WO2018142848A1 - 判定帰還型等化器及びインターコネクト回路 - Google Patents

判定帰還型等化器及びインターコネクト回路 Download PDF

Info

Publication number
WO2018142848A1
WO2018142848A1 PCT/JP2018/000175 JP2018000175W WO2018142848A1 WO 2018142848 A1 WO2018142848 A1 WO 2018142848A1 JP 2018000175 W JP2018000175 W JP 2018000175W WO 2018142848 A1 WO2018142848 A1 WO 2018142848A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
comparator
latch
decision feedback
threshold
Prior art date
Application number
PCT/JP2018/000175
Other languages
English (en)
French (fr)
Inventor
靖文 坂井
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Publication of WO2018142848A1 publication Critical patent/WO2018142848A1/ja
Priority to US16/451,225 priority Critical patent/US10728058B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/249Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors using clock signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/003Changing the DC level
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure

Definitions

  • the present invention relates to a decision feedback equalizer and an interconnect circuit.
  • DFE decision feedback equalizer
  • ISI Symbol Interference
  • Non-Patent Document 2 a DFE in which a weighted adder is incorporated in a comparator has been proposed (see, for example, Non-Patent Document 2).
  • the DFE coefficient is set by changing the number of transistors that connect the latch and the power source included in the comparator to turn on in accordance with an external digital control signal.
  • Non-Patent Document 2 the on-resistance of the inverter that constitutes the latch (R of the RC time constant of the inverter) is changed in accordance with an external digital control signal. It changes non-linearly with respect to the on-resistance of the inverter. Therefore, the determination threshold value of the comparator changes nonlinearly with respect to the number of transistors that are turned on. That is, the DFE coefficient changes non-linearly with respect to an external digital control signal. As a result, it is difficult to set the DFE coefficient to the same value as the ISI at a location where the resolution of the DFE coefficient set according to the external digital control signal is relatively large, so that the ISI removal performance by the DFE decreases. There is a case.
  • an object of one embodiment of the present disclosure is to provide a decision feedback equalizer and an interconnect circuit that can improve ISI removal performance.
  • a comparison circuit In order to achieve the above object, according to one aspect of the present disclosure, A comparison circuit; A latch circuit for latching a comparison result of the comparison circuit; A setting circuit for setting a determination threshold value of the comparison circuit according to a control signal; A switch circuit that is on / off controlled by an output signal of the latch circuit, The setting circuit is connected in parallel to the input stage of the comparison circuit via the switch circuit, and a decision feedback equalizer is provided that operates in synchronization with a clock signal that drives the comparison circuit. .
  • FIG. 1 is a diagram illustrating an example of the configuration of the interconnect circuit 1000.
  • the interconnect circuit 1000 transmits a data signal transmitted and received between the transmission device 1100 and the reception device 1200 via the transmission line 1300 by high-speed serial transmission.
  • the interconnect circuit 1000 is an example of a transmission / reception circuit that transmits and receives data between chips such as CPUs, between a plurality of elements in a chip, or between a plurality of circuit blocks.
  • the transmission line 1300 is a wired communication path, but may be a wireless communication path.
  • the interconnect circuit 1000 includes a transmission device 1100, a reception device 1200, and a transmission line 1300.
  • the transmission device 1100 and the reception device 1200 are connected by a transmission line 1300.
  • the transmission device 1100 includes a multiplexer circuit (MUX) 1101 and an output driver 1102.
  • the receiving apparatus 1200 includes an equalizer 1202, a reception processing unit 1203, and a demultiplexer circuit (DEMUX) 1204.
  • the reception processing unit 1203 includes a comparator 1205 and a clock recovery circuit (CR) 1206.
  • the output of the MUX 1101 that sets the input data 71 according to the transmission reference clock 72 is input to the output driver 1102.
  • the output driver 1102 transmits the output signal 73 to the receiving device 1200 via the transmission line 1300.
  • the output signal 73 is shaped by the equalizer 1202 and input to the comparator 1205.
  • the comparator 1205 compares the output signal 74 of the equalizer 1202 with a certain threshold value and outputs received data 75.
  • the DEMUX 1204 converts the received data 75 from serial to parallel.
  • the CR 1206 generates a clock signal 76 synchronized with the output signal 74 of the equalizer 1202 from the output signal 80 of the DEMUX 1204, and supplies the clock signal 76 to the comparator 1205.
  • the equalizer 1202 is an example of a decision feedback equalizer according to this embodiment. Hereinafter, the decision feedback equalizer according to this embodiment will be described.
  • FIG. 2 is a diagram illustrating an example of the configuration of the decision feedback equalizer according to the first embodiment.
  • the equalizer 1 shown in FIG. 2 is an example of a decision feedback equalizer that reduces the influence of ISI superimposed on the differential data signals P and N input to the equalizer 1.
  • the equalizer 1 includes a comparison circuit 100, a latch circuit 200, a setting circuit 300, and a switch circuit 400.
  • the threshold control signal Vc, the clock signal CLK, and the clock signal CLKX are supplied from the outside of the equalizer 1.
  • each comparator 10 in the comparison circuit 100 and each latch unit 20 in the latch circuit 200 is defined as follows.
  • the comparator 10 has a differential input-differential output configuration in which an input signal and an output signal are differential signals.
  • the comparator 10 sets the level of one of the two output signals output from the comparator 10 to a high level according to the input signal input to the comparator 10, and The output signal level is set to low level. Further, the comparator 10 makes the values of the two output signals output from the comparator 10 the same value during the reset period.
  • the even-side comparator (upper comparator 10 in the case of FIG. 2)
  • the period during which the clock signal CLK input to the comparator 10 is low is the reset period, and the clock signal CLK is high.
  • the period shall be the evaluation period.
  • the odd-number side (odd) side comparator (the lower side comparator 10 in the case of FIG. 2)
  • the period when the clock signal CLKX input to the comparator 10 is low is the reset period, and the clock signal CLKX is high. This period shall be the evaluation period.
  • the odd-side latch portion (lower latch portion 20 in the case of FIG. 2).
  • the clock signal CLK and the clock signal CLKX are inverted clock signals. That is, when the clock signal CLK is at a low level, the clock signal CLKX is at a high level, and when the clock signal CLK is at a high level, the clock signal CLKX is at a low level.
  • the latch unit 20 latches (takes in) an output signal output during the evaluation period from the comparator 10 connected to the preceding stage of the latch unit 20. That is, in the evaluation period, the latch unit 20 latches the comparison result of the comparator 10 connected to the preceding stage of the latch unit 20, and outputs a latch output signal corresponding to the latched comparison result.
  • the latch unit 20 responds to the comparison result latched in the previous evaluation period in the reset period of the comparator 10 connected to the preceding stage of the latch unit 20 regardless of the output signal output from the comparator 10. Continue to output the latch output signal. That is, in the reset period, the latch unit 20 continues to hold the comparison result of the comparator 10 captured in the previous evaluation period.
  • the equalizer 1 shown in FIG. 2 is a half-rate DFE having a two-parallel time interleave configuration.
  • the equalizer 1 includes a comparison circuit 100, a latch circuit 200, a switch circuit 400, and a setting circuit 300.
  • the comparison circuit 100 includes an even-side comparator 10 and an odd-side comparator 10 having the same configuration.
  • the latch circuit 200 includes an even-side latch unit 20 and an odd-side latch unit 20 having the same configuration.
  • the switch circuit 400 includes an even-side switch unit 40 and an odd-side switch unit 40 having the same configuration.
  • the setting circuit 300 includes an even-side threshold setting circuit 30 and an odd-side threshold setting circuit 30 having the same configuration.
  • the even-side comparator 10, the odd-side comparator 10, the even-side latch unit 20, and the odd-side latch unit 20 are referred to as a comparator 10e, a comparator 10o, a latch unit 20e, and a latch unit 20o, respectively.
  • the switch unit 40 on the even side, the switch unit 40 on the odd side, The threshold setting circuit 30 on the side and the threshold setting circuit 30 on the odd side may be referred to as a switch unit 40e, a switch unit 40o, a threshold setting circuit 30e, and a threshold setting circuit 30o, respectively.
  • the comparison circuit 100 includes a comparator 10e that operates in synchronization with the clock signals CLK and CLKX, and a comparator 10o that operates in synchronization with the clock signals CLKX and CLK.
  • the comparator 10e compares the magnitude relationship between the data signal P and the data signal N during the evaluation period in which the clock signal CLK becomes high level, and outputs the comparison result in the next evaluation period (the clock signal CLK is in the next high level). Until the period begins).
  • the comparator 10o compares the magnitude relationship between the data signal P and the data signal N during the evaluation period when the clock signal CLKX is at a high level, and outputs the comparison result to the next evaluation period (the clock signal CLKX is at the next high level). Until the period begins).
  • the latch circuit 200 latches the comparison result of the comparison circuit 100.
  • the latch circuit 200 includes a latch unit 20e that operates in synchronization with the clock signals CLK and CLKX, and a latch unit 20o that operates in synchronization with the clock signals CLKX and CLK.
  • the latch unit 20e latches the comparison result of the comparator 10e during the evaluation period when the clock signal CLK becomes high level, and outputs a pair of latch output signals (output_P_EV, output_N_EV) according to the latched comparison result. Continue until the next evaluation period begins.
  • the latch unit 20o latches the comparison result of the comparator 10o during the evaluation period when the clock signal CLKX becomes high level, and outputs a pair of latch output signals (output_P_OD, output_N_OD) according to the latched comparison result. Continue until the next evaluation period begins.
  • the switch circuit 400 is ON / OFF controlled by the output signal of the latch circuit 200.
  • the switch circuit 400 includes a switch unit 40e that is on / off controlled by latch output signals (output_P_OD, output_N_OD), and a switch unit 40o that is on / off controlled by latch output signals (output_P_EV, output_N_EV). .
  • the setting circuit 300 sets a determination threshold value of the comparison circuit 100 according to a threshold control signal Vc supplied from the outside of the equalizer 1.
  • the threshold control signal Vc is an example of a control signal.
  • the setting circuit 300 operates in synchronization with the clock signal CLK that drives the comparator 10e. e and a threshold setting circuit 30o that operates in synchronization with a clock signal CLKX that drives the comparator 10o.
  • the threshold setting circuit 30e sets the determination threshold of the comparator 10e according to the threshold control signal Vc.
  • the threshold setting circuit 30o sets the determination threshold of the comparator 10o according to the threshold control signal Vc.
  • the setting circuit 300 is connected in parallel to the input stage of the comparison circuit 100 via the switch circuit 400.
  • the threshold setting circuit 30e is connected in parallel to the input stage of the comparator 10e via the switch unit 40e.
  • the threshold setting circuit 30o is connected in parallel to the input stage of the comparator 10o via the switch unit 40o.
  • FIG. 3 is a diagram illustrating an example of each configuration of the comparator, the switch, and the threshold setting circuit according to the first embodiment.
  • the comparator 10A is an example of the comparator 10
  • the switch unit 40A is an example of the switch unit 40
  • the threshold setting circuit 30A is an example of the threshold setting circuit 30.
  • the comparator 10A is a double tail latch type comparator.
  • the comparator 10A has an input stage 11 and an output stage 15.
  • the input stage 11 has a pair of transistors 12 to which the data signals P and N are respectively input, a transistor 13 to which the clock signal CLK is input, and a pair of transistors 14 to which the clock signal CLK is input.
  • the transistor 13 is connected between the pair of transistors 12 and the ground.
  • the pair of transistors 14 is connected between the pair of transistors 12 and the power supply potential Vdd.
  • the output stage 15 latches and outputs the comparison result at the input stage 11.
  • the output stage 15 includes a pair of transistors 16, a pair of inverters 17, and a transistor 18. Input portions (specifically, gates) of the pair of transistors 16 are respectively connected to nodes between the pair of transistors 12 and the pair of transistors 14.
  • the pair of transistors 16 is connected between the pair of output portions of the comparator 10A and the ground.
  • a pair of output portions of the comparator 10A is connected to a pair of inverters 17 forming a latch.
  • the transistor 18 to which the clock signal CLKX is input is connected between the pair of inverters 17 and the power supply potential Vdd.
  • the pair of output units of the comparator 10A is connected to the latch unit 20 (see FIG. 2).
  • the switch section 40A has a pair of transistors 41 connected in parallel to the input stage 11 of the comparator 10A.
  • One end of the transistor 41 to which the latch output signal (output_P_OD) is input is connected to a node between the one transistor 14 and the one transistor 12.
  • One end of the transistor 41 to which the latch output signal (output_N_OD) is input is connected to a node between the other transistor 14 and the other transistor 12.
  • the threshold setting circuit 30A is connected in parallel to the input stage 11 of the comparator 10A via the switch unit 40A.
  • the threshold setting circuit 30A includes, for example, a transistor 32, a pair of threshold adjustment transistors 31, and a pair of DACs (digital-to-analog converter) 50.
  • the clock signal CLK is input to the transistor 32.
  • the transistor 32 is connected between the pair of threshold adjustment transistors 31 and the ground.
  • the pair of threshold adjustment transistors 31 are connected in series to the switch unit 40A, and are connected in parallel to the input stage 11 of the comparator 10A via the switch unit 40A.
  • the pair of threshold adjustment transistors 31 is controlled via the pair of DACs 50 according to the threshold control signal Vc.
  • One threshold adjustment transistor 31 is connected in series to one transistor 41 and is controlled via one DAC 50 in accordance with a threshold control signal Vc.
  • One threshold adjustment transistor 41 is connected to a node between one transistor 14 and one transistor 12 through one transistor 41.
  • the other threshold adjustment transistor 31 is connected in series to the other transistor 41 and is controlled via the other DAC 50 in accordance with the threshold control signal Vc.
  • the other threshold adjustment transistor 41 is connected to a node between the other transistor 14 and the other transistor 12 via the other transistor 41.
  • the pair of DACs 50 is an example of a digital-to-analog converter that controls the pair of threshold adjustment transistors 31 according to the threshold control signal Vc.
  • the pair of DACs 50 converts the digital threshold control signal Vc into an analog threshold control voltage, and controls the gates of the pair of threshold adjustment transistors 31 by the converted threshold control voltage.
  • the threshold control voltage is an example of a control voltage whose voltage value changes linearly with respect to the control signal.
  • transistors 12, 13, 16, 31, 32, and 41 are, for example, N-channel MOSFETs (Metal Oxide Semiconductor Field Effect Transistors).
  • the transistors 14 and 18 are, for example, P-channel MOSFETs.
  • FIG. 4 is a diagram illustrating an example of the configuration of the DAC.
  • the DAC 50A is an example of the DAC 50.
  • the DAC 50 ⁇ / b> A includes a constant current source 51, a current mirror circuit 55, and a load resistor 54.
  • the current mirror circuit 55 changes the copy destination output current in proportion to the reference source current (constant current generated by the constant current source 51) in accordance with the threshold control signal Vc.
  • the current mirror circuit 55 outputs a threshold control voltage whose voltage value changes linearly with respect to the threshold control signal Vc.
  • the current mirror circuit 55 includes, for example, at least one transistor 52 on the input side and a plurality of transistors 53 on the output side.
  • the current mirror circuit 55 outputs a threshold control voltage whose voltage value changes linearly with respect to the digital threshold control signal Vc as the number of transistors 53 turned on linearly changes in accordance with the digital threshold control signal Vc. To do.
  • FIG. 5 is a diagram illustrating an example of a configuration in which a pair of transistors 31 are connected in parallel to the input stage 11 of the comparator 10A.
  • FIG. 6 is a diagram illustrating an example of the relationship between the voltage value applied to the gates of the pair of transistors 31 connected in parallel to the input stage 11 and the determination threshold offset (IP-IN) of the comparator 10A.
  • Vcm is the operating point of the differential signal input to the comparator 10A.
  • the determination threshold offset (IP-IN) of the comparator 10 ⁇ / b> A is the same as that of the pair of transistors 31. It is proportional to the voltage value ⁇ Vb applied to the gate.
  • the determination threshold of the comparator 10A can be linearly changed according to the threshold control signal Vc. It becomes possible.
  • the threshold setting circuit 30A uses a DAC 50 that outputs a threshold control voltage whose voltage value changes linearly with respect to the digital threshold control signal Vc.
  • the threshold setting circuit 30 ⁇ / b> A controls the gate of each transistor 31 connected in parallel to the input stage 11 with a threshold control voltage output from each DAC 50.
  • FIG. 7 is a diagram illustrating an example of a change between an external control signal and a DFE coefficient.
  • “conventional example” indicates an example in the case of Non-Patent Document 2
  • “this embodiment” indicates an example in the case of the first embodiment.
  • the DFE coefficient changes non-linearly with respect to the external digital control signal (number of transistors turned on). Therefore, it is difficult to set the DFE coefficient to the same value as the ISI at a location where the resolution of the DFE coefficient is relatively large (when the digital control signal is relatively small). Therefore, the ISI removal performance by DFE may be reduced.
  • the linearity of the DFE coefficient with respect to an external digital control signal is improved as compared with the “conventional example”.
  • the linearity of the actually set DFE coefficient is improved with respect to an external control signal that determines the DFE coefficient.
  • the resolution of the DFE coefficient is large. Therefore, ISI can be removed more and ISI removal performance can be improved.
  • FIG. 8 is a diagram illustrating an example of a configuration of a decision feedback equalizer according to the second embodiment.
  • the description of the same configuration and effect as the above-described embodiment is as follows. It is omitted by using the above description.
  • the equalizer 2 shown in FIG. 8 is an example of a decision feedback equalizer that reduces the influence of ISI superimposed on the differential data signals P and N input to the equalizer 2.
  • the threshold control signal Vc0, the threshold control signal Vc1, the clock signal CLK, and the clock signal CLKX are supplied from the outside of the equalizer 2.
  • FIG. 9 is a diagram illustrating an example of the configuration of the comparator according to the second embodiment.
  • the comparator 10B is an example of the comparator 10.
  • the input of the clock signal CLK and the clock signal CLKX is as shown in FIG.
  • the odd-side comparator 10o the clock signal CLK shown in FIG. 9 is replaced with the clock signal CLKX, and the clock signal CLKX shown in FIG. 9 is replaced with the clock signal CLK.
  • the comparator 10B is different from the comparator 10A (see FIG. 3) in that it has an offset adjustment circuit 64 connected in parallel to the input stage 11.
  • the offset adjustment circuit 64 adjusts the determination threshold offset of the comparator 10B.
  • the offset adjustment circuit 64 includes, for example, a transistor 62, a pair of threshold correction transistors 61, and a pair of DACs (digital-to-analog converter) 63.
  • the transistor 62 receives the clock signal CLK.
  • the transistor 62 is connected between the pair of threshold correction transistors 61 and the ground.
  • the pair of threshold correction transistors 61 are connected in parallel to the input stage 11 of the comparator 10B.
  • the pair of threshold correction transistors 61 are controlled via the pair of DACs 63 according to the threshold control signal Vc0.
  • One threshold correction transistor 61 is controlled via one DAC 63 according to the threshold control signal Vc0.
  • One threshold correction transistor 61 is connected to a node SP between one transistor 14 and one transistor 12.
  • the other threshold correction transistor 61 is controlled via the other DAC 63 in accordance with the threshold control signal Vc0.
  • the other threshold correction transistor 61 is connected to a node SN between the other transistor 14 and the other transistor 12.
  • the pair of DACs 63 is an example of a digital-analog converter that controls the pair of threshold correction transistors 61 according to the threshold control signal Vc0.
  • the pair of DACs 63 converts the digital threshold control signal Vc0 into an analog threshold correction control voltage, and controls the gates of the pair of threshold correction transistors 61 by the converted threshold correction control voltage.
  • transistors 61 and 62 are, for example, N-channel MOSFETs.
  • the offset adjustment circuit 64 uses a DAC 63 that outputs a threshold correction control voltage whose voltage value changes linearly with respect to the digital threshold control signal Vc0.
  • the offset adjustment circuit 64 controls the gate of each transistor 61 connected in parallel to the input stage 11 with a threshold correction control voltage output from each DAC 60. Thereby, it is possible to perform correction for reducing an offset due to individual variations in manufacturing of the determination threshold value of the comparator 10B.
  • FIG. 10 is a diagram illustrating an example of each configuration of the switch unit and the threshold setting circuit according to the second embodiment.
  • the switch unit 40B is an example of the switch unit 40
  • the threshold setting circuit 30B is an example of the threshold setting circuit 30.
  • the input of the clock signal CLK is as shown in FIG.
  • the clock signal CLK shown in FIG. 10 is replaced with the clock signal CLKX.
  • the threshold setting circuit 30B uses a DAC 50 that outputs a threshold control voltage whose voltage value changes linearly with respect to the digital threshold control signal Vc1.
  • the threshold setting circuit 30 ⁇ / b> B controls the gate of each transistor 31 connected in parallel to the input stage 11 with a threshold control voltage output from each DAC 50.
  • the DFE coefficient of the comparator 10B is changed to the digital threshold control signal V. Since it changes linearly with respect to c1, the determination threshold value of the comparator 10B can be changed linearly. Therefore, ISI can be removed more and ISI removal performance can be improved.
  • FIG. 11 is a diagram illustrating an example of a configuration of a decision feedback equalizer according to the third embodiment.
  • the third embodiment descriptions of configurations and effects similar to those of the above-described embodiment will be omitted by using the above description.
  • the equalizer 3 shown in FIG. 11 is an example of a decision feedback equalizer that reduces the influence of ISI superimposed on the differential data signals P and N input to the equalizer 3. Threshold control signals Vc0 to Vc3 The clock signal CLK and the clock signal CLKX are supplied from the outside of the equalizer 3.
  • the equalizer 3 has a configuration for detecting each value of a 4-value pulse amplitude modulation (PAM) signal.
  • PAM pulse amplitude modulation
  • the quaternary pulse amplitude modulation signal may be referred to as a “PAM4 signal”.
  • the equalizer 3 includes a comparison circuit 100, a latch circuit 200, a switch circuit 400, and a setting circuit 300.
  • the comparison circuit 100 has six comparators 10 for comparing the data signals P and N. Each of the data signals P and N is a PAM4 signal.
  • the latch circuit 200 includes six latch units 20 that latch the comparison results of one corresponding comparator 10 among the six comparators 10. Each of the six latch units 20 latches the comparison results of one comparator 10 connected to itself among the six comparators 10.
  • the switch circuit 400 includes six switch units 40 that are on / off controlled by the output signals of the corresponding three latch units 20 among the six latch units 20.
  • the three switch units 40e on the even side are ON / OFF controlled by four latch output signals (output 1_P_OD, output 2_P_OD, output 2_N_OD, output 3_N_OD) of the three latch units 20o on the odd side.
  • the three odd-side switch units 40o are ON / OFF controlled by the four latch output signals (output 1_P_EV, output 2_P_EV, output 2_N_EV, output 3_N_EV) of the three latch units 20e on the even side.
  • the setting circuit 300 sets a determination threshold value of one corresponding comparator 10 among the six comparators 10 in accordance with threshold control signals Vc1 to Vc3 supplied from the outside of the equalizer 3. It has six 30.
  • Each of the threshold control signals Vc1 to Vc3 is an example of a control signal.
  • FIG. 12 is a diagram illustrating an example of each determination threshold according to the third embodiment.
  • the determination threshold value of each comparator 10 included in the equalizer 3 is set at an intermediate portion of each eye formed by the PAM4 signal input to each comparator 10.
  • the determination threshold 1 of each of the first comparator 10 on the even side and the first comparator 10 on the odd side is set to eye1.
  • the determination threshold k of each of the even-side k-th comparator 10 and the odd-side k-th comparator 10 is set to eyek (k is a natural number from 1 to 3).
  • FIG. 13 is a diagram illustrating an example of each configuration of the switch unit and the threshold setting circuit according to the third embodiment.
  • the switch unit 40C is an example of the switch unit 40
  • the threshold setting circuit 30C is an example of the threshold setting circuit 30.
  • the comparator 10 according to the third embodiment is, for example, the above-described comparator 10A or comparator 10B.
  • the input of the clock signal CLK and the clock signal CLKX is as shown in FIG. 3 or FIG.
  • the odd-side comparator 10o the clock signal CLK shown in FIG. 3 or 9 is replaced with the clock signal CLKX, and the clock signal CLKX shown in FIG. 3 or 9 is replaced with the clock signal CLK. Is done.
  • the threshold setting circuit 30e on the even side the input of the clock signal CLK is as shown in FIG.
  • the odd-side threshold setting circuit 30o the clock signal CLK shown in FIG. 13 is replaced with the clock signal CLKX.
  • the switch section 40C has four transistors 41 connected in parallel to the input stage 11 of the comparator 10.
  • the threshold setting circuit 30 ⁇ / b> C includes three transistors 32, four threshold adjustment transistors 31, and four DACs 50.
  • the threshold setting circuit 30C uses a DAC 50 that outputs a threshold control voltage whose voltage value changes linearly with respect to the digital threshold control signals Vc1 to Vc3.
  • the threshold setting circuit 30C controls the gate of each transistor 31 connected in parallel to the input stage 11 with a threshold control voltage output from each DAC 50. Accordingly, the DFE coefficient of the comparator 10 changes linearly with respect to the digital threshold control signals Vc1 to Vc3, so that the determination threshold of the comparator 10 can be changed linearly. Therefore, ISI can be removed more and ISI removal performance can be improved.
  • FIG. 14 is a diagram illustrating another example of the configuration of the decision feedback equalizer according to the third embodiment.
  • An equalizer 3-1 shown in FIG. 14 is a modification of the equalizer 3, and has a configuration for detecting each value of the PAM4 signal.
  • the three switch units 40e on the even side have six latch output signals (output_upp_P_OD, output_upp_N_OD, output_mid_P_OD, output_mid_N_OD, output_low_P_OD, output_low_N_OD) of the three latch units 20o on the odd side. ) Is on / off controlled. 3 switches on odd side 4 0o is ON / OFF controlled by six latch output signals (output_upp_P_EV, output upp_N_EV, output_mid_P_EV, output_mid_N_EV, output_low_P_EV, output_low_N_EV) of the three latch units 20e on the even side.
  • FIG. 15 is a diagram illustrating another example of each configuration of the switch unit and the threshold setting circuit according to the third embodiment.
  • the switch unit 40C-1 is an example of the switch unit 40
  • the threshold setting circuit 30C-1 is an example of the threshold setting circuit 30.
  • the switch unit 40C-1 has six transistors 41 connected in parallel to the input stage 11 of the comparator 10.
  • the threshold setting circuit 30C-1 includes three transistors 32, six threshold adjustment transistors 31, and six DACs 50.
  • FIG. 16 is a diagram illustrating an example of a configuration of a decision feedback equalizer according to the fourth embodiment.
  • the fourth embodiment descriptions of configurations and effects similar to those of the above-described embodiment are omitted by using the above description.
  • the equalizer 4 shown in FIG. 16 is an example of a decision feedback equalizer that reduces the influence of ISI superimposed on the differential data signals P and N input to the equalizer 4. Threshold control signals Vc0 to Vc7 The clock signal CLK and the clock signal CLKX are supplied from the outside of the equalizer 4.
  • the equalizer 4 has a configuration for detecting each value of an 8-value pulse amplitude modulation signal.
  • the 8-level pulse amplitude modulation signal may be referred to as a “PAM8 signal”.
  • the equalizer 4 includes the comparison circuit 100, the latch circuit 200, the switch circuit 400, and the setting circuit 300.
  • circuits 500 to 503 circuits surrounded by the same reference numerals have the same configuration.
  • the comparison circuit 100 has 14 comparators 10 for comparing the data signals P and N. Each of the data signals P and N is a PAM8 signal.
  • the latch circuit 200 has 14 latch units 20 that latch the comparison results of the corresponding one comparator 10 out of the 14 comparators 10. Each of the 14 latch units 20 latches the comparison result of one comparator 10 connected to itself among the 14 comparators 10.
  • the switch circuit 400 includes 14 switch units 40 that are ON / OFF controlled by the output signals of the corresponding 7 latch units 20 among the 14 latch units 20.
  • the seven switch units 40e on the even side have eight latch output signals (output 1_P_OD, output) of the seven latch units 20o on the odd side.
  • the seven switch units 40o on the odd side include the eight latch output signals of the seven latch units 20e on the even side (output 1_P_EV, output 2_P_EV, output 3_P_EV, output 4_P_EV, output 4_N_EV, output 5_N_EV, output 6_N_EV, output 7_N_EV ) Is on / off controlled.
  • the setting circuit 300 sets a determination threshold value for one of the 14 comparators 10 according to threshold control signals Vc1 to Vc7 supplied from the outside of the equalizer 4. It has 14 30.
  • Each of the threshold control signals Vc1 to Vc7 is an example of a control signal.
  • FIG. 17 is a diagram illustrating an example of each determination threshold according to the fourth embodiment.
  • the determination threshold value of each comparator 10 included in the equalizer 4 is set at an intermediate portion of each eye formed by the PAM8 signal input to each comparator 10.
  • the determination threshold 1 of each of the first comparator 10 on the even side and the first comparator 10 on the odd side is set to eye1.
  • the determination threshold value k of each of the even-side k-th comparator 10 and the odd-side k-th comparator 10 is set to eyek (k is a natural number from 1 to 7).
  • FIG. 18 is a diagram illustrating an example of each configuration of the switch unit and the threshold setting circuit according to the fourth embodiment.
  • the switch unit 40D is an example of the switch unit 40
  • the threshold setting circuit 30D is an example of the threshold setting circuit 30.
  • the comparator 10 according to the fourth embodiment is, for example, the above-described comparator 10A or comparator 10B.
  • the input of the clock signal CLK and the clock signal CLKX is as shown in FIG. 3 or FIG.
  • the odd-side comparator 10o the clock signal CLK shown in FIG. 3 or 9 is replaced with the clock signal CLKX
  • the clock signal CLKX shown in FIG. 3 or 9 is replaced with the clock signal CLK. Is done.
  • the even-side threshold setting circuit 30e the input of the clock signal CLK is as shown in FIG.
  • o In the threshold setting circuit 30o on the dd side, the clock signal CLK shown in FIG. 18 is replaced with the clock signal CLKX.
  • the switch unit 40D includes eight transistors 41 connected in parallel to the input stage 11 of the comparator 10.
  • the threshold setting circuit 30 ⁇ / b> D includes seven transistors 32, eight threshold adjustment transistors 31, and eight DACs 50.
  • the threshold setting circuit 30D uses a DAC 50 that outputs a threshold control voltage whose voltage value changes linearly with respect to the digital threshold control signals Vc1 to Vc7.
  • the threshold setting circuit 30 ⁇ / b> D controls the gate of each transistor 31 connected in parallel to the input stage 11 with a threshold control voltage output from each DAC 50. Accordingly, the DFE coefficient of the comparator 10 changes linearly with respect to the digital threshold control signals Vc1 to Vc7, so that the determination threshold of the comparator 10 can be changed linearly. Therefore, ISI can be removed more and ISI removal performance can be improved.
  • FIG. 19 is a diagram illustrating an example of a configuration of a decision feedback equalizer according to the fifth embodiment.
  • the description of the same configurations and effects as those of the above-described embodiment will be omitted by using the above description.
  • the fifth embodiment is a generalization of the third embodiment and the fourth embodiment.
  • the equalizer 5 shown in FIG. 19 has a configuration for detecting each value of a pulse amplitude modulation signal having a value of 2 n (n is a natural number).
  • the 2 n -value pulse amplitude modulation signal may be referred to as a “PAM2 n signal”.
  • the comparison circuit 100 has 2 ⁇ (2 n ⁇ 1) comparators 10 for comparing the PAM2 n signals.
  • Latch circuit 200 has for 2 ⁇ (2 n -1) comparison result latch portion 20 which latches the 2 ⁇ (2 n -1) of the individual comparator 10 pieces each comparator 10.
  • the switch circuit 400 includes for each of the 2 ⁇ (2 n -1) number of the switch unit 40 to 2 ⁇ (2 n -1) which is on-off controlled by the output signal of the latch portion 20 pieces of the latch portion 20.
  • the setting circuit 300 sets a determination threshold value of 2 ⁇ (2 n ⁇ 1) comparators 10 in accordance with threshold control signals Vc1 to Vc2 n ⁇ 1 supplied from the outside of the equalizer 5. For each of 2 ⁇ (2 n ⁇ 1) comparators 10.
  • Each of the threshold control signals Vc1 to Vc2 n ⁇ 1 is an example of a control signal.
  • FIG. 20 is a diagram illustrating an example of each determination threshold according to the fifth embodiment.
  • the determination threshold value of each comparator 10 included in the equalizer 5 is set at an intermediate portion of each eye formed by the PAM2 n signal input to each comparator 10.
  • the determination threshold 1 of each of the first comparator 10 on the even side and the first comparator 10 on the odd side is set to eye1.
  • the decision threshold k of each of the even-side k-th comparator 10 and the odd-side k-th comparator 10 is set to eyek (k is a natural number from 1 to 2 n ⁇ 1).
  • FIG. 21 is a diagram illustrating an example of each configuration of the switch unit and the threshold setting circuit according to the fifth embodiment.
  • the switch unit 40E is an example of the switch unit 40
  • the threshold setting circuit 30E is an example of the threshold setting circuit 30.
  • the comparator 10 according to the fifth embodiment is, for example, the above-described comparator 10A or comparator 10B.
  • the input of the clock signal CLK and the clock signal CLKX is as shown in FIG. 3 or FIG.
  • the odd-side comparator 10o the clock signal CLK shown in FIG. 3 or 9 is replaced with the clock signal CLKX
  • the clock signal CLKX shown in FIG. 3 or 9 is replaced with the clock signal CLK. Is done.
  • the even-side threshold setting circuit 30e the input of the clock signal CLK is as shown in FIG.
  • the odd-side threshold setting circuit 30o the clock signal CLK shown in FIG. 21 is replaced with the clock signal CLKX.
  • the switch unit 40 ⁇ / b > E includes 2 n transistors 41 connected in parallel to the input stage 11 of the comparator 10.
  • the threshold setting circuit 30E includes (2 n ⁇ 1) transistors 32, 2 n threshold adjustment transistors 31, and 2 n DACs 50.
  • the threshold setting circuit 30E uses a DAC 50 that outputs a threshold control voltage whose voltage value changes linearly with respect to the digital threshold control signals Vc1 to Vc2 n -1.
  • the threshold setting circuit 30 ⁇ / b> E controls the gate of each transistor 31 connected in parallel to the input stage 11 with the threshold control voltage output from each DAC 50.
  • the DFE coefficient of the comparator 10 changes linearly with respect to the digital threshold control signals Vc1 to Vc2 n ⁇ 1, so that the determination threshold of the comparator 10 can be changed linearly. Therefore, ISI can be removed more and ISI removal performance can be improved.
  • FIG. 22 is a diagram illustrating an example of a configuration of a comparator according to the sixth embodiment.
  • the description of the same configuration and effect as those of the above-described embodiment will be omitted by using the above description.
  • the input stage 11 of each comparator 10 includes a pair of transistors 12 that are N-channel differential pairs.
  • the input stage 11 of the comparator 10F includes a pair of transistors 12 that are P-channel differential pairs.
  • transistors 12, 13, 16, 61 and 62 are P-channel MOSFETs.
  • the transistors 14 and 18 are N-channel MOSFETs, respectively.
  • FIG. 23 is a diagram illustrating an example of each configuration of the switch unit and the threshold setting circuit according to the sixth embodiment.
  • the input stage 11 of the comparator 10F compares the data signals P and N with a P-channel differential pair, as shown in FIG. 23, each transistor 31 of the threshold setting circuit 30F. 32 and the switch 41F, the transistors 41 are also P-channel type.
  • FIG. 24 is a diagram illustrating an example of each configuration of the switch unit and the threshold setting circuit according to the seventh embodiment.
  • the seventh embodiment descriptions of configurations and effects similar to those of the above-described embodiment will be omitted by using the above description.
  • each transistor 41 that connects the comparator 10 and the threshold setting circuit 30G is a complementary switch in which a P-channel transistor and an N-channel transistor are combined. Therefore, even when the drain voltages of the transistors SN of the nodes SN and SP and the threshold setting circuit 30G are at an intermediate potential, the transistors 41 that connect the comparator 10 and the threshold setting circuit 30G are reliably turned on or off. Is possible.
  • FIG. 25 is a diagram illustrating an example of a configuration of a decision feedback equalizer according to the eighth embodiment.
  • the description of the same configuration and effect as those of the above-described embodiment is omitted by using the above description.
  • each latch unit 20 has a configuration (for example, an RS latch circuit) that is not controlled by external clock signals CLK and CLKX.
  • a configuration for example, an RS latch circuit
  • CLK and CLKX external clock signals
  • FIG. 26 is a diagram illustrating an example of a configuration of a decision feedback equalizer according to the ninth embodiment.
  • the ninth embodiment descriptions of configurations and effects similar to those of the above-described embodiment will be omitted by using the above description.
  • the equalizer is a half-rate DFE having a two-parallel time interleaving configuration that operates with time interleaving.
  • the equalizer 9 is a full-rate DFE that does not have a time interleave configuration. By not adopting the time interleave configuration, the circuit scale of the equalizer 9 can be reduced.
  • the equalizer 9 has a configuration for detecting each value of a pulse amplitude modulation signal (PAM2 n signal) of 2 n (n is a natural number) value.
  • the equalizer 9 has (2 n ⁇ 1) equalization circuit units 504 in order to detect each value of the PAM2 n signal.
  • the equalizer 9 includes a comparison circuit 100, a latch circuit 200, a switch circuit 400, and a setting circuit 300.
  • (2 n -1) pieces of the equalization circuit 504, respectively, has one comparator 10, comparator circuit 100, together with (2 n -1) pieces of the equalization circuit 504 (2 n -1) It has one comparator 10.
  • Each comparator 10 has a different determination threshold value.
  • the first comparator 10 has a first determination threshold value between a first value and a second value of the PAM2 n signal, and the second comparator 10 has a second value of the PAM2 n signal.
  • the third value has a second determination threshold value.
  • the (2 n -1) th comparator 10 has a (2 n -1) th determination threshold value between the 2 n -1 value and the 2n value of the PAM2 n signal.
  • (2 n -1) pieces of the equalization circuit 504, respectively, has one of the latch portion 20, the latch circuit 200, together with (2 n -1) pieces of the equalization circuit 504 (2 n -1) It has one latch portion 20.
  • Latch circuit 200 has for (2 n -1) comparison result latch section 20 (2 n -1) for latching the number comparator 10 pieces of each of the comparators 10.
  • the switch circuit 400 includes for each of the (2 n -1) number of switches 40 a (2 n -1) which is on-off controlled by the output signal of the latch portion 20 pieces of the latch portion 20.
  • Each of the (2 n ⁇ 1) equalization circuit units 504 has one threshold setting circuit 30, and the setting circuit 300 is combined with (2 n ⁇ 1) equalization circuit units 504 (2 n- 1) threshold setting circuits 30 are provided.
  • the setting circuit 300 includes a threshold setting circuit that sets determination thresholds for (2 n ⁇ 1) comparators 10 in accordance with threshold control signals Vc1 to Vc2 n ⁇ 1 supplied from the outside of the equalizer 9. 2 n ⁇ 1) for each of the comparators 10.
  • Each comparator 10 and each latch unit 20 operate in synchronization with the clock signal CLK1 and the clock signal CLKX1.
  • the clock signal CLK1 and the clock signal CLKX1 are inverted clock signals.
  • Each threshold setting circuit 30 operates in synchronization with the clock signal CLK1 for driving the comparator 10.
  • FIG. 27 is a diagram illustrating an example of a configuration of a decision feedback equalizer according to the tenth embodiment.
  • the ninth embodiment descriptions of configurations and effects similar to those of the above-described embodiment will be omitted by using the above description.
  • the equalizer is a half-rate DFE having a two-parallel time interleave configuration.
  • the equalizer 110 is a quarter rate DFE having a 4-parallel time interleave configuration.
  • the equalizer 110 has a configuration for detecting each value of a pulse amplitude modulation signal (PAM2 n signal) of 2 n (n is a natural number) value.
  • the equalizer 110 includes (2 n ⁇ 1) equalization circuit units 504 corresponding to four in order to detect each value of the PAM2 n signal.
  • the equalizer 110 includes a comparison circuit 100, a latch circuit 200, a switch circuit 400, and a setting circuit 300.
  • the comparators 10 and the latch units 20 of the first group and the third group operate in synchronization with the clock signal CLK1 and the clock signal CLKX1.
  • the clock signal CLK1 and the clock signal CLKX1 are inverted clock signals.
  • Each threshold setting circuit 30 in the first group operates in synchronization with the clock signal CLK1 that drives the comparators 10 in the first group.
  • Each threshold setting circuit 30 in the third group operates in synchronization with the clock signal CLKX1 that drives the comparators 10 in the third group.
  • the comparators 10 and the latch units 20 of the second group and the fourth group operate in synchronization with the clock signal CLK2 and the clock signal CLKX2.
  • the clock signal CLK2 and the clock signal CLKX2 are inverted clock signals.
  • Each threshold setting circuit 30 in the second group operates in synchronization with the clock signal CLK2 that drives the comparators 10 in the second group.
  • Each threshold setting circuit 30 in the fourth group operates in synchronization with the clock signal CLKX2 that drives the comparators 10 in the fourth group.
  • the decision feedback equalizer and the interconnect circuit have been described in the embodiment.
  • the present invention is not limited to the above embodiment.
  • Various modifications and improvements such as combinations and substitutions with some or all of the other embodiments are possible within the scope of the present invention.
  • a comparison circuit A comparison circuit; A latch circuit for latching a comparison result of the comparison circuit; A setting circuit for setting a determination threshold value of the comparison circuit according to a control signal; A switch circuit that is on / off controlled by an output signal of the latch circuit, The setting circuit is a decision feedback equalizer that is connected in parallel to the input stage of the comparison circuit via the switch circuit and operates in synchronization with a clock signal that drives the comparison circuit.
  • the decision feedback equalizer according to appendix 2 wherein the setting circuit controls the threshold adjustment transistor with a control voltage whose voltage value changes linearly with respect to the control signal.
  • Appendix 4 4.
  • the comparison circuit has an offset adjustment circuit connected to the input stage;
  • the comparison circuit has (2 n ⁇ 1) or 2 ⁇ (2 n ⁇ 1) comparators for comparing pulse amplitude modulation signals of 2 n (n is a natural number) value
  • the latch circuit has (2 n ⁇ 1) or 2 ⁇ (2 n ⁇ 1) latch units that latch the comparison result of the comparator
  • the setting circuit has (2 n ⁇ 1) or 2 ⁇ (2 n ⁇ 1) threshold setting circuits for setting the determination threshold of the comparator, 6.
  • the decision feedback equalizer is A comparison circuit; A latch circuit for latching a comparison result of the comparison circuit; A setting circuit for setting a determination threshold value of the comparison circuit according to a control signal; A switch circuit that is on / off controlled by an output signal of the latch circuit, The setting circuit is connected to the input stage of the comparison circuit in parallel via the switch circuit, and operates in synchronization with a clock signal that drives the comparison circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc Digital Transmission (AREA)
  • Analogue/Digital Conversion (AREA)
  • Logic Circuits (AREA)

Abstract

【課題】ISIの除去性能を向上させることが可能な判定帰還型等化器及びインターコネク ト回路を提供すること。 【解決手段】比較回路と、前記比較回路の比較結果をラッチするラッチ回路と、制御信号に応じて前記比較回路の判定閾値を設定する設定回路と、前記ラッチ回路の出力信号によりオンオフ制御されるスイッチ回路とを備え、前記設定回路は、前記比較回路の入力段に前記スイッチ回路を介して並列に接続されており、前記比較回路を駆動するクロック信号に同期して動作する、判定帰還型等化器。当該判定帰還型等化器を備えたインターコネクト回路。

Description

判定帰還型等化器及びインターコネクト回路
 本発明は、判定帰還型等化器及びインターコネクト回路に関する。
 近年、サーバーやコンピュータなどの情報処理装置において、CPU(Central Processing Unit)などの部品の性能(特に、バンド幅)は、大きく向上している。情報処理
装置全体の総バンド幅の向上のため、CPUなどのチップ間、チップ内の複数の素子間、又は複数の回路ブロック間で、データを送受信する送受信回路の高速化が要求されることがある。また、ボード間や筐体間でデータを送受信する送受信回路の高速化が要求されることもある。このように、電気通信又は光通信で高速なデータ通信が要求される送受信回路では、通信路において発生するデータ信号の劣化を補償するため、例えば、信号等化器(イコライザ)が用いられる。
 イコライザの一つに、判定帰還型等化器(Decision Feedback Equalizer,DFE)がある(例えば、非特許文献1を参照)。DFEは、データ信号に重畳される符号間干渉(Inter
 Symbol Interference, ISI)の影響を低減するイコライザである。DFEは、入力されるデータ信号を比較器が判定する度に、「過去の判定結果」と「外部から設定される係数(DFE係数)」とによる重み付き和に応じて決まる量だけ比較器の判定閾値を変化させる
ことで、データ信号からISIを直接差し引く。したがって、DFE係数がISIの値に近い値で
あるほど、アイ(eye)開口量は大きくなり、ISIの影響を低減することが可能となる。
 ここで、従来技術として、比較器の内部に重み付き加算器を組み込んだDFEが提案され
ている(例えば、非特許文献2を参照)。非特許文献2では、比較器に含まれるラッチと電源とを接続するトランジスタをオンさせる個数を、外部からのデジタル制御信号に応じて変えることによって、DFE係数は設定される。
特開2005-341582号公報 国際公開第2009/113462号
Sam Palermo,ECEN689:Special Topics in High-Speed Links Circuits and Systems,Spring 2010,Class Notes Lecture 19,Texas A&M University T.Shibasaki,et al.,"A 56-Gb/s Receiver Front-End with a CTLE and 1-Tap DFE in 20-nm CMOS",IEEE Symp.VLSI Circuits, pp.112-113,Jun.2014.
 しかしながら、非特許文献2では、本質的にはラッチを構成するインバータのオン抵抗(インバータのRC時定数のR)を外部からのデジタル制御信号に応じて変えているため、インバータのRC時定数は、インバータのオン抵抗に対して非線形に変化する。そのため、比較器の判定閾値は、オンさせたトランジスタの個数に対して非線形に変化する。つまり、DFE係数は、外部からのデジタル制御信号に対して非線形に変化してしまう。その結果、外部からのデジタル制御信号に応じて設定されるDFE係数の分解能が比較的大きな箇所では、DFE係数をISIと同じ値にすることが難しくなるので、DFEによるISIの除去性能が低下する場合がある。
 そこで、本開示の一態様は、ISIの除去性能を向上させることが可能な判定帰還型等化
器及びインターコネクト回路の提供を目的とする。
 上記目的を達成するため、本開示の一態様では、
 比較回路と、
 前記比較回路の比較結果をラッチするラッチ回路と、
 制御信号に応じて前記比較回路の判定閾値を設定する設定回路と、
 前記ラッチ回路の出力信号によりオンオフ制御されるスイッチ回路とを備え、
 前記設定回路は、前記比較回路の入力段に前記スイッチ回路を介して並列に接続されており、前記比較回路を駆動するクロック信号に同期して動作する、判定帰還型等化器が提供される。
 本開示の一態様によれば、ISIの除去性能を向上させることが可能となる。
一実施形態に係るインターコネクト回路の構成の一例を示す図である。 第1の実施形態に係る判定帰還型等化器の構成の一例を示す図である。 第1の実施形態に係る比較器、スイッチ部及び閾値設定回路の各構成の一例を示す図である。 DACの構成の一例を示す図である。 比較器の入力段にトランジスタを並列接続した構成の一例を示す図である。 並列接続したトランジスタのゲートに印加する電圧値と比較器の判定閾値電圧のオフセットとの関係の一例を示す図である。 外部からの制御信号とDFE係数との変化の一例を示す図である。 第2の実施形態に係る判定帰還型等化器の構成の一例を示す図である。 第2の実施形態に係る比較器の構成の一例を示す図である。 第2の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。 第3の実施形態に係る判定帰還型等化器の構成の一例を示す図である。 第3の実施形態に係る各判定閾値の一例を示す図である。 第3の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。 第3の実施形態に係る判定帰還型等化器の構成の他の一例を示す図である。 第3の実施形態に係るスイッチ部及び閾値設定回路の各構成の他の一例を示す図である。 第4の実施形態に係る判定帰還型等化器の構成の一例を示す図である。 第4の実施形態に係る各判定閾値の一例を示す図である。 第4の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。 第5の実施形態に係る判定帰還型等化器の構成の一例を示す図である。 第5の実施形態に係る各判定閾値の一例を示す図である。 第5の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。 第6の実施形態に係る比較器の構成の一例を示す図である。 第6の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。 第7の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。 第8の実施形態に係る判定帰還型等化器の構成の一例を示す図である。 第9の実施形態に係る判定帰還型等化器の構成の一例を示す図である。 第10の実施形態に係る判定帰還型等化器の構成の一例を示す図である。
 以下、本実施形態を図面に従って説明する。
 <インターコネクト回路>
 図1は、インターコネクト回路1000の構成の一例を示す図である。インターコネクト回路1000は、送信装置1100と受信装置1200との間で伝送線路1300を介して送受されるデータ信号を高速シリアル伝送で伝送する。インターコネクト回路1000は、CPUなどのチップ間、チップ内の複数の素子間、又は複数の回路ブロック間で、データを送受信する送受信回路の一例である。伝送線路1300は、有線通信路であるが、無線通信路でもよい。
 インターコネクト回路1000は、送信装置1100と、受信装置1200と、伝送線路1300とを備える。送信装置1100と受信装置1200とは、伝送線路1300によって接続される。送信装置1100は、マルチプレクサ回路(MUX)1101と、出力ドライバ1102とを備える。受信装置1200は、イコライザ1202と、受信処理部1203と、デマルチプレクサ回路(DEMUX)1204とを備える。受信処理部1203は、比較器1205と、クロック再生回路(CR)1206とを備える。
 入力データ71を送信基準クロック72に従ってセットするMUX1101の出力は、出力ドライバ1102に入力される。出力ドライバ1102は、出力信号73を伝送線路1300を介して受信装置1200に送信する。出力信号73は、イコライザ1202によって整形され、比較器1205に入力される。
 比較器1205は、イコライザ1202の出力信号74を一定の閾値と比較して受信データ75を出力する。DEMUX1204は、受信データ75を直並列変換する。CR1206は、DEMUX1204の出力信号80から、イコライザ1202の出力信号74と同期したクロック信号76を生成し、クロック信号76を比較器1205に供給する。
 イコライザ1202は、本実施形態に係る判定帰還型等化器の一例である。以下、本実施形態に係る判定帰還型等化器について説明する。
 <第1の実施形態>
 図2は、第1の実施形態に係る判定帰還型等化器の構成の一例を示す図である。図2に示される等化器1は、等化器1に入力される差動のデータ信号P,Nに重畳されるISIの
影響を軽減する判定帰還型等化器の一例である。等化器1は、比較回路100、ラッチ回路200、設定回路300及びスイッチ回路400を備える。閾値制御信号Vc、クロック信号CLK及びクロック信号CLKXは、等化器1の外部から供給される。
 なお、説明を簡単にするため、比較回路100内の各比較器10およびラッチ回路200内の各ラッチ部20の動作を以下のように定義する。
 ・比較器10は、入力信号および出力信号が差動信号となる、差動入力-差動出力の構
成を有する。
 ・比較器10は、評価期間では、比較器10に入力される入力信号に応じて、比較器10から出力される2つの出力信号のうち、一方の出力信号のレベルをハイレベルとし、他方の出力信号のレベルをローレベルとする。また、比較器10は、リセット期間では、比較器10から出力される2つの出力信号の値をいずれも同じ値とする。
 ・偶数(even)側の比較器(図2の場合、上側の比較器10)では、比較器10に入力されるクロック信号CLKがローレベルの期間がリセット期間となり、クロック信号CLKがハイレベルの期間が評価期間になるものとする。even側のラッチ部(図2の場合、上側のラッチ部20)も同様である。
 ・奇数(odd)側の比較器(図2の場合、下側の比較器10)では、比較器10に入力
されるクロック信号CLKXがローレベルの期間がリセット期間となり、クロック信号CLKXがハイレベルの期間が評価期間になるものとする。odd側のラッチ部(図2の場合、下側の
ラッチ部20)も同様である。
 ・クロック信号CLKとクロック信号CLKXは、互いに反転したクロック信号である。すな
わち、クロック信号CLKがローレベルのときクロック信号CLKXがハイレベルであり、クロ
ック信号CLKがハイレベルのときクロック信号CLKXはローレベルである。
 ・ラッチ部20は、そのラッチ部20の前段に接続される比較器10から評価期間に出力される出力信号をラッチする(取り込む)。つまり、ラッチ部20は、評価期間では、そのラッチ部20の前段に接続される比較器10の比較結果をラッチし、そのラッチした比較結果に応じたラッチ出力信号を出力する。また、ラッチ部20は、そのラッチ部20の前段に接続される比較器10のリセット期間では、比較器10から出力される出力信号にかかわらず、前回の評価期間にラッチした比較結果に応じたラッチ出力信号の出力を継続する。つまり、ラッチ部20は、リセット期間では、前回の評価期間に取り込んだ比較器10の比較結果を保持し続ける。
 これらの定義は、特に断りの無い限り、後述の他の実施形態にも同様に適用される。
 図2に示される等化器1は、2並列のタイムインターリーブ構成を有するハーフレートDFEである。
 等化器1は、比較回路100、ラッチ回路200、スイッチ回路400及び設定回路300を備える。比較回路100は、互いに同一構成のeven側の比較器10及びodd側の比
較器10を有する。ラッチ回路200は、互いに同一構成のeven側のラッチ部20及びodd側のラッチ部20を有する。スイッチ回路400は、互いに同一構成のeven側のスイッ
チ部40及びodd側のスイッチ部40を有する。設定回路300は、互いに同一構成のeven側の閾値設定回路30及びodd側の閾値設定回路30を有する。
 以下、even側の比較器10、odd側の比較器10、even側のラッチ部20、odd側のラッチ部20を、それぞれ、比較器10e、比較器10o、ラッチ部20e、ラッチ部20oと称することがある。同様に、even側のスイッチ部40、odd側のスイッチ部40、even
側の閾値設定回路30、odd側の閾値設定回路30を、それぞれ、スイッチ部40e、ス
イッチ部40o、閾値設定回路30e、閾値設定回路30oと称することがある。
 比較回路100は、クロック信号CLK,CLKXに同期して動作する比較器10eと、クロ
ック信号CLKX,CLKに同期して動作する比較器10oとを有する。比較器10eは、クロ
ック信号CLKがハイレベルになる評価期間にデータ信号Pとデータ信号Nとの大小関係を
比較し、その比較結果の出力を次の評価期間(クロック信号CLKが次にハイレベルになる
期間)が始まるまで継続する。比較器10oは、クロック信号CLKXがハイレベルになる評価期間にデータ信号Pとデータ信号Nとの大小関係を比較し、その比較結果の出力を次の評価期間(クロック信号CLKXが次にハイレベルになる期間)が始まるまで継続する。
 ラッチ回路200は、比較回路100の比較結果をラッチする。ラッチ回路200は、クロック信号CLK,CLKXに同期して動作するラッチ部20eと、クロック信号CLKX,CLKに同期して動作するラッチ部20oとを有する。ラッチ部20eは、クロック信号CLKがハ
イレベルになる評価期間に比較器10eの比較結果をラッチし、そのラッチした比較結果に応じた一対のラッチ出力信号(出力_P_EV,出力_N_EV)の出力を次の評価期間が始まるまで継続する。ラッチ部20oは、クロック信号CLKXがハイレベルになる評価期間に比較器10oの比較結果をラッチし、そのラッチした比較結果に応じた一対のラッチ出力信号(出力_P_OD,出力_N_OD)の出力を次の評価期間が始まるまで継続する。
 スイッチ回路400は、ラッチ回路200の出力信号によりオンオフ制御される。スイッチ回路400は、ラッチ出力信号(出力_P_OD,出力_N_OD)によりオンオフ制御されるスイッチ部40eと、ラッチ出力信号(出力_P_EV,出力_N_EV)によりオンオフ制御されるスイッチ部40oとを有する。
 設定回路300は、等化器1の外部から供給される閾値制御信号Vcに応じて比較回路100の判定閾値を設定する。閾値制御信号Vcは、制御信号の一例である。設定回路300は、比較器10eを駆動するクロック信号CLKに同期して動作する閾値設定回路30
eと、比較器10oを駆動するクロック信号CLKXに同期して動作する閾値設定回路30oとを有する。閾値設定回路30eは、閾値制御信号Vcに応じて比較器10eの判定閾値を設定する。閾値設定回路30oは、閾値制御信号Vcに応じて比較器10oの判定閾値を設定する。
 設定回路300は、比較回路100の入力段にスイッチ回路400を介して並列に接続されている。閾値設定回路30eは、比較器10eの入力段にスイッチ部40eを介して並列に接続されている。閾値設定回路30oは、比較器10oの入力段にスイッチ部40oを介して並列に接続されている。
 図3は、第1の実施形態に係る比較器、スイッチ及び閾値設定回路の各構成の一例を示す図である。比較器10Aは、比較器10の一例であり、スイッチ部40Aは、スイッチ部40の一例であり、閾値設定回路30Aは、閾値設定回路30の一例である。
 ただし、even側の構成(比較器10e、スイッチ部40e及び閾値設定回路30e)では、クロック信号CLKとクロック信号CLKXとの入力は、図3に示される通りである。これ
に対し、odd側の構成(比較器10o、スイッチ部40o及び閾値設定回路30o)では
、図3に示されるクロック信号CLKは、クロック信号CLKXに置換され、図3に示されるク
ロック信号CLKXは、クロック信号CLKに置換される。
 以下の説明では、特に断りの無い限り、even側の構成についての説明を行い、odd側の
構成についての説明はeven側の構成についての説明を援用することで省略する。後述の他の実施形態でも同様に省略する。
 図3において、比較器10Aは、ダブルテールラッチ型コンパレータである。比較器10Aは、入力段11と、出力段15とを有する。
 入力段11は、データ信号P,Nがそれぞれに入力される一対のトランジスタ12と、クロック信号CLKが入力されるトランジスタ13と、クロック信号CLKが入力される一対のトランジスタ14とを有する。トランジスタ13は、一対のトランジスタ12とグランドとの間に接続される。一対のトランジスタ14は、一対のトランジスタ12と電源電位Vddとの間に接続される。
 出力段15は、入力段11での比較結果をラッチして出力する。出力段15は、一対のトランジスタ16と、一対のインバータ17と、トランジスタ18とを有する。一対のトランジスタ16の入力部(具体的には、ゲート)は、一対のトランジスタ12と一対のトランジスタ14との間の各ノードにそれぞれ接続される。一対のトランジスタ16は、比較器10Aの一対の出力部とグランドとの間に接続される。比較器10Aの一対の出力部は、ラッチを形成する一対のインバータ17に接続される。クロック信号CLKXが入力されるトランジスタ18は、一対のインバータ17と電源電位Vddとの間に接続される。比較器10Aの一対の出力部は、ラッチ部20(図2参照)に接続される。
 図3において、スイッチ部40Aは、比較器10Aの入力段11に並列に接続された一対のトランジスタ41を有する。ラッチ出力信号(出力_P_OD)が入力されるトランジス
タ41の一端は、一方のトランジスタ14と一方のトランジスタ12との間のノードに接続される。ラッチ出力信号(出力_N_OD)が入力されるトランジスタ41の一端は、他方
のトランジスタ14と他方のトランジスタ12との間のノードに接続される。
 図3において、閾値設定回路30Aは、比較器10Aの入力段11にスイッチ部40Aを介して並列に接続されている。閾値設定回路30Aは、例えば、トランジスタ32と、一対の閾値調整トランジスタ31と、一対のDAC(digital-to-Analog Converter)50とを有する。
 トランジスタ32は、クロック信号CLKが入力される。トランジスタ32は、一対の閾
値調整トランジスタ31とグランドとの間に接続されている。
 一対の閾値調整トランジスタ31は、スイッチ部40Aに直列に接続され、比較器10Aの入力段11にスイッチ部40Aを介して並列に接続されている。一対の閾値調整トランジスタ31は、閾値制御信号Vcに応じて一対のDAC50を介して制御される。一方の閾値調整トランジスタ31は、一方のトランジスタ41に直列に接続されており、閾値制御信号Vcに応じて一方のDAC50を介して制御される。一方の閾値調整トランジスタ41は、一方のトランジスタ41を介して、一方のトランジスタ14と一方のトランジスタ12との間のノードに接続される。他方の閾値調整トランジスタ31は、他方のトランジスタ41に直列に接続されており、閾値制御信号Vcに応じて他方のDAC50を介して制御される。他方の閾値調整トランジスタ41は、他方のトランジスタ41を介して、他方のトランジスタ14と他方のトランジスタ12との間のノードに接続される。
 一対のDAC50は、一対の閾値調整トランジスタ31を閾値制御信号Vcに応じて制御するデジタルアナログ変換器の一例である。一対のDAC50は、デジタルの閾値制御信号Vcをアナログの閾値制御電圧に変換し、変換後の閾値制御電圧によって一対の閾値調整トランジスタ31のゲートを制御する。閾値制御電圧は、制御信号に対して電圧値が線形に変化する制御電圧の一例である。
 なお、図3において、トランジスタ12,13,16,31,32,41は、それぞれ、例えば、Nチャネル型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。また、トランジスタ14,18は、それぞれ、例えば、Pチャネル型のMOSFETである。
 図4は、DACの構成の一例を示す図である。DAC50Aは、DAC50の一例である。DAC50Aは、定電流源51と、カレントミラー回路55と、負荷抵抗54とを有する。カレントミラー回路55は、参照元の電流(定電流源51により生成される定電流)に対してコピー先の出力電流を閾値制御信号Vcに応じて比例関係で変化させる。カレントミラー回路55は、閾値制御信号Vcに対して電圧値が線形に変化する閾値制御電圧を出力する。
 カレントミラー回路55は、例えば、入力側の少なくとも一つのトランジスタ52と、出力側の複数のトランジスタ53とを有する。カレントミラー回路55は、トランジスタ53がオンする個数がデジタルの閾値制御信号Vcに応じて線形で変化することにより、デジタルの閾値制御信号Vcに対して電圧値が線形に変化する閾値制御電圧を出力する。
 ここで、図5は、比較器10Aの入力段11に一対のトランジスタ31を並列接続した構成の一例を示す図である。図6は、入力段11に並列接続した一対のトランジスタ31のゲートに印加する電圧値と比較器10Aの判定閾値のオフセット(IP-IN)との関係の一例を示す図である。
 Vcmは、比較器10Aに入力される差動信号の動作点である。図5,6に示されるように、比較器10Aの入力段11に一対のトランジスタ31が並列接続された構成では、比較器10Aの判定閾値のオフセット(IP-IN)は、一対のトランジスタ31のゲートに印加する電圧値ΔVbに比例する。
 したがって、図3のように、閾値設定回路30Aが比較器10Aの入力段11に並列に接続されている構成では、閾値制御信号Vcに応じて比較器10Aの判定閾値を線形に変化させることが可能となる。例えば、閾値設定回路30Aは、デジタルの閾値制御信号Vcに対して電圧値が線形に変化する閾値制御電圧を出力するDAC50を用いる。閾値設定回路30Aは、入力段11に並列に接続された各トランジスタ31のゲートを各DAC50から出力される閾値制御電圧によって制御する。これにより、比較器10AのDFE係
数は、デジタルの閾値制御信号Vcに対して線形に変化するので、比較器10Aの判定閾値を線形に変化させることができる。
 図7は、外部からの制御信号とDFE係数との変化の一例を示す図である。図7において
、「従来例」は、非特許文献2の場合の一例を示し、「本実施形態」は、第1の実施形態の場合の一例を示す。
 「従来例」では、外部からのデジタル制御信号(オンさせたトランジスタの個数)に対して、DFE係数は非線形に変化する。よって、DFE係数の分解能が比較的大きな箇所(デジタル制御信号が比較的小さなとき)では、DFE係数をISIと同じ値にすることが難しい。そのため、DFEによるISIの除去性能が低下する場合がある。
 これに対し、「本実施形態」では、外部からのデジタル制御信号(DAC50の出力電圧)に対するDFE係数の線形性は、「従来例」に比べて向上する。このように、DFE係数を決める外部からの制御信号に対して、実際に設定されるDFE係数の線形性が向上する。そ
の結果、DFE係数の分解能が大きな箇所がなくなる。よって、ISIをより除去することができ、ISIの除去性能を向上させることができる。
 <第2の実施形態>
 図8は、第2の実施形態に係る判定帰還型等化器の構成の一例を示す図である。第2の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は、
上述の説明を援用することで省略する。
 図8に示される等化器2は、等化器2に入力される差動のデータ信号P,Nに重畳されるISIの影響を軽減する判定帰還型等化器の一例である。閾値制御信号Vc0、閾値制御
信号Vc1、クロック信号CLK及びクロック信号CLKXは、等化器2の外部から供給される
 図9は、第2の実施形態に係る比較器の構成の一例を示す図である。比較器10Bは、比較器10の一例である。
 ただし、even側の比較器10eでは、クロック信号CLKとクロック信号CLKXとの入力は
、図9に示される通りである。これに対し、odd側の比較器10oでは、図9に示される
クロック信号CLKは、クロック信号CLKXに置換され、図9に示されるクロック信号CLKXは
、クロック信号CLKに置換される。
 比較器10Bは、入力段11に並列に接続されたオフセット調整回路64を有する点で、比較器10A(図3参照)と異なる。オフセット調整回路64は、比較器10Bの判定閾値のオフセットを調整する。オフセット調整回路64は、例えば、トランジスタ62と、一対の閾値補正トランジスタ61と、一対のDAC(digital-to-Analog Converter)63とを有する。
 トランジスタ62は、クロック信号CLKが入力される。トランジスタ62は、一対の閾
値補正トランジスタ61とグランドとの間に接続されている。
 一対の閾値補正トランジスタ61は、比較器10Bの入力段11に並列に接続されている。一対の閾値補正トランジスタ61は、閾値制御信号Vc0に応じて一対のDAC63を介して制御される。一方の閾値補正トランジスタ61は、閾値制御信号Vc0に応じて一方のDAC63を介して制御される。一方の閾値補正トランジスタ61は、一方のトランジスタ14と一方のトランジスタ12との間のノードSPに接続される。他方の閾値補正トランジスタ61は、閾値制御信号Vc0に応じて他方のDAC63を介して制御される。他方の閾値補正トランジスタ61は、他方のトランジスタ14と他方のトランジスタ12との間のノードSNに接続される。
 一対のDAC63は、一対の閾値補正トランジスタ61を閾値制御信号Vc0に応じて制御するデジタルアナログ変換器の一例である。一対のDAC63は、デジタルの閾値制御信号Vc0をアナログの閾値補正制御電圧に変換し、変換後の閾値補正制御電圧によって一対の閾値補正トランジスタ61のゲートを制御する。
 なお、図9において、トランジスタ61,62は、それぞれ、例えば、Nチャネル型のMOSFETである。
 オフセット調整回路64は、デジタルの閾値制御信号Vc0に対して電圧値が線形に変化する閾値補正制御電圧を出力するDAC63を用いる。オフセット調整回路64は、入力段11に並列に接続された各トランジスタ61のゲートを各DAC60から出力される閾値補正制御電圧によって制御する。これにより、比較器10Bの判定閾値の製造上の個々のばらつきによるオフセットを低減する補正をすることができる。
 図10は、第2の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。スイッチ部40Bは、スイッチ部40の一例であり、閾値設定回路30Bは、閾値設定回路30の一例である。
 ただし、even側の閾値設定回路30eでは、クロック信号CLKの入力は、図10に示さ
れる通りである。これに対し、odd側の閾値設定回路30oでは、図10に示されるクロ
ック信号CLKは、クロック信号CLKXに置換される。
 閾値設定回路30Bは、デジタルの閾値制御信号Vc1に対して電圧値が線形に変化する閾値制御電圧を出力するDAC50を用いる。閾値設定回路30Bは、入力段11に並列に接続された各トランジスタ31のゲートを各DAC50から出力される閾値制御電圧によって制御する。これにより、比較器10BのDFE係数は、デジタルの閾値制御信号V
c1に対して線形に変化するので、比較器10Bの判定閾値を線形に変化させることができる。よって、ISIをより除去することができ、ISIの除去性能を向上させることができる。
 <第3の実施形態>
 図11は、第3の実施形態に係る判定帰還型等化器の構成の一例を示す図である。第3の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略する。
 図11に示される等化器3は、等化器3に入力される差動のデータ信号P,Nに重畳されるISIの影響を軽減する判定帰還型等化器の一例である。閾値制御信号Vc0~Vc3
、クロック信号CLK及びクロック信号CLKXは、等化器3の外部から供給される。
 等化器3は、4値のパルス振幅変調(Pulse Amplitude Modulation,PAM)の信号の各値を検出する構成を有する。以下、4値のパルス振幅変調信号を、「PAM4信号」と称することがある。等化器3は、比較回路100、ラッチ回路200、スイッチ回路400及び設定回路300を備える。
 比較回路100は、データ信号P,Nを比較する比較器10を6個有する。データ信号P,Nのそれぞれが、PAM4信号である。
 ラッチ回路200は、6個の比較器10のうち対応する1個の比較器10の比較結果をラッチするラッチ部20を6個有する。6個のラッチ部20は、それぞれ、6個の比較器10のうち自身に接続される1個の比較器10の比較結果をラッチする。
 スイッチ回路400は、6個のラッチ部20のうち対応する3個のラッチ部20の出力信号によりオンオフ制御されるスイッチ部40を6個有する。even側の3個のスイッチ部40eは、odd側の3個のラッチ部20oの4つのラッチ出力信号(出力1_P_OD, 出力2_P_OD, 出力2_N_OD, 出力3_N_OD)によりオンオフ制御される。odd側の3個のスイッチ部40oは、even側の3個のラッチ部20eの4つのラッチ出力信号(出力1_P_EV, 出力2_P_EV, 出力2_N_EV, 出力3_N_EV)によりオンオフ制御される。
 設定回路300は、等化器3の外部から供給される閾値制御信号Vc1~Vc3に応じて、6個の比較器10のうち対応する1個の比較器10の判定閾値を設定する閾値設定回路30を6個有する。閾値制御信号Vc1~Vc3は、それぞれ、制御信号の一例である。
 図12は、第3の実施形態に係る各判定閾値の一例を示す図である。等化器3に含まれる各比較器10の判定閾値は、図12に示されるように、各比較器10に入力されるPAM4信号が形成する各アイ(eye)の中間部にそれぞれ設定される。例えば、even側の第
1の比較器10及びodd側の第1の比較器10の各々の判定閾値1は、eye1に設定される
。even側の第kの比較器10及びodd側の第kの比較器10の各々の判定閾値kは、eyekに設定される(kは、1から3までの自然数)。
 図13は、第3の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。スイッチ部40Cは、スイッチ部40の一例であり、閾値設定回路30Cは、閾値設定回路30の一例である。なお、第3の実施形態に係る比較器10は、例えば、上述の比較器10A又は比較器10Bである。
 ただし、even側の比較器10eでは、クロック信号CLKとクロック信号CLKXとの入力は
、図3又は図9に示される通りである。これに対し、odd側の比較器10oでは、図3又
は図9に示されるクロック信号CLKは、クロック信号CLKXに置換され、図3又は図9に示
されるクロック信号CLKXは、クロック信号CLKに置換される。また、even側の閾値設定回
路30eでは、クロック信号CLKの入力は、図13に示される通りである。これに対し、odd側の閾値設定回路30oでは、図13に示されるクロック信号CLKは、クロック信号CLKXに置換される。
 図13において、スイッチ部40Cは、比較器10の入力段11に並列に接続された4個のトランジスタ41を有する。閾値設定回路30Cは、3個のトランジスタ32と、4個の閾値調整トランジスタ31と、4個のDAC50とを有する。
 閾値設定回路30Cは、デジタルの閾値制御信号Vc1~Vc3に対して電圧値が線形に変化する閾値制御電圧を出力するDAC50を用いる。閾値設定回路30Cは、入力段11に並列に接続された各トランジスタ31のゲートを各DAC50から出力される閾値制御電圧によって制御する。これにより、比較器10のDFE係数は、デジタルの閾値制御
信号Vc1~Vc3に対して線形に変化するので、比較器10の判定閾値を線形に変化させることができる。よって、ISIをより除去することができ、ISIの除去性能を向上させることができる。
 図14は、第3の実施形態に係る判定帰還型等化器の構成の他の一例を示す図である。図14に示される等化器3-1は、等化器3の一変形例であり、PAM4信号の各値を検出する構成を有する。
 even側の3個のスイッチ部40eは、odd側の3個のラッチ部20oの6つのラッチ出
力信号(出力_upp_P_OD, 出力_upp_N_OD, 出力_mid_P_OD, 出力_mid_N_OD, 出力_low_P_OD, 出力_low_N_OD)によりオンオフ制御される。odd側の3個のスイッチ部4
0oは、even側の3個のラッチ部20eの6つのラッチ出力信号(出力_upp_P_EV, 出
力upp_N_EV, 出力_mid_P_EV, 出力_mid_N_EV, 出力_low_P_EV, 出力_low_N_EV)によりオンオフ制御される。
 図15は、第3の実施形態に係るスイッチ部及び閾値設定回路の各構成の他の一例を示す図である。スイッチ部40C-1は、スイッチ部40の一例であり、閾値設定回路30C-1は、閾値設定回路30の一例である。
 図15において、スイッチ部40C-1は、比較器10の入力段11に並列に接続された6個のトランジスタ41を有する。閾値設定回路30C-1は、3個のトランジスタ32と、6個の閾値調整トランジスタ31と、6個のDAC50とを有する。
 <第4の実施形態>
 図16は、第4の実施形態に係る判定帰還型等化器の構成の一例を示す図である。第4の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は
、上述の説明を援用することで省略する。
 図16に示される等化器4は、等化器4に入力される差動のデータ信号P,Nに重畳されるISIの影響を軽減する判定帰還型等化器の一例である。閾値制御信号Vc0~Vc7
、クロック信号CLK及びクロック信号CLKXは、等化器4の外部から供給される。
 等化器4は、8値のパルス振幅変調の信号の各値を検出する構成を有する。以下、8値のパルス振幅変調信号を、「PAM8信号」と称することがある。等化器4も、上記同様、比較回路100、ラッチ回路200、スイッチ回路400及び設定回路300を備える。回路500~503に関して、同じ符号に囲まれた回路は、互いに同一の構成を有する。
 比較回路100は、データ信号P,Nを比較する比較器10を14個有する。データ信号P,Nのそれぞれが、PAM8信号である。
 ラッチ回路200は、14個の比較器10のうち対応する1個の比較器10の比較結果をラッチするラッチ部20を14個有する。14個のラッチ部20は、それぞれ、14個の比較器10のうち自身に接続される1個の比較器10の比較結果をラッチする。
 スイッチ回路400は、14個のラッチ部20のうち対応する7個のラッチ部20の出力信号によりオンオフ制御されるスイッチ部40を14個有する。even側の7個のスイッチ部40eは、odd側の7個のラッチ部20oの8つのラッチ出力信号(出力1_P_OD, 
出力2_P_OD, 出力3_P_OD,出力4_P_OD, 出力4_N_OD 出力5_N_OD, 出力6_N_OD, 出力7_N_OD)によりオンオフ制御される。odd側の7個のスイッチ部40oは、even側の
7個のラッチ部20eの8つのラッチ出力信号(出力1_P_EV, 出力2_P_EV, 出力3_P_EV, 出力4_P_EV, 出力4_N_EV, 出力5_N_EV, 出力6_N_EV, 出力7_N_EV)によりオンオフ制御される。
 設定回路300は、等化器4の外部から供給される閾値制御信号Vc1~Vc7に応じて、14個の比較器10のうち対応する1個の比較器10の判定閾値を設定する閾値設定回路30を14個有する。閾値制御信号Vc1~Vc7は、それぞれ、制御信号の一例である。
 図17は、第4の実施形態に係る各判定閾値の一例を示す図である。等化器4に含まれる各比較器10の判定閾値は、図17に示されるように、各比較器10に入力されるPAM8信号が形成する各アイ(eye)の中間部にそれぞれ設定される。例えば、even側の第
1の比較器10及びodd側の第1の比較器10の各々の判定閾値1は、eye1に設定される。even側の第kの比較器10及びodd側の第kの比較器10の各々の判定閾値kは、eyekに設定される(kは、1から7までの自然数)。
 図18は、第4の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。スイッチ部40Dは、スイッチ部40の一例であり、閾値設定回路30Dは、閾値設定回路30の一例である。なお、第4の実施形態に係る比較器10は、例えば、上述の比較器10A又は比較器10Bである。
 ただし、even側の比較器10eでは、クロック信号CLKとクロック信号CLKXとの入力は
、図3又は図9に示される通りである。これに対し、odd側の比較器10oでは、図3又
は図9に示されるクロック信号CLKは、クロック信号CLKXに置換され、図3又は図9に示
されるクロック信号CLKXは、クロック信号CLKに置換される。また、even側の閾値設定回
路30eでは、クロック信号CLKの入力は、図18に示される通りである。これに対し、o
dd側の閾値設定回路30oでは、図18に示されるクロック信号CLKは、クロック信号CLKXに置換される。
 図18において、スイッチ部40Dは、比較器10の入力段11に並列に接続された8個のトランジスタ41を有する。閾値設定回路30Dは、7個のトランジスタ32と、8個の閾値調整トランジスタ31と、8個のDAC50とを有する。
 閾値設定回路30Dは、デジタルの閾値制御信号Vc1~Vc7に対して電圧値が線形に変化する閾値制御電圧を出力するDAC50を用いる。閾値設定回路30Dは、入力段11に並列に接続された各トランジスタ31のゲートを各DAC50から出力される閾値制御電圧によって制御する。これにより、比較器10のDFE係数は、デジタルの閾値制御
信号Vc1~Vc7に対して線形に変化するので、比較器10の判定閾値を線形に変化させることができる。よって、ISIをより除去することができ、ISIの除去性能を向上させることができる。
 <第5の実施形態>
 図19は、第5の実施形態に係る判定帰還型等化器の構成の一例を示す図である。第5の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略する。
 第5の実施形態は、第3の実施形態及び第4の実施形態を一般化したものである。図19に示される等化器5は、2(nは、自然数)値のパルス振幅変調信号の各値を検出する構成を有する。以下、2値のパルス振幅変調信号を、「PAM2信号」と称することがある。
 比較回路100は、PAM2信号を比較する比較器10を2×(2-1)個有する。ラッチ回路200は、2×(2-1)個の比較器10の比較結果をラッチするラッチ部20を2×(2-1)個の比較器10のそれぞれに対して有する。スイッチ回路400は、2×(2-1)個のラッチ部20の出力信号によりオンオフ制御されるスイッチ部40を2×(2-1)個のラッチ部20のそれぞれに対して有する。設定回路300は、等化器5の外部から供給される閾値制御信号Vc1~Vc2-1に応じて、2×(2-1)個の比較器10の判定閾値を設定する閾値設定回路を2×(2-1)個の比較器10のそれぞれに対して有する。閾値制御信号Vc1~Vc2-1は、それぞれ、制御信号の一例である。
 図20は、第5の実施形態に係る各判定閾値の一例を示す図である。等化器5に含まれる各比較器10の判定閾値は、図20に示されるように、各比較器10に入力されるPAM2信号が形成する各アイ(eye)の中間部にそれぞれ設定される。例えば、even側の
第1の比較器10及びodd側の第1の比較器10の各々の判定閾値1は、eye1に設定される。even側の第kの比較器10及びodd側の第kの比較器10の各々の判定閾値kは、eyekに設定される(kは、1から2-1までの自然数)。
 図21は、第5の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。スイッチ部40Eは、スイッチ部40の一例であり、閾値設定回路30Eは、閾値設定回路30の一例である。なお、第5の実施形態に係る比較器10は、例えば、上述の比較器10A又は比較器10Bである。
 ただし、even側の比較器10eでは、クロック信号CLKとクロック信号CLKXとの入力は
、図3又は図9に示される通りである。これに対し、odd側の比較器10oでは、図3又
は図9に示されるクロック信号CLKは、クロック信号CLKXに置換され、図3又は図9に示
されるクロック信号CLKXは、クロック信号CLKに置換される。また、even側の閾値設定回
路30eでは、クロック信号CLKの入力は、図21に示される通りである。これに対し、odd側の閾値設定回路30oでは、図21に示されるクロック信号CLKは、クロック信号CLKXに置換される。
 図21において、スイッチ部40Eは、比較器10の入力段11に並列に接続された2個のトランジスタ41を有する。閾値設定回路30Eは、(2-1)個のトランジスタ32と、2個の閾値調整トランジスタ31と、2個のDAC50とを有する。
 閾値設定回路30Eは、デジタルの閾値制御信号Vc1~Vc2-1に対して電圧値が線形に変化する閾値制御電圧を出力するDAC50を用いる。閾値設定回路30Eは、入力段11に並列に接続された各トランジスタ31のゲートを各DAC50から出力される閾値制御電圧によって制御する。これにより、比較器10のDFE係数は、デジタルの閾
値制御信号Vc1~Vc2-1に対して線形に変化するので、比較器10の判定閾値を線形に変化させることができる。よって、ISIをより除去することができ、ISIの除去性能を向上させることができる。
 <第6の実施形態>
 図22は、第6の実施形態に係る比較器の構成の一例を示す図である。第6の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略する。
 第1から第5の実施形態では、各比較器10の入力段11は、Nチャネル型の差動対である一対のトランジスタ12を有する。これに対し、第6の実施形態では、比較器10Fの入力段11は、Pチャネル型の差動対である一対のトランジスタ12を有する。入力段11がPチャネル型の差動対でデータ信号P,Nを比較することによって、入力されるデータ信号P,Nの動作点が低下しても、各比較器10が動作可能となる。
 なお、図22において、トランジスタ12,13,16,61,62は、それぞれ、Pチャネル型のMOSFETである。また、トランジスタ14,18は、それぞれ、Nチャネル型のMOSFETである。
 図23は、第6の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。第6の実施形態では、比較器10Fの入力段11がPチャネル型の差動対でデータ信号P,Nを比較する構成なので、図23に示されるように、閾値設定回路30Fの各トランジスタ31,32及びスイッチ部40Fの各トランジスタ41も、Pチャネル型である。
 <第7の実施形態>
 図24は、第7の実施形態に係るスイッチ部及び閾値設定回路の各構成の一例を示す図である。第7の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略する。
 第7の実施形態では、比較器10と閾値設定回路30Gとを接続する各トランジスタ41が、Pチャネル型トランジスタとNチャネル型トランジスタとを組み合わせた相補型スイッチである。これにより、ノードSN,SPや閾値設定回路30Gのトランジスタ31のドレイン電圧が中間電位であっても、比較器10と閾値設定回路30Gとを接続する各トランジスタ41を確実にオン又はオフ動作させることが可能となる。
 <第8の実施形態>
 図25は、第8の実施形態に係る判定帰還型等化器の構成の一例を示す図である。第8の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略する。
 第8の実施形態では、各ラッチ部20は、外部からのクロック信号CLK,CLKXで制御さ
れない構成(例えば、RSラッチ回路)を有する。これにより、ラッチ回路にクロック信号が印加されない分だけ、クロック信号を分配する回路の規模を縮小することが可能である。
 <第9の実施形態>
 図26は、第9の実施形態に係る判定帰還型等化器の構成の一例を示す図である。第9の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略する。
 第1から第8の実施形態では、等化器は、タイムインターリーブで動作する2並列のタイムインターリーブ構成を有するハーフレートDFEである。これに対し、第9の実施形態
では、等化器9は、タイムインターリーブ構成ではないフルレートDFEである。タイムイ
ンターリーブ構成を採用しないことで、等化器9の回路規模を縮小することが可能となる。
 等化器9は、2(nは、自然数)値のパルス振幅変調信号(PAM2信号)の各値を検出する構成を有する。等化器9は、PAM2信号の各値を検出するため、(2-1)個の等化回路部504を有する。等化器9は、比較回路100、ラッチ回路200、スイッチ回路400及び設定回路300を有する。
 (2-1)個の等化回路部504は、それぞれ、一つの比較器10を有し、比較回路100は、(2-1)個の等化回路部504で合わせて(2-1)個の比較器10を有する。各比較器10は、互いに異なる判定閾値を有する。第1の比較器10は、PAM2信号の第1の値と第2の値との間に第1の判定閾値を有し、第2の比較器10は、PAM2信号の第2の値と第3の値との間に第2の判定閾値を有する。第(2-1)の比較器10は、PAM2信号の第2-1の値と第2の値との間に第(2-1)の判定閾値を有する。
 (2-1)個の等化回路部504は、それぞれ、一つのラッチ部20を有し、ラッチ回路200は、(2-1)個の等化回路部504で合わせて(2-1)個のラッチ部20を有する。ラッチ回路200は、(2-1)個の比較器10の比較結果をラッチするラッチ部20を(2-1)個の比較器10のそれぞれに対して有する。
 (2-1)個の等化回路部504は、それぞれ、一つのスイッチ部40を有し、スイッチ回路400は、(2-1)個の等化回路部504で合わせて(2-1)個のスイッチ部40を有する。スイッチ回路400は、(2-1)個のラッチ部20の出力信号によりオンオフ制御されるスイッチ部40を(2-1)個のラッチ部20のそれぞれに対して有する。
 (2-1)個の等化回路部504は、それぞれ、一つの閾値設定回路30を有し、設定回路300は、(2-1)個の等化回路部504で合わせて(2-1)個の閾値設定回路30を有する。設定回路300は、等化器9の外部から供給される閾値制御信号Vc1~Vc2-1に応じて、(2-1)個の比較器10の判定閾値を設定する閾値設定回路を(2-1)個の比較器10のそれぞれに対して有する。
 各比較器10及び各ラッチ部20は、クロック信号CLK1とクロック信号CLKX1に同期し
て動作する。クロック信号CLK1とクロック信号CLKX1は、互いに反転したクロック信号で
ある。各閾値設定回路30は、比較器10を駆動するクロック信号CLK1に同期して動作する。
 <第10の実施形態>
 図27は、第10の実施形態に係る判定帰還型等化器の構成の一例を示す図である。第9の実施形態の構成及び効果のうち上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略する。
 第1から第8の実施形態では、等化器は、2並列のタイムインターリーブ構成を有するハーフレートDFEである。これに対し、等化器110は、4並列のタイムインターリーブ
構成を有するクォーターレートDFEである。4並列のタイムインターリーブ構成を採用す
ることで、クロック信号CLK,CLKXの周波数を2並列のタイムインターリーブ構成と比較
して低くすることが可能となる。
 等化器110は、2(nは、自然数)値のパルス振幅変調信号(PAM2信号)の各値を検出する構成を有する。等化器110は、PAM2信号の各値を検出するため、(2-1)個の等化回路部504を4並列分有する。等化器110は、比較回路100、ラッチ回路200、スイッチ回路400及び設定回路300を有する。
 第1群の(2-1)個の等化回路部504のラッチ出力信号は、第2群の(2-1)個の等化回路部504のスイッチ回路400の各スイッチ部40に帰還される。第2群の(2-1)個の等化回路部504のラッチ出力信号は、第3群の(2-1)個の等化回路部504のスイッチ回路400の各スイッチ部40に帰還される。第3群の(2-1)個の等化回路部504のラッチ出力信号は、第4群の(2-1)個の等化回路部504のスイッチ回路400の各スイッチ部40に帰還される。第4群の(2-1)個の等化回路部504のラッチ出力信号は、第1群の(2-1)個の等化回路部504のスイッチ回路400の各スイッチ部40に帰還される。
 第1群及び第3群の各比較器10及び各ラッチ部20は、クロック信号CLK1とクロック信号CLKX1に同期して動作する。クロック信号CLK1とクロック信号CLKX1は、互いに反転したクロック信号である。第1群の各閾値設定回路30は、第1群の比較器10を駆動するクロック信号CLK1に同期して動作する。第3群の各閾値設定回路30は、第3群の比較器10を駆動するクロック信号CLKX1に同期して動作する。
 第2群及び第4群の各比較器10及び各ラッチ部20は、クロック信号CLK2とクロック信号CLKX2に同期して動作する。クロック信号CLK2とクロック信号CLKX2は、互いに反転したクロック信号である。第2群の各閾値設定回路30は、第2群の比較器10を駆動するクロック信号CLK2に同期して動作する。第4群の各閾値設定回路30は、第4群の比較器10を駆動するクロック信号CLKX2に同期して動作する。
 以上、判定帰還型等化器及びインターコネクト回路を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
 以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
 比較回路と、
 前記比較回路の比較結果をラッチするラッチ回路と、
 制御信号に応じて前記比較回路の判定閾値を設定する設定回路と、
 前記ラッチ回路の出力信号によりオンオフ制御されるスイッチ回路とを備え、
 前記設定回路は、前記比較回路の入力段に前記スイッチ回路を介して並列に接続されており、前記比較回路を駆動するクロック信号に同期して動作する、判定帰還型等化器。
(付記2)
 前記設定回路は、前記入力段に前記スイッチ回路を介して並列に接続された閾値調整トランジスタを前記制御信号に応じて制御する、付記1に記載の判定帰還型等化器。
(付記3)
 前記設定回路は、前記制御信号に対して電圧値が線形に変化する制御電圧によって、前記閾値調整トランジスタを制御する、付記2に記載の判定帰還型等化器。
(付記4)
 前記設定回路は、デジタルの前記制御信号をアナログの前記制御電圧に変換するデジタルアナログ変換器を有する、付記3に記載の判定帰還型等化器。
(付記5)
 前記比較回路は、前記入力段に接続されたオフセット調整回路を有し、
 前記オフセット調整回路は、前記判定閾値のオフセットを調整する、付記1から4のいずれか一項に記載の判定帰還型等化器。
(付記6)
 前記入力段は、Pチャネル型の差動対を有する、付記1~5のいずれか一項に記載の判定帰還型等化器。
(付記7)
 前記スイッチ回路は、前記ラッチ回路の出力信号によりオンオフ制御される相補型スイッチを有する、付記1~6のいずれか一項に記載の判定帰還型等化器。
(付記8)
 前記ラッチ回路は、クロック信号により制御されない、付記1~7のいずれか一項に記載の判定帰還型等化器。
(付記9)
 タイムインターリーブ構成を有する、付記1から8のいずれか一項に記載の判定帰還型等化器。
(付記10)
 2並列又は4並列のタイムインターリーブ構成を有する、付記9に記載の判定帰還型等化器。
(付記11)
 前記比較回路は、2(nは、自然数)値のパルス振幅変調信号を比較する比較器を(2-1)個又は2×(2-1)個有し、
 前記ラッチ回路は、前記比較器の比較結果をラッチするラッチ部を(2-1)個又は2×(2-1)個有し、
 前記設定回路は、前記比較器の判定閾値を設定する閾値設定回路を(2-1)個又は2×(2-1)個有し、
 前記スイッチ回路は、前記ラッチ部の出力信号によりオンオフ制御されるスイッチ部を(2-1)個又は2×(2-1)個有する、付記1から5のいずれか一項に記載の判定帰還型等化器。
(付記12)
 nは、2である、付記11に記載の判定帰還型等化器。
(付記13)
 nは、3である、付記11に記載の判定帰還型等化器。
(付記14)
 送信装置と受信装置とを備えたインターコネクト回路であって、
 前記受信装置は、前記送信装置から送信される信号を整形する判定帰還型等化器を有し、
 前記判定帰還型等化器は、
 比較回路と、
 前記比較回路の比較結果をラッチするラッチ回路と、
 制御信号に応じて前記比較回路の判定閾値を設定する設定回路と、
 前記ラッチ回路の出力信号によりオンオフ制御されるスイッチ回路とを備え、
 前記設定回路は、前記比較回路の入力段に前記スイッチ回路を介して並列に接続されており、前記比較回路を駆動するクロック信号に同期して動作する、インターコネクト回路。
1~9,110 判定帰還型等化器
10 比較器
11 入力段
15 出力段
20 ラッチ部
30 閾値設定回路
31 閾値調整トランジスタ
40 スイッチ部
50 DAC
64 オフセット調整回路
100 比較回路
200 ラッチ回路
300 設定回路
400 スイッチ回路
1000 インターコネクト回路
1100 送信装置
1200 受信装置

Claims (14)

  1.  比較回路と、
     前記比較回路の比較結果をラッチするラッチ回路と、
     制御信号に応じて前記比較回路の判定閾値を設定する設定回路と、
     前記ラッチ回路の出力信号によりオンオフ制御されるスイッチ回路とを備え、
     前記設定回路は、前記比較回路の入力段に前記スイッチ回路を介して並列に接続されており、前記比較回路を駆動するクロック信号に同期して動作する、判定帰還型等化器。
  2.  前記設定回路は、前記入力段に前記スイッチ回路を介して並列に接続された閾値調整トランジスタを前記制御信号に応じて制御する、請求項1に記載の判定帰還型等化器。
  3.  前記設定回路は、前記制御信号に対して電圧値が線形に変化する制御電圧によって、前記閾値調整トランジスタを制御する、請求項2に記載の判定帰還型等化器。
  4.  前記設定回路は、デジタルの前記制御信号をアナログの前記制御電圧に変換するデジタルアナログ変換器を有する、請求項3に記載の判定帰還型等化器。
  5.  前記比較回路は、前記入力段に接続されたオフセット調整回路を有し、
     前記オフセット調整回路は、前記判定閾値のオフセットを調整する、請求項1から4のいずれか一項に記載の判定帰還型等化器。
  6.  前記入力段は、Pチャネル型の差動対を有する、請求項1~5のいずれか一項に記載の判定帰還型等化器。
  7.  前記スイッチ回路は、前記ラッチ回路の出力信号によりオンオフ制御される相補型スイッチを有する、請求項1~6のいずれか一項に記載の判定帰還型等化器。
  8.  前記ラッチ回路は、クロック信号により制御されない、請求項1~7のいずれか一項に記載の判定帰還型等化器。
  9.  タイムインターリーブ構成を有する、請求項1から8のいずれか一項に記載の判定帰還型等化器。
  10.  2並列又は4並列のタイムインターリーブ構成を有する、請求項9に記載の判定帰還型等化器。
  11.  前記比較回路は、2(nは、自然数)値のパルス振幅変調信号を比較する比較器を(2-1)個又は2×(2-1)個有し、
     前記ラッチ回路は、前記比較器の比較結果をラッチするラッチ部を(2-1)個又は2×(2-1)個有し、
     前記設定回路は、前記比較器の判定閾値を設定する閾値設定回路を(2-1)個又は2×(2-1)個有し、
     前記スイッチ回路は、前記ラッチ部の出力信号によりオンオフ制御されるスイッチ部を(2-1)個又は2×(2-1)個有する、請求項1から5のいずれか一項に記載の判定帰還型等化器。
  12.  nは、2である、請求項11に記載の判定帰還型等化器。
  13.  nは、3である、請求項11に記載の判定帰還型等化器。
  14.  送信装置と受信装置とを備えたインターコネクト回路であって、
     前記受信装置は、前記送信装置から送信される信号を整形する判定帰還型等化器を有し、
     前記判定帰還型等化器は、
     比較回路と、
     前記比較回路の比較結果をラッチするラッチ回路と、
     制御信号に応じて前記比較回路の判定閾値を設定する設定回路と、
     前記ラッチ回路の出力信号によりオンオフ制御されるスイッチ回路とを備え、
     前記設定回路は、前記比較回路の入力段に前記スイッチ回路を介して並列に接続されており、前記比較回路を駆動するクロック信号に同期して動作する、インターコネクト回路。
PCT/JP2018/000175 2017-01-31 2018-01-09 判定帰還型等化器及びインターコネクト回路 WO2018142848A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/451,225 US10728058B2 (en) 2017-01-31 2019-06-25 Decision feedback equalizer and interconnect circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015934A JP6769317B2 (ja) 2017-01-31 2017-01-31 判定帰還型等化器及びインターコネクト回路
JP2017-015934 2017-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/451,225 Continuation US10728058B2 (en) 2017-01-31 2019-06-25 Decision feedback equalizer and interconnect circuit

Publications (1)

Publication Number Publication Date
WO2018142848A1 true WO2018142848A1 (ja) 2018-08-09

Family

ID=63039615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000175 WO2018142848A1 (ja) 2017-01-31 2018-01-09 判定帰還型等化器及びインターコネクト回路

Country Status (3)

Country Link
US (1) US10728058B2 (ja)
JP (1) JP6769317B2 (ja)
WO (1) WO2018142848A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230014404A (ko) 2021-07-21 2023-01-30 삼성전자주식회사 데이터 송수신 장치
CN115765691A (zh) * 2021-09-03 2023-03-07 长鑫存储技术有限公司 比较器及判决反馈均衡电路
US11646727B2 (en) 2021-09-03 2023-05-09 Changxin Memory Technologies, Inc. Comparator and decision feedback equalization circuit
US11978499B2 (en) 2021-09-03 2024-05-07 Changxin Memory Technologies, Inc. Comparator and decision feedback equalization circuit
US11962440B2 (en) * 2021-12-14 2024-04-16 Qualcomm Incorporated Decision feedback equalizer for low-voltage high-speed serial links
JP2023163963A (ja) * 2022-04-28 2023-11-10 キオクシア株式会社 半導体記憶装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228540A (ja) * 2014-05-30 2015-12-17 富士通株式会社 コンパレータ、電子回路、及びダブルテイルコンパレータの制御方法
JP2016123056A (ja) * 2014-12-25 2016-07-07 富士通株式会社 判定帰還型等化回路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1220188B (it) * 1987-12-11 1990-06-06 Sgs Microelettronica Spa Rilevazione e controllo di modo comune in catena di amplificicatori bilanciati
US5956502A (en) * 1997-03-05 1999-09-21 Micron Technology, Inc. Method and circuit for producing high-speed counts
JP4335381B2 (ja) * 1999-10-18 2009-09-30 パナソニック株式会社 クロック生成装置、及びクロック生成方法
KR100615597B1 (ko) 2004-05-27 2006-08-25 삼성전자주식회사 데이터 입력회로 및 방법
TWI265700B (en) 2004-05-27 2006-11-01 Samsung Electronics Co Ltd Decision feedback equalization input buffer
JP5353878B2 (ja) 2008-03-11 2013-11-27 日本電気株式会社 波形等化回路および波形等化方法
US8982941B2 (en) * 2012-03-16 2015-03-17 Lsi Corporation Predictive selection in a fully unrolled decision feedback equalizer
US9467312B2 (en) * 2014-03-10 2016-10-11 Nxp B.V. Speed improvement for a decision feedback equalizer
US9571115B1 (en) * 2015-11-13 2017-02-14 International Business Machines Corporation Analog to digital converter with high precision offset calibrated integrating comparators
US9960705B1 (en) * 2016-12-14 2018-05-01 Infineon Technologies Ag Rectifier device with stand-by detection capability
US10148177B2 (en) * 2016-12-28 2018-12-04 Texas Instruments Incorporated Multiphase converter with phase interleaving

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228540A (ja) * 2014-05-30 2015-12-17 富士通株式会社 コンパレータ、電子回路、及びダブルテイルコンパレータの制御方法
JP2016123056A (ja) * 2014-12-25 2016-07-07 富士通株式会社 判定帰還型等化回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PUVANESWARI, G. ET AL.: "Analysis of energy efficient double tail regenerative comparators", CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT, 18 March 2016 (2016-03-18), pages 1 - 5, XP032934190 *

Also Published As

Publication number Publication date
JP6769317B2 (ja) 2020-10-14
US20190312757A1 (en) 2019-10-10
US10728058B2 (en) 2020-07-28
JP2018125682A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2018142848A1 (ja) 判定帰還型等化器及びインターコネクト回路
US9973357B2 (en) Decision feedback equalizer and semiconductor integrated circuit
US10484229B2 (en) PAM reception circuit and reception apparatus
US7924912B1 (en) Method and apparatus for a unified signaling decision feedback equalizer
US9853642B1 (en) Data-dependent current compensation in a voltage-mode driver
CN111061664B (zh) 用于电压模态信号发射器的两阶段式前馈均衡器
US10171273B2 (en) Decision feedback equalizer and interconnect circuit
Zheng et al. A 40-Gb/s quarter-rate SerDes transmitter and receiver chipset in 65-nm CMOS
US7668238B1 (en) Method and apparatus for a high speed decision feedback equalizer
JP6597295B2 (ja) 受信器及びその制御方法
CN107919873B (zh) 接收电路以及半导体集成电路
US11483184B2 (en) Multi pulse amplitude modulation signaling decision feedback equalizer having power differentiating modes and tap-weight re-configuration
US9806918B1 (en) Fast direct feedback circuit for decision feedback equalization correction
US7557602B2 (en) Pre-emphasis circuit including slew rate controllable buffer
Chun et al. A PAM-8 wireline transceiver with linearity improvement technique and a time-domain receiver side FFE in 65 nm CMOS
US7920014B2 (en) Semiconductor integrated circuit device
US10135643B1 (en) Decision feedback equalizer with distributed R-C network
Su et al. A 5 Gb/s voltage-mode transmitter using adaptive time-based de-emphasis
US10778478B2 (en) Fast-settling voltage reference generator for SERDES applications
US10924310B2 (en) Transmitter with fully re-assignable segments for reconfigurable FFE taps
TW202030990A (zh) 積體電路
Kim et al. A digital spectrum shaping signaling serial-data transceiver with crosstalk and ISI reduction property in multidrop interfaces
Kim et al. A 12-Gb/s dual-channel transceiver for CMOS image sensor systems
Abd El-Fattah et al. Equalizer implementation for 10 Gbps serial data link in 90 nm CMOS technology
Sheng et al. A 2-Bit 4-Level 4-Wire 56Gb/s Transceiver in 14nm FinFET

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748802

Country of ref document: EP

Kind code of ref document: A1