method. The same applies to the weight average molecular weight (Mw) and number average molecular weight (Mn) of polyketones PK-2 to PK-11 described later.
  • Synthesis Example 4 Synthesis of Polyketone PK-4
  • the polyketone was obtained in the same manner as in Example 1 except that 10 mmol of 2,2′-dimethoxybiphenyl, 5 mmol of 1,3-adamantanedicarboxylic acid and 5 mmol of dodecanedioic acid were used as monomers.
  • PK-4 was obtained.
  • the resulting polyketone PK-4 had a weight average molecular weight of 36,000 and a number average molecular weight of 13,000.
  • Synthesis Example 6 Synthesis of Polyketone PK-6 A polyketone was obtained in the same manner as in Example 1 except that 10 mmol of 2,2′-dimethoxybiphenyl, 5 mmol of 1,3-adamantanediacetic acid, and 5 mmol of hexanedioic acid were used as monomers. PK-6 was obtained. The resulting polyketone PK-6 had a weight average molecular weight of 39,000 and a number average molecular weight of 12,000.
  • Synthesis Example 8 Synthesis of Polyketone PK-8 Example 1 was used except that 10 mmol of 2,2′-dimethoxybiphenyl, 5 mmol of 1,3-adamantanediacetic acid, and 5 mmol of decalin-2,6-dicarboxylic acid were used as monomers. Similarly, polyketone PK-8 was obtained. The resulting polyketone PK-8 had a weight average molecular weight of 33,000 and a number average molecular weight of 10,000.
  • Synthesis Example 9 Synthesis of Polyketone PK-9 As monomers, 10 mmol of 2,2′-dimethoxybiphenyl, 5 mmol of 1,3-adamantanediacetic acid, and 5 mmol of norbornane dicarboxylic acid (2,4-, 2,5-mixture) A polyketone PK-9 was obtained in the same manner as in Example 1 except that it was used. The resulting polyketone PK-9 had a weight average molecular weight of 27,000 and a number average molecular weight of 9,200.
  • Example 1 0.90 g of the resulting polyketone (PK-1) was dissolved in 3.30 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP), and then a cyclohexanone dispersion of silica (particle A) (Nissan Chemical Co., Ltd.) Manufactured by CHO-ST-M) (solid content 0.1 g) was added, stirred and filtered through a polytetrafluoroethylene membrane filter (pore size 5 ⁇ m) to obtain a polyketone composition.
  • NMP N-methyl-2-pyrrolidone
  • Example 2 to 15 and Comparative Examples 1 to 4 A polyketone composition was obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was changed.
  • the numerical values in Table 1 represent parts by mass of each component when the total amount of polyketone and inorganic particles is 100 parts by mass.
  • particle B sica
  • SC1050-SXT manufactured by Admatechs Co., Ltd.
  • particle C titanium oxide
  • Aldrich 633254 manufactured by Sigma-Aldrich
  • particle D sica
  • a film was prepared by the following method using the obtained polyketone composition, a sample for evaluation described later was prepared, and the following evaluation was performed.
  • the obtained polyketone composition was applied onto a glass substrate by a bar coating method and dried on a hot plate heated to 120 ° C. for 3 minutes to form a polyketone film having a thickness of 10 ⁇ m.
  • a glass substrate with a polyketone film was prepared. This glass substrate with a polyketone film was heat-treated at 200 ° C. for 1 hour using an inert gas oven substituted with nitrogen, then cut using a diamond cutter, and the cut surface (film cross section) was scanned using a scanning electron microscope (manufactured by Philips, Observation was performed using XL-30). From the obtained observation image, the major axis was measured for 50 primary particles of the inorganic particles, and the average value was taken as the average particle size.
  • the major axis is a combination of two parallel lines in contact with the outside of the particles appearing on the cut surface, so as to sandwich the particles, and two parallel lines having the longest interval among the combinations. Is the distance.
  • the obtained polyketone composition was applied on a glass substrate by a bar coating method and dried on a hot plate heated to 120 ° C. for 3 minutes to have a polyketone film having a thickness of 10 ⁇ m.
  • a glass substrate with a polyketone film was produced.
  • the glass substrate with the polyketone film was heat-treated at 200 ° C. for 1 hour using an inert gas oven substituted with nitrogen, and then the visible light transmittance at a wavelength of 400 nm was measured with an ultraviolet-visible spectrophotometer (Hitachi High-Tech Science Co., Ltd., U-3310 Spectrophotometer). ) And UV-visible absorption spectrum method.
  • Table 2 shows the transmittance (%) converted to a film thickness of 1 ⁇ m using a glass substrate without a polyketone film as a reference.
  • the film thickness was an arithmetic average value of values measured at three points using a stylus profilometer (“Dektak 3 ST”, ULVAC, Inc. (Veeco)).
  • the obtained polyketone composition was applied onto a polyimide (Kapton) film by a bar coating method, dried on a hot plate heated to 120 ° C. for 3 minutes, and a polyketone having a thickness of 10 ⁇ m.
  • a polyimide substrate with a polyketone film having a film was prepared.
  • the polyketone film was peeled off from the polyimide substrate and heat treated at 200 ° C. for 1 hour in an inert gas oven substituted with nitrogen. Thereafter, the glass transition point of the polyketone film was measured by a dynamic viscoelasticity measurement method (tensile mode) using a dynamic viscoelasticity measurement apparatus (RSA-II, manufactured by Rheometrics).
  • the obtained glass transition point (Tg) value (° C.) is shown in Table 2.
  • CTE coefficient of thermal expansion
  • the polyketone compositions of the examples exhibit high surface hardness and low thermal expansion coefficient while maintaining heat resistance and transparency when formed into a film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Polyethers (AREA)
  • Liquid Crystal (AREA)

Abstract

ポリケトン組成物は、下記一般式(I)で表される構造単位を含むポリケトンと、無機粒子と、を含有し、前記ポリケトン及び前記無機粒子の合計量100質量部に対して、前記無機粒子の含有量が10質量部~70質量部であり、前記無機粒子の平均粒子径が10nm~200nmである。一般式(I)中、Xは、それぞれ独立に、置換基を有していてもよい炭素数1~50の2価の基を示し、Yは、それぞれ独立に、置換基を有していてもよい炭素数1~30の2価の炭化水素基を示し、nは1~1500の整数を示す。

Description

ポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体
 本発明は、ポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体に関する。
 主鎖に芳香環とカルボニル基とを有する芳香族ポリケトンは、優れた耐熱性と機械特性を有しており、エンジニアリングプラスチックとして利用されている。芳香族ポリケトンに属する高分子のほとんどは、求核芳香族置換反応を利用して重合された芳香族ポリエーテルケトンであり、主鎖にエーテル結合を有している。これに対し、主鎖にエーテル結合を有していない芳香族ポリケトンは、芳香族ポリエーテルケトンよりもさらに優れた耐熱性及び耐薬品性に優れることが知られている(例えば、特許文献1及び特許文献2参照)。
 近年、脂環式ジカルボン酸と2,2’-ジアルコキシビフェニル化合物とをFriedel-Craftsアシル化により直接重合することで、高い透明性と耐熱性を両立した芳香族ポリケトンが得られることが報告され(例えば、特許文献3参照)、光学部品への応用が期待されている。
 芳香族ポリケトン等の樹脂材料を光学部品に応用する場合には、無機材料では得られない特性を発揮できることが望ましく、そのような特性としては、例えば、軽量性及び柔軟性が挙げられる。軽量性を活かした適用例としては、ポータブルデバイスのガラス代替材及びコート材が挙げられ、柔軟性を活かした適用例としては、フレキシブルディスプレイ等が挙げられる。なかでも、フレキシブルディスプレイへの樹脂材料の適用は、近年特に注目されている。
特開昭62-7730号公報 特開2005-272728号公報 特開2013-53194号公報
 フレキシブルディスプレイ等の材料には、高い透明性及び耐熱性の他に、高い表面硬度及び低い熱膨張係数も求められる。しかし、上記文献に記載されている芳香族ポリケトンから形成される膜は、透明性及び耐熱性に優れるが、表面硬度及び熱膨張係数に改善の余地がある。
 本発明は、上記現状に鑑みなされたものであり、膜としたときに、透明性及び耐熱性を維持しつつ、高い表面硬度及び低い熱膨張係数を示すポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体を提供することを目的とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1> 下記一般式(I)で表される構造単位を含むポリケトンと、無機粒子と、を含有し、前記ポリケトン及び前記無機粒子の合計量100質量部に対して、前記無機粒子の含有量が10質量部~70質量部であり、前記無機粒子の平均粒子径が10nm~200nmであるポリケトン組成物。
Figure JPOXMLDOC01-appb-C000006

 
〔一般式(I)中、Xは、それぞれ独立に、置換基を有していてもよい炭素数1~50の2価の基を示し、Yは、それぞれ独立に、置換基を有していてもよい炭素数1~30の2価の炭化水素基を示し、nは1~1500の整数を示す。〕
<2> 厚さ10μmの膜としたときのヘイズが1%未満である<1>に記載のポリケトン組成物。
<3> 膜としたときの400nmの可視光の透過率が、膜厚1μm換算で85%以上である<1>又は<2>に記載のポリケトン組成物。
<4> 前記一般式(I)において、Xが、それぞれ独立に、芳香環を含む炭素数6~50の2価の基を含む、<1>~<3>のいずれか1項に記載のポリケトン組成物。
<5> 前記一般式(I)において、Xが、それぞれ独立に、下記一般式(II-1)~(II-3)からなる群より選択される少なくとも1種を含む、<1>~<4>のいずれか1項に記載のポリケトン組成物。
Figure JPOXMLDOC01-appb-C000007

 
〔一般式(II-1)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、mは、それぞれ独立に、0~3の整数を示す。〕
Figure JPOXMLDOC01-appb-C000008

 
〔一般式(II-2)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、mは、それぞれ独立に、0~3の整数を示し、Zは、酸素原子又は下記一般式(III-1)~(III-7)で表される2価の基を示す。〕
Figure JPOXMLDOC01-appb-C000009

 
〔一般式(III-1)~(III-7)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、R及びRは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を表し、mは、それぞれ独立に、0~3の整数を示し、nは、それぞれ独立に、0~4の整数を示し、pは、それぞれ独立に、0~2の整数を示す。〕
Figure JPOXMLDOC01-appb-C000010

 
〔一般式(II-3)中、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、nは、それぞれ独立に、0~4の整数を示す。〕
<6> 前記一般式(I)において、Yが、2価の飽和炭化水素基を含む、<1>~<5>のいずれか1項に記載のポリケトン組成物。
<7> 前記一般式(I)において、Yが、2価の飽和脂環式炭化水素基を含む、<6>に記載のポリケトン組成物。
<8> 前記一般式(I)において、Yの炭素数が6~30である、<1>~<7>のいずれか1項に記載のポリケトン組成物。
<9> 前記無機粒子がシリカ粒子である<1>~<8>のいずれか1項に記載のポリケトン組成物。
<10> さらに溶媒を含む、<1>~<9>のいずれか1項に記載のポリケトン組成物。
<11> <1>~<10>のいずれか1項に記載のポリケトン組成物から形成されてなるポリケトン膜。
<12> 基材と、前記基材の表面の少なくとも一部に設けられる<11>に記載のポリケトン膜と、を有するポリケトン膜付基材。
<13> <11>に記載のポリケトン膜、又は<12>に記載のポリケトン膜付基材を有する、光学素子。
<14> <11>に記載のポリケトン膜、<12>に記載のポリケトン膜付基材、又は<13>に記載の光学素子を有する、画像表示装置。
<15> 部材と、前記部材の表面の少なくとも一部に設けられる<1>~<10>のいずれか1項に記載のポリケトン組成物から形成されてなる被膜と、を有する、被覆部材。
<16> <1>~<10>のいずれか1項に記載のポリケトン組成物から成形されてなる成形体。
 本発明によれば、膜としたときに、透明性及び耐熱性を維持しつつ、高い表面硬度及び低い熱膨張係数を示すポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体を提供することができる。
 以下、本発明について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「平均粒子径」とは、特に断りのない場合、「平均一次粒子径」と同義である。
 本開示において「透明性に優れる」とは、可視光の透過率(波長400nmの可視光の透過性)が85%以上(膜厚1μm換算)であることを意味する。
 本開示において「耐熱性」とは、ポリケトンを含む部材においてガラス転移温度(Tg)が少なくとも180℃であることを意味する。
 本開示において「高い表面硬度」とは、形成した膜の鉛筆硬度が2H以上であることを意味する。
 本開示において「低い熱膨張係数」とは、形成した膜の熱膨張係数が50ppm/℃以下であることを意味する。
<ポリケトン組成物>
 本実施形態のポリケトン組成物は、下記一般式(I)で表される構造単位を含むポリケトン(以下、「特定ポリケトン」ともいう)と、無機粒子と、を含有し、前記ポリケトン及び前記無機粒子の合計量100質量部に対して、前記無機粒子の含有量が10質量部~70質量部であり、前記無機粒子の平均粒子径が10nm~200nmである。
Figure JPOXMLDOC01-appb-C000011
 一般式(I)中、Xは、それぞれ独立に、置換基を有していてもよい炭素数1~50の2価の基を示し、Yは、それぞれ独立に、置換基を有していてもよい炭素数1~30の2価の炭化水素基を示し、nは1~1500の整数を示す。
 本実施形態のポリケトン組成物は、上記構成とすることで、膜としたときに、透明性及び耐熱性を維持しつつ、高い表面硬度及び低い熱膨張係数を示す。その理由は、明らかではないが以下のように推測される。
 特定ポリケトンは、カルボニル基を含むため、耐熱性及び透明性に優れる。そして、無機粒子の含有率が、前記特定ポリケトン及び前記無機粒子の合計量100質量部に対して、前記無機粒子の含有量が10質量部~70質量部であり、且つ無機粒子の平均粒子径が10nm~200nmであるため、膜の透明性を維持しつつ、高い表面硬度及び低い熱膨張係数が達成される。
 なお、特定ポリケトンは、ほぼC-C結合で形成されるため、分子鎖自身は薬液に対して安定性に優れるという利点も有する。
 以下、各成分について説明する。
(ポリケトン)
 ポリケトン組成物は、特定ポリケトンを含有する。特定ポリケトンは、下記一般式(I)で表される構造単位を含む。
Figure JPOXMLDOC01-appb-C000012
 一般式(I)中、Xは、それぞれ独立に、置換基を有していてもよい炭素数1~50の2価の基を表す。Yは、それぞれ独立に、置換基を有していてもよい炭素数1~30の2価の炭化水素基を表す。nは1~1500の整数を表し、2~1000であることが好ましく、5~500であることがより好ましい。なお、2価の基又は炭化水素基が置換基を有する場合、これらの基の炭素数には、置換基の炭素数を含めないものとする。以降、同様である。
 Xで表される2価の基の炭素数は、1~50であり、1~30であることが好ましく、1~24であることがさらに好ましい。
 Xが有し得る置換基は、特に限定されず、具体的には、ハロゲン原子、炭素数1~5のアルコキシ基、炭素数2~5のアシル基等が挙げられる。
 Xで表される2価の基は、炭化水素基であることが好ましく、芳香環を含む炭化水素基であることがより好ましい。Xが芳香環を有する炭化水素基であると、より耐熱性が向上する傾向にある。
 Xは、耐熱性が向上する観点から、芳香環を含む炭素数6~50の2価の基であることが好ましい。芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ナフタセン環、クリセン環、ピレン環、トリフェニレン環、ペンタセン環、ベンゾピレン環等が挙げられる。
 さらに、Xは、複数の芳香環を含むことが好ましく、複数の芳香環は相互に非共役であるか、又は相互の共役関係が弱い2価の基(以下、「特定芳香環基」ともいう)であることがより好ましい。これにより、ポリケトン合成の際に低い反応温度で良好なジアシル化を実現することができ、分子量が高く耐熱性に優れるポリケトンとなる。特定芳香環基は、炭素数が12~50であることが好ましい。
 ここで、「複数の芳香環は相互に非共役であるか、又は相互の共役関係が弱い」とは、複数の芳香環がエーテル結合若しくはメチレン結合を介して結合していること、又は2,2’-置換ビフェニルのように置換基による立体障害により、芳香環どうしの共役が抑えられることをいう。
 Xとしては、下記一般式(II-1)~(II-3)で表される2価の基等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 一般式(II-1)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、mは、それぞれ独立に、0~3の整数を示す。波線を付した部分は、結合手を意味する。以降、同様である。
 耐熱性の観点から、Rで表される炭化水素基の炭素数は、1~30であり、1~10であることが好ましく、1~6であることがより好ましい。
 Rで表される炭化水素基としては、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、脂環式炭化水素基等が挙げられる。
 Rで表される飽和脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、neo-ペンチル基、t-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-イコサニル基、n-トリアコンタニル基等が挙げられる。また、飽和脂肪族炭化水素基は、その末端部分に後述の脂環式炭化水素基を有するものであってもよい。
 Rで表される不飽和脂肪族炭化水素基としては、ビニル基、アリル基等のアルケニル基、エチニル基等のアルキニル基などが挙げられる。また、不飽和脂肪族炭化水素基は、その末端部分に後述の脂環式炭化水素基を有するものであってもよい。
 Rで表される脂環式炭化水素基としては、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基等のシクロアルキル基、シクロヘキセニル基等のシクロアルケニル基などが挙げられる。また、脂環式炭化水素基は、その脂環に、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基からなる群より選択される少なくとも1種を含むものであってもよい。
 Rで表される炭化水素基が有し得る置換基は、特に限定されず、ハロゲン原子、炭素数1~5のアルコキシ基、炭素数2~5のアシル基等が挙げられる。
 一般式(II-1)中、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を表す。耐熱性の観点から、Rで表される炭化水素基の炭素数は、1~10であることが好ましく、1~5であることがより好ましい。
 Rで表される炭素数1~30の炭化水素基としては、Rで例示した炭素数1~30の炭化水素基と同様のものが挙げられる。また、Rで表される炭化水素基が有し得る置換基としては、ハロゲン原子、炭素数1~5のアルコキシ基、炭素数2~5のアシル基等が挙げられる。
 一般式(II-1)中、mは、それぞれ独立に、0~3の整数を示し、0~2の整数であることが好ましく、0又は1であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(II-2)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、mは、それぞれ独立に、0~3の整数を示し、Zは酸素原子又は下記一般式(III-1)~(III-7)で表される2価の基を示す。
Figure JPOXMLDOC01-appb-C000015
 一般式(III-1)~(III-7)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、R及びRは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を表す。mは、それぞれ独立に、0~3の整数を示し、nは、それぞれ独立に、0~4の整数を示し、pは、それぞれ独立に、0~2の整数を示す。
 一般式(III-1)におけるR及びRは、耐熱性の観点から、置換基を有していてもよい炭素数1~5の炭化水素基であることが好ましい。R及びRで表される炭素数1~30の炭化水素基としては、一般式(II-1)中のRで例示した炭素数1~30の炭化水素基と同様のものが挙げられる。また、R及びRが有し得る置換基としては、ハロゲン原子、炭素数1~5のアルコキシ基、炭素数2~5のアシル基等が挙げられる。
 一般式(III-2)及び(III-3)におけるnは、それぞれ独立に、0~4の整数を示し、0~2の整数であることが好ましく、0又は1であることがより好ましい。
 一般式(III-4)、(III-5)及び(III-7)におけるpは、それぞれ独立に、0~2の整数を示し、0又は1であることが好ましい。
 一般式(II-2)中のR、R、及びmのそれぞれの詳細は、一般式(II-1)中のR、R、及びmと同様である。
Figure JPOXMLDOC01-appb-C000016
 一般式(II-3)中、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、nは、それぞれ独立に、0~4の整数を示す。
 耐熱性の観点から、Rで表される炭化水素基の炭素数は、1~10であることが好ましく、1~5であることがより好ましい。
 Rで表される炭素数1~30の炭化水素基としては、一般式(II-1)中のRで例示した炭素数1~30の炭化水素基と同様のものが挙げられる。また、Rが有し得る置換基としては、ハロゲン原子、炭素数1~5のアルコキシ基、炭素数2~5のアシル基等が挙げられる。
 一般式(II-3)中、nは、それぞれ独立に、0~4の整数を示し、1~4の整数であることが好ましく、1~3の整数であることがより好ましく、1又は2であることがさらに好ましい。
 一般式(I)において、Yは、それぞれ独立に、置換基を有していてもよい炭素数1~30の2価の炭化水素基を表す。Yで表される炭化水素基の炭素数は、1~30であり、4~30であることが好ましく、耐熱性の観点からは、6~30であることがより好ましい。
 Yで表される炭化水素基は、透明性の観点から、飽和炭化水素基を含むことが好ましい。飽和炭化水素基は、飽和脂肪族炭化水素基であっても、飽和脂環式炭化水素基であってもよい。より高い耐熱性と透明性の両立の観点から、Yで表される炭化水素基は、飽和脂環式炭化水素基を含むことが好ましい。脂環式炭化水素基は、炭素数が同じ脂肪族炭化水素基に比べて嵩高いため、高い耐熱性と透明性を維持したまま、含窒素化合物及び溶媒への溶解性に優れる傾向にある。
 また、Yで表される炭化水素基は、複数種の飽和脂肪族炭化水素基、又は複数種の飽和脂環式炭化水素基を含んでいてもよい。また、Yは、飽和脂肪族炭化水素基と、飽和脂環式炭化水素基と、を組み合わせて含んでいてもよい。
 Yで表される飽和脂肪族炭化水素基の炭素数は、1~30であり、3~30であることが好ましい。
 飽和脂肪族炭化水素基としては、メチレン基、エチレン基、トリメチレン基、メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、エチルエチレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、ペンチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1,1-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、プロピルエチレン基、エチルメチルエチレン基、ヘキシレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1-プロピルトリメチレン基、2-プロピルトリメチレン基、ブチルエチレン基、1,1-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、1,3-ジメチルテトラメチレン基、1,4-ジメチルテトラメチレン基、1,2,3-トリメチルトリメチレン基、1,1,2-トリメチルトリメチレン基、1,1,3-トリメチルトリメチレン基、1,2,2-トリメチルトリメチレン基、1-エチル-1-メチルトリメチレン基、2-エチル-2-メチルトリメチレン基、1-エチル-2-メチルトリメチレン基、2-エチル-1-メチルトリメチレン基、2,2-エチルメチルトリメチレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、イコサニレン基、トリアコンタニレン基等が挙げられる。
 耐熱性の観点から、飽和脂肪族炭化水素基としては、ヘキシレン基、メチルペンチレン基、エチルテトラメチレン基、プロピルトリメチレン基、ブチルエチレン基、ジメチルテトラメチレン基、トリメチルトリメチレン基、エチルメチルトリメチレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、イコサニレン基、トリアコンタニレン基からなる群より選択される少なくとも一種を含むことが好ましい。
 Yで表される飽和脂環式炭化水素基の炭素数は、3~30であり、4~30であることが好ましく、6~30であることがより好ましい。
 飽和脂環式炭化水素基としては、シクロプロパン骨格、シクロブタン骨格、シクロペンタン骨格、シクロヘキサン骨格、シクロヘプタン骨格、シクロオクタン骨格、キュバン骨格、ノルボルナン骨格、トリシクロ[5.2.1.0]デカン骨格、アダマンタン骨格、ジアダマンタン骨格、ビシクロ[2.2.2]オクタン骨格、デカヒドロナフタレン骨格等を有する2価の基が挙げられる。
 耐熱性の観点から、飽和脂環式炭化水素基としては、シクロヘキサン骨格、シクロヘプタン骨格、シクロオクタン骨格、キュバン骨格、ノルボルナン骨格、トリシクロ[5.2.1.0]デカン骨格、アダマンタン骨格、ジアダマンタン骨格、ビシクロ[2.2.2]オクタン骨格、デカヒドロナフタレン骨格からなる群より選択される骨格を有する2価の基を少なくとも一種を含むことが好ましい。
 Yで表される炭化水素基が有し得る置換基としては、アミノ基、オキソ基、水酸基、ハロゲン原子等が挙げられる。
 Yは、下記一般式(IV)及び下記一般式(V-1)~(V-3)からなる群より選択される2価の基を少なくとも一種含むことが好ましく、下記一般式(IV)で表される2価の炭化水素基を少なくとも含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 一般式(IV)におけるアダマンタン骨格の水素原子、一般式(V-1)におけるシクロヘキサン骨格の水素原子、一般式(V-2)におけるデカリン骨格の水素原子、及び一般式(V-3)におけるノルボルナン骨格の水素原子は、それぞれ独立に、炭化水素基、アミノ基、オキソ基、水酸基又はハロゲン原子で置換されていてもよい。また、一般式(IV)、(V-1)、(V-2)及び(V-3)中、Zは、それぞれ独立に、単結合、又は置換基を有していてもよい炭素数1~10の2価の飽和炭化水素基を表す。
 柔軟な膜が得られる観点からは、Zは、それぞれ独立に、置換基を有していてもよい炭素数1~10の2価の飽和炭化水素基であることが好ましく、耐熱性の観点から、Zは炭素数1~5の2価の飽和炭化水素基であることが好ましい。
 Zで表される2価の飽和炭化水素基としては、メチレン基、エチレン基、トリメチレン基、メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、エチルエチレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、ペンチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1,1-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、プロピルエチレン基、エチルメチルエチレン基、ヘキシレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1-プロピルトリメチレン基、2-プロピルトリメチレン基、ブチルエチレン基、1,1-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、1,3-ジメチルテトラメチレン基、1,4-ジメチルテトラメチレン基、1,2,3-トリメチルトリメチレン基、1,1,2-トリメチルトリメチレン基、1,1,3-トリメチルトリメチレン基、1,2,2-トリメチルトリメチレン基、1-エチル-1-メチルトリメチレン基、2-エチル-2-メチルトリメチレン基、1-エチル-2-メチルトリメチレン基、2-エチル-1-メチルトリメチレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられる。
 Zが有し得る置換基としては、ハロゲン原子、炭素数1~5のアルコキシ基、炭素数2~5のアシル基等が挙げられる。なお、Zが置換基を有する場合、Zの2価の飽和炭化水素基の炭素数には置換基の炭素数を含めないものとする。以下同様である。
 一般式(IV)で表される2価の基は、下記一般式(IV-1)であってもよい。
 一般式(V-1)で表される2価の基は、下記一般式(VI-1)であってもよい。
 一般式(V-2)で表される2価の基は、下記一般式(VI-2)であってもよい。
 一般式(V-3)で表される2価の基は、下記一般式(VI-3)であってもよい。
Figure JPOXMLDOC01-appb-C000021
 一般式一般式(IV-1)、(VI-1)、(VI-2)及び(VI-3)におけるZは、一般式(IV)、(V-1)、(V-2)及び(V-3)におけるZと同様のものが挙げられる。
 Yとして、上記一般式(IV)を含む一般式(I)で表される構造単位と、上記一般式(V-1)~(V-3)からなる群より選択される少なくとも1種を含む一般式(I)で表される構造単位と、の両方を含むポリケトンであってもよい。上記一般式(IV)と、上記一般式(V-1)~(V-3)からなる群より選択される少なくとも1種の基との両方を含むとき、一般式(IV)の含有量と、一般式(V-1)~(V-3)の総含有量との質量比((IV):(V-1)~(V-3))は特に限定されない。耐熱性及び成膜性の観点から、前記質量比は5:95~95:5であることが好ましく、5:95~90:10であることがより好ましい。
 特定ポリケトンの重量平均分子量(Mw)は、耐熱性を維持する観点から、ポリスチレン換算の標準GPC(ゲル浸透クロマトグラフ、gel permeation chromatography)で500以上であることが好ましく、より高い耐熱性の観点から、10,000~1,000,000であることがより好ましい。さらに高い耐熱性が必要な場合には、重量平均分子量(Mw)は、20,000~1,000,000であることがさらに好ましい。特定ポリケトンの重量平均分子量(Mw)は、実施例に記載の方法で測定した値をいう。
 特定ポリケトンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、ポリケトン組成物は、特定ポリケトン以外の他のポリケトンを含んでいてもよい。以降、特定ポリケトンと他のポリケトンを総称して「ポリケトン」という場合がある。膜としたときの耐熱性及び透明性の観点からは、ポリケトンの総量に対する、特定ポリケトンの含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。
 膜としたときの透明性の観点から、ポリケトンの総含有量は、ポリケトン及び無機粒子の合計量100質量部に対して、30質量部~90質量部であることが好ましく、40質量部~80質量部であることがより好ましい。
(無機粒子)
 無機粒子としては、例えば、シリカ、アルミナ、天然マイカ、合成マイカ、タルク、酸化カルシウム、炭酸カルシウム、酸化ジルコニウム、酸化チタン、酸化アンチモン、チタン酸バリウム、カオリン、ベントナイト、珪藻土、窒化ホウ素、窒化アルミ、炭化ケイ素、酸化亜鉛、酸化セリウム、酸化セシウム、酸化マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、及びグラファイトの粒子が挙げられる。透明性の観点からは、シリカ粒子を用いることが好ましい。
 無機粒子は1種を単独で使用しても、2種以上を組み合わせて用いてもよい。
 無機粒子の形状は、特に限定されず、ポリケトン組成物の透明性の観点から、球状が好ましい。
 無機粒子は、例えば、国際公開第96/31572号に記載されている火炎加水分解法、火炎熱分解法、プラズマ法等の公知の方法で製造することができる。無機粒子としては、安定化されたコロイド状無機粒子のナノ分散ゾル等を好ましく用いることができ、株式会社アドマテックス製のコロイダルシリカ、メルク社製のTiOゾル、日産化学工業株式会社製のSiO、ZrO、Al及びSbゾル、日本アエロジル株式会社製のシリカ(製品名、アエロジル)等の市販品が入手可能である。
 無機粒子は、その表面が改質されたものであってもよい。無機粒子の表面改質は、公知の表面改質剤を用いて行うことができる。このような表面改質剤としては、例えば、無機粒子の表面に存在する官能基と共有結合、錯形成等の相互作用が可能な化合物、重合体マトリックスと相互作用可能な化合物などを用いることができる。このような表面改質剤としては、例えば、分子内にカルボキシ基、(第1級、第2級又は第3級)アミノ基、4級アンモニウム基、カルボニル基、グリシジル基、ビニル基、(メタ)アクリロキシ基、メルカプト基等の官能基を有する化合物などを用いることができる。表面改質剤は、通常、標準温度及び圧力条件下で液体のものが好ましい。
 表面改質剤としては、ギ酸、酢酸、プロピオン酸、酪酸、ペンタン酸、ヘキサン酸、アクリル酸、メタクリル酸、クロトン酸、クエン酸、アジピン酸、コハク酸、グルタル酸、シュウ酸、マレイン酸、フマル酸等の炭素数1~12の飽和又は不飽和モノ及びポリカルボン酸類(好ましくは、モノカルボン酸類);これらのエステル類(好ましくはメタクリル酸メチル等の炭素数1~4のアルキルエステル類);アミド類;アセチルアセトン、2,4-ヘキサンジオン、3,5-ヘプタンジオン、アセト酢酸、炭素数1~4のアルキルアセト酢酸類等のβ-ジカルボニル化合物;シランカップリング剤などが挙げられる。
 無機粒子の平均粒子径は、10nm~200nmであり、10nm~150nmが好ましく、10nm~100nmがより好ましい。10nm以上であると所望の表面硬度が得られやすくなり、200nm以下であるとヘイズの上昇が抑えられる傾向がある。平均粒子径が10nm未満の無機粒子は、分散安定性上、製造が困難であり入手し難い。
 本開示において、無機粒子の平均粒子径は、実施例に記載の方法を用いて、成膜した後に測定された値とする。
 無機粒子の含有量は、ポリケトン及び無機粒子の合計量100質量部に対して、10質量部~70質量部であり、20質量部~60質量部であることが好ましい。10質量部以上であるとポリケトン膜の表面硬度が効果的に向上する傾向があり、70質量部以下であるとポリケトン膜の透明性に優れ、ヘイズの上昇が抑えられ、靭性に優れる傾向がある。
 無機粒子として、安定化されたコロイド状無機粒子のナノ分散ゾル等を用いる場合、無機粒子を含む分散液をそのまま用いてもよい。
(溶媒)
 ポリケトン組成物は、さらに溶媒を含有してもよい。溶媒は、各成分を溶解又は分散するものであれば特に制限されない。溶媒としては、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチル、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオネート、3-メチルメトキシプロピオネート、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、クメン、ジイソプロピルベンゼン、ヘキシルベンゼン、アニソール、ジグライム、ジメチルスルホキシド、クロロホルム、ジクロロメタン、ジクロロエタン、クロロベンゼン等が挙げられる。溶媒には、前記無機粒子で説明の分散液の溶媒も含まれる。これらの溶媒は1種を単独で使用してもよく、2種以上を組み合わせて用いてもよい。
 ポリケトン組成物が溶媒を含有する場合、溶媒の含有量は、ポリケトン、無機粒子及び溶媒の合計量100質量部に対して、5質量部~95質量部であることが好ましく、10質量部~90質量部であることがより好ましい。
(その他の添加剤)
 ポリケトン組成物は、さらにその他の添加剤を含有してもよい。その他の添加剤としては、接着助剤、界面活性剤、レベリング剤、酸化防止剤、紫外線劣化防止剤等が挙げられる。
<ポリケトン膜>
 本実施形態のポリケトン膜は、本実施形態のポリケトン組成物から形成されてなる。
 本実施形態のポリケトン膜の製造方法は、特に限定されない。例えば、溶媒を含む本実施形態のポリケトン組成物を基材の表面に付与して組成物層を形成し、必要に応じて乾燥して組成物層から溶媒を除去することで、本実施形態のポリケトン膜を製造することができる。製造したポリケトン膜は、基材から分離せずにポリケトン膜付基材として用いても、基材から分離して用いてもよい。
 ポリケトン組成物を基材に付与する方法は特に制限されず、浸漬法、スプレー法、スクリーン印刷法、バーコート法、スピンコート法等が挙げられる。
 また、ポリケトン組成物が溶媒を含有する場合には、乾燥を行ってもよい。乾燥方法は特に限定されず、例えば、ホットプレート、オーブン等の装置を用いて熱処理する方法及び自然乾燥する方法等が挙げられる。熱処理することで乾燥を行う条件は、ポリケトン組成物中の溶媒が充分に揮散する条件であれば特に制限はなく、通常、50℃~150℃で、1分間~90分間程度である。
 必要に応じて、乾燥した本実施形態のポリケトン膜は、残存溶媒を飛ばし切るために、さらに熱処理してもよい。熱処理の方法は特に限定されず、箱型乾燥機、熱風式コンベアー型乾燥機、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉、真空乾燥機等のオーブンを用いて行なうことができる。また、熱処理工程における雰囲気条件としては特に限定されず、大気中、窒素等の不活性雰囲気中などが挙げられる。熱処理を行う条件は、特に制限はなく、150℃~250℃で、1分間~90分間程度である。さらに熱処理を行うことで、得られるポリケトン膜の膜密度が高くなる傾向にある。
 ポリケトン膜のヘイズは、厚さ10μmの膜としたときに1%未満であることが好ましい。また、ポリケトン膜は、400nmの可視光の透過率が、膜厚1μm換算で85%以上であることが好ましい。
<ポリケトン膜付基材>
 本実施形態のポリケトン膜付基材は、基材と、前記基材の表面の少なくとも一部に設けられる本実施形態のポリケトン膜と、を有する。本実施形態のポリケトン膜付基材は、基材の一方の面にポリケトン膜を有していても、両面にポリケトン膜を有していてもよい。また、基材上に形成されるポリケトン膜は、一層の単層構造であっても、二層以上が積層された複層構造であってもよい。
 基材の種類は、特に制限されない。例えば、ガラス基板、半導体基板、金属酸化物絶縁体基板(例えば、酸化チタン基板及び酸化ケイ素基板)、窒化ケイ素基板等の無機基板、トリアセチルセルロース、ポリイミド、ポリカルボナート、アクリル系樹脂、及びシクロオレフィン樹脂等の樹脂基板を挙げることができる。基材は透明であっても、透明でなくてもよい。基材の形状は特に限定されず、板状、フィルム状等が挙げられる。
<光学素子及び画像表示装置>
 本実施形態の光学素子及び画像表示装置は、それぞれ本実施形態のポリケトン膜又はポリケトン膜付基材を有する。基材が透明基材であれば、光学素子に好適に用いることができる。
 光学素子及び画像表示装置は、例えば、ポリケトン膜付基材を、粘着剤、接着剤等を介してLCD(液晶ディスプレイ)、ELD(エレクトロルミネッセンスディスプレイ)等の適用箇所に貼り付けて得ることができる。
 ポリケトン膜又はポリケトン膜付基材を用いた偏光板等の各種光学素子は、液晶表示装置等の各種画像表示装置に好ましく用いることができる。画像表示装置は、本実施形態のポリケトン膜又はポリケトン膜付基材を用いる以外は、従来の画像表示装置と同様の構成であってよい。画像表示装置が液晶表示装置である場合は、液晶セル、偏光板等の光学素子、及び必要に応じ照明システム(バックライト等)等の各構成部品を適宜に組み立てて駆動回路を組み込むことなどにより製造できる。液晶セルとしては、特に制限されず、TN型、STN型、π型等の様々なタイプを使用できる。
 画像表示装置の用途としては、特に限定されず、デスクトップパソコン、ノートパソコン、コピー機等のOA機器、携帯電話、時計、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム機等の携帯機器、ビデオカメラ、テレビ、電子レンジ等の家庭用電気機器、バックモニター、カーナビゲーションシステム用モニター、カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター等の介護機器、及び医療用モニター等の医療機器などが挙げられる。
<被覆部材>
 本実施形態の被覆部材は、部材と、前記部材の表面の少なくとも一部に設けられる本実施形態のポリケトン組成物から形成されてなる被膜と、を有する。
 被覆対象である部材は特に制限されず、デスクトップパソコン、ノートパソコン、コピー機等のOA機器、携帯電話、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム機等の携帯機器、ビデオカメラ、テレビ、各種ディスプレイ、窓ガラス、車載ガラス、カメラレンズなどが挙げられる。
 ポリケトン組成物を用いて被覆部材を形成する方法は特に制限されず、例えば、ポリケトン膜をラミネート等の方法で被覆対象である部材に接着することで被覆を形成してもよく、液状のポリケトン組成物を被覆対象である部材に付与してから乾燥して被覆部材を形成してもよい。
<成形体>
 本実施形態の成形体は、本実施形態のポリケトン組成物から成形されてなる。成形体の製造方法は特に制限されず、当該技術分野で既知の方法を用いることができる。例えば、押出成形法、射出成形法、カレンダー成形法、ブロー成形法、FRP(Fiber Reinforced Plastic)成形法、積層成形法、注型法、粉末成形法、溶液流延法、真空成形法、圧空成形法、押出複合成形法、延伸成形法、及び発泡成形法が挙げられる。
 本実施形態の成形体は、必要に応じて所望の機能の付与、特性の改善、成形性の向上等のために、種々の添加剤を加えてもよい。添加剤としては、摺動剤(ポリテトラフルオロエチレン粒子等)、光拡散剤(アクリル架橋粒子、シリコーン架橋粒子、極薄ガラスフレーク、炭酸カルシウム粒子等)、蛍光染料、無機系蛍光体(アルミン酸塩を母結晶とする蛍光体等)、帯電防止剤、結晶核剤、無機及び有機の抗菌剤、光触媒系防汚剤(酸化チタン粒子、酸化亜鉛粒子等)、架橋剤、硬化剤、反応促進剤、赤外線吸収剤(熱線吸収剤)、フォトクロミック剤などが挙げられる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に何ら限定されるものではない。
<ポリケトンの分子量測定>
 ポリケトンの分子量(重量平均分子量及び数平均分子量)は、溶離液としてテトラヒドロフラン(THF)を用いて、ゲル浸透クロマトグラフ(GPC)法によって測定し、標準ポリスチレン換算にて求めた。詳細は次のとおりである。
・装置名:Ecosec HLC-8320GPC(東ソー株式会社)
・カラム:TSKgel Supermultipore HZ-M(東ソー株式会社)
・検出器:UV検出器、RI検出器併用
・流速:0.4ml/min
<ポリケトンの合成>
(合成例1)ポリケトンPK-1の合成
 モノマとして、2,2’-ジメトキシビフェニル10mmolと1,3-アダマンタンジカルボン酸10mmolが入ったフラスコに、五酸化二リン及びメタンスルホン酸の混合液(質量比1:10)を30ml加え、60℃で撹拌した。反応後、内容物をメタノール500ml中に投じ、生成した析出物を濾取した。得られた固体を蒸留水とメタノールで洗浄した後、乾燥し、ポリケトンPK-1を得た。
 得られたポリケトンPK-1の重量平均分子量は20,000、数平均分子量は8,000であった。なお、重量平均分子量及び数平均分子量は、上述の方法で測定し、算出したものである。後述のポリケトンPK-2~PK-11の重量平均分子量(Mw)及び数平均分子量(Mn)についても同様である。
(合成例2)ポリケトンPK-2の合成
 モノマとして、2,2’-ジメトキシビフェニル10mmolと1,4-シクロヘキサンジカルボン酸(cisとtransの混合体、cis:trans(モル比)=7:3)10mmolを用いた以外は実施例1と同様にして、ポリケトンPK-2を得た。得られたポリケトンPK-2の重量平均分子量は25,000であり、数平均分子量は9,000であった。
(合成例3)ポリケトンPK-3の合成
 モノマとして、2,2’-ジメトキシビフェニル10mmolと1,3-アダマンタン二酢酸10mmolを用いた以外は実施例1と同様にして、ポリケトンPK-3を得た。得られたポリケトンPK-3の重量平均分子量は42,000であり、数平均分子量は12,000であった。
(合成例4)ポリケトンPK-4の合成
 モノマとして、2,2’-ジメトキシビフェニル10mmolと1,3-アダマンタンジカルボン酸5mmolとドデカン二酸5mmolを用いた以外は実施例1と同様にして、ポリケトンPK-4を得た。得られたポリケトンPK-4の重量平均分子量は36,000であり、数平均分子量は13,000であった。
(合成例5)ポリケトンPK-5の合成
 モノマとして、2,2’-ジメトキシビフェニル10mmolと1,3-アダマンタン二酢酸5mmolとドデカン二酸5mmolを用いた以外は実施例1と同様にして、ポリケトンPK-5を得た。得られたポリケトンPK-5の重量平均分子量は39,000であり、数平均分子量は12,000であった。
(合成例6)ポリケトンPK-6の合成
 モノマとして、2,2’-ジメトキシビフェニル10mmolと1,3-アダマンタン二酢酸5mmolとヘキサン二酸5mmolを用いた以外は実施例1と同様にして、ポリケトンPK-6を得た。得られたポリケトンPK-6の重量平均分子量は39,000であり、数平均分子量は12,000であった。
(合成例7)ポリケトンPK-7の合成
 2,2’-ジメトキシビフェニル10mmolと1,3-アダマンタン二酢酸5mmolとcis-1,4-シクロヘキサンジカルボン酸5mmol用いた以外は実施例1と同様にして、ポリケトンPK-7を得た。得られたポリケトンPK-7の重量平均分子量は45,000であり、数平均分子量は11,000であった。
(合成例8)ポリケトンPK-8の合成
 モノマとして、2,2’-ジメトキシビフェニル10mmolと1,3-アダマンタン二酢酸5mmolとデカリン-2,6-ジカルボン酸5mmolを用いた以外は実施例1と同様にして、ポリケトンPK-8を得た。得られたポリケトンPK-8の重量平均分子量は33,000であり、数平均分子量は10,000であった。
(合成例9)ポリケトンPK-9の合成
 モノマとして、2,2’-ジメトキシビフェニル10mmolと1,3-アダマンタン二酢酸5mmolとノルボルナンジカルボン酸(2,4-、2,5-混合体)5mmolを用いた以外は実施例1と同様にして、ポリケトンPK-9を得た。得られたポリケトンPK-9の重量平均分子量は27,000であり、数平均分子量は9,200であった。
(合成例10)ポリケトンPK-10の合成
 モノマとして、2,2’-ビス(2-メトキシフェニル)プロパン10mmolと1,3-アダマンタン二酢酸5mmolと1,4-シクロヘキサンジカルボン酸(cisとtransの混合体、cis:trans(モル比)=7:3)5mmolを用いた以外は実施例1と同様にして、ポリケトンPK-10を得た。得られたポリケトンPK-10の重量平均分子量は28,000であり、数平均分子量は8,300であった。
(合成例11)ポリケトンPK-11の合成
 モノマとして、ジフェニルエーテル10mmolと1,3-アダマンタン二酢酸5mmolと1,4-シクロヘキサンジカルボン酸(cisとtransの混合体、cis:trans(モル比)=7:3)5mmolを用いた以外は実施例1と同様にして、ポリケトンPK-11を得た。得られたポリケトンPK-11の重量平均分子量は27,000であり、数平均分子量は8,000であった。
<ポリケトン組成物の調製>
(実施例1)
 得られたポリケトン(PK-1)0.90gをN-メチル-2-ピロリドン(以下NMPと称す)3.30gに溶解し、その後、シリカ(粒子A)のシクロヘキサノン分散液(日産化学工業株式会社製、CHO-ST-M)0.33g(固形分0.1g)を加え、攪拌し、ポリテトラフルオロエチレン製のメンブレンフィルター(孔径5μm)で濾過して、ポリケトン組成物を得た。
(実施例2~15及び比較例1~4)
 表1に示す配合に変更した以外は実施例1と同様な方法でポリケトン組成物を得た。表1中の数値は、ポリケトンと無機粒子の合計量を100質量部としたときの各成分の質量部を表す。粒子B(シリカ)としては、株式会社アドマテックス製、SC1050-SXTを用いた。粒子C(酸化チタン)としては、Sigma-Aldrich社製、Aldrich 637254を用いた。粒子D(シリカ)としては株式会社アドマテックス製、SO-E2を用いた。
Figure JPOXMLDOC01-appb-T000022

 
<評価用サンプルの作製及び評価>
 得られたポリケトン組成物を用いて、以下の方法により膜を作製し、後述の評価用のサンプルを準備し、下記評価を行った。
(1)平均粒子径の測定
 得られたポリケトン組成物を、バーコート法によりガラス基板の上に塗布し、120℃に加熱したホットプレート上で3分間乾燥して、厚さ10μmのポリケトン膜を有するポリケトン膜付ガラス基板を作製した。このポリケトン膜付ガラス基板を、窒素置換したイナートガスオーブンを用い200℃で1時間熱処理した後、ダイヤモンドカッターを用いて切断し、切断面(膜断面)を、走査型電子顕微鏡(株式会社Philips製、XL-30)を用いて観察を行った。得られた観察画像から、無機粒子の一次粒子50個について長径を測定し、その平均値を平均粒子径とした。
 ここで、長径とは、前記切断面に現れる粒子について、その粒子の外側に接する二つの平行線の組み合わせを、粒子を挟むように選択し、それらの組み合わせのうち最長間隔になる二つの平行線の距離である。
(2)ヘイズ測定
 得られたポリケトン組成物を、バーコート法によりガラス基板の上に塗布し、120℃に加熱したホットプレート上で3分間乾燥して、厚さ10μmのポリケトン膜を有するポリケトン膜付ガラス基板を作製した。このポリケトン膜付ガラス基板を、窒素置換したイナートガスオーブンを用い200℃で1時間熱処理した後、ヘイズメーター(日本電色工業株式会社製、NDH 2000)を用い、ポリケトン膜の付いていないガラス基板をブランクとしてヘイズを測定した。得られたヘイズを表2に示す。
(3)透明性の評価
 得られたポリケトン組成物を、バーコート法によりガラス基板の上に塗布し、120℃に加熱したホットプレート上で3分間乾燥して、厚さ10μmのポリケトン膜を有するポリケトン膜付ガラス基板を作製した。このポリケトン膜付ガラス基板を、窒素置換したイナートガスオーブンを用い200℃で1時間熱処理した後、波長400nmの可視光の透過率を、紫外可視分光光度計(株式会社日立ハイテクサイエンス、U-3310 Spectrophotometer)を用いた紫外可視吸収スペクトル法によって測定した。ポリケトン膜の付いていないガラス基板をリファレンスとして、膜厚1μmに換算した透過率(%)を表2に示す。膜厚は、触針式段差計(「Dektak3 ST」、アルバック株式会社(Veeco))を用いて3点測定した値の算術平均値とした。
(4)耐熱性の評価
 得られたポリケトン組成物を、バーコート法によりポリイミド(カプトン)フィルムの上に塗布し、120℃に加熱したホットプレート上で3分間乾燥して、厚さ10μmのポリケトン膜を有するポリケトン膜付ポリイミド基材を作製した。ポリイミド基材からポリケトン膜を剥がし、窒素置換したイナートガスオーブンで、200℃で1時間熱処理した。その後、ポリケトン膜のガラス転移点を、動的粘弾性測定装置(Rheometrics社製、RSA-II)を用いた動的粘弾性測定法(引張りモード)によって測定した。得られたガラス転移点(Tg)の値(℃)を表2に示す。
(5)鉛筆硬度の評価
 透明性の評価と同様の方法でポリケトン膜付ガラス基板を作製し、鉛筆硬度試験により評価した。試験は、JIS K5600-5-4:1999に従って行った。試験結果を表2に示す。
(6)熱膨張係数(CTE)の測定
 耐熱性の評価と同様の方法でポリケトン膜を作製し、熱機械分析装置(セイコーインスツル株式会社製、TMA/SS6000)を用いて、チャック間距離15mm、測定温度範囲20℃~300℃、昇温速度5℃/min、ポリケトン膜の断面積に対して0.5MPaとなる引っ張り荷重の条件で測定を行い、50℃~200℃の温度範囲における平均の熱膨張係数を算出した。試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000023
 実施例のポリケトン組成物は、膜としたときに、耐熱性及び透明性を維持しつつ、高い表面硬度及び低い熱膨張係数を示すことがわかる。
 2017年1月31日に出願された日本国特許出願2017-15424号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (16)

  1.  下記一般式(I)で表される構造単位を含むポリケトンと、無機粒子と、を含有し、前記ポリケトン及び前記無機粒子の合計量100質量部に対して、前記無機粒子の含有量が10質量部~70質量部であり、前記無機粒子の平均粒子径が10nm~200nmであるポリケトン組成物。
    Figure JPOXMLDOC01-appb-C000001

    〔一般式(I)中、Xは、それぞれ独立に、置換基を有していてもよい炭素数1~50の2価の基を示し、Yは、それぞれ独立に、置換基を有していてもよい炭素数1~30の2価の炭化水素基を示し、nは1~1500の整数を示す。〕
  2.  厚さ10μmの膜としたときのヘイズが1%未満である請求項1に記載のポリケトン組成物。
  3.  膜としたときの400nmの可視光の透過率が、膜厚1μm換算で85%以上である請求項1又は請求項2に記載のポリケトン組成物。
  4.  前記一般式(I)において、Xが、それぞれ独立に、芳香環を含む炭素数6~50の2価の基を含む、請求項1~請求項3のいずれか1項に記載のポリケトン組成物。
  5.  前記一般式(I)において、Xが、それぞれ独立に、下記一般式(II-1)~(II-3)からなる群より選択される少なくとも1種を含む、請求項1~請求項4のいずれか1項に記載のポリケトン組成物。
    Figure JPOXMLDOC01-appb-C000002

     
    〔一般式(II-1)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、mは、それぞれ独立に、0~3の整数を示す。〕
    Figure JPOXMLDOC01-appb-C000003

     
    〔一般式(II-2)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、mは、それぞれ独立に、0~3の整数を示し、Zは、酸素原子又は下記一般式(III-1)~(III-7)で表される2価の基を示す。〕
    Figure JPOXMLDOC01-appb-C000004

     
    〔一般式(III-1)~(III-7)中、Rは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を示し、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、R及びRは、それぞれ独立に、水素原子又は置換基を有していてもよい炭素数1~30の炭化水素基を表し、mは、それぞれ独立に、0~3の整数を示し、nは、それぞれ独立に、0~4の整数を示し、pは、それぞれ独立に、0~2の整数を示す。〕
    Figure JPOXMLDOC01-appb-C000005

    〔一般式(II-3)中、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示し、nは、それぞれ独立に、0~4の整数を示す。〕
  6.  前記一般式(I)において、Yが、2価の飽和炭化水素基を含む、請求項1~請求項5のいずれか1項に記載のポリケトン組成物。
  7.  前記一般式(I)において、Yが、2価の飽和脂環式炭化水素基を含む、請求項6に記載のポリケトン組成物。
  8.  前記一般式(I)において、Yの炭素数が6~30である、請求項1~請求項7のいずれか1項に記載のポリケトン組成物。
  9.  前記無機粒子がシリカ粒子である請求項1~請求項8のいずれか1項に記載のポリケトン組成物。
  10.  さらに溶媒を含む、請求項1~請求項9のいずれか1項に記載のポリケトン組成物。
  11.  請求項1~請求項10のいずれか1項に記載のポリケトン組成物から形成されてなるポリケトン膜。
  12.  基材と、前記基材の表面の少なくとも一部に設けられる請求項11に記載のポリケトン膜と、を有するポリケトン膜付基材。
  13.  請求項11に記載のポリケトン膜、又は請求項12に記載のポリケトン膜付基材を有する、光学素子。
  14.  請求項11に記載のポリケトン膜、請求項12に記載のポリケトン膜付基材、又は請求項13に記載の光学素子を有する、画像表示装置。
  15.  部材と、前記部材の表面の少なくとも一部に設けられる請求項1~請求項10のいずれか1項に記載のポリケトン組成物から形成されてなる被膜と、を有する、被覆部材。
  16.  請求項1~請求項10のいずれか1項に記載のポリケトン組成物から成形されてなる成形体。
PCT/JP2018/000881 2017-01-31 2018-01-15 ポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体 WO2018142908A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197022894A KR20190109433A (ko) 2017-01-31 2018-01-15 폴리케톤 조성물, 폴리케톤막, 폴리케톤막 부착 기재, 광학 소자, 화상 표시 장치, 피복 부재, 및 성형체
JP2018566024A JPWO2018142908A1 (ja) 2017-01-31 2018-01-15 ポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体
US16/481,945 US20200247948A1 (en) 2017-01-31 2018-01-15 Polyketone composition, polyketone membrane, substrate with polyketone membrane, optical element, image display device, covered member and molded article
CN201880009091.1A CN110249003A (zh) 2017-01-31 2018-01-15 聚酮组合物、聚酮膜、带有聚酮膜的基材、光学元件、图像显示装置、覆盖构件及成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-015424 2017-01-31
JP2017015424 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142908A1 true WO2018142908A1 (ja) 2018-08-09

Family

ID=63039652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000881 WO2018142908A1 (ja) 2017-01-31 2018-01-15 ポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体

Country Status (6)

Country Link
US (1) US20200247948A1 (ja)
JP (1) JPWO2018142908A1 (ja)
KR (1) KR20190109433A (ja)
CN (1) CN110249003A (ja)
TW (1) TW201840710A (ja)
WO (1) WO2018142908A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330780A (zh) * 2019-08-07 2019-10-15 广东工业大学 一种透明脂肪族聚酮包装膜及其制备方法
JP2020105287A (ja) * 2018-12-26 2020-07-09 日立化成株式会社 ヒドラジド化合物を含有するポリケトン組成物、ポリケトン硬化物、光学素子、及び画像表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362271B1 (ko) * 2019-10-16 2022-02-14 이정훈 회로 기판용 보호 코팅 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160754A (ja) * 1997-06-09 1999-03-05 Toray Ind Inc 2軸延伸フィルム及び積層フィルム
JPH11349801A (ja) * 1998-06-12 1999-12-21 Shikoku Chem Corp 熱可塑性樹脂組成物
WO2016006537A1 (ja) * 2014-07-10 2016-01-14 日立化成株式会社 芳香族ポリケトン膜の製造方法、芳香族ポリケトン膜、芳香族ポリケトン膜付基材、光学素子及び画像表示装置
WO2016125660A1 (ja) * 2015-02-04 2016-08-11 日立化成株式会社 芳香族ポリケトン及びその製造方法、芳香族ポリケトン組成物、芳香族ポリケトン膜、光学素子並びに画像表示装置
WO2017212952A1 (ja) * 2016-06-10 2017-12-14 日立化成株式会社 異なる二種類の構造単位を有する芳香族ポリケトン

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627730A (ja) 1985-07-05 1987-01-14 Asahi Chem Ind Co Ltd 結晶性芳香族ポリエ−テルケトンの製造方法
JP4339729B2 (ja) 2004-03-25 2009-10-07 Tdk株式会社 芳香族ポリケトン及びその中間体、芳香族ポリケトンの製造方法、電気化学素子用ガスケット、電気化学素子用セパレータ、並びに、電気化学素子
JP6218059B2 (ja) 2011-09-01 2017-10-25 国立大学法人山形大学 芳香族ポリケトンの製造方法と芳香族ポリケトン
WO2016072641A1 (ko) * 2014-11-07 2016-05-12 (주) 효성 내마모성이 우수한 폴리케톤 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160754A (ja) * 1997-06-09 1999-03-05 Toray Ind Inc 2軸延伸フィルム及び積層フィルム
JPH11349801A (ja) * 1998-06-12 1999-12-21 Shikoku Chem Corp 熱可塑性樹脂組成物
WO2016006537A1 (ja) * 2014-07-10 2016-01-14 日立化成株式会社 芳香族ポリケトン膜の製造方法、芳香族ポリケトン膜、芳香族ポリケトン膜付基材、光学素子及び画像表示装置
WO2016125660A1 (ja) * 2015-02-04 2016-08-11 日立化成株式会社 芳香族ポリケトン及びその製造方法、芳香族ポリケトン組成物、芳香族ポリケトン膜、光学素子並びに画像表示装置
WO2017212952A1 (ja) * 2016-06-10 2017-12-14 日立化成株式会社 異なる二種類の構造単位を有する芳香族ポリケトン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105287A (ja) * 2018-12-26 2020-07-09 日立化成株式会社 ヒドラジド化合物を含有するポリケトン組成物、ポリケトン硬化物、光学素子、及び画像表示装置
CN110330780A (zh) * 2019-08-07 2019-10-15 广东工业大学 一种透明脂肪族聚酮包装膜及其制备方法

Also Published As

Publication number Publication date
TW201840710A (zh) 2018-11-16
KR20190109433A (ko) 2019-09-25
US20200247948A1 (en) 2020-08-06
JPWO2018142908A1 (ja) 2019-11-14
CN110249003A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
JP2012008532A (ja) 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
WO2018142908A1 (ja) ポリケトン組成物、ポリケトン膜、ポリケトン膜付基材、光学素子、画像表示装置、被覆部材、及び成形体
JP5540477B2 (ja) 近赤外線カットフィルターの製造方法および該方法により得られる近赤外線カットフィルター
JP6785423B2 (ja) 芳香族ポリケトン及びその製造方法、芳香族ポリケトン組成物、芳香族ポリケトン膜、光学素子並びに画像表示装置
JP6879303B2 (ja) 異なる二種類の構造単位を有する芳香族ポリケトン
JP2022044003A (ja) ポリアミド系複合フィルムおよびこれを含むディスプレイ装置
JP6874470B2 (ja) ポリケトン樹脂組成物、ポリケトン硬化物、光学素子、画像表示装置、被覆材料及び成形体
JP2022190682A (ja) カバーウィンドウ用ポリイミドフィルムおよびそれを含むディスプレイ装置
JP2020193276A (ja) 主鎖に脂環骨格とフルオレン骨格とを有するポリアリーレンである重合体、重合体の製造方法、組成物、膜、膜付基材、光学素子、画像表示装置、被覆材料及び成形体
WO2018025673A1 (ja) 含窒素化合物を含有するポリケトン組成物、ポリケトン硬化物、光学素子及び画像表示装置
JP6759682B2 (ja) 分岐型芳香族ポリケトン、分岐型芳香族ポリケトンの製造方法、分岐型芳香族ポリケトン組成物、分岐型芳香族ポリケトン膜、光学素子、画像表示装置及び分岐型芳香族ポリケトン膜付基材
JP6778377B2 (ja) 主鎖中にアルキレン基を有する芳香族ポリケトン、芳香族ポリケトンワニス、芳香族ポリケトン膜及び芳香族ポリケトンの製造方法
WO2017154709A1 (ja) エポキシ化合物を含有するポリケトン組成物、ポリケトン硬化物、光学素子及び画像表示装置
JP2020105287A (ja) ヒドラジド化合物を含有するポリケトン組成物、ポリケトン硬化物、光学素子、及び画像表示装置
JP2020105517A (ja) 鎖状基を有する構造単位を含むポリケトンとヒドラジド化合物とを含有するポリケトン組成物、ポリケトン硬化物、光学素子、及び画像表示装置
JPWO2019009079A1 (ja) ヒドラジド化合物を含有するポリケトン組成物、ポリケトン硬化物、光学素子及び画像表示装置
JP2019014819A (ja) デカリン骨格を有する芳香族ポリケトン及びその製造方法、デカリン骨格を有する芳香族ポリケトン組成物、デカリン骨格を有する芳香族ポリケトン膜、光学素子並びに画像表示装置
JP2020105286A (ja) 芳香環及び鎖状基を有する構造単位を含むポリケトン、ポリケトン組成物、ポリケトン膜、光学素子、画像表示装置、及びポリケトンの製造方法
JP2017197687A (ja) 芳香環及び四級炭素原子含有脂環を含む重合体、重合体の製造方法、組成物、膜、膜付基材、光学素子、画像表示装置、被覆材料及び成形体
JP2017179223A (ja) 芳香族ポリケトン、芳香族ポリケトンの製造方法、芳香族ポリケトン組成物、芳香族ポリケトン膜、芳香族ポリケトン膜付基材、光学素子、画像表示装置及び被覆材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566024

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197022894

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18747789

Country of ref document: EP

Kind code of ref document: A1