WO2018142621A1 - 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子 - Google Patents

枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子 Download PDF

Info

Publication number
WO2018142621A1
WO2018142621A1 PCT/JP2017/004250 JP2017004250W WO2018142621A1 WO 2018142621 A1 WO2018142621 A1 WO 2018142621A1 JP 2017004250 W JP2017004250 W JP 2017004250W WO 2018142621 A1 WO2018142621 A1 WO 2018142621A1
Authority
WO
WIPO (PCT)
Prior art keywords
branched polymer
group
reactive functional
reactive
organic
Prior art date
Application number
PCT/JP2017/004250
Other languages
English (en)
French (fr)
Inventor
石塚 健一
広貴 佐久間
和幸 加茂
智嗣 杉岡
優規 吉成
涼 本名
直紀 浅野
伊織 福島
児玉 俊輔
啓 高井良
良太 森山
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/004250 priority Critical patent/WO2018142621A1/ja
Priority to US16/483,667 priority patent/US20200017631A1/en
Priority to PCT/JP2018/003959 priority patent/WO2018143471A1/ja
Priority to EP18748690.7A priority patent/EP3578584A1/en
Priority to TW107104158A priority patent/TW201840634A/zh
Priority to KR1020197022953A priority patent/KR20190111977A/ko
Priority to CN201880010162.XA priority patent/CN110248981A/zh
Priority to JP2018566167A priority patent/JP7159874B2/ja
Publication of WO2018142621A1 publication Critical patent/WO2018142621A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/121Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from organic halides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/132Morphological aspects branched or hyperbranched
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1644End groups comprising organic end groups comprising other functional groups, e.g. OH groups, NH groups, COOH groups or boronic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present disclosure relates to a method for producing a branched polymer, a branched polymer, an organic electronic material, an ink composition, an organic layer, an organic electronic element, an organic electroluminescent element, a display element, a lighting device, and a display device.
  • Organic electronics devices are devices that perform electrical operations using organic materials, and are expected to exhibit features such as energy saving, low cost, and flexibility, and are attracting attention as a technology that replaces conventional inorganic semiconductors based on silicon. Has been.
  • organic electronics elements include organic electroluminescence elements (organic EL elements), organic photoelectric conversion elements, and organic transistors.
  • organic EL elements are attracting attention as large-area solid-state light source applications that can replace, for example, incandescent lamps or gas-filled lamps. It is also attracting attention as the most powerful self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.
  • LCD liquid crystal display
  • FPD flat panel display
  • Organic EL elements are roughly classified into two types, low molecular organic EL elements and high molecular organic EL elements, from the organic materials used.
  • the polymer organic EL element a polymer compound is used as an organic material
  • the low molecular organic EL element a low molecular compound is used.
  • the manufacturing method of the organic EL element includes a dry process in which film formation is mainly performed in a vacuum system, and a wet process in which film formation is performed by plate printing such as relief printing and intaglio printing, and plateless printing such as inkjet. It is roughly divided into two.
  • the wet process is expected to be an indispensable method for future large-screen organic EL displays because simple film formation is possible (see, for example, Patent Document 1).
  • An organic EL device manufactured according to a wet process has the feature that it is easy to reduce the cost and increase the area.
  • a polymer is excellent in solubility in a solvent and is a material suitable for a wet process.
  • organic EL devices manufactured using conventional polymers are desired to be improved in characteristics such as drive voltage, light emission efficiency, or life characteristics. The same applies to other organic electronic elements such as organic photoelectric conversion elements and organic transistors.
  • the present disclosure provides a branched polymer production method and a branched polymer suitable for improving the characteristics of an organic electronic device.
  • the present disclosure also provides an organic electronic material, an ink composition, and an organic layer suitable for improving the characteristics of the organic electronic element.
  • the present disclosure provides an organic electronics element, an organic EL element, a display element, a lighting device, and a display device having excellent characteristics.
  • the present invention includes various embodiments. Examples of embodiments are listed below. The present invention is not limited to the following embodiments.
  • One embodiment relates to a method for producing a branched polymer comprising reacting a monomer component containing at least the following reactive monomer (1).
  • a reactive monomer having at least a conjugated unit and three or more reactive functional groups bonded to the conjugated unit, wherein the three or more reactive functional groups include two different reactive functional groups (1)
  • branched polymer P1 Another embodiment relates to a branched polymer (hereinafter, the branched polymer is referred to as “branched polymer P1”) including a reactant of a monomer component including at least the following reactive monomer (1).
  • a reactive monomer having at least a conjugated unit and three or more reactive functional groups bonded to the conjugated unit, wherein the three or more reactive functional groups include two different reactive functional groups (1)
  • branched polymer P2 Another embodiment relates to a branched polymer (hereinafter, this branched polymer is referred to as “branched polymer P2”) comprising at least the following partial structure (1).
  • “*” represents a bonding position with another structure.
  • each CU independently represents a conjugated unit. The conjugated unit may have a substituent.
  • Another embodiment relates to an organic electronic material containing the branched polymer obtained by the method for producing the branched polymer, the branched polymer P1, or the branched polymer P2.
  • Another embodiment relates to an ink composition containing a branched polymer obtained by the method for producing a branched polymer, the branched polymer P1, the branched polymer P2, or the organic electronic material, and a solvent.
  • Another embodiment relates to an organic layer containing the branched polymer obtained by the method for producing the branched polymer, the branched polymer P1, the branched polymer P2, or the organic electronic material.
  • Another embodiment relates to an organic electronic device having at least one organic layer.
  • Another embodiment relates to an organic EL device having at least one organic layer.
  • Still another embodiment relates to a display element or a lighting device provided with the organic EL element, or a display device provided with the lighting device and a liquid crystal element as a display means.
  • a method for producing a branched polymer and a branched polymer suitable for improving the characteristics of an organic electronic device are provided.
  • the organic electronics material suitable for the characteristic improvement of an organic electronics element, an ink composition, and an organic layer are provided.
  • an organic electronics element, an organic EL element, a display element, a lighting device, and a display device having excellent characteristics are provided.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of an organic EL element according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating an example of an organic EL element according to an embodiment.
  • a method for producing a branched polymer comprises reacting a monomer component comprising at least the following reactive monomer (1). [1] It has at least a conjugated unit and three or more reactive functional groups bonded to the conjugated unit, and the three or more reactive functional groups include two different reactive functional groups. Reactive monomer (1)
  • a branched polymer containing a specific branched partial structure can be easily produced.
  • the obtained branched polymer is suitably used as an organic electronic material.
  • the obtained branched polymer can improve the characteristics of the organic electronic device.
  • the monomer component may further comprise the following reactive monomer (2) and / or reactive monomer (3).
  • One reaction having at least a conjugated unit and two reactive functional groups bonded to the conjugated unit, wherein the two reactive functional groups are selected from the two reactive functional groups Reactive monomer that can react with reactive functional groups (2)
  • One kind of reaction having at least one conjugated unit and one reactive functional group bonded to the conjugated unit, wherein the one reactive functional group is selected from the two kinds of reactive functional groups Reactive monomer that can react with functional groups (3)
  • the monomer component contains the reactive monomer (2)
  • a substituent for example, a group capable of contributing to control of solubility is preferable, and specifically, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, a phenoxy group, a hydroxy group, Examples thereof include a fluoro group, a linear, branched or cyclic perfluoroalkyl group.
  • the monomer component includes the reactive monomer (2)
  • the polymer chain of the branched polymer can be easily extended. The molecular weight distribution can be controlled by adjusting the mixing ratio of the reactive monomer (2).
  • the monomer component contains the reactive monomer (3)
  • a substituent for example, a group that can contribute to the control of solubility or a group containing a polymerizable functional group is preferable. Examples of groups that can contribute to the control of solubility are the same as above, and groups containing a polymerizable functional group will be described later.
  • the branched polymer may have a polymerizable functional group.
  • the branched polymer can be cured and an organic layer having excellent solvent resistance can be formed. If an organic layer having excellent solvent resistance is used, a plurality of organic layers can be easily laminated.
  • the branched polymer may have a polymerizable functional group at the end of the polymer chain, at a portion other than the end, or at both the end and the portion other than the end. From the viewpoint of curability, it is preferable to have at least the terminal portion, and from the viewpoint of achieving both curability and charge transportability, it is preferable to have the terminal portion only.
  • the reactive monomer (3) preferably includes the following reactive monomer (3C).
  • the one reactive functional group having at least a conjugated unit, one reactive functional group bonded to the conjugated unit, and a group including one or more polymerizable functional groups bonded to the conjugated unit.
  • the method for producing a branched polymer includes a step of reacting monomer components.
  • the reaction is preferably a coupling reaction.
  • a desired conjugated polymer can be produced by forming a chemical bond between conjugated units directly or via a linking group.
  • known coupling reactions such as Suzuki coupling, Buchwald-Hartwig coupling, Negishi coupling, Stille coupling, Heck coupling, Sonogami coupling and the like can be used.
  • Suzuki coupling a coupling reaction is caused between a boron-containing group bonded to a carbon atom and a halogen-containing group bonded to a carbon atom using a Pd catalyst, a Ni catalyst, a Ru catalyst, etc., and a carbon-carbon bond is formed.
  • Suzuki coupling is a method that allows aromatic rings to be easily bonded to each other, and is particularly preferable.
  • the Buchwald-Hartwig coupling causes a coupling reaction between an amino group or hydroxy group and a halogen-containing group bonded to a carbon atom using a Pd catalyst or the like to form a nitrogen-carbon bond or an oxygen-carbon bond. To do.
  • the type of catalyst, solvent, etc. used in the coupling reaction, reaction conditions such as temperature, time, etc. are not particularly limited, and may be appropriately set according to the type of coupling reaction.
  • reaction conditions such as temperature, time, etc.
  • Suzuki coupling will be described below.
  • a Pd compound such as a Pd (0) compound or a Pd (II) compound, a Ni compound, a Ru compound, or the like is used as a catalyst.
  • Pd compounds include Pd (t-Bu 3 P) 2 (bis (tri-tert-butylphosphine) palladium (0)), Pd (t-Bu 3 P) 4 (tetrakis (tri-tert-butylphosphine)) Palladium (0), Pd (PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium (0)), Pd (dppf) Cl 2 ([1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride ), Pd (d (dppe) Cl 2 ([1,2-bis (diphenylphosphino) ethane] palladium (II) dichloride) and other Pd compounds having a phosphin
  • the precursor and phosphine A ligand may be used a catalyst species which is generated by mixing in the reaction system.
  • the phosphine ligand in this case, P (t-Bu) 3 ( tris (t-butyl) phosphine), And tributylphosphine and P (c-hex) 3 (tricyclohexylphosphine).
  • reaction solvent a mixed solvent of water and an organic solvent can be preferably used.
  • organic solvent include dimethoxyethane, toluene, anisole, tetrahydrofuran, acetone, acetonitrile, N, N-dimethylformamide and the like.
  • an alkali metal carbonate such as Na 2 CO 3 or K 2 CO 3
  • an alkali metal hydroxide such as NaOH or KOH
  • an alkali metal phosphate such as K 3 PO 4
  • Water-soluble organic bases such as TMAH (tetramethylammonium hydroxide) and TEAH (tetraethylammonium hydroxide) can also be used.
  • phase transfer catalyst can be added to promote the reaction.
  • phase transfer catalyst examples include TBAB (tetrabutylammonium bromide), Aliquat 336 (registered trademark, manufactured by SIGMA-ALDRICH, a mixture of trioctylmethylammonium chloride and tricaprylylmethylammonium chloride), and the like.
  • the concentration of the monomer components can be, for example, 1 to 30% by mass, preferably 2 to 25% by mass, more preferably 3 to 20% by mass, based on the mass of the reaction solvent.
  • concentration of the monomer component is low, the contact frequency between the monomer and the catalyst decreases, so the molecular weight does not increase too much, and it becomes easy to suppress gelation of the reaction solution or insolubilization of the product.
  • concentration of the monomer component is too low, the amount of the reaction solution is large, and the treatment after the reaction or the recovery of the branched polymer tends to be complicated.
  • the concentration of the monomer component When the concentration of the monomer component is high, the contact frequency between the monomer and the catalyst increases and the reaction easily proceeds, so that it becomes easy to obtain a high molecular weight branched polymer. On the other hand, if the concentration of the monomer component is too high, the monomer tends to be difficult to dissolve in the solvent, or the solubility of the branched polymer tends to be low and precipitates tend to be generated.
  • An appropriate concentration can be selected in consideration of the solubility of the monomer and branched polymer, the desired molecular weight, and the like.
  • the catalyst concentration can be, for example, 0.01 to 5 mol%, preferably 0.02 to 3 mol%, more preferably 0.03 to 1 mol%, based on the total number of moles of monomers.
  • the catalyst concentration can be, for example, 0.01 to 5 mol%, preferably 0.02 to 3 mol%, more preferably 0.03 to 1 mol%, based on the total number of moles of monomers.
  • the catalyst concentration is low, the catalyst residue remaining in the branched polymer can be reduced.
  • the catalyst concentration is too low, sufficient catalytic action cannot be obtained, and the reproducibility of the reaction tends to be reduced.
  • the catalyst concentration is high, the catalytic action is sufficient, so that good reproducibility of the reaction can be obtained.
  • the catalyst concentration is too high, the catalyst residue remaining in the branched polymer tends to increase.
  • An appropriate catalyst concentration can be selected while taking into consideration the influence of the catalyst residue and the reproducibility of the reaction.
  • the reaction temperature can be, for example, 10 to 250 ° C., preferably 20 to 200 ° C., more preferably 30 to 180 ° C.
  • the reaction temperature is low, the reaction is less likely to run away or the monomer is less likely to deteriorate.
  • the reaction temperature is too low, it tends to take a long time to produce a branched polymer.
  • the reaction temperature is high, the branched polymer can be generated at high speed.
  • the reaction temperature is too high, the reaction tends to be difficult to control, or an unwanted side reaction tends to occur.
  • An appropriate reaction temperature can be selected in consideration of the thermal stability of the monomer and the control of the molecular weight of the branched polymer.
  • the reaction time can be, for example, 10 minutes to 48 hours, preferably 30 minutes to 24 hours, more preferably 1 hour to 12 hours.
  • the reaction time is short, the branched polymer can be produced at high speed. If the reaction time is too short, the reaction tends not to proceed sufficiently. When the reaction time is long, the reaction can proceed sufficiently. If the reaction time is too long, the production efficiency tends to decrease.
  • An appropriate reaction time can be selected while taking into consideration the time for which the reaction proceeds sufficiently, production efficiency, and the like.
  • a branched polymer is obtained as a reactant of the monomer component containing the reactive monomer (1).
  • the manufacturing method can include an optional step.
  • the process generally used when manufacturing polymers such as the process of collect
  • the monomer component used in the production method includes at least the reactive monomer (1), and may further include the reactive monomer (2) and / or the reactive monomer (3).
  • the “monomer component” may be “a single monomer” or “a monomer mixture including two or more monomers”.
  • the conjugated unit and the reactive functional group contained in each reactive monomer are not particularly limited as long as they are suitable for the target branched polymer, the reaction method used, and the like.
  • a reactive monomer containing a conjugated unit having excellent charge transportability may be selected.
  • a reactive monomer having a reactive functional group capable of coupling reaction may be selected for the production method including a step of performing a coupling reaction.
  • the monomer component may contain only one type of reactive monomer (1), reactive monomer (2), and reactive monomer (3), or two or more types.
  • the monomer component can further comprise other optional monomers.
  • the reactive monomer (1) has at least a conjugated unit and three or more reactive functional groups bonded to the conjugated unit.
  • the three or more reactive functional groups include two different reactive functional groups.
  • a “conjugation unit” is an atomic group having ⁇ electrons.
  • the conjugated unit may have a skeleton having ⁇ electrons, and preferably has a conjugated double bond.
  • the conjugated unit is not particularly limited, but an atomic group having an aromatic ring is preferable.
  • aromatic ring examples include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • aromatic hydrocarbon ring examples include phenylene, naphthalene, anthracene, tetracene, fluorene, phenanthrene, 9,10-dihydrophenanthrene, triphenylene, pyrene, perylene and the like.
  • Aromatic heterocycles include pyridine, pyrazine, quinoline, isoquinoline, carbazole, acridine, phenanthroline, furan, pyrrole, thiophene, oxazole, oxadiazole, thiadiazole, triazole, benzoxazole, benzoxiadiazole, benzothiadiazole, benzotriazole And benzothiophene.
  • the conjugated unit may be an atomic group in which two or more aromatic rings are bonded directly or via a carbon atom, an oxygen atom, a nitrogen atom, or the like.
  • the upper limit of the number of aromatic rings is, for example, 6 or less, preferably 4 or less, for example, 3.
  • the conjugated unit may have a substituent in addition to the reactive functional group.
  • the substituent is a group different from the reactive functional group contained in the monomer. Examples of the substituent include —R 1 (except when it is a hydrogen atom), —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, And a substituent selected from the group consisting of a group containing a polymerizable functional group described later (hereinafter, the substituent may be referred to as “substituent Ra”).
  • R 1 to R 8 are each independently a hydrogen atom; a linear, branched or cyclic alkyl group (preferably having 1 to 22 carbon atoms); an aryl group (preferably having 6 to 30 carbon atoms); or heteroaryl Represents a group (preferably having 2 to 30 carbon atoms).
  • the linear, branched or cyclic alkyl group may be further substituted by an aryl group (preferably having 6 to 30 carbon atoms) and / or a heteroaryl group (preferably having 2 to 30 carbon atoms).
  • the heteroaryl group may be further substituted with a linear, branched or cyclic alkyl group (preferably having 1 to 22 carbon atoms).
  • An example of the halogen atom is a fluorine atom.
  • the alkyl group, aryl group, or heteroaryl group may be substituted with a halogen atom, and examples thereof include a linear, branched or cyclic perfluoroalkyl group (preferably having 1 to 22 carbon atoms).
  • the “linear, branched or cyclic alkyl group” means an atomic group obtained by removing one hydrogen atom from a linear or branched saturated hydrocarbon, or one hydrogen atom removed from a cyclic saturated hydrocarbon. It is an atomic group.
  • an aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon ring.
  • a heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring.
  • the conjugated unit may be an atomic group having an excellent ability to transport holes or electrons.
  • the atomic group is not particularly limited, but is preferably an atomic group including at least one structure selected from the group consisting of an aromatic amine structure, a carbazole structure, and a thiophene structure.
  • a unit including at least one structure selected from the group consisting of an aromatic amine structure, a carbazole structure, and a thiophene structure is referred to as a “charge transport unit”.
  • a branched polymer formed using a monomer containing a charge transporting unit exhibits excellent properties as a charge transporting polymer.
  • the branched polymer may contain conjugated units other than charge transporting units. When the branched polymer contains a conjugated unit other than the charge transporting unit, it is possible to easily adjust the charge transporting property and the number of substituents to be introduced.
  • the conjugated unit other than the charge transporting unit is selected from structures represented by the following formulas (a1) to (a16).
  • the bonding position (-*) of the reactive functional group is not shown.
  • Each R independently represents a hydrogen atom or a substituent.
  • substituents include the substituent Ra.
  • the structures represented by formulas (a1) to (a16) may have a substituent at a substitutable position. Examples of the substituent include the substituent Ra.
  • the charge transporting unit is selected from structures represented by the following formulas (b1) to (b58).
  • the structure represented by the following formulas (b1) to (b58) does not show the bonding position (-*) of the reactive functional group.
  • Ar independently represents an aryl group (preferably having 6 to 30 carbon atoms) or a heteroaryl group (preferably having 2 to 30 carbon atoms), an arylene group (preferably having 6 to 30 carbon atoms) or a hetero group. Represents an arylene group (preferably having 2 to 30 carbon atoms).
  • X represents a bivalent coupling group each independently. Although there is no particular limitation, X is a linear, branched or cyclic alkyl group (preferably having 1 to 22 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), and a heteroaryl group (preferably having a carbon number).
  • 2 to 30 are preferably groups in which one hydrogen atom has been removed from a group having one or more hydrogen atoms; or a group selected from the following linking group group (c).
  • x represents an integer of 0-2.
  • Each R independently represents a hydrogen atom or a substituent. Examples of the substituent include the substituent Ra.
  • the structures represented by formulas (b1) to (b58) may have a substituent at a substitutable position. Examples of the substituent include the substituent Ra.
  • an arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon ring.
  • a heteroarylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle.
  • Ar independently represents an arene-triyl group (preferably having 6 to 30 carbon atoms), a heteroarene-triyl group (preferably having 2 to 30 carbon atoms) or an arene-tetrayl group (preferably having 6 to 30 carbon atoms). Or a heteroarene-tetrayl group (preferably having 2 to 30 carbon atoms).
  • Each R independently represents a hydrogen atom or a substituent. Examples of the substituent include the substituent Ra.
  • an arene-triyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon ring.
  • the heteroarene-triyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic heterocycle.
  • an arene-tetrayl group is an atomic group obtained by removing 4 hydrogen atoms from an aromatic hydrocarbon ring.
  • the heteroarene-tetrayl group is an atomic group obtained by removing four hydrogen atoms from an aromatic heterocycle.
  • the branched polymer preferably has at least one group containing a polymerizable functional group in order to be cured by a polymerization reaction and change the solubility in a solvent.
  • the “polymerizable functional group” refers to a functional group that can form a bond with each other by applying heat and / or light.
  • Examples of the polymerizable functional group include a group having a carbon-carbon multiple bond (for example, vinyl group, styryl group, allyl group, butenyl group, ethynyl group, acryloyl group, acryloyloxy group, acryloylamino group, methacryloyloxy group, methacryloyloxy group).
  • a group having a carbon-carbon multiple bond for example, vinyl group, styryl group, allyl group, butenyl group, ethynyl group, acryloyl group, acryloyloxy group, acryloylamino group, methacryloyloxy group, methacryloyloxy group).
  • a methacryloylamino group, a vinyloxy group, a vinylamino group, etc.), a group having a small ring eg, a cyclic alkyl group such as a cyclopropyl group, a cyclobutyl group; an epoxy group (oxiranyl group), an oxetane group (oxetanyl group), etc.
  • a group having a carbon-carbon multiple bond and a group having a small ring are preferable, and a group having a carbon-carbon double bond and a cyclic ether group are preferable.
  • a vinyl group, a styryl group, an acryloyl group, an acryloyloxy group, a methacryloyl group, a methacryloyloxy group, a benzocyclobutene group, an epoxy group, and an oxetane group are preferable.
  • a vinyl group , A styryl group, a benzocyclobutene group, an oxetane group, and an epoxy group are more preferable.
  • the branched polymer main skeleton and the polymerizable functional group are preferably linked by an alkylene chain.
  • a hydrophilic chain such as an ethylene glycol chain or a diethylene glycol chain from the viewpoint of improving the affinity with a hydrophilic electrode such as ITO. preferable.
  • the branched polymer is an end of the alkylene chain and / or the hydrophilic chain, that is, these chains and the polymerizable functional group.
  • An ether bond or an ester bond may be present at the connecting part to the group and / or the connecting part between these chains and the skeleton of the branched polymer.
  • group containing a polymerizable functional group include a polymerizable functional group itself or a group in which a polymerizable functional group and an alkylene chain are combined.
  • the polymerizable functional group may have a substituent such as a linear, branched or cyclic alkyl group.
  • a group exemplified in International Publication No. WO2010 / 140553 can be suitably used.
  • the reactive monomer has a “reactive functional group” that binds to the conjugated unit.
  • a reactive functional group becomes a reaction site, and reactive monomers react with each other, whereby a new bond is formed between the conjugated units.
  • the reactive functional group is preferably bonded to a carbon atom contained in the conjugated unit, and more preferably bonded to a carbon atom taking an sp 2 hybrid orbital.
  • the reactive monomer (1) has three or more reactive functional groups bonded to the conjugated unit.
  • the three or more reactive functional groups include two different reactive functional groups.
  • the two reactive functional groups are referred to as a reactive functional group X and a reactive functional group Y, respectively.
  • the reactive functional group X and the reactive functional group Y are groups that can react with each other.
  • a direct or linking group is formed between the conjugated units.
  • a chemical bond is formed.
  • the three or more reactive functional groups are preferably composed of only two reactive functional groups different from each other. In this case, the total number of the reactive functional group X and the reactive functional group Y is the reactive monomer (1).
  • the total number of reactive functional groups contained in the reactive monomer (1) is preferably 6 or less, more preferably from the viewpoint of favorably producing a branched polymer or improving the characteristics of the organic electronics element. Three or four, particularly preferably three.
  • the reactive monomers (1) when two or more kinds of reactive monomers (1) are used, the reactive monomers (1) preferably have the same reactive functional group X and the same reactive functional group Y. That is, the two or more types of reactive monomers (1) have different conjugated units and / or substituents.
  • the reactive functional group X and the reactive functional group Y are selected from known groups capable of forming a chemical bond directly or via a linking group between conjugated units by a coupling reaction. can do.
  • Preferred combinations of the reactive functional group X and the reactive functional group Y are, for example, a halogen-containing group (X) and a boron-containing group (Y) in the case of Suzuki coupling; a halogen-containing group in the case of Buchwald-Hartwig coupling.
  • the reactive functional group X is selected from a halogen-containing group and the reactive functional group Y is selected from a boron-containing group.
  • the halogen-containing group include a chloro group, a bromo group, a fluoro group, and a trifluoromethylsulfonyloxy group.
  • the boron-containing group include a group represented by the following formula (d1).
  • the reactive functional group X is a bromo group
  • the reactive functional group Y is a group represented by the following formula (d2).
  • R 1 each independently represents a hydroxy group, a linear or branched alkyl group, or a linear or branched alkoxy group.
  • the alkyl group and alkoxy group preferably have 1 to 6 carbon atoms.
  • Two R ⁇ 1 > may couple
  • R 2 represents a linear or branched alkylene group.
  • the alkylene group preferably has 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the reactive monomer (1) is represented by, for example, the following formula (1A) or formula (1B).
  • CU represents a conjugated unit
  • CTU represents a charge transporting unit.
  • CU and CTU may each have a substituent.
  • X represents a reactive functional group X
  • Y represents a reactive functional group Y.
  • l is an integer of 1 or more and represents the number of X
  • m is an integer of 1 or more and represents the number of Y. l + m ⁇ 3.
  • Examples of the CU include a charge transporting unit and other conjugated units.
  • the said substituent Ra is mentioned, for example.
  • X is preferably a group selected from halogen-containing groups, more preferably a halogen group, and still more preferably a bromo group.
  • Y is preferably a group selected from boron-containing groups, more preferably a group represented by the formula (d1), and still more preferably a group represented by the formula (d2).
  • l is preferably an integer of 5 or less, more preferably 1 or 2.
  • m is preferably an integer of 5 or less, more preferably 1 or 2.
  • l + m is preferably an integer of 6 or less, more preferably 1 + m is 3 or 4.
  • the reactive monomer (1) preferably has a charge transporting unit, and therefore the reactive monomer (1) is preferably represented by the formula (1B).
  • the CTU is preferably selected from structures represented by the formulas (b1) to (b58), more preferably the formulas (b1), (b2), (b4), (b9), (b10), (b15) to It is selected from the structures represented by (b17) and (b27) to (b35), more preferably selected from the structures represented by (b1) and (b15).
  • the reactive monomer (2) has at least a conjugated unit and two reactive functional groups bonded to the conjugated unit.
  • the two reactive functional groups are groups capable of reacting with one reactive functional group selected from two reactive functional groups of the reactive monomer (1).
  • each of the two reactive functional groups is referred to as a reactive functional group Z2.
  • the two reactive functional groups Z2 are groups that can both react with the reactive functional group X, or groups that can both react with the reactive functional group Y.
  • the reactive functional group Z2 reacts with one of the reactive functional group X and the reactive functional group Y, a chemical bond is formed between the conjugated units directly or via a linking group.
  • One reactive functional group Z2 and another reactive functional group Z2 may be the same or different. Considering reactivity, it is preferable that they are the same.
  • the two reactive functional groups Z2 are preferably the same group as either the reactive functional group Y or the reactive functional group X, more preferably both the reactive functional group Y and the reactive functional group Y2.
  • the functional groups X these are the same groups as the smaller groups in the reactive monomer (1).
  • the reactive functional group Z2 may be a group that can react with the reactive functional group Z3 described later. In this case, the reactive functional group Z2 may be the same group as the larger one of the reactive functional group Y and the reactive functional group X in the reactive monomer (1).
  • the reactive monomers (2) when two or more kinds of reactive monomers (2) are used, it is preferable that the reactive monomers (2) have the same reactive functional group Z2. That is, the two or more types of reactive monomers (2) have different conjugated units and / or substituents.
  • Both of the two reactive functional groups Z2 are preferably groups selected from a halogen-containing group and a boron-containing group, and include a chloro group, a bromo group, a fluoro group, a trifluoromethylsulfonyloxy group, and the formula (d1) Is more preferably a group selected from a group represented by formula (d2) and a bromo group.
  • the reactive monomer (2) is represented by, for example, the following formula (2A) or (2B).
  • CU represents a conjugated unit
  • CTU represents a charge transporting unit.
  • CU and CTU may each have a substituent.
  • Z represents a reactive functional group Z2.
  • Examples of the CU include a charge transporting unit and other conjugated units.
  • the said substituent Ra is mentioned, for example.
  • Z is preferably a group selected from a halogen-containing group and a boron-containing group, more preferably a group selected from a halogen group and a group represented by the formula (d1), still more preferably a bromo group and a formula It is a group selected from the group represented by (d2).
  • the reactive monomer (2) preferably has a charge transporting unit, and therefore the reactive monomer (2) is preferably represented by the formula (2B).
  • CTU is preferably selected from structures represented by formulas (b1) to (b58), more preferably selected from structures represented by formulas (b1) to (b8) and (b15) to (b26), More preferably, it is selected from the structures represented by (b1) to (b4) and (b15) to (b21).
  • the reactive monomer (3) has at least a conjugated unit and one reactive functional group bonded to the conjugated unit.
  • One reactive functional group is a group capable of reacting with one reactive functional group selected from two reactive functional groups of the reactive monomer (1).
  • one reactive functional group is referred to as a reactive functional group Z3.
  • the reactive functional group Z3 is a group that can react with the reactive functional group X or the reactive functional group Y.
  • the reactive functional group Z3 reacts with one of the reactive functional group X and the reactive functional group Y, a chemical bond is formed between the conjugated units directly or via a linking group.
  • the reactive functional group Z3 is preferably the same group as any one of the reactive functional group Y and the reactive functional group X, and more preferably the reactive monomer among the reactive functional group Y and the reactive functional group X.
  • the reactive functional group Z3 may be a group that can react with the reactive functional group Z2.
  • the reactive functional group Z3 may be the same group as the group having the larger number in the reactive monomer (1) among the reactive functional group Y and the reactive functional group X.
  • the reactive monomers (3) when two or more types of reactive monomers (3) are used, the reactive monomers (3) preferably have the same reactive functional group Z3. That is, the two or more types of reactive monomers (3) have different conjugated units and / or substituents.
  • the reactive functional group Z3 is preferably a group selected from a halogen-containing group and a boron-containing group, and is represented by a chloro group, a bromo group, a fluoro group, a trifluoromethylsulfonyloxy group, and the formula (d1).
  • a group selected from a group is more preferable, and a group selected from a bromo group and a group represented by Formula (d2) is preferable.
  • the reactive monomer (3) comprises a conjugated unit, one reactive functional group bonded to the conjugated unit, and 1 bonded to the conjugated unit. It is preferable to include a reactive monomer (3C) having at least a group containing one or more polymerizable functional groups.
  • the group containing a reactive functional group and / or a polymerizable functional group is as described above.
  • the reactive monomer (3) is represented by, for example, the following formula (3A), (3B), or (3C).
  • CU represents a conjugated unit
  • CTU represents a charge transporting unit
  • CLU represents a conjugated unit having a group containing a polymerizable functional group (Cross-Link Unit).
  • CU, CTU and CLU may each have a substituent.
  • Z represents a reactive functional group Z3.
  • Examples of the CU include a charge transporting unit and other conjugated units.
  • the CLU has a conjugated unit and a group containing one or more polymerizable functional groups bonded to the conjugated unit.
  • Examples of the substituent that CU, CTU, and CLU may have include the substituent Ra.
  • Z is preferably a group selected from a halogen-containing group and a boron-containing group, more preferably a group selected from a halogen group and a group represented by the formula (d1), still more preferably a bromo group and a formula It is a group selected from the group represented by (d2).
  • the reactive monomer (3) preferably has a group including a polymerizable functional group, and thus the reactive monomer (3) is preferably represented by the formula (3C).
  • the conjugated unit in the CLU is preferably a conjugated unit other than the charge transporting unit, more preferably selected from structures represented by the formulas (a1) to (a16), and more preferably represented by the formula (a1). It is a structure. However, in formulas (a1) to (a16), the bonding position of the group containing a polymerizable functional group is not shown.
  • the polymerizable functional group is preferably a group having a carbon-carbon multiple bond and a group having a small ring, more preferably a group having a carbon-carbon double bond and It is a cyclic ether group.
  • the polymerizable functional group is preferably a vinyl group, a styryl group, an acryloyl group, an acryloyloxy group, a methacryloyl group, a methacryloyloxy group, a benzocyclobutene group, an epoxy group, or an oxetane group. From these viewpoints, a vinyl group, a styryl group, a benzocyclobutene group, an oxetane group, and an epoxy group are more preferable.
  • the content of the reactive monomer (1) is preferably 10 mol% or more, more preferably 15 mol% or more, more preferably 20 mol% or more, based on the total number of moles of all monomers, from the viewpoint of developing high charge transport properties. Is more preferable.
  • the content of the reactive monomer (1) is preferably 90 mol% or less, more preferably 80 mol% or less, based on the total number of moles of all monomers, from the viewpoint of controlling the solubility of the branched polymer. The mol% or less is more preferable.
  • the content is preferably 5 mol% or more, more preferably 10 mol% or more, based on the total number of moles of all monomers, from the viewpoint of improving the solubility of the branched polymer. 15 mol% or more is more preferable.
  • the content of the reactive monomer (2) is preferably 90 mol% or less, more preferably 70 mol% or less, and more preferably 50 mol% or less, based on the total number of moles of all monomers, from the viewpoint of controlling the molecular weight distribution. Is more preferable.
  • the content is preferably 5 mol% or more based on the total number of moles of all monomers, from the viewpoint of expressing sufficient curability or adjusting the solubility, 10 mol% or more is more preferable and 15 mol% or more is still more preferable.
  • the content of the reactive monomer (3) is preferably 70 mol% or less, more preferably 60 mol% or less, and more preferably 50 mol% or less, based on the total number of moles of all monomers, from the viewpoint of controlling the molecular weight. Further preferred.
  • the content thereof (the total amount of the reactive monomers (1), (2) and / or (3)) is all from the viewpoint of developing high charge transportability. Based on the total number of moles of monomers, 15 mol% or more is preferable, 20 mol% or more is more preferable, and 25 mol% or more is more preferable.
  • the content of the reactive monomer having a charge transporting unit is preferably 90 mol% or less, and preferably 80 mol% or less, based on the total number of moles of all monomers, from the viewpoint of controlling solubility, molecular weight distribution, and the like. More preferred is 70 mol% or less.
  • the content is based on the total number of moles of the reactive monomer (3) from the viewpoint of developing sufficient curability. Is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 15 mol% or more. Further, the content of the reactive monomer (3C) having a polymerizable functional group may be 100 mol% based on the total number of moles of the reactive monomer (3), and introduces a substituent having another function. From the viewpoint, for example, it may be 70 mol% or less, 60 mol% or less, or 50 mol% or less.
  • Reactive monomers (2) and (3) are available from, for example, Tokyo Chemical Industry Co., Ltd., Sigma Aldrich Japan LLC.
  • the reactive monomers (1) to (3) can be synthesized by a known method.
  • the number average molecular weight of the branched polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the number average molecular weight is preferably 500 or more, more preferably 1,000 or more, still more preferably 2,000 or more, particularly preferably 3,000 or more, and extremely preferably 5,000 or more from the viewpoint of excellent charge transportability.
  • the number average molecular weight is preferably 1,000,000 or less, more preferably 500,000 or less, and more preferably 100,000, from the viewpoint of maintaining good solubility in a solvent and facilitating the preparation of an ink composition. The following is more preferable, 50,000 or less is particularly preferable, and 30,000 or less is very preferable.
  • the weight average molecular weight of the branched polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the weight average molecular weight is preferably 1,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, particularly preferably 15,000 or more, and 20,000 or more from the viewpoint of excellent charge transportability. Highly preferred.
  • the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of an ink composition. The following is more preferable, 300,000 or less is particularly preferable, and 200,000 or less is very preferable.
  • the degree of dispersion of the branched polymer is preferably 20.0 or less, more preferably 15.0 or less, and even more preferably 10.0 or less, from the viewpoint of excellent charge transport properties.
  • the said range is a preferable range also from a viewpoint that favorable sclerosis
  • the lower limit of the degree of dispersion is not particularly limited, but is usually 1.0 or more.
  • the number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the measurement conditions can be set as follows.
  • Equipment High-performance liquid chromatograph Prominence, Shimadzu Corporation Liquid feed pump (LC-20AD) Deaeration unit (DGU-20A) Autosampler (SIL-20AHT) Column oven (CTO-20A) PDA detector (SPD-M20A) Differential refractive index detector (RID-20A)
  • LC-20AD Liquid feed pump
  • DGU-20A Deaeration unit
  • SIL-20AHT Autosampler
  • CTO-20A CTO-20A
  • PDA detector SPD-M20A
  • Differential refractive index detector RID-20A
  • the branched polymer obtained by this production method includes a branched partial structure formed by bonding conjugated units contained in the reactive monomer (1) to each other.
  • the branched polymer can be preferably used as an organic electronic material by including a specific branched partial structure. Branched polymers can improve the properties of organic electronic devices.
  • the specific branched partial structure is considered to contribute to the improvement of the film quality of the organic layer or the improvement of the charge transport property.
  • branched partial structure contained in the branched polymer there is a partial structure (1) described later.
  • examples of the structure of the branched polymer include structures exemplified as a branched polymer P2 described later.
  • this production method can produce an effect that a branched polymer having a low degree of dispersion can be produced.
  • the branched polymer having a low degree of dispersion can improve the performance of the organic electronic device because variations in characteristics such as charge transportability and solubility are suppressed.
  • this production method provides the effect that a branched polymer can be produced in high yield.
  • This production method is a method with excellent productivity that can easily control the molecular weight distribution and can stably supply a branched polymer with small variation in characteristics.
  • a group having a polymerizable functional group can be effectively introduced into the branched polymer.
  • a group having a polymerizable functional group is introduced at the end of the polymer chain, it is possible to produce a branched polymer having better curability. Moreover, it is suitable for improvement of curability that the obtained branched polymer is narrowly dispersed.
  • the branched polymer P1 comprises a monomer component reactant comprising at least the following reactive monomer (1). [1] It has at least a conjugated unit and three or more reactive functional groups bonded to the conjugated unit, and the three or more reactive functional groups include two different reactive functional groups. Reactive monomer (1)
  • the monomer component may further contain the following reactive monomer (2) and / or reactive monomer (3).
  • One reaction having at least a conjugated unit and two reactive functional groups bonded to the conjugated unit, wherein the two reactive functional groups are selected from the two reactive functional groups Reactive monomer that can react with reactive functional groups (2)
  • One kind of reaction having at least one conjugated unit and one reactive functional group bonded to the conjugated unit, wherein the one reactive functional group is selected from the two kinds of reactive functional groups Reactive monomer that can react with functional groups (3)
  • the reactive monomer (3) may include a reactive monomer (3C) having a polymerizable functional group.
  • the one reactive functional group having at least a conjugated unit, one reactive functional group bonded to the conjugated unit, and a group including one or more polymerizable functional groups bonded to the conjugated unit.
  • the branched polymer P1 can be obtained by the method for producing the branched polymer.
  • the explanation in the method for producing the branched polymer also applies to the branched polymer P1. That is, the reactive monomers (1) to (3) and (3C) and the molecular weight, dispersity, etc. of the branched polymer P1 are as described in the production method.
  • the branched polymer P2 includes at least a partial structure (1) represented by the following formula.
  • Each CU independently represents a conjugated unit.
  • the conjugated unit may have a substituent, and examples of the substituent include the substituent Ra.
  • CU preferably represents each independently a charge transporting unit, more preferably selected from structures represented by formulas (b1) to (b58), and more preferably formulas (b1), (b2), (b4). ), (B9), (b10), (b15) to (b17), and (b27) to (b35), and particularly preferably the structures represented by (b1) and (b15) Selected from.
  • the branched polymer P2 may include a partial structure (2) and / or a partial structure (3) represented by the following formula.
  • the CU represents a conjugate unit.
  • the conjugated unit may have a substituent, and examples of the substituent include the substituent Ra.
  • the conjugated unit may have the reactive functional group X, the reactive functional group Y, or the like.
  • CU preferably represents a charge transporting unit, more preferably selected from structures represented by formulas (b1) to (b58), and more preferably formulas (b1) to (b8) and (b15) to (b26). And particularly preferably selected from the structures represented by (b1) to (b4) and (b15) to (b21).
  • the CU represents a conjugate unit.
  • the conjugated unit may have a substituent, and examples of the substituent include the substituent Ra.
  • the conjugated unit may have the reactive functional group X, the reactive functional group Y, the reactive functional group Z2, and the like.
  • the partial structure (3) preferably includes a partial structure (3C) represented by the following formula.
  • CLU represents a conjugated unit having a group containing a polymerizable functional group.
  • the conjugated unit may have a substituent, and examples of the substituent include the substituent Ra.
  • the conjugated unit may have the reactive functional group X, the reactive functional group Y, the reactive functional group Z2, and the like.
  • the conjugated unit in CLU is preferably selected from structures represented by formulas (a1) to (a16), and more preferably a structure represented by formula (a1).
  • preferred examples of the polymerizable functional group include the groups exemplified in the description of the reactive monomer (C2).
  • the branched polymer P2 can be preferably used as an organic electronic material by including the partial structure (1).
  • the branched polymer P2 can improve the characteristics of the organic electronics element.
  • the partial structure (1) is considered to contribute to the improvement of the film quality of the organic layer or the improvement of the charge transport property.
  • a group having a polymerizable functional group can be effectively introduced into the branched polymer P2.
  • better curability can be obtained by introducing a group having a polymerizable functional group at the end of the polymer chain of the branched polymer P2.
  • the proportion thereof is preferably 10 mol% or more, more preferably 20 mol% or more, more preferably 30 mol, based on the total number of units, from the viewpoint of obtaining sufficient charge transportability. % Or more is more preferable.
  • the proportion of the charge transporting unit may be 100 mol%, and considering other conjugated units introduced as necessary, it is preferably 95 mol% or less, more preferably 90 mol% or less, and 85 mol%. The following is more preferable.
  • the proportion is 1 mol% or more based on the total number of units from the viewpoint of adjusting the charge transporting property and adjusting the number of substituents to be introduced. Is preferable, 5 mol% or more is more preferable, and 10 mol% or more is still more preferable.
  • the proportion of the conjugated unit other than the charge transporting unit is preferably 50 mol% or less, more preferably 40 mol% or less, from the viewpoint of satisfactorily synthesizing the branched polymer and adjusting the charge transportability. The mol% or less is more preferable.
  • the proportion of the polymerizable functional group is preferably 0.1 mol% or more based on the total number of units, from the viewpoint of efficiently curing the branched polymer, and 1 mol% The above is more preferable, and 3 mol% or more is still more preferable.
  • the proportion of the polymerizable functional group is preferably 70 mol% or less, more preferably 60 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining good charge transportability.
  • the “ratio of polymerizable functional group” refers to the ratio of a conjugated unit having a group containing a polymerizable functional group.
  • the branched polymer P2 It is preferable that many polymerizable functional groups are contained in the branched polymer P2 from the viewpoint of the change in solubility. On the other hand, from the viewpoint of not impeding charge transport properties, it is preferable that the amount contained in the branched polymer is small.
  • the content of the polymerizable functional group can be appropriately set in consideration of these.
  • the number of polymerizable functional groups per molecule of the branched polymer is preferably 2 or more, more preferably 3 or more from the viewpoint of obtaining a sufficient solubility change.
  • the number of polymerizable functional groups is preferably 1,000 or less, more preferably 500 or less, from the viewpoint of maintaining charge transportability.
  • the ratio of each unit can be determined by using, for example, the monomer charge corresponding to each unit used to synthesize the branched polymer. Moreover, the ratio of each unit can be calculated as an average value using the integral value of the spectrum derived from each unit in the 1 H NMR spectrum of the branched polymer P2. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
  • the number of polymerizable functional groups per molecule of the branched polymer P2 is the amount of the polymerizable functional group used to synthesize the branched polymer P2 (for example, the amount of the monomer having a group containing a polymerizable functional group),
  • the average value can be obtained by using the monomer charge corresponding to each unit, the weight average molecular weight of the branched polymer P2, and the like.
  • the number of polymerizable functional groups is determined by the ratio between the integral value of the signal derived from the polymerizable functional group and the integral value of the entire spectrum in the 1 H NMR (nuclear magnetic resonance) spectrum of the branched polymer P2, and the weight of the branched polymer P2.
  • the average molecular weight can be used to calculate the average value. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
  • the number average molecular weight of the branched polymer P2 can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the number average molecular weight is preferably 500 or more, more preferably 1,000 or more, still more preferably 2,000 or more, particularly preferably 3,000 or more, and extremely preferably 5,000 or more from the viewpoint of excellent charge transportability.
  • the number average molecular weight is preferably 1,000,000 or less, more preferably 500,000 or less, and more preferably 100,000, from the viewpoint of maintaining good solubility in a solvent and facilitating the preparation of an ink composition. The following is more preferable, 50,000 or less is particularly preferable, and 30,000 or less is very preferable.
  • the weight average molecular weight of the branched polymer P2 can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the weight average molecular weight is preferably 1,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, particularly preferably 15,000 or more, and 20,000 or more from the viewpoint of excellent charge transportability. Highly preferred.
  • the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of an ink composition. The following is more preferable, 300,000 or less is particularly preferable, and 200,000 or less is very preferable.
  • the degree of dispersion of the branched polymer P2 is preferably 20.0 or less, more preferably 15.0 or less, and still more preferably 10.0 or less, from the viewpoint of excellent charge transport properties. In particular, from the viewpoint of excellent charge transport properties, 5.0 or less, 4.0 or less, 3.0 or less, 2.5 or less, or 2.0 or less is preferable in this order.
  • the said range is a preferable range also from a viewpoint that favorable curability is obtained when the branched polymer P2 has a polymerizable functional group.
  • the lower limit of the degree of dispersion is not particularly limited, but is usually 1.0 or more. Since the branched polymer P2 having a low degree of dispersion has suppressed variations in characteristics such as charge transportability and solubility, the performance of the organic electronics element can be further stabilized.
  • the method for producing the branched polymer is not particularly limited. Examples of the production method include a method using a monomer having the partial structure (1); a method of performing graft polymerization; and a production method of the branched polymer. According to the method for producing the branched polymer, the branched polymer P2 having a low dispersion degree can be produced. Moreover, the method for producing the branched polymer is a method by which the branched polymer P2 can be produced simply and efficiently.
  • the branched polymer P2 may contain only one type of partial structure (1), or may contain two or more types. The same applies to the partial structure (2) and the partial structure (3).
  • the branched polymer P2 may have the partial structure (1) as a part of the structure shown below.
  • the structure of the branched polymer P2 is not limited to the following.
  • the organic electronic material includes at least a branched polymer, a branched polymer P1, or a branched polymer P2 manufactured by the branched polymer manufacturing method.
  • the branched polymer By using the branched polymer, the device characteristics of the organic electronic device can be easily improved.
  • the organic electronic material may contain only one kind of branched polymer or two or more kinds.
  • the organic electronic material may further contain a dopant.
  • the dopant is not particularly limited as long as it is a compound that can be added to the organic electronic material to develop a doping effect and improve the charge transport property.
  • Doping includes p-type doping and n-type doping.
  • p-type doping a substance serving as an electron acceptor is used as a dopant
  • n-type doping a substance serving as an electron donor is used as a dopant. It is preferable to perform p-type doping for improving hole transportability and n-type doping for improving electron transportability.
  • the dopant used in the organic electronic material may be a dopant that exhibits any effect of p-type doping or n-type doping. Further, one kind of dopant may be added alone, or plural kinds of dopants may be mixed and added.
  • the dopant used for p-type doping is an electron-accepting compound, and examples thereof include Lewis acids, proton acids, transition metal compounds, ionic compounds, halogen compounds, and ⁇ -conjugated compounds.
  • Lewis acid FeCl 3 , PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 3 , BBr 3 and the like;
  • protonic acid HF, HCl, HBr, HNO 5 , H 2 SO 4 , HClO 4 and other inorganic acids, benzenesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, polyvinylsulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid, 1-butanesulfonic acid, vinylphenylsulfonic acid Organic acids such as camphorsulfonic acid; transition metal compounds include FeCl 3
  • the electron-accepting compounds described in JP 2000-36390 A, JP 2005-75948 A, JP 2003-213002 A, and the like can also be used.
  • the dopant used for n-type doping is an electron donating compound, for example, alkali metals such as Li and Cs; alkaline earth metals such as Mg and Ca; alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
  • alkali metals such as Li and Cs
  • alkaline earth metals such as Mg and Ca
  • alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
  • the branched polymer has a polymerizable functional group
  • the organic electronic material may further contain a charge transporting low molecular weight compound, another polymer, and the like.
  • the content of the branched polymer is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more based on the total mass of the organic electronic material from the viewpoint of obtaining good charge transportability. It may be 100% by mass.
  • the content is preferably 0.01% by mass or more, and 0.1% by mass or more with respect to the total mass of the organic electronic material from the viewpoint of improving the charge transport property of the organic electronic material. More preferred is 0.5% by mass or more. Moreover, from a viewpoint of maintaining favorable film formability, 50 mass% or less is preferable with respect to the total mass of the organic electronic material, 30 mass% or less is more preferable, and 20 mass% or less is still more preferable.
  • the ink composition comprises at least a branched polymer obtained by the method for producing the branched polymer, the branched polymer P1, the branched polymer P2, or the organic electronic material, and dissolves or disperses them. Containing the resulting solvent.
  • the ink composition may contain various known additives as required, as long as the properties of the branched polymer are not deteriorated.
  • the organic layer can be easily formed by a simple method such as a coating method.
  • solvent water, an organic solvent, or a mixed solvent thereof can be used.
  • Organic solvents include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetralin and diphenylmethane; ethylene glycol Aliphatic ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, 2,4
  • the ink composition preferably contains a polymerization initiator.
  • a polymerization initiator known radical polymerization initiators, cationic polymerization initiators, anionic polymerization initiators and the like can be used. From the viewpoint of easily preparing the ink composition, it is preferable to use a substance having both a function as a dopant and a function as a polymerization initiator. As such a substance, the said ionic compound is mentioned, for example.
  • the ink composition may further contain an additive as an optional component.
  • additives include polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, antifoaming agents, Examples thereof include a dispersant and a surfactant.
  • the content of the solvent in the ink composition can be determined in consideration of application to various coating methods.
  • the content of the solvent is preferably such that the ratio of the branched polymer to the solvent is 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.5% by mass or more. A more preferred amount.
  • the content of the solvent is preferably such that the ratio of the branched polymer to the solvent is 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less.
  • the organic layer contains the branched polymer, the branched polymer P1, the branched polymer P2, or the organic electronic material obtained by the method for producing the branched polymer.
  • the branched polymer is contained in the organic layer as the branched polymer itself or as a derivative derived from a branched polymer such as a polymer or a reactant.
  • the organic electronic material is included in the organic layer as the organic electronic material itself or as a derivative derived from an organic electronic material such as a polymer, a reactant, or a decomposition product.
  • the organic layer can be satisfactorily formed by a coating method.
  • An example of the manufacturing method of an organic layer includes the process of apply
  • Examples of the coating method include spin coating method; casting method; dipping method; letterpress printing, intaglio printing, offset printing, planographic printing, letterpress inversion offset printing, screen printing, gravure printing and other plate printing methods; ink jet method, etc.
  • a known method such as a plateless printing method may be used.
  • the method for producing the organic layer is an arbitrary step such as a step of drying the organic layer (that is, the coating layer) obtained after coating using a hot plate or an oven to remove the solvent, and a step of curing the coating layer. May further be included.
  • the solubility of the organic layer can be changed by advancing the polymerization reaction of the branched polymer by light irradiation, heat treatment or the like.
  • an organic electronic device having a multilayer structure can be easily manufactured.
  • the thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more.
  • the thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less, from the viewpoint of reducing electrical resistance.
  • the organic electronics element has at least the organic layer.
  • the organic electronics element include an organic EL element, an organic photoelectric conversion element, and an organic transistor.
  • the organic electronic element preferably has a structure in which an organic layer is disposed between at least a pair of electrodes.
  • the organic EL element has at least the organic layer.
  • the organic EL element usually includes a light emitting layer, an anode, a cathode, and a substrate, and other functional layers such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer are provided as necessary. I have. Each layer may be formed by a vapor deposition method or a coating method.
  • the organic EL element preferably has an organic layer as a light emitting layer or other functional layer, more preferably has another functional layer, and more preferably has at least one of a hole injection layer and a hole transport layer. .
  • the organic EL element has at least a hole injection layer, and the hole injection layer is the organic layer. In one embodiment, the organic EL device has at least a hole transport layer, and the hole transport layer is the organic layer. Furthermore, the organic EL element has at least a hole injection layer and a hole transport layer, and both of them may be the organic layer.
  • FIG.1 and FIG.2 is a cross-sectional schematic diagram which shows one Embodiment of an organic EL element, respectively.
  • the organic EL element shown in FIG. 1 is an element having a multilayer structure, and has an anode 1, a hole injection layer 2, a light emitting layer 3, an electron injection layer 4, and a cathode 5 in this order on a substrate 6.
  • the hole injection layer 2 is the organic layer.
  • the organic EL element shown in FIG. 2 is an element having a multilayer structure.
  • the anode 1, the hole injection layer 2, the hole transport layer 7, the light emitting layer 3, the electron transport layer 8, and the electron injection layer 4 are provided.
  • the cathode 5 in this order.
  • at least one of the hole injection layer 2 and the hole transport layer 7 is the organic layer.
  • each layer will be described.
  • Light emitting layer As a material used for forming the light emitting layer, a light emitting material such as a low molecular compound, a polymer, or a dendrimer can be used. A polymer is preferable because it has high solubility in a solvent and is suitable for a coating method. Examples of the light emitting material include a fluorescent material, a phosphorescent material, a thermally activated delayed fluorescent material (TADF), and the like.
  • TADF thermally activated delayed fluorescent material
  • fluorescent materials low molecular weight compounds such as perylene, coumarin, rubrene, quinacdrine, stilbene, dye laser dyes, aluminum complexes, and derivatives thereof; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinylcarbazole, fluorene-benzothiadiazole copolymer, Examples thereof include fluorene-triphenylamine copolymers, polymers such as derivatives thereof, and mixtures thereof.
  • Examples of phosphorescent materials include metal complexes containing metals such as Ir and Pt.
  • Examples of the Ir complex include FIr (pic) that emits blue light (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate), Ir (ppy) 3 that emits green light.
  • the light emitting layer contains a phosphorescent material
  • a host material a low molecular compound, a polymer, or a dendrimer can be used.
  • Examples of the low molecular weight compound include CBP (4,4′-bis (9H-carbazol-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), CDBP (4,4′-
  • Examples of the polymer such as bis (carbazol-9-yl) -2,2′-dimethylbiphenyl) and derivatives thereof include the organic electronic materials, polyvinylcarbazole, polyphenylene, polyfluorene, and derivatives thereof.
  • thermally activated delayed fluorescent materials include Adv.AMater., 21, 4802-4906 (2009); Appl. Phys. Lett., 98, 083302 (2011); Chem. Comm., 48, 9580 (2012) ; Appl. Phys. Lett., 101, 093306 (2012); J. Am. Chem. Soc., 134, 14706 (2012); Chem. Comm., 48, 11392 (2012); Nature, 492, 234 (2012) ); Adv. Mater., 25, 3319 (2013); J. Phys. Chem. A, 117, 5607 (2013); Phys. Chem. Chem. Phys., 15, 15850 (2013); Chem. Comm., 49, 10385) (2013); Chem. Lett., 43, 319 (2014) and the like.
  • hole transport layer examples of the material used for forming the hole transport layer and the hole injection layer include the branched polymer or the organic electronics material.
  • the hole injection layer and the hole transport layer is preferably the organic layer. Both may be the organic layer.
  • aromatic amine compounds for example, aromatic diamines such as N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine ( ⁇ -NPD)
  • Phthalocyanine compounds for example, thiophene compounds (for example, poly (3,4-ethylenedioxythiophene): thiophene conductive polymer such as poly (4-styrenesulfonate) (PEDOT: PSS)), and the like.
  • Examples of materials used to form the electron transport layer and the electron injection layer include condensed ring tetracarboxylic acids such as phenanthroline derivatives, bipyridine derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene, and perylene.
  • Anhydrides, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, quinoxaline derivatives, aluminum complexes, lithium complexes and the like can be mentioned.
  • the branched polymer or the organic electronic material can also be used.
  • cathode As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
  • a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
  • anode for example, a metal (for example, Au) or another material having conductivity is used.
  • examples of other materials include oxides (for example, ITO: indium oxide / tin oxide) and conductive polymers (for example, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).
  • substrate glass, plastic or the like can be used.
  • the substrate is preferably transparent and preferably has flexibility. Quartz glass, light transmissive resin film, and the like are preferably used.
  • the resin film examples include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propionate. Can be mentioned.
  • an inorganic substance such as silicon oxide or silicon nitride may be coated on the resin film in order to suppress permeation of water vapor, oxygen and the like.
  • the emission color of the organic EL element is not particularly limited.
  • the white organic EL element is preferable because it can be used for various lighting devices such as home lighting, interior lighting, a clock, or a liquid crystal backlight.
  • a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used.
  • the combination of a plurality of emission colors is not particularly limited, but there are a combination containing three emission maximum wavelengths of blue, green and red, and a combination containing two emission maximum wavelengths such as blue and yellow, yellow green and orange. Can be mentioned.
  • the emission color can be controlled by adjusting the type and amount of the light emitting material.
  • the display element includes the organic EL element.
  • a color display element can be obtained by using an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB).
  • Image forming methods include a simple matrix type in which individual organic EL elements arranged in a panel are directly driven by electrodes arranged in a matrix, and an active matrix type in which a thin film transistor is arranged and driven in each element.
  • the lighting device includes the organic EL element.
  • the display device includes a lighting device and a liquid crystal element as a display unit.
  • the display device can be a display device using the illumination device as a backlight and a known liquid crystal element as a display means, that is, a liquid crystal display device.
  • Embodiments of the present invention will be specifically described with reference to examples. Embodiments of the present invention are not limited to the following examples.
  • Example 1 (Branched polymer 1) The following monomer CTU-1 (6.0 mmol), the following monomer CLU-1 (4.0 mmol), and anisole (20 mL) were added to a three-necked round bottom flask, and the prepared Pd catalyst solution (7.5 mL) was further added. . After stirring for 30 minutes, a 10 mass% tetraethylammonium hydroxide aqueous solution (20 mL) was added. All solutions were used after being degassed with a nitrogen bubble for more than 30 minutes. The resulting mixture was heated to reflux for 2 hours. The operation so far was performed under a nitrogen stream.
  • the metal adsorbent and insoluble matter were removed by filtration, and the filtrate was concentrated with a rotary evaporator.
  • the concentrate was dissolved in toluene and then reprecipitated from methanol-acetone (8: 3).
  • the resulting precipitate was collected by suction filtration and washed with methanol-acetone (8: 3).
  • the obtained precipitate was vacuum-dried to obtain a branched polymer 1.
  • the yield was 78.7%. The yield was determined based on the mass of the branched polymer calculated from the molar mass and the number of moles of the conjugated unit and substituent contained in each monomer used.
  • the number-average molecular weight of the obtained branched polymer 1 was 20,300, the weight-average molecular weight was 31,400, and the degree of dispersion was 1.55.
  • the number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent.
  • GPC polystyrene conversion
  • THF tetrahydrofuran
  • the number-average molecular weight of the obtained branched polymer 2 was 7,900, the weight-average molecular weight was 36,800, and the degree of dispersion was 4.66.
  • the branched polymer 1 From the molecular weight of the monomer used, the number and type of reactive functional groups, and the molecular weight of the branched polymer, it is estimated that the branched polymer 1 has a partial structure (1).
  • the branched polymer 1 had a low degree of dispersion and a high synthesis yield.
  • the following examples and comparative examples relate to embodiments in which an organic layer (organic thin film) formed using an organic electronic material (ink composition) containing a branched polymer is applied to a hole injection layer of an organic EL element.
  • an organic layer organic thin film
  • organic electronic material organic electronic material
  • Example 2 Under a nitrogen atmosphere, the branched polymer 1 (10.0 mg), the following ionic compound 1 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition.
  • the ink composition was spin-coated on a glass substrate patterned with a width of 1.6 mm at a rotation speed of 3,000 min ⁇ 1 and then cured by heating on a hot plate at 230 ° C. for 30 minutes to form a hole injection layer (30 nm) was formed.
  • the glass substrate was transferred into a vacuum evaporator, and ⁇ -NPD (40 nm), CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm), TPBi (30 nm), Liq (2.0 nm) and Al (150 nm) were formed in this order by vapor deposition. Then, the sealing process was performed and the organic EL element was produced.
  • Table 2 summarizes the organic electronic materials used for forming the hole injection layer in the organic EL elements of Example 2 and Comparative Example 2.
  • Example 2 As shown in Table 3, in Example 2, a long-life organic EL element excellent in driving stability was obtained. Moreover, in Example 2, the result that the luminous efficiency was also high was obtained.
  • the following examples and comparative examples relate to an embodiment of an organic layer (organic thin film) formed using an organic electronic material (ink composition) containing a branched polymer.
  • Branched polymer 1 (9.9 mg) and ionic compound 1 (0.1 mg) were dissolved in toluene (1.2 mL) to prepare an ink composition.
  • the ink composition is spin-coated on a quartz glass plate at a rotation speed of 3,000 min ⁇ 1 and cured by heating for 10 minutes at the temperature shown in Table 4 on a hot plate to form an organic layer (film thickness: 30 nm). did.
  • the remaining film ratio of the organic layer was measured, and the solvent resistance of the organic layer was evaluated.
  • the quartz glass substrate was grasped with tweezers and immersed in a 200 mL beaker filled with toluene (25 ° C.) for 1 minute. From the ratio of the absorbance (Abs) of the absorption maximum ( ⁇ max) in the UV-vis absorption spectrum of the organic layer before and after immersion, the remaining film ratio of the organic layer was determined by the following formula.
  • the absorbance was measured using a spectrophotometer (“U-3310” manufactured by Hitachi, Ltd.), and the absorbance of the organic layer at the maximum absorption wavelength in the wavelength range of 300 to 500 nm was measured.
  • Table 4 shows the remaining film ratio of the organic layers of Example 3 and Comparative Example 3.
  • Example 3 As shown in Table 4, in Example 3, a high residual film rate was obtained. It is clear that the branched polymer 1 can exhibit solvent resistance when cured at a lower temperature than the branched polymer 2.
  • a branched polymer having a branched structure can be easily obtained.
  • an excellent organic electronic material can be provided.
  • an excellent organic electronics material can be provided according to the branched polymers P1 and P2 which are embodiments of the present invention.

Abstract

一実施形態は、以下の反応性モノマー(1)を少なくとも含むモノマー成分を反応させることを含む、枝分かれポリマーの製造方法に関する。 共役ユニットと、該共役ユニットに結合する3つ以上の反応性官能基とを少なくとも有し、前記3つ以上の反応性官能基が、互いに異なる2種の反応性官能基を含む、反応性モノマー(1)

Description

枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子
 本開示は、枝分かれポリマーの製造方法、枝分かれポリマー、有機エレクトロニクス材料、インク組成物、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置に関する。
 有機エレクトロニクス素子は、有機物を用いて電気的な動作を行う素子であり、省エネルギー、低価格、及び柔軟性といった特長を発揮できると期待され、従来のシリコンを主体とした無機半導体に替わる技術として注目されている。
 有機エレクトロニクス素子の一例として、有機エレクトロルミネセンス素子(有機EL素子)、有機光電変換素子、及び有機トランジスタが挙げられる。
 有機エレクトロニクス素子のなかでも、有機EL素子は、例えば、白熱ランプ又はガス充填ランプの代替えとなる大面積ソリッドステート光源用途として注目されている。また、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイ(LCD)に置き換わる最有力の自発光ディスプレイとしても注目されており、製品化が進んでいる。
 有機EL素子は、使用される有機材料から、低分子型有機EL素子及び高分子型有機EL素子の2つに大別される。高分子型有機EL素子では、有機材料として高分子化合物が用いられ、低分子型有機EL素子では、低分子化合物が用いられる。一方、有機EL素子の製造方法は、主に真空系で成膜が行われる乾式プロセスと、凸版印刷、凹版印刷等の有版印刷、インクジェット等の無版印刷などにより成膜が行われる湿式プロセスの2つに大別される。湿式プロセスは、簡易成膜が可能であるため、今後の大画面有機ELディスプレイには不可欠な方法として期待されている(例えば、特許文献1参照)。
特開2006-279007号公報
 湿式プロセスに従い作製した有機EL素子は、低コスト化及び大面積化が容易であるという特長を有している。一般的に、ポリマーは溶剤への溶解性に優れており、湿式プロセスに適した材料である。しかし、従来のポリマーを使用して作製した有機EL素子は、駆動電圧、発光効率、又は寿命特性等の特性において、改善が望まれている。有機光電変換素子、有機トランジスタ等の他の有機エレクトロニクス素子についても同様である。
 そこで、本開示は、有機エレクトロニクス素子の特性向上に適した枝分かれポリマーの製造方法及び枝分かれポリマーを提供する。また、本開示は、有機エレクトロニクス素子の特性向上に適した有機エレクトロニクス材料、インク組成物、及び有機層を提供する。さらに、本開示は、優れた特性を有する有機エレクトロニクス素子、有機EL素子、表示素子、照明装置、及び表示装置を提供する。
 本発明には様々な実施形態が含まれる。実施形態の例を以下に列挙する。本発明は以下の実施形態に限定されない。
 一実施形態は、以下の反応性モノマー(1)を少なくとも含むモノマー成分を反応させることを含む、枝分かれポリマーの製造方法に関する。
 共役ユニットと、該共役ユニットに結合する3つ以上の反応性官能基とを少なくとも有し、前記3つ以上の反応性官能基が、互いに異なる2種の反応性官能基を含む、反応性モノマー(1)
 他の実施形態は、以下の反応性モノマー(1)を少なくとも含むモノマー成分の反応物を含む、枝分かれポリマー(以下、該枝分かれポリマーを「枝分かれポリマーP1」という。)に関する。
 共役ユニットと、該共役ユニットに結合する3つ以上の反応性官能基とを少なくとも有し、前記3つ以上の反応性官能基が、互いに異なる2種の反応性官能基を含む、反応性モノマー(1)
 他の実施形態は、以下の部分構造(1)を少なくとも含む、枝分かれポリマー(以下、該枝分かれポリマーを「枝分かれポリマーP2」という。)に関する。本開示において、「*」は、他の構造との結合位置を表す。
Figure JPOXMLDOC01-appb-C000004
(式中、CUはそれぞれ独立に共役ユニットを表す。共役ユニットは置換基を有してもよい。)
 他の実施形態は、前記枝分かれポリマーの製造方法により得られた枝分かれポリマー、前記枝分かれポリマーP1、又は前記枝分かれポリマーP2を含有する、有機エレクトロニクス材料に関する。
 他の実施形態は、前記枝分かれポリマーの製造方法により得られた枝分かれポリマー、前記枝分かれポリマーP1、前記枝分かれポリマーP2、又は前記有機エレクトロニクス材料と、溶媒とを含有する、インク組成物に関する。
 他の実施形態は、前記枝分かれポリマーの製造方法により得られた枝分かれポリマー、前記枝分かれポリマーP1、前記枝分かれポリマーP2、又は前記有機エレクトロニクス材料を含有する、有機層に関する。
 他の実施形態は、前記有機層を少なくとも1つ有する、有機エレクトロニクス素子に関する。
 他の実施形態は、前記有機層を少なくとも1つ有する、有機EL素子に関する。
 更に他の実施形態は、前記有機EL素子を備えた表示素子若しくは照明装置、又は、前記照明装置と、表示手段として液晶素子とを備えた表示装置に関する。
 本開示によれば、有機エレクトロニクス素子の特性向上に適した枝分かれポリマーの製造方法及び枝分かれポリマーが提供される。また、本開示によれば、有機エレクトロニクス素子の特性向上に適した有機エレクトロニクス材料、インク組成物、及び有機層が提供される。さらに、本開示によれば、優れた特性を有する有機エレクトロニクス素子、有機EL素子、表示素子、照明装置、及び表示装置が提供される。
図1は、一実施形態の有機EL素子の一例を示す断面模式図である。 図2は、一実施形態の有機EL素子の一例を示す断面模式図である。
 本発明の実施形態について説明する。本発明は以下の実施形態に限定されない。
<枝分かれポリマーの製造方法>
 一実施形態によれば、枝分かれポリマーの製造方法は、以下の反応性モノマー(1)を少なくとも含むモノマー成分を反応させることを含む。
 [1] 共役ユニットと、該共役ユニットに結合する3つ以上の反応性官能基とを少なくとも有し、前記3つ以上の反応性官能基が、互いに異なる2種の反応性官能基を含む、反応性モノマー(1)
 この製造方法によれば、特定の分岐状の部分構造を含む枝分かれポリマーを容易に製造することができる。得られた枝分かれポリマーは、有機エレクトロニクス材料として好適に使用される。得られた枝分かれポリマーは、有機エレクトロニクス素子の特性を向上させることができる。
 一実施形態によれば、前記モノマー成分は、更に、以下の反応性モノマー(2)及び/又は反応性モノマー(3)を含んでもよい。
 [2] 共役ユニットと、該共役ユニットに結合する2つの反応性官能基とを少なくとも有し、前記2つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(2)
 [3] 共役ユニットと、該共役ユニットに結合する1つの反応性官能基とを少なくとも有し、前記1つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(3)
 モノマー成分が反応性モノマー(2)を含む場合、枝分かれポリマーへの置換基の導入を容易に行うことができる。置換基としては、例えば、溶解性の制御に寄与可能な基が好ましく、具体的には、直鎖、分岐又は環状のアルキル基、直鎖、分岐又は環状のアルコキシ基、フェノキシ基、ヒドロキシ基、フルオロ基、直鎖、分岐又は環状のパーフルオロアルキル基等が挙げられる。また、モノマー成分が反応性モノマー(2)を含む場合、枝分かれポリマーのポリマー鎖の伸長を容易に行うことができる。反応性モノマー(2)の配合比を調整することで、分子量分布を制御できる。
 モノマー成分が反応性モノマー(3)を含む場合、枝分かれポリマーへの置換基の導入を容易に行うことができる。置換基としては、例えば、溶解性の制御に寄与可能な基、又は、重合性官能基を含む基が好ましい。溶解性の制御に寄与可能な基の例は上記と同じであり、重合性官能基を含む基については後述する。
 一実施形態によれば、枝分かれポリマーは、重合性官能基を有してもよい。重合性官能基を有することにより、枝分かれポリマーを硬化させ、耐溶剤性に優れた有機層を形成することができる。耐溶剤性に優れた有機層を用いれば、複数の有機層を容易に積層できる。枝分かれポリマーは、重合性官能基をポリマー鎖の末端部に有していても、末端以外の部分に有していても、末端部と末端以外の部分の両方に有していてもよい。硬化性の観点からは、少なくとも末端部に有していることが好ましく、硬化性及び電荷輸送性の両立を図る観点からは、末端部のみに有していることが好ましい。
 重合性官能基をポリマー鎖の末端部に導入するため、反応性モノマー(3)は、以下の反応性モノマー(3C)を含むことが好ましい。
 [4] 共役ユニットと、該共役ユニットに結合する1つの反応性官能基と、該共役ユニットに結合する1つ以上の重合性官能基を含む基とを少なくとも有し、前記1つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(3C)
[製造工程]
 枝分かれポリマーの製造方法は、モノマー成分を反応させる工程を含む。反応は、カップリング反応であることが好ましい。カップリング反応によれば、共役ユニット間に直接又は連結基を介して化学結合を形成し、所望とする共役ポリマーを製造することができる。例えば、鈴木カップリング、ブッフバルト・ハートウィッグカップリング、根岸カップリング、スティルカップリング、ヘックカップリング、園頭カップリング等の公知のカップリング反応を用いることができる。鈴木カップリングでは、炭素原子に結合するホウ素含有基と炭素原子に結合するハロゲン含有基との間で、Pd触媒、Ni触媒、Ru触媒等を用いてカップリング反応を起こし、炭素-炭素結合を形成する。鈴木カップリングは、芳香環同士を容易に結合させることができる方法であり、特に好ましい。ブッフバルト・ハートウィッグカップリングは、アミノ基又はヒドロキシ基と炭素原子に結合するハロゲン含有基との間で、Pd触媒等を用いてカップリング反応を起こし、窒素-炭素結合又は酸素-炭素結合を形成する。
 カップリング反応に用いる触媒、溶媒等の種類、温度、時間等の反応条件などは特に限定されず、カップリング反応の種類に応じて適宜設定すればよい。一実施形態として、以下、鈴木カップリングの例を説明する。
 鈴木カップリングでは、触媒として、例えば、Pd(0)化合物、Pd(II)化合物等のPd化合物、Ni化合物、Ru化合物などが用いられる。Pd化合物の例として、Pd(t-BuP)(ビス(トリ-tert-ブチルホスフィン)パラジウム(0))、Pd(t-BuP)(テトラキス(トリ-tert-ブチルホスフィン)パラジウム(0)、Pd(PPh(テトラキス(トリフェニルホスフィン)パラジウム(0))、Pd(dppf)Cl([1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド)、Pd(dppe)Cl([1,2-ビス(ジフェニルホスフィノ)エタン]パラジウム(II)ジクロリド)等のホスフィン配位子を有するPd化合物などが挙げられる。また、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム(II)等を前駆体として使用し、前駆体とホスフィン配位子とを反応系中で混合することにより発生させた触媒種を用いることもできる。この場合のホスフィン配位子の例として、P(t-Bu)(トリス(t-ブチル)ホスフィン)、トリブチルホスフィン、P(c-hex)(トリシクロヘキシルホスフィン)等が挙げられる。
 反応溶媒としては、水と有機溶媒との混合溶媒を好ましく使用できる。有機溶媒の例として、ジメトキシエタン、トルエン、アニソール、テトラヒドロフラン、アセトン、アセトニトリル、N,N-ジメチルホルムアミド等が挙げられる。反応には、塩基として、NaCO、KCO等のアルカリ金属の炭酸塩;NaOH、KOH等のアルカリ金属の水酸化物;KPO等のアルカリ金属のリン酸塩;トリエチルアミン、TMAH(テトラメチルアンモニウムヒドロキシド)、TEAH(テトラエチルアンモニウムヒドロキシド)等の水溶性有機塩基などを使用することも可能である。また、相間移動触媒を添加して反応を促進することもできる。相間移動触媒の例として、TBAB(テトラブチルアンモニウムブロミド)、Aliquat 336(登録商標、SIGMA-ALDRICH製、トリオクチルメチルアンモニウムクロリドとトリカプリリルメチルアンモニウムクロリドとの混合物)等が挙げられる。
 モノマー成分の濃度(全モノマーの合計の濃度)は、反応溶媒の質量に対し、例えば1~30質量%とでき、好ましくは2~25質量%、より好ましくは3~20質量%である。モノマー成分の濃度が低い場合、モノマーと触媒との接触頻度が低下するため、分子量が大きくなりすぎず、反応溶液のゲル化又は生成物の不溶化を抑制しやすくなる。一方で、モノマー成分の濃度が低すぎる場合、反応液量が多く、反応後の処理又は枝分かれポリマーの回収が煩雑になる傾向がある。モノマー成分の濃度が高い場合、モノマーと触媒との接触頻度が増加し、反応が進みやすくなるため、高分子量の枝分かれポリマーを得やすくなる。一方で、モノマー成分の濃度が高すぎる場合、モノマーが溶媒に溶解しにくい傾向があるか、又は、枝分かれポリマーの溶解性が低くなり析出物が生じる傾向がある。モノマー及び枝分かれポリマーの溶解性、所望とする分子量等を加味しつつ、適切な濃度を選択できる。
 触媒濃度は、モノマーの全モル数を基準として、例えば0.01~5mol%とでき、好ましくは0.02~3mol%、より好ましくは0.03~1mol%である。触媒濃度が低い場合、枝分かれポリマー中に残存する触媒残渣を少なくできる。一方で、触媒濃度が低すぎる場合、十分な触媒作用が得られないため、反応の再現性が低下する傾向がある。触媒濃度が高い場合、触媒作用が十分であるため、反応の良好な再現性を得ることができる。一方で、触媒濃度が高すぎる場合、枝分かれポリマー中に残存する触媒残渣が多くなる傾向がある。触媒残渣の影響、反応の再現性等を加味しつつ、適切な触媒濃度を選択できる。
 反応温度は、例えば10~250℃とでき、好ましくは20~200℃、より好ましくは30~180℃である。反応温度が低い場合、反応が暴走しにくくなる又はモノマーが劣化しにくくなる。一方で、反応温度が低すぎる場合、枝分かれポリマーの生成に長時間を要する傾向がある。反応温度が高い場合、枝分かれポリマーを高速で生成させることができる。一方で、反応温度が高すぎる場合、反応を制御しにくくなる傾向があるか、又は、不要な副反応が生じやすくなる傾向がある。モノマーの熱安定性、枝分かれポリマーの分子量の制御等を加味しながら、適切な反応温度を選択できる。
 反応時間は、例えば10分~48時間とでき、好ましくは30分~24時間、より好ましくは1時間~12時間である。反応時間が短い場合、枝分かれポリマーを高速で製造できる。反応時間が短すぎる場合、反応を十分に進行させることができない傾向がある。反応時間が長い場合、反応を十分に進行させることができる。反応時間が長すぎる場合、生産効率が低下する傾向がある。反応が十分に進行する時間、生産効率等を加味しながら、適切な反応時間を選択できる。
 反応性モノマー(1)を含むモノマー成分の反応物として、枝分かれポリマーが得られる。一実施形態において、製造方法は、任意の工程を含むことができる。任意の工程として、枝分かれポリマーを回収する工程、洗浄する工程、精製する工程等のポリマーを製造する際に一般的に用いられる工程が挙げられる。
[モノマー]
 製造方法に使用されるモノマー成分は、少なくとも反応性モノマー(1)を含み、反応性モノマー(2)及び/又は反応性モノマー(3)を更に含んでもよい。「モノマー成分」は、「1種のみのモノマー」であっても、「2種以上のモノマーを含むモノマー混合物」であってもよい。各反応性モノマーに含まれる共役ユニット及び反応性官能基は、目的とする枝分かれポリマー、使用する反応方法等に適したものであればよく、特に限定されない。例えば、電荷輸送性を示す枝分かれポリマーを得るためには、電荷輸送性に優れた共役ユニットを含む反応性モノマーを選択すればよい。また、例えば、カップリング反応を行う工程を含む製造方法には、カップリング反応し得る反応性官能基を有する反応性モノマーを選択すればよい。モノマー成分は、反応性モノマー(1)、反応性モノマー(2)、及び反応性モノマー(3)を、それぞれ1種のみ含んでも、2種以上含んでもよい。モノマー成分は、他の任意のモノマーを更に含むことができる。
(反応性モノマー(1))
 反応性モノマー(1)は、共役ユニットと、該共役ユニットに結合する3つ以上の反応性官能基とを少なくとも有する。前記3つ以上の反応性官能基は、互いに異なる2種の反応性官能基を含む。
 (共役ユニット)
 一実施形態において、「共役ユニット(Conjugation Unit)」は、π電子を有する原子団である。共役ユニットは、π電子を持つ骨格を有していればよく、好ましくは共役二重結合を有する。共役ユニットは、特に限定されないが、芳香環を有する原子団が好ましい。
 芳香環の例には、芳香族炭化水素環及び芳香族複素環が含まれる。
 芳香族炭化水素環としては、フェニレン、ナフタレン、アントラセン、テトラセン、フルオレン、フェナントレン、9,10-ジヒドロフェナントレン、トリフェニレン、ピレン、ペリレン等が挙げられる。
 芳香族複素環としては、ピリジン、ピラジン、キノリン、イソキノリン、カルバゾール、アクリジン、フェナントロリン、フラン、ピロール、チオフェン、オキサゾール、オキサジアゾール、チアジアゾール、トリアゾール、ベンゾオキサゾール、ベンゾオキサジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェン等が挙げられる。
 共役ユニットは、2つ以上の芳香環が、直接、又は、炭素原子、酸素原子、窒素原子等を介して結合した原子団であってもよい。芳香環の数の上限は、例えば、6つ以下であり、好ましくは4つ以下であり、例えば3つである。
 共役ユニットは、反応性官能基以外に置換基を有してもよい。置換基はモノマーに含まれる反応性官能基とは異なる基である。置換基としては、例えば、-R(但し、水素原子である場合を除く。)、-OR、-SR、-OCOR、-COOR、-SiR、ハロゲン原子、及び後述する重合性官能基を含む基からなる群から選択される置換基(以下、該置換基を「置換基Ra」という場合がある。)が挙げられる。R~Rは、それぞれ独立に、水素原子;直鎖、分岐又は環状アルキル基(好ましくは炭素数1~22個);アリール基(好ましくは炭素数6~30個);又は、ヘテロアリール基(好ましくは炭素数2~30個)を表す。
 直鎖、分岐又は環状アルキル基は、更に、アリール基(好ましくは炭素数6~30個)及び/又はヘテロアリール基(好ましくは炭素数2~30個)により置換されていてもよく、アリール基及びヘテロアリール基は、更に、直鎖、分岐又は環状アルキル基(好ましくは炭素数1~22個)により置換されていてもよい。ハロゲン原子の例としてはフッ素原子が挙げられる。アルキル基、アリール基、又はヘテロアリール基は、ハロゲン原子により置換されていてもよく、例として、直鎖、分岐又は環状のパーフルオロアルキル基(好ましくは炭素数1~22個)が挙げられる。
 本開示において、「直鎖、分岐又は環状アルキル基」は、直鎖若しくは分岐の飽和炭化水素から水素原子1個を除いた原子団、又は、環式飽和炭化水素から水素原子1個を除いた原子団である。
 本開示において、アリール基は、芳香族炭化水素環から水素原子1個を除いた原子団である。ヘテロアリール基は、芳香族複素環から水素原子1個を除いた原子団である。
 一実施形態において、共役ユニットは、正孔又は電子を輸送する優れた能力を有する原子団であってもよい。該原子団は、特に限定されないが、芳香族アミン構造、カルバゾール構造、及びチオフェン構造からなる群から選択される少なくとも1つの構造を含む原子団であることが好ましい。以下、芳香族アミン構造、カルバゾール構造、及びチオフェン構造からなる群から選択される少なくとも1つの構造を含むユニットを、「電荷輸送性ユニット(Charge Transport Unit)」という。電荷輸送性ユニットを含むモノマーを用いて形成された枝分かれポリマーは、電荷輸送性ポリマーとして優れた特性を示す。枝分かれポリマーは、電荷輸送性ユニット以外の共役ユニットを含んでもよい。枝分かれポリマーが電荷輸送性ユニット以外の共役ユニットを含む場合、電荷輸送性の調整、導入する置換基数の調整等を容易に行うことができる。
 例えば、電荷輸送性ユニット以外の共役ユニットは、下記式(a1)~(a16)で表される構造から選択される。ただし、下記式(a1A)~(a16)で表される構造には、反応性官能基の結合位置(-*)は示されていない。
Figure JPOXMLDOC01-appb-C000005
 Rは、それぞれ独立に、水素原子又は置換基を表す。置換基の例として、前記置換基Raが挙げられる。
 式(a1)~(a16)で表される構造は、置換可能な位置に置換基を有してもよい。置換基の例として、前記置換基Raが挙げられる。
 例えば、電荷輸送性ユニットは、下記式(b1)~(b58)で表される構造から選択される。ただし、下記式(b1)~(b58)で表される構造には、反応性官能基の結合位置(-*)は示されていない。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 Arは、それぞれ独立に、アリール基(好ましくは炭素数6~30個)若しくはヘテロアリール基(好ましくは炭素数2~30個)、又は、アリーレン基(好ましくは炭素数6~30個)若しくはヘテロアリーレン基(好ましくは炭素数2~30個)を表す。
 Xは、それぞれ独立に、2価の連結基を表す。特に制限はないが、Xは、直鎖、分岐又は環状アルキル基(好ましくは炭素数1~22個)、アリール基(好ましくは炭素数6~30個)、及びヘテロアリール基(好ましくは炭素数2~30個)のうち水素原子を1つ以上有する基から、1つの水素原子を除去した基;又は、後記連結基群(c)から選択される基等が好ましい。
 xは、0~2の整数を表す。
 Rは、それぞれ独立に、水素原子又は置換基を表す。置換基の例として、前記置換基Raが挙げられる。
 式(b1)~(b58)で表される構造は、置換可能な位置に置換基を有してもよい。置換基の例として、前記置換基Raが挙げられる。
 本開示において、アリーレン基は、芳香族炭化水素環から水素原子2個を除いた原子団である。ヘテロアリーレン基は、芳香族複素環から水素原子2個を除いた原子団である。
Figure JPOXMLDOC01-appb-C000011
 Arは、それぞれ独立に、アレーン-トリイル基(好ましくは炭素数6~30個)若しくはヘテロアレーン-トリイル基(好ましくは炭素数2~30個)又はアレーン-テトライル基(好ましくは炭素数6~30個)若しくはヘテロアレーン-テトライル基(好ましくは炭素数2~30個)を表す。
 Rは、それぞれ独立に、水素原子又は置換基を表す。置換基の例として、前記置換基Raが挙げられる。
 本開示において、アレーン-トリイル基は、芳香族炭化水素環から水素原子3個を除いた原子団である。ヘテロアレーン-トリイル基は、芳香族複素環から水素原子3個を除いた原子団である。
 本開示において、アレーン-テトライル基は、芳香族炭化水素環から水素原子4個を除いた原子団である。ヘテロアレーン-テトライル基は、芳香族複素環から水素原子4個を除いた原子団である。
 (重合性官能基を含む基)
 一実施形態において、重合反応により硬化させ、溶媒への溶解度を変化させるため、枝分かれポリマーは、重合性官能基を含む基を少なくとも1つ有することが好ましい。「重合性官能基」とは、熱及び/又は光を加えることにより、互いに結合を形成し得る官能基をいう。
 重合性官能基としては、炭素-炭素多重結合を有する基(例えば、ビニル基、スチリル基、アリル基、ブテニル基、エチニル基、アクリロイル基、アクリロイルオキシ基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルオキシ基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基等)、小員環を有する基(例えば、シクロプロピル基、シクロブチル基等の環状アルキル基;エポキシ基(オキシラニル基)、オキセタン基(オキセタニル基)等の環状エーテル基;ジケテン基;エピスルフィド基;ラクトン基;ラクタム基、ベンゾシクロブテン基等)、複素環基(例えば、フラン-イル基、ピロール-イル基、チオフェン-イル基、シロール-イル基)などが挙げられる。重合性官能基としては、炭素-炭素多重結合を有する基及び小員環を有する基が好ましく、炭素-炭素二重結合を有する基及び環状エーテル基が好ましい。特に、ビニル基、スチリル基、アクリロイル基、アクリロイルオキシ基、メタクリロイル基、メタクリロイルオキシ基、ベンゾシクロブテン基、エポキシ基、及びオキセタン基が好ましく、反応性及び有機エレクトロニクス素子の特性の観点から、ビニル基、スチリル基、ベンゾシクロブテン基、オキセタン基、及びエポキシ基がより好ましい。
 重合性官能基の自由度を上げ、重合反応を生じさせやすくする観点からは、枝分かれポリマーの主骨格と重合性官能基とが、アルキレン鎖で連結されていることが好ましい。また、例えば、電極上に有機層を形成する場合、ITO等の親水性電極との親和性を向上させる観点からは、エチレングリコール鎖、ジエチレングリコール鎖等の親水性の鎖で連結されていることが好ましい。さらに、重合性官能基を導入するために用いられるモノマーの調製が容易になる観点からは、枝分かれポリマーは、アルキレン鎖及び/又は親水性の鎖の末端部、すなわち、これらの鎖と重合性官能基との連結部、及び/又は、これらの鎖と枝分かれポリマーの骨格との連結部に、エーテル結合又はエステル結合を有していてもよい。「重合性官能基を含む基」とは、重合性官能基それ自体、又は、重合性官能基とアルキレン鎖等とを合わせた基などが挙げられる。重合性官能基が直鎖、分岐又は環状アルキル基等の置換基を有してもよい。重合性官能基を含む基として、例えば、国際公開第WO2010/140553号に例示された基を好適に用いることができる。
 (反応性官能基)
 反応性モノマーは、共役ユニットに結合する「反応性官能基」を有する。反応性官能基が反応点となり、反応性モノマー同士が反応することによって、共役ユニット間に新たな結合が形成される。反応性官能基は、共役ユニットに含まれる炭素原子に結合していることが好ましく、sp混成軌道をとる炭素原子に結合していることがより好ましい。
 反応性モノマー(1)は、共役ユニットに結合する3つ以上の反応性官能基を有する。該3つ以上の反応性官能基は互いに異なる2種の反応性官能基を含む。以下、2種の反応性官能基を、それぞれ反応性官能基X及び反応性官能基Yという。反応性官能基X及び反応性官能基Yは、互いに反応し得る基である。1つの反応性モノマー(1)が有する反応性官能基Xと、他の1つの反応性モノマー(1)が有する反応性官能基Yとが反応することによって、共役ユニット間に直接又は連結基を介して化学結合が形成される。3つ以上の反応性官能基は、好ましくは互いに異なる2種の反応性官能基のみからなり、この場合、反応性官能基X及び反応性官能基Yの合計数は、反応性モノマー(1)に含まれる反応性官能基の合計数と同じである。反応性モノマー(1)に含まれる反応性官能基の合計数は、枝分かれポリマーを良好に製造する、又は、有機エレクトロニクス素子の特性を向上させる観点から、好ましくは6個以下であり、より好ましくは3個又は4個であり、特に好ましくは3個である。
 一実施形態において、2種以上の反応性モノマー(1)を用いる場合、該反応性モノマー(1)が、同じ反応性官能基Xと同じ反応性官能基Yを持つことが好ましい。すなわち、2種以上の反応性モノマー(1)は、互いに、共役ユニット及び/又は置換基が異なる。
 反応がカップリング反応である場合、反応性官能基X及び反応性官能基Yは、カップリング反応により共役ユニット間に直接又は連結基を介して化学結合を形成し得る公知の基のなかから選択することができる。好ましい反応性官能基X及び反応性官能基Yの組み合わせは、例えば、鈴木カップリングの場合、ハロゲン含有基(X)及びホウ素含有基(Y);ブッフバルト・ハートウィッグカップリングの場合、ハロゲン含有基(X)及びアミノ基又はヒドロキシ基(Y);根岸カップリングの場合、ハロゲン含有基(X)及び亜鉛含有基(Y);スティルカップリングの場合、ハロゲン含有基(X)及び錫含有基(Y);ヘックカップリングの場合、ハロゲン含有基(X)及びエテニル基;並びに、園頭カップリングの場合、ハロゲン含有基(X)及びエチニル基(Y)から選択される。
 カップリング反応のなかでも鈴木カップリングが好ましい。よって、より好ましくは、反応性官能基Xはハロゲン含有基から選択され、反応性官能基Yはホウ素含有基から選択される。ハロゲン含有基としては、例えば、クロロ基、ブロモ基、フルオロ基、トリフルオロメチルスルホニルオキシ基等が挙げられる。ホウ素含有基としては、例えば、下記式(d1)で表される基が挙げられる。特に好ましくは、反応性官能基Xがブロモ基であり、反応性官能基Yが下記式(d2)で表される基である。
Figure JPOXMLDOC01-appb-C000012
 Rは、それぞれ独立に、ヒドロキシ基、直鎖又は分岐アルキル基、又は、直鎖又は分岐アルコキシ基を表す。アルキル基及びアルコキシ基の炭素数は、好ましくは1~6である。2つのRが結合し、環が形成されていてもよい。
 Rは、直鎖又は分岐アルキレン基を表す。アルキレン基の炭素数は、1~12が好ましく、1~10が好ましく、2~6がより好ましい。
 (構造例)
 反応性モノマー(1)は、例えば、下記式(1A)又は式(1B)で表される。
Figure JPOXMLDOC01-appb-C000013
 CUは共役ユニットを表し、CTUは電荷輸送性ユニットを表す。CU及びCTUは、それぞれ、置換基を有してもよい。
 Xは反応性官能基Xを表し、Yは反応性官能基Yを表す。
 lは、1以上の整数であり、Xの数を表し、mは、1以上の整数であり、Yの数を表す。l+m≧3である。
 CUの例には、電荷輸送性ユニットと、それ以外の共役ユニットとが含まれる。
 CU及びCTUが有してもよい置換基としては、例えば、前記置換基Raが挙げられる。
 Xは、好ましくはハロゲン含有基から選択される基であり、より好ましくはハロゲン基であり、更に好ましくはブロモ基である。
 Yは、好ましくはホウ素含有基から選択される基であり、より好ましくは式(d1)で表される基であり、更に好ましくは式(d2)で表される基である。
 lは、好ましくは5以下の整数であり、より好ましくは1又は2である。mは、好ましくは5以下の整数であり、より好ましくは1又は2である。l+mは、好ましくは6以下の整数であり、より好ましくはl+mは3又は4である。
 一実施形態において、反応性モノマー(1)は、電荷輸送性ユニットを有することが好ましく、よって、反応性モノマー(1)は、好ましくは式(1B)で表される。
 CTUは、好ましくは式(b1)~(b58)で表される構造から選択され、より好ましくは式(b1)、(b2)、(b4)、(b9)、(b10)、(b15)~(b17)、及び(b27)~(b35)で表される構造から選択され、更に好ましくは(b1)及び(b15)で表される構造から選択される。
(反応性モノマー(2))
 反応性モノマー(2)は、共役ユニットと、該共役ユニットに結合する2つの反応性官能基とを少なくとも有する。
 (共役ユニット)
 反応性モノマー(1)における「共役ユニット」の説明は、反応性モノマー(2)における「共役ユニット」にも適用される。
 (反応性官能基)
 2つの反応性官能基は、反応性モノマー(1)が有する2種の反応性官能基から選択される1種の反応性官能基と反応し得る基である。以下、2つの反応性官能基の各々を、共に反応性官能基Z2という。2つの反応性官能基Z2は、共に反応性官能基Xと反応し得る基であるか、又は、共に反応性官能基Yと反応し得る基である。反応性官能基Z2が、反応性官能基X及び反応性官能基Yのいずれか一方と反応することによって、共役ユニット間に直接又は連結基を介して化学結合が形成される。1つの反応性官能基Z2と、もう1つの反応性官能基Z2は、同一でも異なっていてもよい。反応性を考慮すると、同一であることが好ましい。例えば、2つの反応性官能基Z2は、好ましくは、共に反応性官能基Y及び反応性官能基Xのいずれか一方と同じ基であり、より好ましくは、共に、反応性官能基Y及び反応性官能基Xのうち、反応性モノマー(1)内で数が少ない方の基と同じ基である。反応性官能基Z2は、後述する反応性官能基Z3と反応し得る基であってもよい。この場合、反応性官能基Z2は、反応性官能基Y及び反応性官能基Xのうち、反応性モノマー(1)内で数が多い方の基と同じ基であってもよい。
 一実施形態において、2種以上の反応性モノマー(2)を用いる場合、該反応性モノマー(2)が同じ反応性官能基Z2を持つことが好ましい。すなわち、2種以上の反応性モノマー(2)は、互いに、共役ユニット及び/又は置換基が異なる。
 2つ反応性官能基Z2の両方は、ハロゲン含有基及びホウ素含有基から選択される基であることが好ましく、クロロ基、ブロモ基、フルオロ基、トリフルオロメチルスルホニルオキシ基、及び式(d1)で表される基から選択される基であることがより好ましく、ブロモ基及び式(d2)で表される基から選択される基であることが好ましい。
 (構造例)
 反応性モノマー(2)は、例えば、下記式(2A)又は(2B)で表される。
Figure JPOXMLDOC01-appb-C000014
 CUは共役ユニットを、CTUは電荷輸送性ユニットを表す。CU及びCTUは、それぞれ、置換基を有してもよい。
 Zは反応性官能基Z2を表す。
 CUの例には、電荷輸送性ユニットと、それ以外の共役ユニットとが含まれる。
 CU及びCTUが有してもよい置換基としては、例えば、前記置換基Raが挙げられる。
 Zは、好ましくはハロゲン含有基及びホウ素含有基から選択される基であり、より好ましくはハロゲン基及び式(d1)で表される基から選択される基であり、更に好ましくはブロモ基及び式(d2)で表される基から選択される基である。
 一実施形態において、反応性モノマー(2)は、電荷輸送性ユニットを有することが好ましく、よって、反応性モノマー(2)は、好ましくは式(2B)で表される。
 CTUは、好ましくは式(b1)~(b58)で表される構造から選択され、より好ましくは式(b1)~(b8)及び(b15)~(b26)で表される構造から選択され、更に好ましくは(b1)~(b4)及び(b15)~(b21)で表される構造から選択される。
(反応性モノマー(3))
 反応性モノマー(3)は、共役ユニットと、該共役ユニットに結合する1つの反応性官能基とを少なくとも有する。
 (共役ユニット)
 反応性モノマー(1)における「共役ユニット」の説明は、反応性モノマー(3)における「共役ユニット」にも適用される。
 (反応性官能基)
 1つの反応性官能基は、反応性モノマー(1)が有する2種の反応性官能基から選択される1種の反応性官能基と反応し得る基である。以下、1つの反応性官能基を、反応性官能基Z3という。反応性官能基Z3は、反応性官能基X又は反応性官能基Yと反応し得る基である。反応性官能基Z3が、反応性官能基X及び反応性官能基Yのいずれか一方と反応することによって、共役ユニット間に直接又は連結基を介して化学結合が形成される。反応性官能基Z3は、好ましくは反応性官能基Y及び反応性官能基Xのいずれか一方と同じ基であり、より好ましくは反応性官能基Y及び反応性官能基Xのうち、反応性モノマー(1)内で数が少ない方の基と同じ基である。反応性官能基Z3は、反応性官能基Z2と反応し得る基であってもよい。この場合、反応性官能基Z3は、反応性官能基Y及び反応性官能基Xのうち、反応性モノマー(1)内で数が多い方の基と同じ基であってもよい。
 一実施形態において、2種以上の反応性モノマー(3)を用いる場合、該反応性モノマー(3)が同じ反応性官能基Z3を持つことが好ましい。すなわち、2種以上の反応性モノマー(3)は、互いに、共役ユニット及び/又は置換基が異なる。
 反応性官能基Z3は、ハロゲン含有基及びホウ素含有基から選択される基であることが好ましく、クロロ基、ブロモ基、フルオロ基、トリフルオロメチルスルホニルオキシ基、及び式(d1)で表される基から選択される基であることがより好ましく、ブロモ基及び式(d2)で表される基から選択される基であることが好ましい。
 (重合性官能基を有する反応性モノマー(3C))
 一実施形態において、枝分かれポリマーに優れた硬化性を付与するため、反応性モノマー(3)は、共役ユニットと、該共役ユニットに結合する1つの反応性官能基と、該共役ユニットに結合する1つ以上の重合性官能基を含む基とを少なくとも有する、反応性モノマー(3C)を含むことが好ましい。反応性官能基及び/又は重合性官能基を含む基については、上述のとおりである。
 (構造例)
 反応性モノマー(3)は、例えば、下記式(3A)、(3B)又は(3C)で表される。
Figure JPOXMLDOC01-appb-C000015
 CUは共役ユニット、CTUは電荷輸送性ユニット、CLUは重合性官能基を含む基を有する共役ユニット(Cross-Link Unit)を表す。CU、CTU及びCLUは、それぞれ、置換基を有してもよい。
 Zは、反応性官能基Z3を表す。
 CUの例には、電荷輸送性ユニットと、それ以外の共役ユニットとが含まれる。CLUは、共役ユニットと、該共役ユニットに結合する1つ以上の重合性官能基を含む基とを有する。
 CU、CTU及びCLUが有してもよい置換基としては、例えば、前記置換基Raが挙げられる。
 Zは、好ましくはハロゲン含有基及びホウ素含有基から選択される基であり、より好ましくはハロゲン基及び式(d1)で表される基から選択される基であり、更に好ましくはブロモ基及び式(d2)で表される基から選択される基である。
 一実施形態において、反応性モノマー(3)は、重合性官能基を含む基を有することが好ましく、よって、反応性モノマー(3)は、好ましくは式(3C)で表される。
 CLUにおける共役ユニットは、好ましくは電荷輸送性ユニット以外の共役ユニットであり、より好ましくは式(a1)~(a16)で表される構造から選択され、更に好ましくは式(a1)で表される構造である。ただし、式(a1)~(a16)には、重合性官能基を含む基の結合位置は示されていない。
 CLUにおける重合性官能基を含む基において、重合性官能基は、好ましくは炭素-炭素多重結合を有する基及び小員環を有する基であり、より好ましくは炭素-炭素二重結合を有する基及び環状エーテル基である。特に、重合性官能基として、ビニル基、スチリル基、アクリロイル基、アクリロイルオキシ基、メタクリロイル基、メタクリロイルオキシ基、ベンゾシクロブテン基、エポキシ基、及びオキセタン基が好ましく、反応性及び有機エレクトロニクス素子の特性の観点から、ビニル基、スチリル基、ベンゾシクロブテン基、オキセタン基、及びエポキシ基がより好ましい。
(反応性モノマーの割合)
 反応性モノマー(1)の含有量は、高い電荷輸送性を発現させる観点から、全モノマーの合計モル数を基準として、10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上が更に好ましい。また、反応性モノマー(1)の含有量は、枝分かれポリマーの溶解性を制御する観点から、全モノマーの合計モル数を基準として、90モル%以下が好ましく、80モル%以下がより好ましく、70モル%以下が更に好ましい。
 反応性モノマー(2)を用いる場合、その含有量は、枝分かれポリマーの溶解性を向上させる観点から、全モノマーの合計モル数を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、反応性モノマー(2)の含有量は、分子量分布を制御する観点から、全モノマーの合計モル数を基準として、90モル%以下が好ましく、70モル%以下がより好ましく、50モル%以下が更に好ましい。
 反応性モノマー(3)を用いる場合、その含有量は、十分な硬化性を発現させる、又は、溶解性を調整する観点から、全モノマーの合計モル数を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、反応性モノマー(3)の含有量は、分子量を制御する観点から、全モノマーの合計モル数を基準として、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。
 電荷輸送性ユニットを有する反応性モノマーを用いる場合、その含有量(反応性モノマー(1)、(2)及び/又は(3)の合計量)は、高い電荷輸送性を発現させる観点から、全モノマーの合計モル数を基準として、15モル%以上が好ましく、20モル%以上がより好ましく、25モル%以上が更に好ましい。また、電荷輸送性ユニットを有する反応性モノマーの含有量は、溶解性、分子量分布等を制御する観点から、全モノマーの合計モル数を基準として、90モル%以下が好ましく、80モル%以下がより好ましく、70モル%以下が更に好ましい。
 反応性モノマー(3)が重合性官能基を有する反応性モノマー(3C)を含む場合、その含有量は、十分な硬化性を発現させる観点から、反応性モノマー(3)の合計モル数を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、重合性官能基を有する反応性モノマー(3C)の含有量は、反応性モノマー(3)の合計モル数を基準として、100モル%としてもよく、他の機能を示す置換基を導入する観点から、例えば、70モル%以下、60モル%以下、又は50モル%以下にしてもよい。
 反応性モノマー(2)及び(3)は、例えば、東京化成工業株式会社、シグマアルドリッチジャパン合同会社等から入手可能である。また、反応性モノマー(1)~(3)は、公知の方法で合成することができる。
[枝分かれポリマー]
(数平均分子量(Mn))
 枝分かれポリマーの数平均分子量は、溶媒への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましく、3,000以上が特に好ましく、5,000以上が極めて好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、500,000以下がより好ましく、100,000以下が更に好ましく、50,000以下が特に好ましく、30,000以下が極めて好ましい。
(重量平均分子量(Mw))
 枝分かれポリマーの重量平均分子量は、溶媒への溶解性、成膜性等を考慮して適宜、調整できる。重量平均分子量は、電荷輸送性に優れるという観点から、1,000以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましく、15,000以上が特に好ましく、20,000以上が極めて好ましい。また、重量平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、700,000以下がより好ましく、400,000以下が更に好ましく、300,000以下が特に好ましく、200,000以下が極めて好ましい。
(分散度(Mw/Mn))
 枝分かれポリマーの分散度は、電荷輸送性に優れるという観点から、20.0以下が好ましく、15.0以下がより好ましく、10.0以下が更に好ましい。特に、電荷輸送性により優れるという観点から、5.0以下、4.0以下、3.0以下、2.5以下、2.0以下がこの順に好ましい。前記範囲は、枝分かれポリマーが重合性官能基を有する場合に、良好な硬化性が得られるという観点からも好ましい範囲である。分散度の下限は特に限定されないが、通常、1.0以上である。
 数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、標準ポリスチレンの検量線を用いて測定することができる。例えば、測定条件は以下のように設定できる。
 装置     :高速液体クロマトグラフ Prominence(株)島津製作所
         送液ポンプ(LC-20AD)
         脱気ユニット(DGU-20A)
         オートサンプラ(SIL-20AHT)
         カラムオーブン(CTO-20A)
         PDA検出器(SPD-M20A)
         示差屈折率検出器(RID-20A)
 カラム    :Gelpack(登録商標)
         GL-A160S(製造番号:686-1J27)
         GL-A150S(製造番号:685-1J27)日立化成(株)
 溶離液    :テトラヒドロフラン(THF)(HPLC用、安定剤含有)和光純薬工業(株)
 流速     :1mL/min
 カラム温度  :40℃
 検出波長   :254nm
 分子量標準物質:PStQuick A/B/C 東ソー(株)
(枝分かれポリマーの構造)
 この製造方法により得られた枝分かれポリマーは、反応性モノマー(1)に含まれる共役ユニットが互いに結合することによって形成された分岐状の部分構造を含む。枝分かれポリマーは、特定の分岐状の部分構造を含むことにより、有機エレクトロニクス材料として好ましく用いることができる。枝分かれポリマーは、有機エレクトロニクス素子の特性を向上させることができる。特定の分岐状の部分構造は、有機層の膜質の向上又は電荷輸送性の向上に寄与すると考えられる。
 枝分かれポリマーに含まれる分岐状の部分構造の例として、後述の部分構造(1)が挙げられる。また、枝分かれポリマーの構造の例として、後述の枝分かれポリマーP2として例示された構造が挙げられる。
 また、この製造方法により、分散度が小さい枝分かれポリマーを製造できるという効果が得られる。分散度が小さい枝分かれポリマーは、電荷輸送性、溶解性等の特性のバラツキが抑制されているため、有機エレクトロニクス素子の性能を向上させることができる。さらに、この製造方法により、枝分かれポリマーを高い収率で製造できるという効果が得られる。この製造方法は、分子量分布を容易に制御することができ、特性のバラツキの小さい枝分かれポリマーを安定して供給できる、生産性に優れた方法である。
 一実施形態において、枝分かれポリマーに効果的に重合性官能基を有する基を導入することができる。特に、ポリマー鎖の末端に重合性官能基を有する基を導入した場合、硬化性により優れた枝分かれポリマーを製造することが可能である。また、得られる枝分かれポリマーが狭分散であることも、硬化性の向上に適している。
<枝分かれポリマーP1>
 一実施形態によれば、枝分かれポリマーP1は、以下の反応性モノマー(1)を少なくとも含むモノマー成分の反応物を含む。
 [1] 共役ユニットと、該共役ユニットに結合する3つ以上の反応性官能基とを少なくとも有し、前記3つ以上の反応性官能基が、互いに異なる2種の反応性官能基を含む、反応性モノマー(1)
 前記モノマー成分は、更に、以下の反応性モノマー(2)及び/又は反応性モノマー(3)を含んでもよい。
 [2] 共役ユニットと、該共役ユニットに結合する2つの反応性官能基とを少なくとも有し、前記2つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(2)
 [3] 共役ユニットと、該共役ユニットに結合する1つの反応性官能基とを少なくとも有し、前記1つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(3)
 反応性モノマー(3)は、重合性官能基を有する反応性モノマー(3C)を含んでもよい。
 [4] 共役ユニットと、該共役ユニットに結合する1つの反応性官能基と、該共役ユニットに結合する1つ以上の重合性官能基を含む基とを少なくとも有し、前記1つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(3C)
 枝分かれポリマーP1は、前記枝分かれポリマーの製造方法により得ることができる。前記枝分かれポリマーの製造方法における説明は、枝分かれポリマーP1にも適用される。すなわち、反応性モノマー(1)~(3)及び(3C)、並びに枝分かれポリマーP1の分子量、分散度等は前記製造方法において説明したとおりである。
<枝分かれポリマーP2>
 一実施形態によれば、枝分かれポリマーP2は、下記式で表される部分構造(1)を少なくとも含む。
Figure JPOXMLDOC01-appb-C000016
 CUは、それぞれ独立に共役ユニットを表す。
 共役ユニットは置換基を有してもよく、置換基としては、例えば、前記置換基Raが挙げられる。
 CUは、好ましくは、それぞれ独立に電荷輸送性ユニットを表し、より好ましくは式(b1)~(b58)で表される構造から選択され、更に好ましくは式(b1)、(b2)、(b4)、(b9)、(b10)、(b15)~(b17)、及び(b27)~(b35)で表される構造から選択され、特に好ましくは(b1)及び(b15)で表される構造から選択される。
 枝分かれポリマーP2は、下記式で表される部分構造(2)及び/又は部分構造(3)を含んでもよい。
Figure JPOXMLDOC01-appb-C000017
 CUは共役ユニットを表す。
 共役ユニットは置換基を有してもよく、置換基としては、例えば、前記置換基Raが挙げられる。枝分かれポリマーP2の製造方法によっては、共役ユニットが、前記反応性官能基X、前記反応性官能基Y等を有することもある。
 CUは、好ましくは電荷輸送性ユニットを表し、より好ましくは式(b1)~(b58)で表される構造から選択され、更に好ましくは式(b1)~(b8)及び(b15)~(b26)で表される構造から選択され、特に好ましくは(b1)~(b4)及び(b15)~(b21)で表される構造から選択される。
Figure JPOXMLDOC01-appb-C000018
 CUは共役ユニットを表す。
 共役ユニットは置換基を有してもよく、置換基としては、例えば、前記置換基Raが挙げられる。枝分かれポリマーP2の製造方法によっては、共役ユニットが、前記反応性官能基X、前記反応性官能基Y、前記反応性官能基Z2等を有することもある。
 部分構造(3)は、下記式で表される部分構造(3C)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000019
 CLUは、重合性官能基を含む基を有する共役ユニットを表す。
 共役ユニットは置換基を有してもよく、置換基としては、例えば、前記置換基Raが挙げられる。枝分かれポリマーP2の製造方法によっては、共役ユニットが、前記反応性官能基X、前記反応性官能基Y、前記反応性官能基Z2等を有することもある。
 CLUにおける共役ユニットは、好ましくは式(a1)~(a16)で表される構造から選択され、より好ましくは式(a1)で表される構造である。
 CLUにおける重合性官能基を含む基において、重合性官能基の好ましい例として、反応性モノマー(C2)の説明において例示された基が挙げられる。
 前記枝分かれポリマーの製造方法における共役ユニット、電荷輸送性ユニット、CU、CTU、CLU、反応性官能基、分子量の測定方法等に関する説明は、矛盾しない範囲で枝分かれポリマーP2にも適用される。
 枝分かれポリマーP2は、部分構造(1)を含むことにより、有機エレクトロニクス材料として好ましく用いることができる。枝分かれポリマーP2は、有機エレクトロニクス素子の特性を向上させることができる。部分構造(1)は、有機層の膜質の向上又は電荷輸送性の向上に寄与すると考えられる。
 また、一実施形態によれば、枝分かれポリマーP2には、効果的に重合性官能基を有する基を導入することができる。特に、枝分かれポリマーP2のポリマー鎖の末端に重合性官能基を有する基を導入することによって、より優れた硬化性が得られる。
(電荷輸送性ユニット、共役ユニット及び重合性官能基ユニットの割合)
 枝分かれポリマーP2が電荷輸送性ユニットを含む場合、その割合は、十分な電荷輸送性を得る観点から、全ユニット数を基準として、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましい。また、電荷輸送性ユニットの割合は、100モル%としてもよく、必要に応じて導入される他の共役ユニットを考慮すると、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下が更に好ましい。
 枝分かれポリマーP2が電荷輸送性ユニット以外の共役ユニットを含む場合、その割合は、電荷輸送性を調整する、導入する置換基数を調整する等の観点から、全ユニット数を基準として、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上が更に好ましい。また、電荷輸送性ユニット以外の共役ユニットの割合は、枝分かれポリマーの合成を良好に行う、電荷輸送性を調整する等の観点から、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が更に好ましい。
 枝分かれポリマーP2が重合性官能基を有する場合、重合性官能基の割合は、枝分かれポリマーを効率よく硬化させるという観点から、全ユニット数を基準として、0.1モル%以上が好ましく、1モル%以上がより好ましく、3モル%以上が更に好ましい。また、重合性官能基の割合は、良好な電荷輸送性を得るという観点から、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。なお、ここでの「重合性官能基の割合」とは、重合性官能基を含む基を有する共役ユニットの割合をいう。
 重合性官能基は、溶解度の変化の観点からは、枝分かれポリマーP2中に多く含まれる方が好ましい。一方、電荷輸送性を妨げない観点からは、枝分かれポリマー中に含まれる量が少ない方が好ましい。重合性官能基の含有量は、これらを考慮し、適宜設定できる。例えば、枝分かれポリマー1分子あたりの重合性官能基数は、十分な溶解度の変化を得る観点から、2個以上が好ましく、3個以上がより好ましい。また、重合性官能基数は、電荷輸送性を保つ観点から、1,000個以下が好ましく、500個以下がより好ましい。
 電荷輸送性、耐久性、生産性等のバランスを考慮すると、電荷輸送性ユニット及びそれ以外の共役ユニットの割合(モル比)は、電荷輸送性ユニット:それ以外の共役ユニット=100:70~1が好ましく、100:50~3がより好ましく、100:30~5が更に好ましい。
 枝分かれポリマーP2の製造方法によるが、各ユニットの割合は、例えば、枝分かれポリマーを合成するために使用した、各ユニットに対応するモノマーの仕込み量を用いて求めることができる。また、各ユニットの割合は、枝分かれポリマーP2のH NMRスペクトルにおける各ユニットに由来するスペクトルの積分値を利用し、平均値として算出することができる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。
 枝分かれポリマーP2の1分子あたりの重合性官能基数は、枝分かれポリマーP2を合成するために使用した、重合性官能基の仕込み量(例えば、重合性官能基を含む基を有するモノマーの仕込み量)、各ユニットに対応するモノマーの仕込み量、枝分かれポリマーP2の重量平均分子量等を用い、平均値として求めることができる。また、重合性官能基の数は、枝分かれポリマーP2のH NMR(核磁気共鳴)スペクトルにおける重合性官能基に由来するシグナルの積分値と全スペクトルの積分値との比、枝分かれポリマーP2の重量平均分子量等を利用し、平均値として算出できる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。
(数平均分子量(Mn))
 枝分かれポリマーP2の数平均分子量は、溶媒への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましく、3,000以上が特に好ましく、5,000以上が極めて好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、500,000以下がより好ましく、100,000以下が更に好ましく、50,000以下が特に好ましく、30,000以下が極めて好ましい。
(重量平均分子量(Mw))
 枝分かれポリマーP2の重量平均分子量は、溶媒への溶解性、成膜性等を考慮して適宜、調整できる。重量平均分子量は、電荷輸送性に優れるという観点から、1,000以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましく、15,000以上が特に好ましく、20,000以上が極めて好ましい。また、重量平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、700,000以下がより好ましく、400,000以下が更に好ましく、300,000以下が特に好ましく、200,000以下が極めて好ましい。
(分散度(Mw/Mn))
 枝分かれポリマーP2の分散度は、電荷輸送性に優れるという観点から、20.0以下が好ましく、15.0以下がより好ましく、10.0以下が更に好ましい。特に、電荷輸送性により優れるという観点から、5.0以下、4.0以下、3.0以下、2.5以下、2.0以下がこの順に好ましい。前記範囲は、枝分かれポリマーP2が重合性官能基を有する場合に、良好な硬化性が得られるという観点からも好ましい範囲である。分散度の下限は特に限定されないが、通常、1.0以上である。分散度が小さい枝分かれポリマーP2は、電荷輸送性、溶解性等の特性のバラツキが抑制されているため、有機エレクトロニクス素子の性能をより安定させることができる。
 枝分かれポリマーの製造方法は特に限定されない。製造方法として、部分構造(1)を有するモノマーを用いる方法;グラフト重合を行う方法;前記枝分かれポリマーの製造方法等が挙げられる。前記枝分かれポリマーの製造方法によれば、低分散度の枝分かれポリマーP2を製造することができる。また、前記枝分かれポリマーの製造方法は、枝分かれポリマーP2を簡便に、効率よく製造できる方法である。
 枝分かれポリマーP2は、部分構造(1)を、1種のみ含んでいても、又は、2種以上含んでいてもよい。部分構造(2)及び部分構造(3)についても同様である。
 枝分かれポリマーP2は、部分構造(1)を、以下に示す構造の一部として有してもよい。
Figure JPOXMLDOC01-appb-C000020
 枝分かれポリマーP2の構造例を、以下に示す。枝分かれポリマーP2の構造は以下に限定されない。
Figure JPOXMLDOC01-appb-C000021
<有機エレクトロニクス材料>
 一実施形態によれば、有機エレクトロニクス材料は、少なくとも前記枝分かれポリマー製造方法により製造された枝分かれポリマー、枝分かれポリマーP1、又は枝分かれポリマーP2を含む。枝分かれポリマーを使用することによって、有機エレクトロニクス素子の素子特性を容易に向上させることができる。有機エレクトロニクス材料は、枝分かれポリマーを1種のみ含有しても、2種以上を含有してもよい。
[ドーパント]
 有機エレクトロニクス材料は、ドーパントを更に含有してもよい。ドーパントは、有機エレクトロニクス材料に添加することでドーピング効果を発現させ、電荷の輸送性を向上させ得る化合物であればよく、特に制限はない。ドーピングには、p型ドーピングとn型ドーピングがあり、p型ドーピングではドーパントとして電子受容体として働く物質が用いられ、n型ドーピングではドーパントとして電子供与体として働く物質が用いられる。正孔輸送性の向上にはp型ドーピング、電子輸送性の向上にはn型ドーピングを行うことが好ましい。有機エレクトロニクス材料に用いられるドーパントは、p型ドーピング又はn型ドーピングのいずれの効果を発現させるドーパントであってもよい。また、1種のドーパントを単独で添加しても、複数種のドーパントを混合して添加してもよい。
 p型ドーピングに用いられるドーパントは、電子受容性の化合物であり、例えば、ルイス酸、プロトン酸、遷移金属化合物、イオン化合物、ハロゲン化合物、π共役系化合物等が挙げられる。具体的には、ルイス酸としては、FeCl、PF、AsF、SbF、BF、BCl、BBr等;プロトン酸としては、HF、HCl、HBr、HNO、HSO、HClO等の無機酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ポリビニルスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、1-ブタンスルホン酸、ビニルフェニルスルホン酸、カンファスルホン酸等の有機酸;遷移金属化合物としては、FeOCl、TiCl、ZrCl、HfCl、NbF、AlCl、NbCl、TaCl、MoF;イオン化合物としては、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、トリス(トリフルオロメタンスルホニル)メチドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロアンチモン酸イオン、AsF (ヘキサフルオロ砒酸イオン)、BF (テトラフルオロホウ酸イオン)、PF (ヘキサフルオロリン酸イオン)等のパーフルオロアニオンを有する塩、アニオンとして前記プロトン酸の共役塩基を有する塩など;ハロゲン化合物としては、Cl、Br、I、ICl、ICl、IBr、IF等;π共役系化合物としては、TCNE(テトラシアノエチレン)、TCNQ(テトラシアノキノジメタン)等が挙げられる。また、特開2000-36390号公報、特開2005-75948号公報、特開2003-213002号公報等に記載の電子受容性化合物を用いることも可能である。好ましくは、ルイス酸、イオン化合物、π共役系化合物等である。
 n型ドーピングに用いられるドーパントは、電子供与性の化合物であり、例えば、Li、Cs等のアルカリ金属;Mg、Ca等のアルカリ土類金属;LiF、CsCO等のアルカリ金属及び/又はアルカリ土類金属の塩;金属錯体;電子供与性有機化合物などが挙げられる。
 枝分かれポリマーが重合性官能基を有する場合は、有機層の溶解度の変化を容易にするために、ドーパントとして、重合性官能基に対する重合開始剤として作用し得る化合物を用いることが好ましい。
[他の任意成分]
 有機エレクトロニクス材料は、電荷輸送性低分子化合物、他のポリマー等を更に含有してもよい。
[含有量]
 枝分かれポリマーの含有量は、良好な電荷輸送性を得る観点から、有機エレクトロニクス材料の全質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。100質量%とすることも可能である。
 ドーパントを含有する場合、その含有量は、有機エレクトロニクス材料の電荷輸送性を向上させる観点から、有機エレクトロニクス材料の全質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上が更に好ましい。また、成膜性を良好に保つ観点から、有機エレクトロニクス材料の全質量に対して、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。
<インク組成物>
 一実施形態によれば、インク組成物は、少なくとも、前記枝分かれポリマーの製造方法により得られた枝分かれポリマー、前記枝分かれポリマーP1、前記枝分かれポリマーP2、又は前記有機エレクトロニクス材料と、これらを溶解又は分散し得る溶媒とを含有する。インク組成物は、枝分かれポリマーによる特性を低下させない範囲で、必要に応じて、公知の各種添加剤を含有してもよい。インク組成物を用いることによって、塗布法といった簡便な方法によって有機層を容易に形成できる。
[溶媒]
 溶媒としては、水、有機溶媒、又はこれらの混合溶媒を使用できる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール;ペンタン、ヘキサン、オクタン等のアルカン;シクロヘキサン等の環状アルカン;ベンゼン、トルエン、キシレン、メシチレン、テトラリン、ジフェニルメタン等の芳香族炭化水素;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、テトラヒドロフラン、アセトン、クロロホルム、塩化メチレンなどが挙げられる。好ましくは、芳香族炭化水素、脂肪族エステル、芳香族エステル、脂肪族エーテル、芳香族エーテル等である。
[重合開始剤]
 枝分かれポリマーが重合性官能基を含む基を有する場合、インク組成物は、好ましくは、重合開始剤を含有する。重合開始剤として、公知のラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤等を使用できる。インク組成物を簡便に調製できる観点から、ドーパントとしての機能と重合開始剤としての機能とを兼ねる物質を用いることが好ましい。そのような物質として、例えば、前記イオン化合物が挙げられる。
[添加剤]
 インク組成物は、更に、任意成分として添加剤を含有してもよい。添加剤としては、例えば、重合禁止剤、安定剤、増粘剤、ゲル化剤、難燃剤、酸化防止剤、還元防止剤、酸化剤、還元剤、表面改質剤、乳化剤、消泡剤、分散剤、界面活性剤等が挙げられる。
[含有量]
 インク組成物における溶媒の含有量は、種々の塗布方法へ適用することを考慮して定めることができる。例えば、溶媒の含有量は、溶媒に対し枝分かれポリマーの割合が、0.1質量%以上となる量が好ましく、0.2質量%以上となる量がより好ましく、0.5質量%以上となる量が更に好ましい。また、溶媒の含有量は、溶媒に対し枝分かれポリマーの割合が、20質量%以下となる量が好ましく、15質量%以下となる量がより好ましく、10質量%以下となる量が更に好ましい。
<有機層(有機薄膜)>
 一実施形態によれば、有機層は、前記枝分かれポリマーの製造方法により得られた枝分かれポリマー、枝分かれポリマーP1、枝分かれポリマーP2、又は、前記有機エレクトロニクス材料を含有する。枝分かれポリマーは、有機層中に、枝分かれポリマーそのものとして、又は、重合物、反応物等の枝分かれポリマーから誘導される誘導体として、含まれる。同様に、有機エレクトロニクス材料は、有機層中に、有機エレクトロニクス材料そのものとして、又は、重合物、反応物、分解物等の有機エレクトロニクス材料から誘導される誘導体として、含まれる。
 インク組成物を用いることによって、塗布法により有機層を良好に形成できる。有機層の製造方法の一例は、インク組成物を塗布する工程を含む。塗布方法としては、例えば、スピンコーティング法;キャスト法;浸漬法;凸版印刷、凹版印刷、オフセット印刷、平版印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等の有版印刷法;インクジェット法等の無版印刷法などの公知の方法が挙げられる。
 有機層の製造方法は、塗布後に得られた有機層(すなわち、塗布層)を、ホットプレート又はオーブンを用いて乾燥させ、溶媒を除去する工程、及び塗布層を硬化させる工程など、任意の工程を更に含んでもよい。
 枝分かれポリマーが重合性官能基を有する場合、光照射、加熱処理等により枝分かれポリマーの重合反応を進行させ、有機層の溶解度を変化させることができる。溶解度を変化させた有機層上に他の有機層を積層することで、多層構造の有機エレクトロニクス素子を容易に製造可能となる。
 乾燥後又は硬化後の有機層の厚さは、優れた電荷輸送性を得る観点から、好ましくは0.1nm以上であり、より好ましくは1nm以上であり、更に好ましくは3nm以上である。また、有機層の厚さは、電気抵抗を小さくする観点から、好ましくは300nm以下であり、より好ましくは200nm以下であり、更に好ましくは100nm以下である。
<有機エレクトロニクス素子>
 一実施形態によれば、有機エレクトロニクス素子は、少なくとも前記有機層を有する。有機エレクトロニクス素子として、例えば、有機EL素子、有機光電変換素子、有機トランジスタ等が挙げられる。有機エレクトロニクス素子は、好ましくは、少なくとも一対の電極の間に有機層が配置された構造を有する。
<有機EL素子>
 一実施形態によれば、有機EL素子は、少なくとも前記有機層を有する。有機EL素子は、通常、発光層、陽極、陰極、及び基板を備えており、必要に応じて、正孔注入層、電子注入層、正孔輸送層、電子輸送層等の他の機能層を備えている。各層は、蒸着法により形成してもよく、塗布法により形成してもよい。有機EL素子は、好ましくは、有機層を発光層又は他の機能層として有し、より好ましくは他の機能層として有し、更に好ましくは正孔注入層及び正孔輸送層の少なくとも一方として有する。一実施形態において、有機EL素子は、少なくとも正孔注入層を有し、該正孔注入層が前記有機層である。また、一実施形態において、有機EL素子は、少なくとも正孔輸送層を有し、該正孔輸送層が前記有機層である。さらに、有機EL素子は、少なくとも正孔注入層及び正孔輸送層を有し、両方が前記有機層であってもよい。
 図1及び図2は、それぞれ有機EL素子の一実施形態を示す断面模式図である。図1に示す有機EL素子は、多層構造の素子であり、基板6の上に、陽極1、正孔注入層2、発光層3、電子注入層4、及び陰極5をこの順に有している。一実施形態において、正孔注入層2は、前記有機層である。
 図2に示す有機EL素子は、多層構造の素子であり、基板6の上に、陽極1、正孔注入層2、正孔輸送層7、発光層3、電子輸送層8、電子注入層4、及び陰極5をこの順に有している。一実施形態において、正孔注入層2及び正孔輸送層7の少なくとも一方は、前記有機層である。以下、各層について説明する。
[発光層]
 発光層の形成に使用される材料として、低分子化合物、ポリマー、デンドリマー等の発光材料を使用できる。ポリマーは、溶媒への溶解性が高く、塗布法に適しているため好ましい。発光材料としては、蛍光材料、燐光材料、熱活性化遅延蛍光材料(TADF)等が挙げられる。
 蛍光材料として、ペリレン、クマリン、ルブレン、キナクドリン、スチルベン、色素レーザー用色素、アルミニウム錯体、これらの誘導体等の低分子化合物;ポリフルオレン、ポリフェニレン、ポリフェニレンビニレン、ポリビニルカルバゾール、フルオレン-ベンゾチアジアゾール共重合体、フルオレン-トリフェニルアミン共重合体、これらの誘導体等のポリマー;これらの混合物等が挙げられる。
 燐光材料として、Ir、Pt等の金属を含む金属錯体などが挙げられる。Ir錯体としては、例えば、青色発光を行うFIr(pic)(イリジウム(III)ビス[(4,6-ジフルオロフェニル)-ピリジネート-N,C]ピコリネート)、緑色発光を行うIr(ppy)(ファク トリス(2-フェニルピリジン)イリジウム)、赤色発光を行う(btp)Ir(acac)(ビス〔2-(2’-ベンゾ[4,5-α]チエニル)ピリジナート-N,C〕イリジウム(アセチル-アセトネート))、Ir(piq)(トリス(1-フェニルイソキノリン)イリジウム)等が挙げられる。Pt錯体としては、例えば、赤色発光を行うPtOEP(2、3、7、8、12、13、17、18-オクタエチル-21H、23H-フォルフィンプラチナ)等が挙げられる。
 発光層が燐光材料を含む場合、燐光材料の他に、更にホスト材料を含むことが好ましい。ホスト材料としては、低分子化合物、ポリマー、又はデンドリマーを使用できる。低分子化合物としては、例えば、CBP(4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル)、mCP(1,3-ビス(9-カルバゾリル)ベンゼン)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、これらの誘導体等が、ポリマーとしては、前記有機エレクトロニクス材料、ポリビニルカルバゾール、ポリフェニレン、ポリフルオレン、これらの誘導体等が挙げられる。
 熱活性化遅延蛍光材料としては、例えば、Adv. Mater., 21, 4802-4906 (2009);Appl. Phys. Lett., 98, 083302 (2011);Chem. Comm., 48, 9580 (2012);Appl. Phys. Lett., 101, 093306 (2012);J. Am. Chem. Soc., 134, 14706 (2012);Chem. Comm., 48, 11392 (2012);Nature, 492, 234 (2012);Adv. Mater., 25, 3319 (2013);J. Phys. Chem. A, 117, 5607 (2013);Phys. Chem. Chem. Phys., 15, 15850 (2013);Chem. Comm., 49, 10385 (2013);Chem. Lett., 43, 319 (2014)等に記載の化合物が挙げられる。
[正孔輸送層、正孔注入層]
 正孔輸送層及び正孔注入層の形成に使用される材料として、前記枝分かれポリマー又は前記有機エレクトロニクス材料が挙げられる。一実施形態において、正孔注入層及び正孔輸送層の少なくとも一方は、前記有機層であることが好ましい。両方が前記有機層であってもよい。
 また、公知の材料として、例えば、芳香族アミン系化合物(例えば、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)等の芳香族ジアミン)、フタロシアニン系化合物、チオフェン系化合物(例えば、ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸塩)(PEDOT:PSS)等のチオフェン系導電性ポリマー)などが挙げられる。
[電子輸送層、電子注入層]
 電子輸送層及び電子注入層の形成に使用される材料としては、例えば、フェナントロリン誘導体、ビピリジン誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレン、ペリレンなどの縮合環テトラカルボン酸無水物、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、アルミニウム錯体、リチウム錯体等が挙げられる。また、前記枝分かれポリマー又は前記有機エレクトロニクス材料も使用できる。
[陰極]
 陰極材料としては、例えば、Li、Ca、Mg、Al、In、Cs、Ba、Mg/Ag、LiF、CsF等の金属又は金属合金が用いられる。
[陽極]
 陽極材料としては、例えば、金属(例えば、Au)又は導電性を有する他の材料が用いられる。他の材料として、例えば、酸化物(例えば、ITO:酸化インジウム/酸化錫)、導電性高分子(例えば、ポリチオフェン-ポリスチレンスルホン酸混合物(PEDOT:PSS))が挙げられる。
[基板]
 基板として、ガラス、プラスチック等を使用できる。基板は、透明であることが好ましく、また、フレキシブル性を有することが好ましい。石英ガラス、光透過性樹脂フィルム等が好ましく用いられる。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネート等からなるフィルムが挙げられる。
 樹脂フィルムを用いる場合、水蒸気、酸素等の透過を抑制するために、樹脂フィルムへ酸化珪素、窒化珪素等の無機物をコーティングして用いてもよい。
[発光色]
 有機EL素子の発光色は特に限定されない。白色の有機EL素子は、家庭用照明、車内照明、時計又は液晶のバックライト等の各種照明器具に用いることができるため好ましい。
 白色の有機EL素子を形成する方法としては、複数の発光材料を用いて複数の発光色を同時に発光させて混色させる方法を用いることができる。複数の発光色の組み合わせとしては、特に限定されないが、青色、緑色及び赤色の3つの発光極大波長を含有する組み合わせ、青色と黄色、黄緑色と橙色等の2つの発光極大波長を含有する組み合わせが挙げられる。発光色の制御は、発光材料の種類と量の調整により行うことができる。
<表示素子、照明装置、表示装置>
 一実施形態によれば、表示素子は、前記有機EL素子を備えている。例えば、赤、緑及び青(RGB)の各画素に対応する素子として、有機EL素子を用いることで、カラーの表示素子が得られる。画像の形成方法には、マトリックス状に配置した電極でパネルに配列された個々の有機EL素子を直接駆動する単純マトリックス型と、各素子に薄膜トランジスタを配置して駆動するアクティブマトリックス型とがある。
 また、一実施形態によれば、照明装置は、前記有機EL素子を備えている。さらに、一実施形態によれば、表示装置は、照明装置と、表示手段として液晶素子とを備えている。例えば、表示装置は、バックライトとして前記照明装置を用い、表示手段として公知の液晶素子を用いた表示装置、すなわち液晶表示装置とできる。
 本発明の実施形態について実施例により具体的に説明する。本発明の実施形態は以下の実施例に限定されない。
<枝分かれポリマーの調製>
(Pd触媒の調製)
 窒素雰囲気下のグローブボックス中で、室温下、サンプル管にトリス(ジベンジリデンアセトン)ジパラジウム(73.2mg、80μmol)を秤取り、アニソール(15mL)を加え、30分間撹拌した。同様に、サンプル管にトリス(t-ブチル)ホスフィン(129.6mg、640μmol)を秤取り、アニソール(5mL)を加え、5分間撹拌した。得られた溶液を混合し、室温で30分間撹拌し、触媒とした。全ての溶媒は30分間以上、窒素バブルにより脱気した後、使用した。
[実施例1]
(枝分かれポリマー1)
 三口丸底フラスコに、下記モノマーCTU-1(6.0mmol)、下記モノマーCLU-1(4.0mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。30分間撹拌した後、10質量%テトラエチルアンモニウム水酸化物水溶液(20mL)を加えた。全ての溶液は30分間以上、窒素バブルにより脱気した後、使用した。得られた混合物を2時間、加熱還流した。ここまでの操作は窒素気流下で行った。
Figure JPOXMLDOC01-appb-C000022
 反応終了後、有機層を水洗し、有機層をメタノール-水(9:1)に注いだ。生じた沈殿を吸引ろ過により回収し、メタノール-水(9:1)で洗浄した。得られた沈殿をトルエンに溶解し、メタノールから再沈殿した。得られた沈殿を吸引ろ過により回収し、トルエンに溶解し、金属吸着剤(Strem Chemicals社製「Triphenylphosphine, polymer-bound on styrene-divinylbenzene copolymer」、沈殿物100mgに対して200mg)を加えて、一晩撹拌した。撹拌終了後、金属吸着剤と不溶物とをろ過により取り除き、ろ液をロータリーエバポレーターで濃縮した。濃縮液をトルエンに溶解した後、メタノール-アセトン(8:3)から再沈殿した。生じた沈殿を吸引ろ過により回収し、メタノール-アセトン(8:3)で洗浄した。得られた沈殿を真空乾燥し、枝分かれポリマー1を得た。収率は、78.7%であった。収率は、使用した各モノマーに含まれる共役ユニット及び置換基のモル質量及びモル数から算出した枝分かれポリマーの質量を基準として求めた。
 得られた枝分かれポリマー1の数平均分子量は20,300、重量平均分子量は31,400、分散度は1.55であった。
 数平均分子量及び重量平均分子量は、溶離液にテトラヒドロフラン(THF)を用いたGPC(ポリスチレン換算)により測定した。測定条件は上述のとおりである。
[比較例1]
(枝分かれポリマー2)
 三口丸底フラスコに、下記モノマーCTU-2(2.0mmol)、下記モノマーCTU-3(5.0mmol)、下記モノマーCLU-1(4.0mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、実施
例1と同様にして、枝分かれポリマー2の合成を行った。収率は、62.3%であった。
 得られた枝分かれポリマー2の数平均分子量は7,900、重量平均分子量は36,800、分散度は4.66であった。
Figure JPOXMLDOC01-appb-C000023
 枝分かれポリマー1および2の調製に使用したモノマーを以下の表にまとめて示す。
 枝分かれポリマーの調製に使用したモノマー、並びに、得られた枝分かれポリマーの分子量等を以下の表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000024
 使用したモノマーの分子量、反応性官能基の数及び種類、並びに、枝分かれポリマーの分子量から、枝分かれポリマー1は部分構造(1)を有すると推定される。枝分かれポリマー1は、分散度が小さく、また、合成収率が高いものであった。
<有機EL素子の作製及び評価>
 以下の実施例及び比較例は、枝分かれポリマーを含む有機エレクトロニクス材料(インク組成物)を用いて形成した有機層(有機薄膜)を有機EL素子の正孔注入層に適用する実施形態に関する。
[実施例2]
 窒素雰囲気下で、枝分かれポリマー1(10.0mg)、下記イオン化合物1(0.5mg)、及びトルエン(2.3mL)を混合し、インク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で230℃、30分間加熱して硬化させ、正孔注入層(30nm)を形成した。
Figure JPOXMLDOC01-appb-C000025
 ガラス基板を、真空蒸着機中に移し、正孔注入層上に、α-NPD(40nm)、CBP:Ir(ppy)(94:6、30nm)、BAlq(10nm)、TPBi(30nm)、Liq(2.0nm)、及びAl(150nm)をこの順に蒸着法で成膜した。その後、封止処理を行って有機EL素子を作製した。
[比較例2]
 正孔注入層の形成工程において、枝分かれポリマー1を枝分かれポリマー2に変えた以外は実施例2と同様にして、有機EL素子を作製した。
 実施例2及び比較例2の有機EL素子において、正孔注入層の形成に用いた有機エレクトロニクス材料を表2にまとめる。
Figure JPOXMLDOC01-appb-T000026
 実施例2及び比較例2で得た各有機EL素子に電圧を印加したところ、緑色発光が確認された。各有機EL素子について、発光輝度5,000cd/mでの発光効率及び初期輝度5,000cd/mにおける発光寿命(輝度半減時間)を測定した。測定結果を表3に示す。輝度の測定には、トプコンテクノハウス社製の分光放射計「SR-3AR」を用いた。
Figure JPOXMLDOC01-appb-T000027
 表3に示すとおり、実施例2では、駆動安定性に優れた長寿命の有機EL素子が得られた。また、実施例2では、発光効率も高いという結果が得られた。
<耐溶剤性の評価>
 以下の実施例及び比較例は、枝分かれポリマーを含む有機エレクトロニクス材料(インク組成物)を用いて形成した有機層(有機薄膜)の実施形態に関する。
[実施例3]
 枝分かれポリマー1(9.9mg)及びイオン化合物1(0.1mg)をトルエン(1.2mL)に溶解し、インク組成物を調製した。インク組成物を石英ガラス板上に回転数3,000min-1でスピンコートし、ホットプレート上で、表4に示す温度で10分間加熱して硬化させ、有機層(膜厚:30nm)を形成した。以下の方法に従い、有機層の残膜率を測定し、有機層の耐溶剤性を評価した。
Figure JPOXMLDOC01-appb-C000028
 石英ガラス基板をピンセットで掴んで、トルエン(25℃)を満たした200mLビーカーに1分間、浸漬した。浸漬前後の有機層のUV-vis吸収スペクトルにおける吸収極大(λmax)の吸光度(Abs)の比から、以下の式により有機層の残膜率を求めた。吸光度の測定条件には、分光光度計((株)日立製作所製「U-3310」)を用い、有機層について300~500nmの波長範囲での極大吸収波長における吸光度を測定した。
Figure JPOXMLDOC01-appb-M000029
[比較例3]
 枝分かれポリマー1を枝分かれポリマー2に変更した以外は実施例3と同様にして、有機層の耐溶剤性を評価した。
 実施例3及び比較例3の有機層の残膜率を表4に示す。
Figure JPOXMLDOC01-appb-T000030
 表4に示すとおり、実施例3では、高い残膜率が得られた。枝分かれポリマー1は枝分かれポリマー2と比較して低温の硬化で耐溶剤性を発現できることが明らかである。
 以上のように、実施例によって本発明に包含される実施形態の効果を示した。しかし、本発明によれば、実施例で製造された枝分かれポリマーに限らず、本発明の範囲を逸脱しない限り、その他の枝分かれポリマーを用いた場合であっても、同様にして有機エレクトロニクス素子を得ることが可能である。
 本発明の実施形態である枝分かれポリマーの製造方法によれば、分岐構造を有する枝分かれポリマーを容易に得ることができる。また、優れた有機エレクトロニクス材料を提供できる。さらに、本発明の実施形態である枝分かれポリマーP1及びP2によれば、優れた有機エレクトロニクス材料を提供できる。
1 陽極
2 正孔注入層
3 発光層
4 電子注入層
5 陰極
6 基板
7 正孔輸送層
8 電子輸送層

Claims (22)

  1.  以下の反応性モノマー(1)を少なくとも含むモノマー成分を反応させることを含む、枝分かれポリマーの製造方法。
     共役ユニットと、該共役ユニットに結合する3つ以上の反応性官能基とを少なくとも有し、前記3つ以上の反応性官能基が、互いに異なる2種の反応性官能基を含む、反応性モノマー(1)
  2.  前記モノマー成分が、以下の反応性モノマー(2)を更に含む、請求項1に記載の枝分かれポリマーの製造方法。
     共役ユニットと、該共役ユニットに結合する2つの反応性官能基とを少なくとも有し、前記2つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(2)
  3.  前記モノマー成分が、以下の反応性モノマー(3)を更に含む、請求項1又は2に記載の枝分かれポリマーの製造方法。
     共役ユニットと、該共役ユニットに結合する1つの反応性官能基とを少なくとも有し、前記1つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(3)
  4.  以下の反応性モノマー(1)を少なくとも含むモノマー成分の反応物を含む、枝分かれポリマー。
     共役ユニットと、該共役ユニットに結合する3つ以上の反応性官能基とを少なくとも有し、前記3つ以上の反応性官能基が、互いに異なる2種の反応性官能基を含む、反応性モノマー(1)
  5.  前記モノマー成分が、以下の反応性モノマー(2)を更に含む、請求項4に記載の枝分かれポリマー。
     共役ユニットと、該共役ユニットに結合する2つの反応性官能基とを少なくとも有し、前記2つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(2)
  6.  前記モノマー成分が、以下の反応性モノマー(3)を更に含む、請求項4又は5に記載の枝分かれポリマー。
     共役ユニットと、該共役ユニットに結合する1つの反応性官能基とを少なくとも有し、前記1つの反応性官能基が、前記2種の反応性官能基から選択される1種の反応性官能基と反応し得る、反応性モノマー(3)
  7.  以下の部分構造(1)を少なくとも含む、枝分かれポリマー。
    Figure JPOXMLDOC01-appb-C000001
    (式中、CUはそれぞれ独立に共役ユニットを表す。共役ユニットは置換基を有してもよい。)
  8.  以下の部分構造(2)を更に含む、請求項7に記載の枝分かれポリマー。
    Figure JPOXMLDOC01-appb-C000002
    (式中、CUは共役ユニットを表す。共役ユニットは置換基を有してもよい。)
  9.  以下の部分構造(3)を更に含む、請求項7又は8に記載の枝分かれポリマー。
    Figure JPOXMLDOC01-appb-C000003
    (式中、CUは共役ユニットを表す。共役ユニットは置換基を有してもよい。)
  10.  請求項1~3のいずれかに記載の製造方法により製造された枝分かれポリマー、又は、請求項4~9のいずれかに記載の枝分かれポリマーを含有する、有機エレクトロニクス材料。
  11.  前記枝分かれポリマーが重合性官能基を有し、重合開始剤を更に含有する、請求項10に記載の有機エレクトロニクス材料。
  12.  電子受容性化合物を更に含有する、請求項10又は11に記載の有機エレクトロニクス材料。
  13.  請求項1~3のいずれかに記載の製造方法により製造された枝分かれポリマー、請求項4~9のいずれかに記載の枝分かれポリマー、又は、請求項10~12のいずれかに記載の有機エレクトロニクス材料と、溶媒とを含有する、インク組成物。
  14.  請求項1~3のいずれかに記載の製造方法により製造された枝分かれポリマー、請求項4~9のいずれかに記載の枝分かれポリマー、請求項10~12のいずれかに記載の有機エレクトロニクス材料、又は、請求項13に記載のインク組成物を用いて形成された、有機層。
  15.  請求項1~3のいずれかに記載の製造方法により製造された枝分かれポリマー、請求項4~9のいずれかに記載の枝分かれポリマー、又は、請求項10~12のいずれかに記載の有機エレクトロニクス材料を含有する、有機層。
  16.  請求項14又は15に記載の有機層を少なくとも1つ有する、有機エレクトロニクス素子。
  17.  請求項14又は15に記載の有機層を少なくとも1つ有する、有機エレクトロルミネセンス素子。
  18.  少なくとも正孔注入層を有し、該正孔注入層が請求項14又は15に記載の有機層である、有機エレクトロルミネセンス素子。
  19.  少なくとも正孔輸送層を有し、該正孔輸送層が請求項14又は15に記載の有機層である、有機エレクトロルミネセンス素子。
  20.  請求項17~19のいずれかに記載の有機エレクトロルミネセンス素子を備えた、表示素子。
  21.  請求項17~19のいずれかに記載の有機エレクトロルミネセンス素子を備えた、照明装置。
  22.  請求項21に記載の照明装置と、表示手段として液晶素子とを備えた、表示装置。
PCT/JP2017/004250 2017-02-06 2017-02-06 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子 WO2018142621A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2017/004250 WO2018142621A1 (ja) 2017-02-06 2017-02-06 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子
US16/483,667 US20200017631A1 (en) 2017-02-06 2018-02-06 Branched polymer production method, branched polymer, and organic electronic element
PCT/JP2018/003959 WO2018143471A1 (ja) 2017-02-06 2018-02-06 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子
EP18748690.7A EP3578584A1 (en) 2017-02-06 2018-02-06 Branched polymer manufacturing method, branched polymer, and organic electronic element
TW107104158A TW201840634A (zh) 2017-02-06 2018-02-06 分支聚合物的製造方法、分支聚合物及有機電子元件
KR1020197022953A KR20190111977A (ko) 2017-02-06 2018-02-06 분지 폴리머의 제조 방법, 분지 폴리머 및 유기 일렉트로닉스 소자
CN201880010162.XA CN110248981A (zh) 2017-02-06 2018-02-06 支化聚合物的制造方法、支化聚合物及有机电子元件
JP2018566167A JP7159874B2 (ja) 2017-02-06 2018-02-06 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004250 WO2018142621A1 (ja) 2017-02-06 2017-02-06 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子

Publications (1)

Publication Number Publication Date
WO2018142621A1 true WO2018142621A1 (ja) 2018-08-09

Family

ID=63039532

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/004250 WO2018142621A1 (ja) 2017-02-06 2017-02-06 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子
PCT/JP2018/003959 WO2018143471A1 (ja) 2017-02-06 2018-02-06 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003959 WO2018143471A1 (ja) 2017-02-06 2018-02-06 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子

Country Status (7)

Country Link
US (1) US20200017631A1 (ja)
EP (1) EP3578584A1 (ja)
JP (1) JP7159874B2 (ja)
KR (1) KR20190111977A (ja)
CN (1) CN110248981A (ja)
TW (1) TW201840634A (ja)
WO (2) WO2018142621A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302073A (ja) * 1996-05-09 1997-11-25 Agency Of Ind Science & Technol 多分岐重合体およびその製造方法
JPH10306143A (ja) * 1997-05-02 1998-11-17 Agency Of Ind Science & Technol 新規なトリフェニルアミン重合体、その製造方法及びそれを用いた有機導電材料
US6025462A (en) * 1997-03-06 2000-02-15 Eic Laboratories, Inc. Reflective and conductive star polymers
JP2014530943A (ja) * 2011-10-28 2014-11-20 メルク パテント ゲーエムベーハー 多分岐ポリマー、その製造方法と電子素子でのその使用
JP2015159077A (ja) * 2014-02-25 2015-09-03 日立化成株式会社 有機エレクトロニクス素子の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058842B2 (ja) 1998-05-13 2008-03-12 三菱化学株式会社 有機電界発光素子
JP3996036B2 (ja) 2001-11-19 2007-10-24 三菱化学株式会社 芳香族ジアミン含有高分子化合物およびそれを用いる有機電界発光素子
JP4186758B2 (ja) 2003-09-01 2008-11-26 三菱化学株式会社 高分子化合物、正孔注入・輸送材料、有機電界発光素子材料および有機電界発光素子
JP2006279007A (ja) 2005-03-02 2006-10-12 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN101161698B (zh) * 2007-08-31 2010-12-08 南京邮电大学 打断共轭超支化聚合物材料及制备方法和应用
JP5696662B2 (ja) 2009-06-01 2015-04-08 日立化成株式会社 有機エレクトロルミネセンス素子、表示素子、照明装置および表示装置
JP5678552B2 (ja) * 2010-09-29 2015-03-04 日立化成株式会社 重合開始剤及び有機エレクトロニクス材料、これらを用いた有機薄膜及びその製造方法、インク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、照明装置、表示素子、並びに表示装置
KR101880319B1 (ko) * 2010-10-28 2018-07-19 유니버시티 오브 플로리다 리서치 파운데이션, 인크. 음극 컬러링 황색 가용성 전기변색 및 발광 폴리머
KR101772230B1 (ko) * 2010-12-30 2017-08-28 동우 화인켐 주식회사 고분자 화합물 및 이를 이용한 유기전기발광 표시장치
WO2016076375A1 (ja) * 2014-11-11 2016-05-19 日立化成株式会社 有機エレクトロルミネセンス素子及びその製造方法
KR101616984B1 (ko) * 2014-11-19 2016-05-11 충남대학교산학협력단 발광 초분지 공액화 고분자 및 이를 포함하는 발광 부직포의 제조방법
CN105820651B (zh) * 2015-01-05 2019-06-04 中国科学院化学研究所 一种平版印刷机用水性油墨及其制备方法
CN108431985B (zh) * 2016-01-08 2020-06-23 日立化成株式会社 有机电子材料、有机电子元件及有机电致发光元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302073A (ja) * 1996-05-09 1997-11-25 Agency Of Ind Science & Technol 多分岐重合体およびその製造方法
US6025462A (en) * 1997-03-06 2000-02-15 Eic Laboratories, Inc. Reflective and conductive star polymers
JPH10306143A (ja) * 1997-05-02 1998-11-17 Agency Of Ind Science & Technol 新規なトリフェニルアミン重合体、その製造方法及びそれを用いた有機導電材料
JP2014530943A (ja) * 2011-10-28 2014-11-20 メルク パテント ゲーエムベーハー 多分岐ポリマー、その製造方法と電子素子でのその使用
JP2015159077A (ja) * 2014-02-25 2015-09-03 日立化成株式会社 有機エレクトロニクス素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MING-HUA XU; LIN PU: "Novel unsymmetrically hyperbranched polythiophenes with conjugation gradient", TETRAHEDRON LETTERS, vol. 43, no. 36, September 2002 (2002-09-01), pages 6347 - 6350, XP055530917 *

Also Published As

Publication number Publication date
KR20190111977A (ko) 2019-10-02
JP7159874B2 (ja) 2022-10-25
EP3578584A1 (en) 2019-12-11
WO2018143471A1 (ja) 2018-08-09
TW201840634A (zh) 2018-11-16
US20200017631A1 (en) 2020-01-16
CN110248981A (zh) 2019-09-17
JPWO2018143471A1 (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
JP7044063B2 (ja) 有機エレクトロニクス材料及びその利用
TWI816645B (zh) 有機電子材料、有機層、有機電子元件、有機電致發光元件、顯示元件、照明裝置及顯示裝置
JP2017069324A (ja) 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示素子
WO2017188023A1 (ja) 電荷輸送性材料及びその利用
KR20190067183A (ko) 유기 일렉트로닉스 재료, 잉크 조성물 및 유기 일렉트로닉스 소자
WO2018146779A1 (ja) 有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子
JP6775736B2 (ja) 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
WO2018021381A1 (ja) 有機エレクトロニクス材料
WO2018138820A1 (ja) 有機エレクトロニクス材料、インク組成物、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
WO2018020571A1 (ja) 有機エレクトロニクス材料
JP2017069385A (ja) 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
WO2020065926A1 (ja) 有機エレクトロニクス材料及びその利用
JP6641845B2 (ja) 電荷輸送性材料、該材料を用いたインキ組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
WO2019009327A1 (ja) 有機エレクトロニクス材料及び有機エレクトロニクス素子
WO2018143471A1 (ja) 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子
JP7159873B2 (ja) 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子
JP2017199866A (ja) 電荷輸送性材料及びその利用
JP6690241B2 (ja) 有機エレクトロニクス材料及びその利用
JP6657663B2 (ja) 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、表示装置及び照明装置
JP2019131670A (ja) 有機エレクトロニクス材料
JP2017191908A (ja) 有機エレクトロニクス材料及び有機エレクトロルミネセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP