WO2018141187A1 - 一种捆绑组合式半导体制冷制热器 - Google Patents

一种捆绑组合式半导体制冷制热器 Download PDF

Info

Publication number
WO2018141187A1
WO2018141187A1 PCT/CN2017/119022 CN2017119022W WO2018141187A1 WO 2018141187 A1 WO2018141187 A1 WO 2018141187A1 CN 2017119022 W CN2017119022 W CN 2017119022W WO 2018141187 A1 WO2018141187 A1 WO 2018141187A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
sub
semiconductor refrigeration
liquid refrigerant
semiconductor
Prior art date
Application number
PCT/CN2017/119022
Other languages
English (en)
French (fr)
Inventor
刘万辉
Original Assignee
重庆帝西科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆帝西科技有限公司 filed Critical 重庆帝西科技有限公司
Publication of WO2018141187A1 publication Critical patent/WO2018141187A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/003Details of machines, plants or systems, using electric or magnetic effects by using thermionic electron cooling effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a semiconductor refrigeration and heating technology, in particular to a high-power, large-cooling semiconductor refrigeration and heating device.
  • semiconductor refrigeration and heating products on the market all use low-power, small-cooling semiconductor refrigeration and heating devices. Due to the high assembly process and high difficulty of the assembly process of semiconductor refrigeration and heating devices, the external heat exchange efficiency is high. Due to the low series of factors, it is difficult to produce high-power, large-cooling semiconductor refrigeration and heating devices.
  • the object of the present invention is to provide such a bundled combined semiconductor refrigeration and heating device, the assembly process of the device is not difficult, and the external heat exchange efficiency is high, and can be used for high-power, large-cooling semiconductor refrigeration and heating products.
  • the object of the present invention is achieved by the following technical solutions: using a metal material having good thermal conductivity to form a suitable sub-semiconductor refrigerating heater front heat exchanger and a sub-semiconductor refrigerating heater heat exchanger, sub-semiconductor cooling and heating
  • the pre-heat exchanger is provided with a sub-semiconductor refrigerating heater before the liquid refrigerant passes through the liquid refrigerant inflow/outlet
  • the sub-semiconductor refrigerating heat exchanger is internally provided with a sub-semiconductor refrigerating heater
  • the S-bend sub-semiconductor refrigeration and heat exchanger front heat exchanger liquid refrigerant flow path is connected to the heat exchanger liquid refrigerant inflow/outlet, and the sub-semiconductor refrigeration heat exchanger has a sub-semiconductor through which the liquid refrigerant passes.
  • the liquid refrigerant flows into/out of the heat exchanger, and the sub-semiconductor refrigerating device is internally provided with an S-type connected to the liquid refrigerant inflow/outlet of the heat exchanger after the sub-semiconductor refrigerating heater.
  • Curved sub-semiconductor refrigeration and heat exchanger liquid heat exchanger flow path select high-efficiency semiconductor refrigeration sheet, use semiconductor refrigeration sheet, heat insulation material, sub-semiconductor refrigeration to heat
  • the front heat exchanger and the sub-semiconductor refrigeration and heat exchanger are assembled into a sub-semiconductor refrigeration heater, and then at least two sub-semiconductor refrigeration heaters are combined into a bundled combined semiconductor refrigeration and heating device, characterized in that each sub-semiconductor
  • the heat exchangers before the cooling and heating devices are connected to each other to form a liquid refrigerant flow path, and the heat exchangers of the respective sub-semiconductor refrigeration and heat exchangers are connected to each other to form a liquid refrigerant flow path.
  • the working principle of the present invention is as follows.
  • the cooling of the ambient temperature control device of the electric vehicle power battery pack in a high temperature environment is exemplified, and the ambient temperature control device of the electric vehicle power battery pack is energized, and the combined semiconductor cooling and heating is bundled.
  • the internal circulation infusion pump, the external circulation infusion pump and the heat exchange fan start to work, and the internal heat exchanger continuously absorbs heat from the inside of the power battery assembly box, and is connected to the heat exchanger after being bundled with the combined semiconductor refrigeration heater.
  • the circulating flow path of the liquid refrigerant passes the heat to the heat exchanger after the combined semiconductor refrigeration and heat exchanger, and then transfers the heat to the heat exchanger of the semiconductor refrigeration and the heat exchanger through the operation of the semiconductor refrigeration sheet, and then passes the liquid refrigerant.
  • the circulating flow transfers heat to the composite heat exchanger. Due to the heat dissipation of the heat exchange fan, the heat on the composite heat exchanger is continuously dissipated into the surrounding air, and the heat inside the power battery pack is continuously sucked away.
  • the combined semiconductor cooling and heating device is composed of a plurality of sub-semiconductor cooling and heating devices, and each of the sub-semiconductor cooling and heating devices can make the sub-semiconductor cooling and heating device too large without using too many semiconductor refrigerating sheets, thereby reducing the production.
  • Process difficulty each sub-semiconductor refrigeration and heat exchanger front heat exchanger and each sub-semiconductor refrigeration and heat exchanger heat exchanger take heat away by liquid heat exchange, which is very efficient, so it can be used for high power and large cooling capacity.
  • Semiconductor refrigeration and heating products are very efficient, so it can be used for high power and large cooling capacity.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present invention
  • FIG. 2 is a schematic view showing a flow direction of a liquid refrigerant in an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a sub-semiconductor refrigeration and heat exchanger according to an embodiment of the present invention
  • FIG. 4 is a front cross-sectional view of a sub-semiconductor refrigerating heater front heat exchanger and a sub-semiconductor refrigerating heater rear heat exchanger according to an embodiment of the present invention
  • a suitable sub-semiconductor refrigerating heater front heat exchanger 2 and a sub-semiconductor refrigerating heater post-heat exchanger 3 are fabricated from a metal material having good thermal conductivity, and the sub-semiconductor refrigeration system is used.
  • the preheater heat exchanger 2 is provided with a sub-semiconductor refrigerating heater front heat exchanger liquid refrigerant inflow/outlet 5 for passing the liquid refrigerant, and the sub-semiconductor refrigerating heater front heat exchanger 2 is internally provided with sub-semiconductor refrigeration Heat exchanger front heat exchanger liquid refrigerant inflow/outlet port 5 connected S-bend sub-semiconductor refrigeration heater front heat exchanger liquid refrigerant flow path 4, sub-semiconductor refrigeration-heater rear heat exchanger 3
  • the sub-semiconductor cooling and heating device after passing the liquid refrigerant passes through the heat exchanger liquid refrigerant inflow/outlet 5, and the sub-semiconductor refrigerating device heat exchanger 3 is internally provided with a sub-semiconductor refrigerating device and a heat exchanger liquid refrigerant.
  • the preheater heat exchanger 2 is connected to each other to form a liquid refrigerant flow path
  • each of the sub-semiconductor refrigerating heat exchangers 3 is connected to each other to form a liquid refrigerant flow path.
  • the working principle of the present invention is as follows.
  • the cooling of the ambient temperature control device of the electric vehicle power battery pack in a high temperature environment is exemplified, and the ambient temperature control device of the electric vehicle power battery pack is energized, and the combined semiconductor cooling and heating is bundled.
  • the internal circulation infusion pump, the external circulation infusion pump and the heat exchange fan start to work, and the internal heat exchanger continuously absorbs heat from the inside of the power battery assembly box, and is connected to the heat exchanger after being bundled with the combined semiconductor refrigeration heater.
  • the circulating flow path of the liquid refrigerant passes the heat to the heat exchanger of the bundled combined semiconductor refrigeration heater, and then transfers the heat to the preheater 2 of the semiconductor refrigeration heater through the operation of the semiconductor refrigeration sheet 1, and then passes through The circulating flow of the liquid refrigerant transfers the heat to the composite heat exchanger. Since the heat exchange fan works to dissipate heat, the heat on the composite heat exchanger is continuously dissipated into the surrounding air, and the heat inside the power battery pack installation box is continuously sucked away.
  • the temperature is lowered to achieve the purpose of controlling the ambient temperature of the electric vehicle power battery pack within the specified range, due to the bundle
  • the combined semiconductor cooling and heating device is composed of a plurality of sub-semiconductor cooling and heating devices, and each of the sub-semiconductor cooling and heating devices can make the sub-semiconductor cooling and heating device too large without using too many semiconductor refrigerating sheets, thereby reducing the production.
  • Process difficulty, each sub-semiconductor refrigerating heater front heat exchanger 2 and each sub-semiconductor refrigerating heater heat exchanger 3 are carried away by liquid heat exchange, which is highly efficient, so it can be used for high power and large Cooling semiconductor refrigeration and heating products.
  • the liquid refrigerant flow of the heat exchangers of the sub-semiconductor refrigeration and heat exchangers of the sub-semiconductor refrigeration and heat exchangers is sequentially reversed, and a certain sub-flow can be adopted.
  • the semiconductor refrigerant heat exchanger front heat exchanger liquid refrigerant flow is first-in-first-out, then the sub-semiconductor refrigeration heater heat exchanger liquid refrigerant flow is backward and backward, for example, bundled combined semiconductor refrigeration heater has A, B , C, D four sub-semiconductor refrigeration heaters, the flow of liquid refrigerant in each sub-semiconductor refrigeration and heat exchanger front heat exchanger is A to B and then C to D, then the heat exchange of each sub-semiconductor refrigeration heater The flow of the liquid refrigerant in the device is from D to C and then to B and then to A, which can better solve the problem of the sub-semiconductor refrigerating heater front heat exchanger 2 and the sub-semiconductor refrigerating heater after bundling the combined semiconductor refrigerating heater.
  • the equalization problem of the temperature difference of the heater 3 improves the overall efficiency of the bundled combined semiconductor refrigeration heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种捆绑组合式半导体制冷制热器,它包括至少两个子半导体制冷制热器,子半导体制冷制热器由半导体制冷片(1)、隔热材料(6)、子半导体制冷制热器前换热器(2)和子半导体制冷制热器后换热器(3)组合装配构成,子半导体制冷制热器前换热器(2)开有让液体冷媒通过的子半导体制冷制热器前换热器液体冷媒流入/流出口(5)和S型弯曲的子半导体制冷制热器前换热器液体冷媒流动通路(4),子半导体制冷制热器后换热器(3)开有让液体冷媒通过的子半导体制冷制热器后换热器液体冷媒流入/流出口(5)和S型弯曲的子半导体制冷制热器后换热器液体冷媒流动通路(4),其特征是:各个子半导体制冷制热器前换热器(2)用管路相互连通构成液体冷媒流动通路,各个子半导体制冷制热器后换热器(3)用管路相互连通构成液体冷媒流动通路。本发明具有结构简单,制作工艺难度不大,工作效率高的特点。

Description

一种捆绑组合式半导体制冷制热器 技术领域
本发明涉及半导体制冷制热技术,特别是一种大功率、大冷量半导体制冷制热装置。
背景技术
现在市场上半导体制冷制热产品全部都是采用小功率、小冷量半导体制冷制热装置,由于大数量半导体制冷片整体制作半导体制冷制热装置的装配工艺要求高、难度大,外部换热效率低等系列因素,难以制作大功率、大冷量半导体制冷制热装置。
发明内容
本发明的目的是提供这样一种捆绑组合式半导体制冷制热装置、该装置装配工艺难度不大、外部换热效率高等系列因素,可用于大功率、大冷量半导体制冷制热产品。
本发明的目的是通过下面的技术方案实现的:用导热性能良好的金属材料制作成合适的子半导体制冷制热器前换热器和子半导体制冷制热器后换热器,子半导体制冷制热器前换热器开有让液体冷媒通过的子半导体制冷制热器前换热器液体冷媒流入/流出口,子半导体制冷制热器前换热器内部开有与子半导体制冷制热器前换热器液体冷媒流入/流出口相连通的S型弯曲的子半导体制冷制热器前换热器液体冷媒流动通路,子半导体制冷制热器后换热器开有让液体冷媒通过的子半导体制冷制热器后换热器液体冷媒流入/流出口,子半导体制冷制热器后换热器内部开有与子半导体制冷制热器后换热器液体冷媒流入/流出口相连通的S型弯曲的子半导体制冷制热器后换热器液体冷媒流动通路,选择高效的半导体制冷片,用半导体制冷片、隔热材料、子半导体制冷制热器前换热器和子半导体制冷制热器后换热器装配成子半导体制冷制热器,再将至少两个子半导体制冷制热器组合成捆绑组合式半导体制冷制热装置,其特征是:各个子半导体制冷制热器前换热器用管路相互连通构成液体冷媒流动通路,各个子半导体制冷制热器后换热器用相互管路连通构成液体冷媒流动通路。
本发明的工作原理是这样的,这里以高温环境下电动汽车动力电池组的环境 温度控制装置的制冷来举例说明,电动汽车动力电池组的环境温度控制装置通电后,捆绑组合式半导体制冷制热器、内循环输液泵、外循环输液泵及换热风机开始工作,内部换热器不断地从动力电池组安装盒的内部吸取热量,通过与捆绑组合式半导体制冷制热器后换热器相连通的液体冷媒的循环流动通路把热量传给捆绑组合式半导体制冷制热器后换热器,再通过半导体制冷片的工作把热量传给半导体制冷制热器前换热器,再通过液体冷媒的循环流动把热量传给复合换热器,由于换热风机工作散热,复合换热器上的热量被不断散发到周围的空气中,动力电池组安装盒内部的热量被不断地吸走,温度降低,达到电动汽车动力电池组的环境温度控制在规定范围内的目的,由于捆绑组合式半导体制冷制热器由多个子半导体制冷制热器组合构成,每个子半导体制冷制热器可以不必用过多的半导体制冷片而把子半导体制冷制热器制作得太大,降低了制作工艺难度,每个子半导体制冷制热器前换热器和每个子半导体制冷制热器后换热器都是通过液体换热把热量带走,效率很高,所以可用于大功率、大冷量半导体制冷制热产品。
附图说明
图1是本发明的实施例的原理结构示意图;
图2是本发明的实施例中的液体冷媒的一种流动方向示意图;
图3是本发明的实施例中子半导体制冷制热器原理结构示意图;
图4是本发明的实施例中子半导体制冷制热器前换热器及子半导体制冷制热器后换热器正面剖视图;
图中:1.半导体制冷片;2.子半导体制冷制热器前换热器;3.子半导体制冷制热器后换热器;4.子半导体制冷制热器前换热器及子半导体制冷制热器后换热器液体冷媒流动通路;5.子半导体制冷制热器前换热器液体冷媒流入/流出口及子半导体制冷制热器后换热器液体冷媒流入/流出口;6.隔热材料。
具体实施方式
如图1、图3及图4所示,用导热性能良好的金属材料制作成合适的子半导体制冷制热器前换热器2和子半导体制冷制热器后换热器3,子半导体制冷制热器前换热器2开有让液体冷媒通过的子半导体制冷制热器前换热器液体冷媒流入/流出口5,子半导体制冷制热器前换热器2内部开有与子半导体制冷制热器前换热器液体冷媒流入/流出口5相连通的S型弯曲的子半导体制冷制热器前换 热器液体冷媒流动通路4,子半导体制冷制热器后换热器3开有让液体冷媒通过的子半导体制冷制热器后换热器液体冷媒流入/流出口5,子半导体制冷制热器后换热器3内部开有与子半导体制冷制热器后换热器液体冷媒流入/流出口5相连通的S型弯曲的子半导体制冷制热器后换热器液体冷媒流动通路4,选择高效的半导体制冷片1,用半导体制冷片1、隔热材料6、子半导体制冷制热器前换热器2和子半导体制冷制热器后换热器3装配成子半导体制冷制热器,再将至少两个子半导体制冷制热器组合成捆绑组合式半导体制冷制热装置,其特征是:各个子半导体制冷制热器前换热器2用管路相互连通构成液体冷媒流动通路,各个子半导体制冷制热器后换热器3用相互管路连通构成液体冷媒流动通路。
本发明的工作原理是这样的,这里以高温环境下电动汽车动力电池组的环境温度控制装置的制冷来举例说明,电动汽车动力电池组的环境温度控制装置通电后,捆绑组合式半导体制冷制热器、内循环输液泵、外循环输液泵及换热风机开始工作,内部换热器不断地从动力电池组安装盒的内部吸取热量,通过与捆绑组合式半导体制冷制热器后换热器相连通的液体冷媒的循环流动通路把热量传给捆绑组合式半导体制冷制热器后换热器,再通过半导体制冷片1的工作把热量传给半导体制冷制热器前换热器2,再通过液体冷媒的循环流动把热量传给复合换热器,由于换热风机工作散热,复合换热器上的热量被不断散发到周围的空气中,动力电池组安装盒内部的热量被不断地吸走,温度降低,达到电动汽车动力电池组的环境温度控制在规定范围内的目的,由于捆绑组合式半导体制冷制热器由多个子半导体制冷制热器组合构成,每个子半导体制冷制热器可以不必用过多的半导体制冷片而把子半导体制冷制热器制作得太大,降低了制作工艺难度,每个子半导体制冷制热器前换热器2和每个子半导体制冷制热器后换热器3都是通过液体换热把热量带走,效率很高,所以可用于大功率、大冷量半导体制冷制热产品。
如图2所示,本发明中捆绑组合式半导体制冷制热器各个子半导体制冷制热器冷热两端外换热器的液体冷媒流动经过顺序,可以采用相对逆向流动的方式,既某个子半导体制冷制热器前换热器液体冷媒流动是先进先出,则该子半导体制冷制热器后换热器液体冷媒流动是后进后出,例如捆绑组合式半导体制冷制热器有A、B、C、D四个子半导体制冷制热器,各子半导体制冷制热器前换热器中液 体冷媒流动顺序为A到B再到C再到D,则各子半导体制冷制热器后换热器中液体冷媒流动顺序为D到C再到B再到A,这样能够较好解决捆绑组合式半导体制冷制热器各个子半导体制冷制热器前换热器2和子半导体制冷制热器后换热器3温度差的均衡问题,提高捆绑组合式半导体制冷制热器的整体效率。

Claims (1)

  1. 一种捆绑组合式半导体制冷制热器,它包括至少两个子半导体制冷制热器,子半导体制冷制热器由半导体制冷片(1)、隔热材料(6)、子半导体制冷制热器前换热器(2)和子半导体制冷制热器后换热器(3)组合装配构成,子半导体制冷制热器前换热器(2)开有让液体冷媒通过的子半导体制冷制热器前换热器液体冷媒流入/流出口(5),子半导体制冷制热器前换热器(2)内部开有与子半导体制冷制热器前换热器液体冷媒流入/流出口(5)相连通的S型弯曲的子半导体制冷制热器前换热器液体冷媒流动通路(4),子半导体制冷制热器后换热器(3)开有让液体冷媒通过的子半导体制冷制热器后换热器液体冷媒流入/流出口(5),子半导体制冷制热器后换热器(3)内部开有与子半导体制冷制热器后换热器液体冷媒流入/流出口(5)相连通的S型弯曲的子半导体制冷制热器后换热器液体冷媒流动通路(4),其特征是:各个子半导体制冷制热器前换热器(2)用管路相互连通构成液体冷媒流动通路,各个子半导体制冷制热器后换热器(3)用相互管路连通构成液体冷媒流动通路。
PCT/CN2017/119022 2017-02-06 2017-12-27 一种捆绑组合式半导体制冷制热器 WO2018141187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710080203.X 2017-02-06
CN201710080203.XA CN108397934A (zh) 2017-02-06 2017-02-06 一种捆绑组合式半导体制冷制热器

Publications (1)

Publication Number Publication Date
WO2018141187A1 true WO2018141187A1 (zh) 2018-08-09

Family

ID=63039250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119022 WO2018141187A1 (zh) 2017-02-06 2017-12-27 一种捆绑组合式半导体制冷制热器

Country Status (2)

Country Link
CN (1) CN108397934A (zh)
WO (1) WO2018141187A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895764A (zh) * 2018-09-15 2018-11-27 乔燕春 一种多级覆叠半导体超低温快速升降温装置
CN114520388A (zh) * 2022-02-08 2022-05-20 浙江荣泰电工器材股份有限公司 一种新能源汽车用五系三元锂电池模组的云母绝缘盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262343A (ja) * 1998-03-18 1999-09-28 Takeda Mamoru 鑑賞魚用水槽の冷却装置
CN101858668A (zh) * 2009-04-09 2010-10-13 宁波金通电器有限公司 半导体制冷装置
CN202432883U (zh) * 2011-12-31 2012-09-12 刘万辉 一种半导体制冷制热器外换热器
CN206609180U (zh) * 2017-02-06 2017-11-03 重庆帝西科技有限公司 一种高效捆绑组合式半导体制冷制热器
CN206609179U (zh) * 2017-02-06 2017-11-03 重庆帝西科技有限公司 一种捆绑组合式半导体制冷制热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262343A (ja) * 1998-03-18 1999-09-28 Takeda Mamoru 鑑賞魚用水槽の冷却装置
CN101858668A (zh) * 2009-04-09 2010-10-13 宁波金通电器有限公司 半导体制冷装置
CN202432883U (zh) * 2011-12-31 2012-09-12 刘万辉 一种半导体制冷制热器外换热器
CN206609180U (zh) * 2017-02-06 2017-11-03 重庆帝西科技有限公司 一种高效捆绑组合式半导体制冷制热器
CN206609179U (zh) * 2017-02-06 2017-11-03 重庆帝西科技有限公司 一种捆绑组合式半导体制冷制热器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895764A (zh) * 2018-09-15 2018-11-27 乔燕春 一种多级覆叠半导体超低温快速升降温装置
CN114520388A (zh) * 2022-02-08 2022-05-20 浙江荣泰电工器材股份有限公司 一种新能源汽车用五系三元锂电池模组的云母绝缘盒
CN114520388B (zh) * 2022-02-08 2023-12-26 浙江荣泰电工器材股份有限公司 一种新能源汽车用五系三元锂电池模组的云母绝缘盒

Also Published As

Publication number Publication date
CN108397934A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
US20100089553A1 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
CN105737439B (zh) 一种利用太阳能和热电过冷装置的空调系统
WO2017036283A1 (zh) 一种用于循环冷却系统的半导体制冷装置
JP2014505229A (ja) ペルチェ素子を有する気−液熱交換器を備えた室内空調装置
WO2018049996A1 (zh) 一种电动汽车电池组双循环环境温度控制装置
CN103776163B (zh) 热泵热水器
JP6653118B2 (ja) 片面貼付け式伝熱型均温器
CN105299950A (zh) 一种太阳能半导体制冷系统
CN105810805B (zh) 一种液冷散热器
CN209749011U (zh) 一种降温装置
WO2018141187A1 (zh) 一种捆绑组合式半导体制冷制热器
CN105916358A (zh) 一种充电机散热系统
CN206149693U (zh) 一种散热机构及具有热源的设备
CN105261597B (zh) 一种管道散热模组
CN209087758U (zh) 霍尔离子源磁极冷却装置
CN203893485U (zh) 一种热管式高效半导体制冷装置
CN102207304A (zh) 真空超导内外翅片层叠式多向出风电热暖风机
CN103162394B (zh) 具有储能功能的空调系统
CN201662759U (zh) 可提供冷风的散热装置
CN202074608U (zh) 真空超导内外翅片层叠式多向出风电热暖风机
CN207019331U (zh) 一种大功率半导体制冷制热器
JP2015116910A (ja) 熱交換システム
CN107421015A (zh) 空调器
CN206609179U (zh) 一种捆绑组合式半导体制冷制热器
CN106440923B (zh) 一种用于提高冷凝器换热效率的装置、换热设备和空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895223

Country of ref document: EP

Kind code of ref document: A1