WO2018141249A1 - 一种纳米叠层导电薄膜的制备方法及应用 - Google Patents

一种纳米叠层导电薄膜的制备方法及应用 Download PDF

Info

Publication number
WO2018141249A1
WO2018141249A1 PCT/CN2018/074886 CN2018074886W WO2018141249A1 WO 2018141249 A1 WO2018141249 A1 WO 2018141249A1 CN 2018074886 W CN2018074886 W CN 2018074886W WO 2018141249 A1 WO2018141249 A1 WO 2018141249A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
conductive film
transparent conductive
laminated transparent
layer
Prior art date
Application number
PCT/CN2018/074886
Other languages
English (en)
French (fr)
Inventor
黎微明
李翔
潘景伟
Original Assignee
江苏微导纳米装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏微导纳米装备科技有限公司 filed Critical 江苏微导纳米装备科技有限公司
Publication of WO2018141249A1 publication Critical patent/WO2018141249A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the patent belongs to the field of semiconductor devices, and particularly relates to the field of solar cell manufacturing, and in particular to a method for preparing a nano-laminated transparent conductive film by combining atomic layer deposition techniques and application in surface passivation and current collection of solar cells.
  • the area of the laser opening is limited, so the parasitic resistance and contact resistance of the electrode and silicon will affect the collection of current and affect the efficiency of the battery, and the partial opening causes the process of the PERC technology to be complicated, and partial opening may also result in There is a compounding phenomenon at the opening.
  • the Fraunhofer ISE in Germany has designed a contact passivation technique: the passivation layer is a layer of ultra-thin silicon oxide and a thin layer of doped silicon, which is passivated by metal without opening.
  • the tunneling effect achieves conduction of the passivation layer, but the passivation layer itself is very thin and the required process is relatively complicated. Therefore, on the basis of the PERC technology, it is also necessary to develop a surface passivation method that does not require partial openings.
  • TCO Transparent conductive oxide
  • AZO aluminum doped zinc oxide
  • ALD Atomic Layer Deposition
  • the invention is directed to the process flow of the existing PERC battery technology, adopts ALD technology for processing, directly uses a layer of conductive transparent material as a passivation layer, thereby solving the problem of large parasitic resistance and contact resistance, improving battery conversion efficiency, and being applicable. For mass production.
  • a nano-laminated transparent conductive film prepared by atomic layer deposition (ALD) for passivation and current collection on a solar cell surface.
  • ALD atomic layer deposition
  • the preparation method of the nano-laminated transparent conductive film is prepared by atomic layer deposition technology, and specifically includes the following main steps:
  • step (4) repeating step (4) until a nano-layered conductive film of a desired thickness is prepared
  • a deposited layer of Al 2 O 3 is preferably cycled 5 to 20 times as a transition layer.
  • the optimal number of cycles is 10 times.
  • the role of this transition layer is to perform chemical bond passivation and field effect passivation on the silicon surface, especially the negative charge in the transition layer, which exists in the range of 1-3 nm at the interface, which can effectively repel the electrons on the silicon surface and reduce the empty.
  • the combination of holes and electrons near the interface enhances the open circuit voltage and photoelectric conversion efficiency of the battery.
  • the nano-stack also functions as a current collector, the transition layer does not hinder the passage of current while ensuring passivation.
  • the thickness of the transition layer aluminum oxide film is below 2 nm, the current will pass through directly in the form of tunneling without hindrance.
  • the preferred thickness of the corresponding transition layer ranges from 0.5 to 2 nanometers.
  • step (1) when processing a plurality of silicon battery sheets in the step (1): when coating the back surface of the battery, the plurality of batteries are placed face to face and pressed, and when the front surface of the battery is coated, the two batteries are placed back to back and Press tight to save space in the machining chamber and increase productivity.
  • the process vacuum in the step (2) is selected from the range of 100 Pa to 1000 Pa, and the process temperature is selected in the range of 100-300 Celsius.
  • step (3) pulsates the vapor of trimethylaluminum and deionized water into the cavity through a completely independent pipeline, and the carrier gas adopts nitrogen; the pulse sequence of each deposition cycle is: trimethylaluminum pulse
  • the nitrogen purge, the deionized water vapor pulse, and the nitrogen purge were 0.1 second, 2 seconds, 0.1 second, and 2 seconds, respectively.
  • the step (4) pulsates the diethyl zinc, the trimethyl aluminum and the deionized water vapor through a completely independent pipeline, and the carrier gas adopts nitrogen;
  • the pulse sequence of each deposition cycle of ZnO is : diethylzinc pulse, nitrogen purge, deionized water vapor pulse, nitrogen purge, time is 0.1 second, 2 seconds, 0.1 second, 2 seconds;
  • the pulse sequence of each deposition cycle of Al 2 O 3 is: The trimethylaluminum pulse, the nitrogen purge, the deionized water vapor pulse, and the nitrogen purge were 0.1 second, 2 seconds, 0.1 second, and 2 seconds, respectively.
  • the preferred range of the number of cycles n1 is 1-100, and the preferred range of n2 is 1-10.
  • the annealing step may be added before the temperature of the cavity is lowered, and the annealing time required is based on the annealing temperature required for the actual application. For example, an annealing temperature of 500 degrees Celsius is performed by annealing for 30 minutes.
  • the nano-laminated transparent conductive film is used for the passivation layer in the solar cell, and the nano-laminated transparent conductive film is prepared by the above method, and the nano-laminated transparent conductive film can be used for the battery p during n-type doping.
  • Field passivation of the emitter the nano-laminated transparent conductive film is used for field passivation of the cell n emitter during p-type doping.
  • the total thickness of the nano-laminated transparent conductive film ranges from 5 nanometers to 200 nanometers.
  • the process vacuum in the step (2) is 100 Pa
  • the process temperature is 200 degrees Celsius
  • the thickness of the ZnO monolayer is 0.12 nm
  • the error range is ⁇ 0.01 nm (according to different test methods and instrument error ranges) different, within the skill in the art can be acceptable error range, the same below)
  • the thickness of a single layer of Al 2 O 3 was 0.1 nm
  • the error range ⁇ 0.01nm under this condition, when the transparent conductive nanolaminated
  • the resistivity of the film is between 1.5 ⁇ 10 -3 ohm ⁇ cm and 3.0 ⁇ 10 -3 ohm ⁇ cm ( The endpoint value is included here).
  • the nano-laminated transparent conductive film prepared by the above method is used as a back passivation layer in a solar cell for a PERC structure, and can be used for field passivation of an n-type semiconductor material at a p+ emitter, or at an n+ emitter Field passivation is performed using p-type semiconductor materials.
  • the passivation effect is 0.8% higher than the traditional aluminum back field battery (such as Solar Energy, 2014 (110), 595–602), and the aluminum back field battery can be directly contacted with silicon aluminum. quite.
  • a material of ZnO doped with a third group such as B, Al, Ga, In; or a material of a seventh group such as Cl, I may become an n-type semiconductor material.
  • ZnO doped materials of the first group such as Li, Na, K; or Group 5 materials such as N, P, As may become p-type semiconductor materials.
  • the nano-laminated transparent conductive film prepared by the patent is used for the back passivation layer in the solar cell of the PERC structure, and the passivation effect can be improved by at least 0.8% in photoelectric conversion efficiency compared with the conventional aluminum back field battery.
  • the performance can be achieved in an aluminum back-field battery that is in direct contact with silicon-aluminum.
  • Al 2 O 3 passivation for PERC batteries is based on the interface field passivation effect achieved by the negative charge carried in the interior of Al 2 O 3 .
  • ZnO itself is an n-type semiconductor, and it can provide more free electrons by Al doping to achieve the effect of lowering its resistivity.
  • the transparent conductive oxide is used as the passivation layer, which does not block the light and reduces the conversion efficiency of the solar cell.
  • Figure 1 is a cyclic sequence for a nano-layered transparent conductive film
  • Figure 2 is an example of a passivation application for a nano-laminated transparent conductive film for use on a p-type PERC cell.
  • Figure 3 is an example of a passivation application for a nano-laminated transparent conductive film for use on an n-type battery.
  • the doping degree of aluminum in the film is between 1 at% and 7 at%, the resistivity of the film is small, varying between 1.5 ⁇ 10 -3 ohm ⁇ cm and 3.0 ⁇ 10 -3 ohm ⁇ cm, and in the test. A minimum measurement of 1.5 ⁇ 10 -3 ohm ⁇ cm is used.
  • the nano-laminated transparent conductive film prepared by the method of the present invention is used for emitter passivation in a solar cell of a PERC structure.
  • an aluminum-doped zinc oxide film is used in place of the aluminum oxide layer in the PERC cell, and the negative charge thereof acts to passivate the p-emitter on the back side.
  • the conductive film acts to collect current and reduce the contact resistance which is increased due to the small opening area.
  • the upper surface of the battery can also be passivated with a p-type doped transparent conductive film.
  • a transparent nano-laminated transparent conductive film prepared by the method of the present invention is used for emitter passivation in an n-type crystalline silicon solar cell.
  • the aluminum-doped zinc oxide film is used to passivate the upper surface of the cell.
  • the conductive film acts to collect current, and the film absorbs less at the visible light frequency and does not affect the light transmission.
  • the back side of the cell can also be passivated with a p-type doped transparent conductive film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种纳米叠层透明的导电薄膜的制备方法,包括:采用原子层沉积技术进行制备,具体包括如下步骤:(1)将去背结清洗过后的硅电池片装载进入镀膜的腔体;(2)腔体抽真空并保持腔体内的工艺真空不变,加热使腔体内的温度达到所需要的工艺温度;(3)循环1~200次Al 2O 3的沉积作为过渡层;(4)循环n1次ZnO的沉积,循环n2次Al 2O 3的沉积,其中n1、n2均为非零正整数;(5)重复步骤(4),直到制备出所需厚度的纳米叠层导电薄膜;(6)腔体直接降温或增加退火步骤后降温,破真空,取出硅电池片。采用原子层沉积技术制备的金属氧化物纳米叠层导电薄膜作为钝化层,解决了电池片的寄生电阻和接触电阻大的问题,提升了电池的转换效率,适用于大批量生产。

Description

一种纳米叠层导电薄膜的制备方法及应用 技术领域
本专利属于半导体器件领域,具体涉及太阳能电池制造领域,尤其涉及结合原子层沉积技术制备纳米叠层透明的导电薄膜的制备方法和在太阳能电池表面钝化及电流收集中的应用。
背景技术
表面钝化是降低表面复合率、提高硅太阳能电池的转换效率的重要技术手段。(Solar Energy Materials&Solar Cells,2006,(90):82-92)钝化发射极背面接触技术(PERC技术),在表面植绒和扩散之后用PECVD的方法镀三氧化二铝薄膜做背面钝化层,搭配氮化硅薄膜减反层。由于三氧化二铝和氮化硅是绝缘材料,后续的银浆铝浆电极要通过激光打孔的方法和硅表面做连接。但是激光开孔的面积是有限的,所以电极与硅的寄生电阻和接触电阻会影响到电流的收集从而影响电池的效率,而且局部开孔导致PERC技术的工艺复杂,并且局部开孔还会导致开孔处存在复合现象。德国弗劳恩霍夫太阳能研究所(Fraunhofer ISE)设计了接触钝化技术:钝化层为一层超薄氧化硅和一层掺杂硅薄层构成的钝化,无需开孔,通过金属氧化物隧穿效应实现钝化层的导电,但是钝化层本身很薄,需要的工艺相对复杂。因此,在PERC技术的基础上,还需要研制无需局部开孔的表面钝化方法。
另一种方案是,采用可导电的材料作为钝化层来代替三氧化二铝,有望解决寄生电阻和接触电阻大的问题,提升电池转换效率。透明导电氧化物(TCO)作为电极材料在光电器件领域得到了广泛应用,其中铝掺杂的氧化锌(Aluminum doped Zinc oxide,AZO)具有制备工艺简单、易实现掺杂等特点,有文献(Solar Energy,2014(110),595–602)报道,通过湿法制备的AZO具有一定的钝化性质,但是湿法制备的工艺较为复杂,不适合大规模生产。原子层沉积技术(ALD技术)是一种先进的薄膜生长技术。采用ALD技术制备性能优良、适合在PERC技术中做钝化层的透明导电氧化物材料尚未见报道。
发明内容
1、本发明所要解决的技术问题
本发明是针对现有的PERC电池技术的工艺流程,采用ALD技术进行加工,直接用可导电透明材料层作为钝化层,从而解决寄生电阻和接触电阻大的问题,提升电池转换效率,并且适用于大批量生产。
2、本发明提供的技术方案
基于原子层沉积技术(ALD)制备的纳米叠层透明的导电薄膜,用于太阳能电池表面的钝化及电流收集。具体的技术方案如下:
纳米叠层透明的导电薄膜的制备方法,采用原子层沉积技术进行制备,具体包括如下主要的步骤:
(1)将去背结清洗过后的硅电池片装载进入镀膜的腔体,需镀膜的面在腔体内呈暴露状态,不需要镀膜的面进行遮挡;
(2)腔体抽真空并保持腔体内的工艺真空不变,加热使腔体内的温度达到所需要的工艺温度;
(3)循环1~200次Al 2O 3的沉积作为过渡层,对应的厚度范围是0.1-20纳米;
(4)循环n1次ZnO的沉积,循环n2次Al 2O 3的沉积,其中n1、n2均为非零正整数;
(5)重复步骤(4),直到制备出所需厚度的纳米叠层导电薄膜;
(6)腔体直接降温或增加退火步骤后降温,破真空,取出硅电池片。
步骤(3)中优选循环5~20次Al 2O 3的沉积层作为过渡层。最优的循环次数为10次。此过渡层的作用是对硅表面进行化学键钝化和场效应钝化,特别是过渡层中的负电荷,存在于界面处1-3纳米范围内,可以有效的排斥硅表面的电子,减少空穴与电子在界面附近的复合,从而提升电池的开路电压和光电转换效率。由于纳米叠层同时起到电流收集的作用,所以过渡层在保证钝化的同时不能对电流的通过形成阻碍。当过渡层氧化铝薄膜的厚度在2纳米以下时,电流会以隧穿的形式直接穿过,不会有阻碍。对应的过渡层的较佳厚度范围是0.5-2纳米。
具体地,在步骤(1)中对多片硅电池片进行加工时:在电池背面镀膜时,将多片电池面对面摆放并压紧,在电池正面镀膜时,将两片电池背对背摆放并压紧,以节省加工腔体的空间,增加产能。
具体地,步骤(2)中的工艺真空的选择范围为100帕到1000帕,工艺温度的选择范围为100-300摄氏度。
具体地,步骤(3)通过完全独立的管路向腔体内以脉冲的方式输送三甲基铝和去离子水的蒸汽,载气采用氮气;每次沉积循环的脉冲序列为:三甲基铝脉冲、氮气吹扫、去离子水蒸汽的脉冲、氮气吹扫,时间分别为0.1秒、2秒、0.1秒、2秒。
具体地,步骤(4)通过完全独立的管路向腔体内以脉冲的方式输送二乙基锌,三甲基铝和去离子水的蒸汽,载气采用氮气;ZnO每次沉积循环的脉冲序列为:二乙基锌脉冲、氮气吹扫、去离子水蒸汽的脉冲、氮气吹扫,时间分别为0.1秒、2秒、0.1秒、2秒;Al 2O 3每次沉积循环的脉冲序列为:三甲基铝脉冲、氮气吹扫、去离子水蒸汽的脉冲、氮气吹扫,时间 分别为0.1秒、2秒、0.1秒、2秒。
具体地,循环的次数n1的优选范围是1-100,n2的优选范围是1-10。
具体地,在步骤(6)中,在沉积镀膜的循环过后,腔体降温之前还可增加退火的步骤,所需的退火时间以实际应用需要的退火温度为准。例如500摄氏度的退火温度采用30分钟的退火。
将纳米叠层透明的导电薄膜用于太阳能电池中的钝化层的应用,纳米叠层透明的导电薄膜采用上述方法制备,在n-型掺杂时纳米叠层透明的导电薄膜可用于电池p发射极的场钝化,在p-型掺杂时纳米叠层透明的导电薄膜用于电池n发射极的场钝化。
具体地,所述的纳米叠层透明的导电薄膜主要包括由ZnO层和Al 2O 3层组成的基本单元;导电薄膜的总厚度=基本单元本身的循环次数n3×(ZnO单层的厚度×ZnO单层循环次数n1+Al 2O 3单层的厚度×Al 2O 3单层循环次数n2);氧化铝在所述的纳米叠层透明的导电薄膜中的掺杂度为n2/(n1+n2)at%。
具体地,纳米叠层透明的导电薄膜的总厚度的范围在5纳米到200纳米之间。
更具体地,当制备薄膜时步骤(2)中的工艺真空100帕、工艺温度为200摄氏度,ZnO单层的厚度为0.12nm,误差范围±0.01nm(根据不同的测试方法和仪器误差范围会不同,在本领域技术人员可接受的误差范围内即可,下同),Al 2O 3单层的厚度为0.1nm,误差范围±0.01nm;在此条件下,当纳米叠层透明的导电薄膜的铝掺杂度在1.0at%到7.1at%之间(此处包括端点数值)时,薄膜的电阻率在1.5×10 -3ohm·cm到3.0×10 -3ohm·cm之间(此处包括端点数值)。
将采用上述方法制备的纳米叠层透明的导电薄膜用用于PERC结构的太阳能电池中的背钝化层,可用于在p+发射极用n-型半导体材料做场钝化,或者在n+发射极用p-型半导体材料做场钝化。钝化效果比传统的铝背场电池(如Solar Energy,2014(110),595–602)在光电转换效率上至少可以提升0.8%,导电性能可以做到和硅铝直接接触的铝背场电池相当。
关于其他可以使用的材料,以AZO为例,ZnO掺杂第三族的材料如B,Al,Ga,In;或者第七族材料如Cl,I会变成n-型半导体材料。ZnO掺杂第一族的材料如Li,Na,K;或者第五族材料如N,P,As会变成p-型半导体材料。
3、有益效果:
(1)本专利制备的纳米叠层透明的导电薄膜用于PERC结构的太阳能电池中的背钝化层,钝 化效果比传统的铝背场电池在光电转换效率上至少可以提升0.8%,导电性能可以做到和硅铝直接接触的铝背场电池相当。
(2)PERC电池用的Al 2O 3钝化是基于Al 2O 3内部所带的负电荷达到的界面场钝化效应。ZnO本身就是n-型半导体,通过Al掺杂可以提供更多的自由电子以达到降低其电阻率的效果。
(3)采用透明导电氧化物作为钝化层,不会遮挡光线降低太阳能电池的转换效率。
附图说明
图1纳米叠层透明的导电薄膜用的循环序列
图2纳米叠层透明的导电薄膜用在p-型PERC电池上的钝化应用的一个例子。
图3纳米叠层透明的导电薄膜用在n-型电池上的钝化应用的一个例子。
具体实施方式
下面结合说明书附图和具体的实施例,对本发明作详细描述。
实施例1
本专利中采用不同的工艺条件(工艺真空、工艺温度)、不同的配比(n1、n2、n3的数值、氧化铝的掺杂度(n2/(n1+n2)at%)、制备出不同性质(厚度、电阻率)的薄膜,具体各参数的关系如下:
表1制备条件、成分和性质之间的对照表
Figure PCTCN2018074886-appb-000001
实施例2
为了实现本发明的目的,采用电阻率较低的材料更便于收集电流,综合考虑制备条件、配比等因素,在工艺真空100帕、工艺温度200摄氏度的条件下,固定n2=1,控制氧化铝在薄膜中的掺杂度在1at%到7at%之间时,薄膜的电阻率较小,在1.5×10 -3ohm·cm到 3.0×10 -3ohm·cm之间变化,且试验中以1.5×10 -3ohm·cm为一个最小的测量值。
表2优选实施例的制备条件、成分和性质之间的对照表
Figure PCTCN2018074886-appb-000002
实施例3
将采用本专利方法制备的纳米叠层透明的导电薄膜用于PERC结构的太阳能电池中的发射极钝化。参照图2所示,用铝掺杂的氧化锌薄膜代替PERC电池中的氧化铝层,其所带负电荷会对背面的p发射极起到钝化的作用。同时,此导电薄膜会起到收集电流的作用,降低因开孔面积小而升高的接触电阻。此电池的上表面也可用p-型掺杂的透明导电薄膜做钝化。
实施例4
将采用本专利方法制备的透明的纳米叠层透明的导电薄膜用于n-型晶硅太阳能电池中的发射极钝化。参照图3所示,用铝掺杂的氧化锌薄膜对电池上表面p发射极钝化。同时,此导电薄膜会起到收集电流的作用,而且此薄膜在可见光频率的吸收较少,不会影响光的透过。此电池的背面也可用p-型掺杂的透明导电薄膜做钝化。
以上示意性地对本发明的创造及其实施方式进行了描述,本发明的保护范围包括但不限于上述的描述。附图中所示的也只是本发明创造的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受到本发明的启示,在不脱离本发明的创造宗旨的情况下,不经创造性的设计出与本发明的技术方案相似的结构方式及实施例,均应属于本专利的保护范围。

Claims (12)

  1. 一种纳米叠层透明的导电薄膜的制备方法,其特征在于:采用原子层沉积技术进行制备,具体包括如下主要的步骤:
    (1)将去背结清洗过后的硅电池片装载进入镀膜的腔体,需镀膜的面在腔体内呈暴露状态,不需要镀膜的面进行遮挡;
    (2)腔体抽真空并保持腔体内的工艺真空不变,加热使腔体内的温度达到所需要的工艺温度;
    (3)循环1~200次Al2O3的沉积作为过渡层;
    (4)循环n1次ZnO的沉积,循环n2次Al2O3的沉积,其中n1、n2均为非零正整数;
    (5)重复步骤(4),直到制备出所需厚度的纳米叠层导电薄膜;
    (6)腔体直接降温或增加退火步骤后降温,破真空,取出硅电池片。
  2. 根据权利要求1所述的一种纳米叠层透明的导电薄膜的制备方法,其特征在于:步骤(3)中循环5~20次Al 2O 3的沉积层作为过渡层。
  3. 根据权利要求1所述的一种纳米叠层透明的导电薄膜的制备方法,其特征在于:在步骤(1)中对多片硅电池片进行加工时:在电池背面镀膜时,将多片电池面对面摆放并压紧,在电池正面镀膜时,将两片电池背对背摆放并压紧,以节省加工腔体的空间,增加产能。
  4. 根据权利要求1或2或3所述的一种纳米叠层透明的导电薄膜的制备方法,其特征在于:步骤(2)中的工艺真空的选择范围为100帕到1000帕,工艺温度的选择范围为100-300摄氏度。
  5. 根据权利要求4所述的一种纳米叠层透明的导电薄膜的制备方法,其特征在于:步骤(3)通过完全独立的管路向腔体内以脉冲的方式输送三甲基铝和去离子水的蒸汽,载气采用氮气;每次沉积循环的脉冲序列为:三甲基铝脉冲、氮气吹扫、去离子水蒸汽的脉冲、氮气吹扫,时间分别为0.1秒、2秒、0.1秒、2秒。
  6. 根据权利要求4所述的一种纳米叠层透明的导电薄膜的制备方法,其特征在于:步骤(4)通过完全独立的管路向腔体内以脉冲的方式输送二乙基锌,三甲基铝和去离子水的蒸汽,载气采用氮气;ZnO每次沉积循环的脉冲序列为:二乙基锌脉冲、氮气吹扫、去离子水蒸汽的脉冲、氮气吹扫,时间分别为0.1秒、2秒、0.1秒、2秒;Al 2O 3每次沉积循环的脉冲序列为:三甲基铝脉冲、氮气吹扫、去离子水蒸汽的脉冲、氮气吹扫,时间分别为0.1秒、2秒、0.1秒、2秒。
  7. 根据权利要求4所述的一种纳米叠层透明的导电薄膜的制备方法,其特征在于:n1的范围是1-100,n2的范围是1-10。
  8. 根据权利要求4所述的一种纳米叠层透明的导电薄膜的制备方法,其特征在于:在步骤(6)中,在沉积镀膜的循环过后,腔体降温之前还可增加退火的步骤,所需的退火时间以实际应用需要的退火温度为准。
  9. 一种将纳米叠层透明的导电薄膜用于太阳能电池中的钝化层的应用,其特征在于:所述纳米叠层透明的导电薄膜采用上述权利要求中任意一项权利要求的方法制备,在n-型掺杂时所述的纳米叠层透明的导电薄膜用于电池p发射极的场钝化,在p-型掺杂时所述的纳米叠层透明的导电薄膜用于电池n发射极的场钝化。
  10. 根据权利要求9所述的一种将纳米叠层透明的导电薄膜用于太阳能电池中的钝化层的应用,其特征在于:所述的纳米叠层透明的导电薄膜主要包括由ZnO层和Al 2O 3层组成的基本单元;导电薄膜的总厚度=基本单元本身的循环次数n3×(ZnO单层的厚度×ZnO单层循环次数n1+Al 2O 3单层的厚度×Al 2O 3单层循环次数n2);氧化铝在所述的纳米叠层透明的导电薄膜中的掺杂度为n2/(n1+n2)at%。
  11. 根据权利要求9所述的一种将纳米叠层透明的导电薄膜用于太阳能电池中的钝化层的应用,其特征在于:所述的纳米叠层透明的导电薄膜的总厚度的范围在5纳米到200纳米之间。
  12. 根据权利要求9至11所述的一种将纳米叠层透明的导电薄膜用于太阳能电池中的钝化层的应用,其特征在于:当制备薄膜时步骤(2)中的工艺真空为100帕、工艺温度为200摄氏度时,ZnO单层的厚度为0.12nm,Al 2O 3单层的厚度为0.1nm;当所述的纳米叠层透明的导电薄膜的铝掺杂度在1.0at%到7.1at%之间时,薄膜的电阻率在1.5×10 -3ohm·cm到3.0×10 -3ohm·cm之间。
PCT/CN2018/074886 2016-02-05 2018-02-01 一种纳米叠层导电薄膜的制备方法及应用 WO2018141249A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610081430.XA CN105514182A (zh) 2016-02-05 2016-02-05 用于太阳能电池表面钝化和电流收集的方法、材料及应用
CN201710063481.4A CN106981539A (zh) 2016-02-05 2017-02-03 一种纳米叠层导电薄膜的制备方法及应用
CN201710063481.4 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018141249A1 true WO2018141249A1 (zh) 2018-08-09

Family

ID=55722015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074886 WO2018141249A1 (zh) 2016-02-05 2018-02-01 一种纳米叠层导电薄膜的制备方法及应用

Country Status (2)

Country Link
CN (2) CN105514182A (zh)
WO (1) WO2018141249A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514182A (zh) * 2016-02-05 2016-04-20 江苏微导纳米装备科技有限公司 用于太阳能电池表面钝化和电流收集的方法、材料及应用
CN108588677B (zh) * 2018-04-18 2020-09-08 北京航空航天大学 一种高介电常数的纳米叠层介电薄膜及其制备方法
CN109728105A (zh) * 2018-12-28 2019-05-07 苏州腾晖光伏技术有限公司 P型单晶硅电池背面及在其应用隧穿氧钝化接触的方法
CN109680262A (zh) * 2019-02-20 2019-04-26 江苏微导纳米装备科技有限公司 一种原子层沉积镀膜的方法、装置及应用
CN110931604A (zh) * 2019-12-10 2020-03-27 江苏微导纳米科技股份有限公司 Topcon结构太阳能电池的制备方法
CN111640825B (zh) * 2020-06-16 2021-09-21 东方日升(常州)新能源有限公司 N型接触钝化太阳电池制造方法及提高良率的方法
CN112838143A (zh) * 2020-12-31 2021-05-25 横店集团东磁股份有限公司 一种perc电池中氧化铝膜的沉积方法
CN112909104B (zh) * 2021-01-18 2022-10-04 合肥工业大学 一种双层分裂式光栅结构的硅基薄膜太阳能电池
CN114455048B (zh) * 2022-03-02 2023-03-14 江苏微导纳米科技股份有限公司 一种桨杆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170139A (zh) * 2006-10-26 2008-04-30 中美矽晶制品股份有限公司 太阳能电池及其制造方法
CN101556901A (zh) * 2008-04-07 2009-10-14 陈敏璋 光电元件及其制造方法
CN104037244A (zh) * 2014-06-17 2014-09-10 辽宁工业大学 一种晶硅太阳能电池钝化材料Al2O3浓度梯度掺杂ZnO薄膜及制备方法
US20150340536A1 (en) * 2012-11-26 2015-11-26 International Business Machines Corporation Atomic layer deposition for photovoltaic devices
CN106981539A (zh) * 2016-02-05 2017-07-25 江苏微导纳米装备科技有限公司 一种纳米叠层导电薄膜的制备方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI392759B (zh) * 2009-09-28 2013-04-11 Univ Nat Taiwan 透明導電薄膜及其形成方法
CN101976710A (zh) * 2010-10-15 2011-02-16 上海交通大学 基于氢化微晶硅薄膜的晶体硅异质结太阳电池的制备方法
JP2012129475A (ja) * 2010-12-17 2012-07-05 Sumitomo Metal Mining Co Ltd 薄膜太陽電池用透明導電膜
WO2012107138A1 (en) * 2011-02-07 2012-08-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD OF DEPOSITION OF Al2O3/SiO2 STACKS, FROM ALUMINIUM AND SILICON PRECURSORS
CN104616726B (zh) * 2014-12-17 2017-10-24 青岛墨烯产业科技有限公司 一种无铟透明电极及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170139A (zh) * 2006-10-26 2008-04-30 中美矽晶制品股份有限公司 太阳能电池及其制造方法
CN101556901A (zh) * 2008-04-07 2009-10-14 陈敏璋 光电元件及其制造方法
US20150340536A1 (en) * 2012-11-26 2015-11-26 International Business Machines Corporation Atomic layer deposition for photovoltaic devices
CN104037244A (zh) * 2014-06-17 2014-09-10 辽宁工业大学 一种晶硅太阳能电池钝化材料Al2O3浓度梯度掺杂ZnO薄膜及制备方法
CN106981539A (zh) * 2016-02-05 2017-07-25 江苏微导纳米装备科技有限公司 一种纳米叠层导电薄膜的制备方法及应用

Also Published As

Publication number Publication date
CN106981539A (zh) 2017-07-25
CN105514182A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2018141249A1 (zh) 一种纳米叠层导电薄膜的制备方法及应用
Pietruszka et al. ZnO/Si heterojunction solar cell fabricated by atomic layer deposition and hydrothermal methods
TWI398004B (zh) 太陽能電池及其製備方法
JP5848454B2 (ja) 太陽電池素子
CN107946405B (zh) 一种钝化接触太阳能电池的制作方法
Jiao et al. High-efficiency, stable and non-chemically doped graphene–Si solar cells through interface engineering and PMMA antireflection
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
CN109192813A (zh) Perc电池背面钝化工艺
CN108878570B (zh) 空穴选择型MoOx/SiOx(Mo)/n-Si异质结、太阳电池器件及其制备方法
TWI557930B (zh) 量子井結構太陽能電池及其製造方法
CN108389914A (zh) 一种钝化隧穿层材料制备及其在太阳电池的应用
WO2024060933A1 (zh) 太阳电池及其制备方法
CN109309145A (zh) 一种新型p+/p/n硒化锑薄膜电池的制备方法
CN103618025B (zh) 一种晶体硅背结太阳能电池制备方法
WO2023216652A1 (zh) 一种双面太阳能电池及其制备方法
CN219476695U (zh) 一种双面砷化镓太阳能电池
Qiu et al. A synergetic effect of surface texture and field-effect passivations on improving Si solar cell performance
TW201818557A (zh) 高光電變換效率太陽電池及高光電變換效率太陽電池之製造方法
CN106505128A (zh) 一种硅基异质结电池的制备方法
WO2020020217A1 (zh) 铜铟镓硒薄膜太阳能电池芯片的缓冲层及其制备方法、铜铟镓硒薄膜太阳能电池芯片
CN107994097B (zh) 一种太阳能电池的制备方法
KR101151413B1 (ko) 이중 반사 방지막을 갖는 태양 전지 및 그 제조 방법
JP5516611B2 (ja) 太陽電池の製造方法及び太陽電池
CN219457629U (zh) 一种无栅线的柔性砷化镓太阳能电池
Annuar et al. Boron-doped amorphous carbon film grown by bias assisted pyrolysis chemical vapor deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748617

Country of ref document: EP

Kind code of ref document: A1