WO2018139767A9 - 신규한 아민계 화합물 및 이를 이용한 유기발광 소자 - Google Patents

신규한 아민계 화합물 및 이를 이용한 유기발광 소자 Download PDF

Info

Publication number
WO2018139767A9
WO2018139767A9 PCT/KR2017/015256 KR2017015256W WO2018139767A9 WO 2018139767 A9 WO2018139767 A9 WO 2018139767A9 KR 2017015256 W KR2017015256 W KR 2017015256W WO 2018139767 A9 WO2018139767 A9 WO 2018139767A9
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
unsubstituted
layer
Prior art date
Application number
PCT/KR2017/015256
Other languages
English (en)
French (fr)
Other versions
WO2018139767A1 (ko
Inventor
차용범
전상영
조연호
김연환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170149677A external-priority patent/KR101967383B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780060444.6A priority Critical patent/CN109803966B/zh
Priority to US16/320,826 priority patent/US11261176B2/en
Publication of WO2018139767A1 publication Critical patent/WO2018139767A1/ko
Publication of WO2018139767A9 publication Critical patent/WO2018139767A9/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present invention relates to a novel amine compound and an organic light emitting device comprising the same.
  • organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent characteristics of luminance, driving voltage and response speed, and much research is proceeding.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic layer between the anode and the cathode.
  • the organic material layer may have a multilayer structure composed of different materials in order to improve the efficiency and stability of the organic light emitting device.
  • the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Patent Document 0001 Korean Patent Publication No. 10-2000- 0051826
  • the present invention relates to a novel amine compound and organic luminescence comprising the same.
  • X is O or S
  • a and B each independently represent hydrogen; Substituted or unsubstituted C 6 -C 60 aryl; Or a substituted or unsubstituted N, C 2 containing 1 to 3 heteroatoms selected from the group consisting of 0 and S - being a 60 heteroaryl. Except when A and B are both hydrogen,
  • L is a single bond; Substituted or unsubstituted C 6 - 60 arylene; And 60 to interrogating arylene, - or a substituted or unsubstituted 0, N, C of the solution for interrogating atoms selected from the group consisting of S i and S comprises at least one second
  • An and Ar 2 are, each independently, a substituted or unsubstituted C 6 - 60 aryl; Or substituted or unsubstituted C 2 -6 o heteroaryl containing 1 to 3 heteroatoms selected from the group consisting of N, O and S, Ri is hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; A substituted or unsubstituted d-60 haloalkyl;; substituted or unsubstituted (alkyl-substituted 60 or unsubstituted d-60 alkoxy, substituted or unsubstituted d- 60 haloalkoxy; substituted or unsubstituted C 3 - 60 with a substituted or unsubstituted N, 0 and S; cycloalkyl, substituted or unsubstituted C 2 - 60 alkenyl; substituted or non-substituted C 6 ring; - 60 aryl 60 aryloxy substituted or un
  • the present invention also provides a plasma display panel comprising: a first electrode; A second electrode opposing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound represented by Formula 1 .
  • the compound represented by the general formula (1) can be used as a material of an organic material layer of an organic light emitting device and can improve the efficiency, the driving voltage and / or the lifetime of the organic light emitting device.
  • Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
  • means a bond connected to another substituent
  • single A bond means a case where there is no separate atom in the portion indicated by L.
  • substituted or unsubstituted &quot refers to a substituent selected from the group consisting of deuterium, halogen, cyano, nitrile, nitro
  • the alkyl group may be substituted with one or more substituents selected from the group consisting of an alkyl group, an alkoxy group, an alkoxy group, an aryloxy group, an aryloxy group, an aryloxy group, a silyl group, a boron group, an alkyl group, a cycloalkyl group, an alkenyl group, An arylamine group, an arylphosphine group, or a heterocyclic group containing at least one of N, O and S groups, with a substituent selected from the group consisting of an aralkylamine group, a hetero
  • Substituent group to which at least two substituents are connected may be a biphenyl group,
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably 1 to 40.
  • the compound having the following structure may be used.
  • the present invention is not limited thereto.
  • the ester group may be substituted with a straight-chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms in the ester group. Specifically, it may be a compound of the following structural formula, but is not limited thereto. ⁇ In the present specification, the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, the compound may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, But are not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group.
  • examples of the halogen group include bromine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. Work According to the embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert- N -propyl, n -pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, Octyl, tert-octyl, 1-methylheptyl, 2-ethylpyryl, 2-propylpentyl, n-nonyl, But are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl,
  • the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40.
  • the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-nbutenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 1-yl, 2-phenylphenyl-1-yl, 2-phenyl-2- (naphthyl) 1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl, styrenyl and the like.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms. According to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto.
  • Examples of the polycyclic aryl group include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group.
  • a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. Wherein the fluorenyl group is substituted
  • the heterocyclic group is a heteroaromatic group containing at least one of 0, N, Si and S as a heteroatom, and the number of carbon atoms is not particularly limited . And preferably has 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furane group, a furyl group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, A pyridazinyl group, a pyrazinopyrazinyl group, an isoquinoline group, an isoquinoline group, an isoquinoline group, an isoquinoline group, an isoquinoline group, an isoquinoline group, an isoquinoline group, an isoquinolinyl group, an isoquinolinyl group, an isoquinolinyl group, A benzofuranyl group, an indole group, a carbazole group, a benzoxazole group, a benzoimidazole group, a benzothiazole group, a be
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the aforementioned aryl group.
  • the alkyl group in the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the alkyl group described above.
  • the heteroaryl among the heteroarylamines the description on the above-mentioned heterocyclic groups can be applied.
  • the alkenyl group in the aralkenyl group is the same as the above-mentioned alkenyl group.
  • the description of the aryl group described above can be applied except that arylene is a divalent group.
  • the description of the above-mentioned heterocyclic group can be applied except that the heteroarylene is a divalent group.
  • the description of the above-mentioned aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group and two substituents are bonded to each other.
  • the description of the above-mentioned heterocyclic group can be applied except that the heterocyclic ring is not a monovalent group and two substituents are bonded to each other.
  • the present invention also provides a compound represented by the above formula (1).
  • a and B each independently represent hydrogen, or any one selected from the group consisting of That is, in the above formula (1), one of A and B is hydrogen and the other is selected from the group consisting of A and B may be any one selected from the group consisting of:
  • n1 to n3 each independently represent an integer of 0 to 3;
  • a and B may each independently be hydrogen, or any one selected from the group consisting of:
  • the efficiency is 10% or more and the lifetime is limited to 30% or more. Accordingly, when A and B are independently selected from the group consisting of hydrogen and the group consisting of the above-mentioned formula (1), the efficiency of the device can be increased and the stability can be greatly increased.
  • L is a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted phenanthrenylene, substituted or unsubstituted anthracenylene, Substituted or unsubstituted fluorenylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted fluorenenylene, substituted or unsubstituted triphenylenylene, substituted or unsubstituted pyrenylene, substituted or unsubstituted carbazolylene, substituted or unsubstituted fluorenylene, It may be an unsubstituted spiro-fluorenylene.
  • L may be a single, or any one selected from the group consisting of: Specifically, for example, L may be a single bond, or any group selected from the group consisting of: If the distance between the core and the arylamine group is too large in the above Formula 1,
  • A, and Ar 2 is a ring C each independently represent a substituted or non-substituted 6-20 aryl; Or C 2 - 20 heteroaryl containing 1 to 3 substituted or unsubstituted 0 or S heteroatoms.
  • An and 2 may each independently be selected from the group consisting of:
  • Y 2 is 0, S, or cz 14 z 15 ,
  • Zn to Z 15 each independently represent hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Silyl; d- 20 alkyl; d- 20 haloalkyl; C 6 - 20 aryl; 0, or C 2 -20 heteroaryl containing at least one heteroatom of S, Z 14 and Z 15 may be linked together to form a monocyclic or polycyclic ring,
  • ml to m3 each independently represent an integer of 0 to 3;
  • u Z to Z 13 each independently represent hydrogen, deuterium, halogen, cyano eu trimethylsilyl, methyl, tert- butyl, phenyl, naphthyl, triphenyl alkylenyl, dibenzo-furanyl, or thiophenyl and dibenzo ,
  • Zi4 and Z 15 are, each independently, is methyl, or is connected to each other to form a monocyclic or polycyclic ring,
  • n 1 n ml to m3 each independently represents 0 or 1.
  • a and 2 each independently may be any one selected from the group consisting of:
  • Ri can be hydrogen, deuterium, halogen, cyano, nitro, methyl, or phenyl, and al can be 0 or 1.
  • al denotes the number of ⁇ .
  • n1 to n3 and ml to m3 can be understood with reference to the description of al and the structure of the above formula (1).
  • the compound can be represented by the following formula (1A) or (IB)
  • the compound may be one from the group consisting of the following compounds:
  • the compound represented by Formula 1 has a structure in which A or B and an arylamine substituent are connected to a specific position of dibenzofuran / dibenzothiophene core, and thus the organic light emitting device using the same has high efficiency, low driving voltage, Long life and so on.
  • the compound represented by the above formula (1A) can be prepared, for example, according to the following reaction scheme 1, and the compound represented by the above formula (1B) can be prepared, for example,
  • an organic electroluminescent device including a compound represented by the formula (1).
  • a second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound represented by Formula 1 .
  • the organic material layer may be a hole injection layer, a hole transport layer, And may include layers that are simultaneously formed.
  • the organic layer may include a light emitting layer, and the light emitting layer may include a compound represented by the general formula (1).
  • the electron transport layer, the electron injection layer, or the layer that simultaneously performs electron transport and electron injection may be included.
  • the organic light emitting diode may further include an electron blocking layer (EBL) disposed between the hole transport layer and the light emitting layer and / or a hole blocking layer (Hol e) between the light emitting layer and the electron transport layer. blocking l ayer: HBL).
  • the electron blocking layer and the hole blocking layer may be organic layers adjacent to the light emitting layer, respectively.
  • the compound represented by Formula 1 may be included in the hole transport layer and / or the electron blocking layer.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • a hole injecting layer and a hole transporting layer between the first electrode and the light emitting layer, and an electron transporting layer and an electron injecting layer between the light emitting layer and the second electrode are further included .
  • the structure of the organic light emitting device is not limited thereto, and fewer or more Number of organic layers.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, at least one organic layer, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which an anode, one or more organic compound layers and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an organic light emitting device including a substrate 1, an anode 2, a light emitting layer 3, And shows an example of a light emitting device.
  • the compound represented by Formula 1 may be included in the light emitting layer.
  • the organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
  • the compound represented by Formula 1 may be contained in at least one of the hole injecting layer, the hole transporting layer, the light emitting layer, and the electron transporting layer.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Formula 1. [
  • the organic light emitting diode includes a plurality of organic layers, the organic layers may be formed of the same material or different materials.
  • the organic light emitting device can be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate.
  • a metal oxide or a metal oxide having conductivity or a metal oxide having conductivity on the substrate may be formed on the substrate by using a PVDCphys i ca l Vapor Deposition method such as a sputtering method or an e-beam evaporation method.
  • An anode is formed by vapor-depositing an alloy on the anode, and a hole injecting layer, a hole transporting layer, a light emitting layer, and an electron transporting layer Forming an organic material layer, and then depositing a material usable as a cathode thereon.
  • an organic light emitting device can be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
  • the compound represented by Formula 1 may be formed into an organic layer by a solution coating method as well as a vacuum evaporation method in the production of an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating and the like, but is not limited thereto.
  • an organic light emitting device can be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is a cathode.
  • As the anode material a material having a large work function is preferably used so that hole injection can be smoothly conducted into the organic material layer.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, tin oxide (II), indium zinc oxide (IZO); ⁇ 0: ⁇ 1 SN0 or 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene], polypyrrole and polyaniline, no.
  • the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesia, fowl, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; However and multilayered materials such as LiF / ⁇ or Li0 2 / Al, but are not limited thereto.
  • the hole injecting layer is a layer for injecting holes from an electrode.
  • the hole injecting material has a hole injecting effect, and has a hole injecting effect on the light emitting layer or a light emitting material.
  • a compound which prevents the migration of excitons to the electron injecting layer or the electron injecting material and is also excellent in the thin film forming ability is preferable.
  • the HO xhighest occupied molecular orbital of the hole injecting material is preferably between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole injecting material include metal porphyrin, oligothiophene, arylamine-based organic materials, hexanitrile hexaazatriphenylene-based organic materials, quinacridone-based organic materials, perylene- , Anthraquinone, polyaniline and polythiophene-based conductive polymers, but the present invention is not limited thereto.
  • the hole transport layer is a layer that transports holes from the hole injection layer to the light emitting layer.
  • the hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer.
  • the material is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material is preferably a material capable of emitting light in the visible light region by transporting and receiving holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and having good quantum efficiency for fluorescence or phosphorescence.
  • the light emitting layer may include a host material and a dopant material as described above.
  • the host material may further include a condensed aromatic ring derivative or a heterocyclic compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds.
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • splittable material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • aromatic amine derivatives include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, and examples thereof include pyrene, anthracene, chrysene, and peripherrhene having an arylamino group.
  • styrylamine compound include substituted or unsubstituted Wherein at least one aryl vinyl group is substituted with at least one aryl vinyl group, and at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted.
  • the electron transporting layer is a layer that receives electrons from the electron injecting layer and transports electrons to the light emitting layer.
  • the electron transporting material is a material capable of transferring electrons from the cathode well to the light emitting layer. Suitable.
  • the electron transporting layer can be used with any desired cathode material as used according to the prior art.
  • a suitable cathode material is a conventional material having a low work function followed by an aluminum layer or a silver layer. Barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.
  • the electron injection layer is a layer for injecting electrons from the electrode, has an ability to transport electrons, has an electron injection effect from the cathode, and has an excellent electron injection effect with respect to the light emitting layer or the light emitting material.
  • a compound which prevents migration to the injection layer and is excellent in the ability to form a thin film is preferable.
  • Specific examples thereof include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, A nitrogen-containing 5-membered ring derivative, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methylphene 8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (2-naphthalato) gallium, and the like But is not limited thereto.
  • the organic light emitting device may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to an organic light emitting device.
  • the gymnastics of the compound represented by Formula 1 and the organic light emitting device including the compound represented by Formula 1 will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
  • ITO indium tin oxide
  • Fischer Co. was used as a detergent
  • distilled water which was filtered with a filter of a product manufactured by Mi 11 ipore Co.
  • the ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Further, the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator.
  • Hexa nitrile hexaazatri phenyl ene (HAT) of the following chemical formula was thermally vacuum deposited to a thickness of 150 A on the ⁇ key transparent electrode thus prepared to form a hole injection layer.
  • HTK1150A which is a material for transporting holes on the hole injection layer
  • Compound 1 prepared in Preparation Example 1 was vacuum-deposited on the hole transport layer to a thickness of 150 A to form an electron blocking layer.
  • BH and BD were vacuum deposited on the electron blocking layer at a weight ratio of 25: 1 at a thickness of 300 A to form a light emitting layer.
  • the compound ET and the compound LiQ (LiTiO3) were vacuum deposited on the light emitting layer at a weight ratio of 1: 1 to form an electron transport layer having a thickness of 300A.
  • Lithium fluoride (LiF) and aluminum having a thickness of 2,000 A were sequentially deposited on the electron transport layer to a thickness of 12 A to form an electron injection layer and a cathode.
  • the deposition rate of the organic material was maintained at 0.4 to 0.7 A / sec, the deposition rate of the lithium fluoride of the anode was 3 A / sec and the deposition rate of the aluminum was 2 A / sec. 7 to 5 x 10 & lt ; -6 & gt ; torr.
  • an organic light emitting device was fabricated. Examples 1-2 to 1-15
  • Example 1-1 The organic light emitting devices of Examples 1-2 to 1 to 15 were fabricated in the same manner as in Example 1-1, except that Compound 1 was changed as shown in Table 1 in forming the electron blocking layer Respectively. Comparative Example 1-1
  • An organic light-emitting device was fabricated using the same method as in Example 1-1, except that EB-1 was used as a compound in the formation of the electron blocking layer
  • An organic light emitting device was fabricated in the same manner as in Example 1-1 except that EB-2 was used instead of Compound 1 in the formation of the electron blocking layer
  • An organic light emitting device was fabricated using the same method as in Example 1-1 except that EB-3 was used instead of Compound 1 in forming the electron blocking layer
  • An organic light emitting device was fabricated in the same manner as in Example 1-1 except that EB-4 was used instead of Compound 1 in the formation of the electron blocking layer
  • T95 means the time required for the luminance to decrease from the initial luminance (650 nt) to 95%.
  • Example 1 Compound 1 3.72 5.47 (0.140, 0.045 225 1) Example 1 Compound eu 4 3.86 5.32 (0.140, 215 0.045) Example 1 Compound 5 3.88 5.31 (0.139, 210 3 0.046) Example 1 Compound 6 3.87 5.38 (0.139, 230 4 0.047) 220 5 0.044) Salification Example 1 Compound 9 3.85 5.28 ' ' (0.140, 200 6.0 0.042) Example 1 Compound 3.81 5.29 (0.140, 205
  • Example 2-1 In the case of the compound of the present invention, it was confirmed that the efficiency of the device was increased and the stability was greatly increased.
  • Example 2-1 In the case of the compound of the present invention, it was confirmed that the efficiency of the device was increased and the stability was greatly increased.
  • the glass substrate coated with ITO (indium tin oxide) thickness of ⁇ and ⁇ was put into distilled water containing detergent and washed with ultrasonic waves.
  • ITO indium tin oxide
  • Fischer Co. products were used as a detergent
  • Mi 11 ipore Co. distilled water was used as the filter of the product.
  • the ITO was washed for 30 minutes, then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol and acetone methanol, dried, and then transported to a plasma cleaner. Further, the substrate was cleaned using oxygen plasma for 5 minutes, and the vacuum evaporator S substrate was transported.
  • the HAT was thermally vacuum-deposited on the prepared ITO transparent electrode to a thickness of 150 A to form a hole injection layer.
  • Compound 1 prepared in Preparation Example 1 was vacuum-deposited on the hole injection layer at a film thickness of 1150 A as a hole transporting material to form a hole transport layer.
  • the following compound EB was vacuum-deposited on the hole transport layer to a film thickness of 150 A to form an electron blocking layer.
  • the BH and BD were deposited at a film thickness of 300 A
  • the compound ET and the compound LiQ Lithium Quinolate were vacuum deposited on the light emitting layer at a weight ratio of 1: 1 to form an electron transporting layer having a thickness of 300A.
  • Lithium fluoride (LiF) and aluminum having a thickness of 2,000 A were sequentially deposited on the electron transport layer to a thickness of 12 A to form an electron injection layer and a cathode.
  • the deposition rate of the organic material was maintained at 4 ⁇ 0.7 A / sec, the lithium fluoride at the cathode was maintained at 0.3 A / sec, and the deposition rate at the aluminum was maintained at 2 A / sec. Maintaining ⁇ 7 to 5 x 10 -6 torr, A light emitting device was fabricated. Examples 2-2 to 2-12
  • Example 2-1 The organic light emitting devices of Examples 2-2 to 2-12 were produced in the same manner as in Example 2-1 except that the electron transporting material in the formation of the hole transporting layer was changed as shown in Table 2 instead of the compound 1. Respectively. Comparative Example 2-1
  • An organic light emitting device was fabricated using the same method as in Example 2-1, except that HT-1 was used instead of Compound 1 in forming the hole transport layer.
  • An organic light emitting device was fabricated using the same method as in Example 2-1 except that HT-2 was used instead of Compound 1 in forming the hole transport layer.
  • An organic light emitting device was fabricated using the same method as in Example 2-1, except that HT-3 was used instead of Compound 1 as an electron transporting material in forming the hole transporting layer.
  • An organic light emitting device was fabricated using the same method as in Example 2-1 except that HT-4 was used instead of Compound 1 in forming the hole transport layer.
  • T95 means the time required for the luminance to decrease from the initial luminance (650 nt) to 95%.
  • Example 2 Compound 3.73 5.42 (0. 143, 265 12 21 0.042) Comparative Example 2 HT-1 4. 13 4.83 200 1 Comparative Example 2- HT-2 4.21 4.74 215
  • the organic light emitting device manufactured using the compound according to the present invention as a hole transport layer has superior performance in terms of current efficiency, driving voltage, lifetime, and stability compared with the organic light emitting device of the comparative example.
  • - can confirm represents:. ⁇ eu "obtain the volume, while having the same structure as the core of the present invention compared with no substituent at the 1 and 3 example 2 eu direction 1 to the hole transport compound 2-3 ,
  • the efficiency of the organic light emitting device manufactured according to the present invention was 10% or more and the lifetime thereof was 30% or more.
  • the comparative compound of Example 2-4 showed the distance is too far away, the organic light emitting 'device characteristics greatly deteriorate result between the core and the arylamine group.
  • the efficiency of the device was increased and the stability was greatly increased. Therefore, it can be seen that the compound according to the present invention is applicable not only to the electron blocking ability but also to the electron blocking layer and / or the hole transporting layer of the organic light emitting device because of its excellent hole transporting ability.
  • substrate 2 anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 아민계 화합물 및 이를 이용한 유기발광 소자를 제공한다.

Description

【발명의 명칭】
신규한 아민계 화합물 및 이를 이용한 유기발광 소자
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2017년: 1월 26일자 한국 특허 출원 제 10-2017-0012952호, 및 2017년 11월 10일자 한국 특허 출원 제 10— 2017-0149677호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 아민계 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
【발명의 배경이 되는 기술】
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으몌 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exc i ton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다. 【선행기술문헌】
【특허문헌】
(특허문헌 0001 ) 한국특허 공개번호 게 10-2000— 0051826호
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 신규한 아민계 화합물 및 이를 포함하는 유기 발광 관한 것이다.
【과제의 해결 수단】
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
1]
Figure imgf000003_0001
상기 화학식 1에서 ,
X는 0 또는 S이고,
A 및 B는 각각 독립적으로, 수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N , 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 내지 3개 포함하는 C260 헤테로아릴이되 , . A 및 B가 모두 수소인 경우는 제외하고,
L은 단일 결합; 치환 또는 비치환된 C660 아릴렌; 또는 치환 또는 비치환된 0 , N , S i 및 S로 구성되는 군으로부터 선택되는 해테로원자를 1개 이상을 포함하는 C2-60 해테로아릴렌이고,
An 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C660 아릴; 또는 치환 또는 비치환된 N , 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 내지 3개 포함하는 C2-6o 헤테로아릴이고, Ri은 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 ( 60 알킬 ; 치환 또는 비치환된 d-60 할로알킬 ; 치환 또는 비치환된 d-60 알콕시 ; 치환 또는 비치환된 d-60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴 ; 치환 또는 비치환된 C660 아릴옥시 ; 또는 치환 또는 비치환된 N , 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 이상 포함하는 C2-60 헤테로고리기이고,
al은 0 내지 4의 정수이다. 또한, 본 발명은 제 1 전극; 상기 제 1 전극과 대향하여 구비된 게 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 【발명의 효과】
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 【도면의 간단한 설명】
도 1은 기판 ( 1), 양극 (2) , 발광층 (3) , 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 ( 1) , 양극 (2) , 정공주입층 (5) , 정공수송층 (6) , 발광층 (7) , 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
【발명을 실시하기 위한 구체적인 내용】 이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서, ᅥᅳ는 다른 치환기에 연결되는 결합을 의미하고, 단일 결합은 L로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다. 본 명세서에서 "치환 또는 비치환된'' 이라는 용어는 중수소; 할로겐기 ; 시아노기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기 ; 알킬술폭시기 ; 아릴술폭시기 ; 실릴기 ; 붕소기; 알킬기 ; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 해테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N , 0 및 S ¾자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기 "는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000005_0001
본 명세서에
Figure imgf000005_0002
에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000006_0001
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나 이에 한정되는 것은 아니다.
Figure imgf000006_0002
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 블소, 염소, 브롬 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다 . 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, t er t-부틸, sec-부틸, 1-메틸-부틸, 1-에틸—부틸, 펜틸, n—펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n-핵실, 1—메틸펜틸, 2—메틸펜틸, 4-메틸 -2-펜틸, 3 , 3—디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸핵실, 사이클로펜틸메틸, 사이클로핵틸메틸, 옥틸, n-옥틸, ter t—옥틸, 1-메틸헵틸, 2-에틸핵실, 2ᅳ 프로필펜틸, n-노닐, 2 , 2-디메틸헵틸, 1-에틸—프로필, 1 , 1-디메틸—프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1ᅳ부테닐, 2—부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸 -1—부테닐, 1 , 3-부타디에닐, 알릴, 1-페닐비닐 -1- 일, 2-페닐비닐 -1-일, 2 , 2-디페닐비닐 -1-일, 2-페닐 -2- (나프틸 -1-일)비닐 -1-일, 2 , 2-비스 (디페닐— 1-일)비닐— 1-일 , 스틸베닐기 , 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3—메틸사이클로펜틸, 2 , 3—디메틸사이클로펜틸, 사이클로핵실, 3—메틸사이클로핵실, 4-메틸사이클로핵실, 2 , 3- 디메틸사이클로핵실 3 , 4 , 5—트리메틸사이클로핵실ᅳ 4-tert—부틸사이클로핵실, 사이클로헵틸; 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는
Figure imgf000008_0001
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 해테로고리기는 이종 원소로 0, N , Si 및 S 중 1개 이상을 포함하는 해테로고리기로서, 탄소수는 특별히 한정되지 않으나, . 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기 , 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기 , 트리아졸기 , 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기 , 피리도 피라지닐기 , 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기 (phenanthrol ine) , 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기 , 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 해테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 한편, 본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. 상기 화학식 1에서, A 및 B는 각각 독립적으로, 수소, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다. 즉, 상기 화학식 1에서, A 및 B 중 하나가 수소이고 나머지 하나가 하기로 구성되는 군으로부터 선택되는 어느 하나이거나, A 및 B 모두가 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure imgf000010_0001
상기에서,
Yi은 0, s , 또는 CZ4Z5이고,
lx 내지 ζ5는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로 ; 아미노; 알킬 ; d-20 할로알킬 ; C6-20 아릴 ; 0 또는 S의 헤테로원자를 1개 이상 포함하는 C2-20 헤테로아릴이고,
nl 내지 n3는 각각 독립적으로, 0 내지 3의 정수이다. 예를 들어 , A 및 B는 각각 독립적으로, 수소, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure imgf000011_0001
구체적으로, 상기 화학식 1에서, A 및 B가 모두 수소인 화합물을 전자억제충 또는 정공수송층으로 사용하여 제조된 유기 발광 소자의 경우, 효율이 10% 이상, 수명은 30% 이상 떨어지는 한계가 있다. 이에 따라, 상기 화학식 1에서, A 및 B가 각각 독립적으로, 수소, 또는 상기로 구성되는 군으로부터 선택되는 어느 하나를 만족할 경우, 소자의 효율을 높여주는 동시에 안정성이 크게 증가할 수 있다. 또한, L은 단일 결합, 치환 또는 비치환된 페닐렌, 치환 또는 비치환된 바이페닐렌, 치환 또는 비치환된 나프틸렌, 치환 또는 비치환된 페난트레닐렌, 치환 또는 비치환된 안트라세닐렌, 치환 또는 비치환된 플루오란테닐렌, 치환 또는 비치환된 트리페닐레닐렌, 치환 또는 비치환된 파이레닐렌, 치환 또는 비치환된 카바졸일렌, 치환 또는 비치환된 플루오레닐렌, 또는 치환 또는 비치환된 스파이로―플루오레닐렌일 수 있다. 예를 들어, L은 단일 , 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure imgf000012_0001
구체적으로 예를 들어, L은 단일 결합, 또는 하기로 구성되는 군으로부 선택되는 어느 하나일 수 있다:
Figure imgf000012_0002
상기 1^1 하기와 같이 긴 사슬을 가질 경우, 상기 화학식 1에서 코어와 아릴아민기 사이의 거리가 너무 멀어짐에 따라, 유기 발광 소자의 특성이 크게
:
Figure imgf000012_0003
또한, A 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 0 또는 S의 헤테로원자를 1개 내지 3개 포함하는 C2- 20 헤테로아릴일 수 있다. 예를 들어, An 및 2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure imgf000013_0001
상기에서 ,
Y2는 0, S, 또는 cz14z15이고,
Zn 내지 Z15는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 실릴; d-20 알킬; d-20 할로알킬; C6-20 아릴; 0 또는 S의 헤테로원자를 1개 이상 포함하는 C2-20 헤테로아릴이되, Z14 및 Z15는 서로 연결되어 단환 또는 다환의 고리를 형성할 수 있고,
ml 내지 m3는 각각 독립적으로, 0 내지 3의 정수이다. 이때, Zu 내지 Z13은 각각 독립적으로, 수소, 중수소, 할로겐, 시아노ᅳ 트리메틸실릴, 메틸, tert—부틸, 페닐, 나프틸, 트리페닐레닐, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
Zi4 및 Z15는 각각 독립적으로, 메틸이거나, 또는 서로 연결되어 단환 또는 다환의 고리를 형성하고,
ml 내지 m3는 각각 독립적으로, 0 , 또는 1이다. 구체적으로 예를 들어, A 및 2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure imgf000014_0001
SZSTO/Z.lOZaM/X3d L9L6 \mOZ OAV
Figure imgf000015_0001

Figure imgf000016_0001

Figure imgf000017_0001
Figure imgf000017_0002
또한 , ^은 수소 ; 중수소 ; 할로겐 ; 시아노 ; 니트로 ; d-20 알킬 ; 또는
Ce-20 아릴일 수 있다. 예를 들어, Ri은 수소, 중수소, 할로겐, 시아노, 니트로, 메틸, 또는 페닐일 수 있고, al은 0 또는 1일 수 있다. 이때, al은 ^의 개수를 나타낸 것으로서, . al이 2 이상일 경우, 2 이상의 ^은 서로 동일하거나 상이할 수 있다. nl 내지 n3 및 ml 내지 m3에 대한 설명은 상기 al에 대한 설명 및 상기 화학식 1의 구조를 참조하여 이해될 수 있다. 한편, 상기 화합물은 하기 화학식 1A 또는 IB로 표시될 수 있다:
1A]
Figure imgf000018_0001
상기 화학식 1A 및 1B 에서,
및 Ar2에 대한 설명은 상기 화학식 1에서 정의한
화합물은 하기 화합물로 구성되는 군으로부터 하나일 수 있다:
Figure imgf000019_0001

Figure imgf000020_0001

Figure imgf000021_0001
20
Figure imgf000022_0001
21
Figure imgf000023_0001
22
Figure imgf000024_0001
Figure imgf000025_0001

Figure imgf000026_0001

Figure imgf000027_0001

Figure imgf000028_0001

Figure imgf000029_0001

Figure imgf000030_0001

Figure imgf000031_0001
30
Figure imgf000032_0001
31
Figure imgf000033_0001
32
Figure imgf000034_0001
33
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001

Figure imgf000038_0001

Figure imgf000039_0001

Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000040_0003
Figure imgf000040_0004
 상기 화학식 1로 표시되는 화합물은 디벤조퓨란 /디벤조티오펜 코어의 특정 위치에 A 또는 B , 및 아릴아민 치환기가 연결된 구조를 가짐으로써, 이를 이용한 유기 발광 소자는 고효율, 저 구동 전압, 고휘도 및 장수명 등을 가질 수 있다. 한편, 상기 화학식 1A로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있고, 상기 화학식 1B로 표시되는 화합물은 일례로 하기 반웅식 2와 같은 제조 방법으로 제조할 수 있다.
[반응식 1]
Figure imgf000041_0001
Figure imgf000041_0002
1A
{Lt bond)
[반웅식 2]
Figure imgf000042_0001
1B
Figure imgf000042_0002
상기 반웅식 1 및 2 에서, X , A , B , L , Ατ 1 및 Ar2에 대한 설명은 상기 화학식 1에서 정의한 바와 같다. 상기 화학식 1로 표시되는 화합물은 상기 반웅식 1 및 2를 참고하여 제조하고자 하는 화합물의 구조에 맞추어 출발 물질을 적절히 대체하여 제조할 수 있다. 한편, 본 발명은 상기 화학식 1로 표시되는 화합불을 포함하는 유기 발광 소자를 제공한다ᅳ 일례로, 본 발명은 제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 상기 유기물층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있다. 또한 , 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층을 포함할 수 있다. 또한, 상기 유기 발광 소자는 상기 유기층 외에도, 상기 정공 수송층과 상기 발광층 사이에 위치하는 전자 차단층 (Electron blocking layer : EBL) 및 /또는 상기 발광층과 상기 전자 수송층 사이에 위치하는 정공 차단층 (Hol e blocking l ayer : HBL)을 더 포함할 수 있다. 그리고, 상기 전자 차단층과 상기 정공 차단층은 각각 발광층과 인접하는 유기물층일 수 있다. 이때, 상기 화학식 1로 표시되는 화합물은 상기 정공 수송층 및 /또는 상기 전자 차단층에 포함될 수 있다. 본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층 으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 작은 수의 유기층을 포함할 수 있다. 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 발광층 이외에, 상기 제 1전극과 상기 발광층 사이의 정공주입층 및 정공수송층, 및 상기 발광층과 상기 제 2전극 사이의 전자수송층 및 전자주입층을 더 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기층을 포함할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조 ( inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다ᅳ 도 1은 기판 ( 1), 양극 (2), 발광층 (3) , 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 도 2는 기판 ( 1), 양극 (2), 정공주입층 (5) , 정공수송층 (6) , 발광층 (7) , 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 유기물층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제 1 전극, 유기물층 및 제 2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sput ter ing )이나 전자빔 증발법 (e-beam evaporat i on)과 같은 PVDCphys i ca l Vapor Depos i t i on)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 일례로, 상기 제 1 전극은 양극이고, 상기 제 2 전극은 음극이거나, 또는 상기 제 1 전극은 음극이고, 상기 제 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리 , 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듬주석 산화물 ( ΠΌ) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; Ζη0 :Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3-메틸티오펜) , 폴리 [3 , 4-(에틸렌-1 , 2-디옥시)티오펜] ^£0 1) , 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네습, 칼슴, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/ΑΓ또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HO Xhighest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacridone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물 (AlQ3); 카르바졸 계열 화합물; 이량체화 스티릴 (dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린- 금속. 화합물 ; 밴족사졸 , 벤즈티아졸 및 벤즈이미다졸 계열의 화합물 ; 폴리 (P— 페닐렌비닐렌) (PPV) 계열의 고분자; 스피로 (spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광층은 상술한 바와 같이 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 더 포함할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체 , 디벤조퓨란 유도체 , 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도편트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체 , 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민 , 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듬 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8—히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슴, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층.또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며,.발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸 , 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스 (8- 하이드록시퀴놀리나토)아연, 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간 , 트리스 (8-하이드록시퀴놀리나토)알루미늄 , 트리스 (2-메틸ᅳ 8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2—메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2—메틸— 8—퀴놀리나토) (0-크레졸라토)갈륨, 비스 (2—메틸 -8-퀴놀리나토 ) ( 1-나프를라토)알루미늄 , 비스 (2-메틸 -8ᅳ 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형 , 후면 발광형 또는 양면 발광형일 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다 . 상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 체조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. 제조예 A: 중간체 화합물 A의 제조
Figure imgf000049_0001
제조예 B: 중간체 화합물 B의 제조
Figure imgf000049_0002
제조예 C: 증간체 화합물 C의 제조
Figure imgf000049_0003
제조예 D: 중간체 화합물 D의 제조
Figure imgf000050_0001

Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000052_0002
Figure imgf000052_0003
Figure imgf000053_0001
Figure imgf000053_0002
52
Figure imgf000054_0001
Figure imgf000054_0002
Figure imgf000054_0003
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 A(7.56g, 31.11mmol), di ( [1, l'-biphenyl]-4-yl )amine(10.99g, 34.22画 ol)을 Xylene 220ml에 완전히 녹인 후 Caesium carbonate(12.13g, 37.33隱 ol)을 첨가하고, B i s ( t r i - ί err-but y 1 phosph i ne ) pal ladium(0)(0.08g, 0.16醒。1)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 에틸아세테이트 180ml으로 재결정하여 상기 화합물 l(12.46g, 수율: 71%)을 제조하였다.
MS[M+H]+= 564 제조예 2: 화합물 2의 제조
[화합물 2]
Figure imgf000055_0001
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물— A(8.22g, 33.83隱 1 ) , N- ( [ 1, 11— b i pheny 1 ] -4-y 1 ) -9 , 9-d i me t hy 1 -9H- f 1 uoren-2- amine(13.43g, 37.21隱 ol)을 Xylene 250ml에 완전히 녹인 후 Caesium carbonate(13.19g, 40.59隱 ol)을 첨가하고, Bis(tr i_ er— butylphosphine) palladium(0)(0.09g, 0.17画 ol)을 넣은 후 2 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 에틸아세테이트 130ml으로 재결정하여 상기 화합물 2(10.45g, 수율: 51%)를 제조하였다.
MS[M+H]+= 604 제조예 3: 화합물 3의 제조
[화합물 3]
Figure imgf000055_0002
질소. 분위기에서 500ml 등근 바닥 플라스크에 화합물 A(6.73g, 27.70隱 1 ), N-(4-(dibenzo[b,d]fur an-4-y 1 ) pheny l)-9,9-dimethylᅳ 9Hᅳ f 1 uoren- 2-amine(13.74g, 30.47醒 ol)을 Xylene 300ml에 완전히 녹인 후 Caesium carbonate(10.80g, 33.23画 ol)를 첨가하고, Bis(tr i- er -butylphosphine) palladium(0)(0.07g, 0.14瞧 ol)을 넣은 후 6 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 테트라하이드로퓨란 260ml으로 재결정하여 상기 화합물 3(13.29g, 수율: 69%)을 제조하였다.
MS[M+H]+= 694 제조예 4: 화합물 4의 제조
Figure imgf000056_0001
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 B(4.96g, 15.55mmol), di ( [1 , 1 ' -bi phenyl ]-4-yl ) ami ne(5.49g, 17.10mmol)을 Xylene 260ml에 완전히 녹인 후 Caesium carbonate(6.06g, 18.66隱 ol)을 첨가하고, Bis(tri-ieri-butylphosphine) pal ladium(0)(0.04g, 0.08隱 ol)을 넣은 후 6 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 에틸아세테이트 220ml으로 재결정하여 상기 화합물 4(7.19g, 수율: 67%)를 제조하였다.
MS[M+H]+= 640 제조예 5: 화합물 5의 제조
[화합물 5]
Figure imgf000057_0001
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 B(4.96g, 15.55mmol) , N-phenyl-[l , 1 ':4' ,1' '—ter phenyl ]—4— amine (5.49g, 17.10mmol)을 Xylene 260ml에 완전히 녹인 후 Caesium carbonate(6.06g, 18.66薩 ol)을 첨가하고, Bis(tri-ieri-butylphosphine) pal ladium(0)(0.04g, 0.08mmol)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 에틸아세테이트 250ml으로 재결정하여 상기 화합물 5(6.08g, 수율: 56%)를 제조하였다.
MS[M+H]+= 640 제조예 6: 화합물 6의 제조
[화합물 6]
Figure imgf000057_0002
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 C(5.13g, 17.51mmol), d i ( [ 1 , 1 ' -b i pheny 1 ] -4-y 1 ) am i ne ( 6.18g , 19.26瞧 ol)을 Xylene 190m Hi 완전히 녹인 후 Caesium carbonate(6.83g, 21.이麵 ol)을 첨가하고, B i s ( t r l - ter ί-bu t y 1 phosph ι ne ) pal ladium(0)(0.04g, 0.09mmoO을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 에틸아세테이트 250ml으로 재결정하여 상기 화합물 6(7.82g, 수율: 73%)을 제조하였다.
MS[M+H]+= 614 제조예 7: 화합물 7의 제조
[화합물 7]
Figure imgf000058_0001
질소 분위기에서 500ml 등근 바닥 폴라스크에 화합물 C(4.29g, 14.64mmo 1 ), N-([l,l'-bi pheny 1 ] -4-y 1 ) -9 , 9ᅳ d i me t hy 1— 9Hᅳ f 1 uoren-2- amine(5.81g, .16.11瞧 ol)을 Xylene 280ml에 완전히 녹인 후 Caesium carbonate(5.71g, 17.57mmol)을 첨가하고, B i s ( t r i - ί eri-but y 1 phosphi ne ) palladium(0)(0.04g, 0.07薩 ol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 에틸아세테이트 130ml으로 재결정하여 상기 화합물 7(5.17g, 수율: 58%)을 제조하였다.
MS[M+H]+= 604 제조예 8: 화합물 8의 제조
[화합물 8]
Figure imgf000059_0001
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 D(7.38g, 15.19mmol), phenylboronic acid(2.13g, 17.46隱 ol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액 (120ml )을 첨가하고 , 테트라키스- (트리페닐포스핀)팔라듐 (0.6¾, 0.58隱01)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250ml로 재결정하여 상기 화합물 8(6.27g, 수율: 73%)올 제조하였다.
MS[M+H]+= 564 제조예 9: 화합물 9의 제조
[화합물 9]
Figure imgf000059_0002
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 D(7.38g, 15.19mmol ) , naphthalen-2-ylboronic acid(2.13g, 17.46mmol)을 테트라하이드로퓨란 280ml에 완전히 녹인 후 2M 탄산칼륨수용액 (140ml )을 첨가하고, 테트라키스— (트리페닐포스핀)팔라듐 (0.61g, 0.57mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250ml로 재결정하여 상기 화합물 9(그 Olg, 수율: 75%)를 제조하였다.
MS[M+H]+= 614 제조예 10: 화합물 10의 제조
Figure imgf000060_0001
Figure imgf000060_0002
. 질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 E(7.38g, 15.19讓01), phenylboronic aeid(2.13g, 17.46mol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액 (120ml )을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.49g, 0.46瞧 ol)을 넣은 후 6 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 240ml로 재결정하여 상기 화합물 10(8.26g, 수율: 79%)을 제조하였다.
MS[M+H]+= 604 제조예 11: 화합물 11의 제조
[화합물 11]
Figure imgf000061_0001
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 F(7.77g, 13.49mmol), phenylboronic acid(1.89g, 15.51mol)를 테트라하이드로퓨란 200m HI 완전히 녹인 후 2M 탄산칼륨수용액 (100ml )을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.47g, 0.40睡 ol)을 넣은 후 6 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 260ml로 재결정하여 상기 화합물 11(8.26g, 수율: 79%)을 제조하였다.
MS[M+H]+= 654 제조예 12: 화합물 12의 제조
Figure imgf000061_0002
Figure imgf000061_0003
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 G(6.64g, 11.22mmol), ( 9 , 9-d i me t hy 1 -9H- f 1 uo r en-2-y 1 ) bor on i c acid(3.07g,
12.90mmol)를 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액 (120ml)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.39g, 0.34mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 3K l로 재결정하여 상기 화합물 12(8.2 , 수율: 79%)를 제조하였다.
MS[M+H]+= 786 제조예 13: 화합물 13의 제조
Figure imgf000062_0001
Figure imgf000062_0002
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 H(5.39g, 20.81mmol), N-( [1, 1 '-biphenyl ]-4-yl )-[1 , 1 ':4 ' , 1 " -terphenyl ]-4- amine(9.17g, 23.10隱 ol)을 Xylene 250ml에 완전히 녹인 후 Caesium carbonate(8.66g, 27.05画 ol)을 첨가하고, Bis(tr i-feri-butylphosphirie) palladium(0)(0.11g, 0.21闘01)을 넣은 후 5 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 테트라하이드로퓨란 250ml으로 재결정하여 상기 화합물 13(11.67g, 수율: 70%)을 제조하였다.
MS[M+H]+= 656 제조예 14: 화합물 14의 제조
[화합물 14]
Figure imgf000063_0001
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 1(7.16g, 20.81mmol), N-pheny 1 - [ 1 , 11 -b i heny 1 ] -4-am i ne ( 5.8 lg , 23.72mmol)을 Xylene 300m HI 완전히 녹인 후 Caesium carbonate(8.89g, 27.79醒 ol)을 첨가하고, Bis(tri-ierf-butylphosphine) pal ladium(0)(0. llg, 0.21隨 ol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 테트라하이드로퓨란 200ml으로 재결정하여 상기 화합물 14(8.88g, 수율: 72%)를 제조하였다.
MS[M+H]+= 580 제조예 15: 화합물 15의 제조
Figure imgf000063_0002
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 I(4.28g, 13.85画 01 ) , N- ( [ 1 , 1 ' -b i pheny 1 ] -4-y 1 ) -9 , 9-d i me t hy 1 -9H- f 1 uo r en-2- amine(5.55g, 15.37圍 ol)을 Xylene 280ml에 완전히 녹인 후 Caesium' carbonate(5.76g, 18.이隱 ol)을 첨가하고, Bis( tr i-ieri-butylphosphine) palladium(0)(0.07g, 0.14瞧 ol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 테트라하이드로퓨란 220ml으로 재결정하여 상기 화합물 15(4.39g, 수율: 46%)를 제조하였다.
MS[M+H]+= 696 제조예 16: 화합물 16의 제조
[화합물
Figure imgf000064_0001
질소 분위기에서 50( l 등근 바닥 플라스크에 화합물 K(9.68g, 19.28画01), phenyl bor on ic acid(2.61g, 21.40國 ol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액 (120ml,)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.67g, 0.58隱 ol)을 넣은 후 .4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 220ml로 재결정하여 상기 화합물 16(6.09g, 수율: 54%)을 제조하였다.
MS[M+H]+= 580 제조예 17: 화합물 17의 제조
[화합물 17]
Figure imgf000065_0001
질소 '분위기에서 500ml 등근 바닥 플라스크에 화합물 A(5.32g,(4- (di ( [1 , 1 ' -bi henyl ]-4-yl ) ami no) henyl )boronic acid(10.72g, 24.30mmol )을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액 (120ml )을 첨가하고, 테트라키스— (트리페닐포스핀)팔라듐 (0.76g, 0.66瞧 ol)을 넣은 후 4 시간 동안. 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250ml로 재결정하여 상기 화합물 17(7.12g, 수율: 51%)을 제조하였다.
MS[M+H]+= 640 제조예 18: 화합물 18의 제조
Figure imgf000065_0002
Figure imgf000065_0003
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 A(6.67g, 27.45隱 01 ) , ( 4- ( [ 1, 1 ' -b i heny 1 ] -4— y 1 (9,9-dimethyl -9H- f 1 uoren-2- yl)amino)phenyl)boronic acid(10.72g, 24.30mol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액 (120ml )을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.76g, 0.66mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 2.50ml로 재결정하여 상기 화합물 18(7.12g, 수율: 51%)을 제조하였다.
MS[M+H]+= 680 제조예 19: 화합물 19의 제조
[화합물
Figure imgf000066_0001
질소 분위기에서 500ml 등근 바닥 플라스크에 화합물 C(7.75g, 27.45画 0 l),(4-([l,l'-biphenyl] -4-y 1 (9,9-dimethyl -9H- f 1 uoren-2- yl)amino)phenyl)boronic acid(13.41g, 30.42mol)을 테트라하이드로퓨란 280ml에 완전히 녹인 후 2M 탄산칼륨수용액 (140ml )을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.92g, 079隱 ol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250ml로 재결정하여 상기 화합물 19(15.26g, 수율: 84%)를 제조하였다.
MS[M+H]+= 690 제조예 20: 화합물 20의 제조
[화합물 20]
Figure imgf000067_0001
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 L(5.47g, 17.15mmol), di([l,l'-biphenyl]-4-yl)amine(6.33g, 19.72隱 ol)을 Xylene 180ml에 완전히 녹인 후 Caesium carbonate(8.38g, 25.72瞧 ol)을 첨가하고, B i s ( t r i - ί e ί-bu t y 1 phosph i ne ) pal ladium(0)(0.09g, 0.17隱 ol)을 넣은 후 6 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 에틸아세테이트 250ml으로 재결정하여 상기 화합물 20(6.77g, 수율: 6 )을 제조하였다.
MS[M+H]+= 640 제조예 21: 화합물 21의 제조
Figure imgf000067_0002
질소 분위기에서 .500ml 등근 바닥 플라스크에 화합물 M(7.54g, 22.51隨 01), N- ( [ 1 , 1 '— b i pheny 1 ] -4-y I )-9,9-dimethyI -9H- f 1 uoren-2- amine(9.34g, 25.88mmol)을 Xylene 220ml에 완전히 녹인 후 Caesium carbonate(11.00g, 33.76mmol)을 첨가하고, Bis(tri- er -butylphosphine) palladium(0)(0.12g, 0.23mmol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후에 Xylene을 감압농축 시키고 에틸아세테이트 180ml으로 재결정하여 상기 화합물 21(10.07g, 수율: 64%)를 제조하였다.
MS[M+H]+= 696 실시예 1-1
IT0( indium tin oxide)가 Ι,ΟΟΟΑ의 두께로 박막 S팅된 유리 기판을 세제를 녹인 증류수에 넣고. 초음파로 세척하였다. 이 때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사 (Mi 11 ipore Co.) 제품의 필터 (Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ΠΌ 투명 전극 위에 하기 화학식의 핵사니트릴 핵사아자트리페닐렌 (hexaazatri phenyl ene; HAT)를 150A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.
[HAT]
Figure imgf000068_0001
상기 정공 주입층 위에 정공을 수송하는 물질인 하기 화합물 HTK1150A)을 진공 증착하여 정공 수송층을 형성하였다.
[HT1]
Figure imgf000069_0001
이어서, 상기 정공 수송층 위에 막 두께 150A으로 상기 제조예 1에서 제조한 화합물 1을 진공 증착하여 전자 차단층을 형성하였다.
이어서, 상기 전자 저지층 위에 막 두께 300A으로 아래와 같은 BH와 BD를 25 : 1의 중량비로 진공증착하여 발광층을 형성하였다.
[BH]
Figure imgf000069_0002
Figure imgf000069_0003
[LiQ]
Figure imgf000070_0001
상기 발광층 위에 상기 화합물 ET과 상기 화합물 LiQ(Li thium Quino l ate)를 1 : 1의 중량비로 진공증착하여 300A의 두께로 전자 수송층을 형성하였다. 상기 전자 수송층 위에 순차적으로 12A두께로 리튬플로라이드 (LiF)와 2 , 000 A 두께로 알루미늄을 증착하여 전자 주입층 및 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4~ 0.7A/sec를 유지하였고, 음극의 리튬플로라이드는 으 3A/sec , 알루미늄은 2A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 x lO— 7 ~5 x lO"6 torr를 유지하여, 유기 발광 소자를 제작하였다. 실시예 1-2 내지 실시예 1-15
전자 차단층 형성시 화합물 1 대신 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실시예 1-1과 동일한 방법을 이용하여 실시예 1—2 내지 1ᅳ15의 유기 발광 소자를 각각 제작하였다. 비교예 1-1
전자 차단층 형성시 화합물 1 대산 하기 EB— 1을 사용하였다는 점을 제의하고는, 상기 실시예 1-1과 동일한 방법을 이용하여 유기 발광 소자를 제작하였다
[EB-1]
Figure imgf000071_0001
비교예 1-2
전자 차단층 형성시 화합물 1 대신 하기 EB-2을 사용하였다는 점을 제외하고는, 상기 실시예 1-1과 동일한 방법을 이용하여 유기 발광 소자를 제작하였다
-2]
Figure imgf000071_0002
비교예 1-3
전자 차단층 형성시 화합물 1 대신 하기 EB-3을 사용하였다는 점을 제외하고는, 상기 실시예 1—1과 동일한 방법을 이용하여 유기 발광 소자를 제작하였다
[EB-3]
Figure imgf000072_0001
비교예 1-4
전자 차단층 형성시 화합물 1 대신 하기 EB— 4을 사용하였다는 점을 제외하고는, 상기 실시예 1-1과 동일한 방법을 이용하여 유기 발광 소자를 제작하였다
-4]
Figure imgf000072_0002
실험예 1
상기 실시예 1—1 내지 1-15 및 비교예 1ᅳ 1 내지 1-4에서 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율, 휘도, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기휘도 (650ni t )에서 95%로 감소되는데 소요되는 시간을 의미한다.
【표 1】 전자 ι2ᄇ 효율 색좌표 수명 차단층
(V@10mA/cm2) (cd/A@10mA/cm2) (x,y) (T95, 화합물 h) 실시예 1- 화합물 1 3.72 5.47 (0.140, 225 1 0.045) 실시예 1ᅳ 화합물 4 3.86 5.32 (0.140, 215 2 0.045) 실시예 1- 화합물 5 3.88 5.31 (0.139, 210 3 0.046) 실시예 1- 화합물 6 3.87 5.38 (0.139, 230 4 0.047) 실시예 1一 화합물 8 3.74 5.41 (0.138, 220 5 0.044) 살시예 1- 화합물 9 3.85 5.28 ' " (0.140, 200 6 0.042) 실시예 1- 화합물 3.81 5.29 (0.140, 205
7 11 0.041)
Figure imgf000074_0001
비교예 1- EB-2 4.16 4.77 (0.136, 170 2 0.048) 비교예 1- EB-3 4.10 4.82 185 3 비교예 1- EB-4 5.12 4.13 115 4
상기 표 1에서 보는 바와 같이, 본 발명에 따른 화합물을 전자 차단층으로 사용하여 제조된 유기 발광 소자의 경우에 비교예의 유기 발광
S o
소자에 비하여 구동전압, 전류효율, 수명 및 안정성 측면에서!! o o 1 "ᅳᅳ 우수한 성능을 나타냄을 확인할 수 있다. 구체적으로, 본원 발명의 코어와 같은 구조를 가지면서 1번 및 3번 방향에 치환기가 없는 비교예 1-1 내지 1-3의 화합물을 전자억제층으로 사용하여 제조된 유기 발광 소자는, 실시예 대바 효율이 10% 이상, 수명은 30% 이상 떨어지는 결과를 나타내었다.
한편, 비교예 1-4의 화합물은 코어와 아릴아민기 사이의 거리가 너무 멀어서 유기 발광"소자의 특성이 크게 나빠지는 결과를 보였다.
이에, 본원 발명 실시예의 화합물의 경우, 소자의 효율을 높여주는 동시에 안정성이 크게 증가하는 것을 확인할 수 있었다. 실시예 2-1
IT0( indium tin oxide)가 Ι,ΟΟΟΑ의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으몌 증류수로는 밀러포어사 (Mi 11 ipore Co.) 제품의 필터 (Filter)로 2차로,걸러진 증류수를 사용하였다. IT0를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기 S 기판을 수송시켰다.
이렇게 준비된 IT0 투명 전극 위에 상기 HAT를 150 A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.
상기 정공 주입층 위에 정공을 수송하는 물질로서 상기 제조예 1에서 제조한 화합물 1을 막 두께 1150A으로 진공 증착하여 정공 수송층을 형성하였다.
이어서, 상기 정공 수송층 위에 막 두께 150A으로 하기 화합물 EB를 진공 증착하여 전자 차단층을 형성하였다.
Figure imgf000076_0001
이어서, 상기 전자 저지층 위에 막 두께 300 A으로 상기 BH와 BD를
25:1의 중량비로 진공증착하여 발광층을 형성하였다.
상기 발광층 위에 상기 화합물 ET과 상기 화합물 LiQ Lithium Quinolate)를 1:1의 중량비로 진공증착하여 300A의 두께로 전자 수송층을 형성하였다. 상기 전자 수송층 위에 순차적으로 12A두께로 리튬플로라이드 (LiF)와 2,000A 두께로 알루미늄을 증착하여 전자 주입층 및 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 으 4~ 0.7 A/sec를 유지하였고, 음극의 리튬플로라이드는 0.3A/sec, 알루미늄은 2A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 χ1(Γ7 ~5 xlO— 6 torr를 유지하여, 유기 발광 소자를 제작하였다. 실시예 2—2 내지 실시예 2-12
정공 수송층 형성시 전자 수송 물질을 화합물 1 대신 하기 표 2와 같이 변경하였다는 점을 제외하고는, 상기 실시예 2-1과 동일한 방법을 이용하여 실시예 2-2 내지 2-12의 유기 발광 소자를 각각 제작하였다. 비교예 2-1
정공 수송층 형성시 전자 수송 물질을 화합물 1 대신 하기 HT-1을 사용하였다는 점을 제외하고는, 상기 실시예 2—1과 동일한 방법을 이용하여 유기 발광 소자를 제작하였다.
-1]
Figure imgf000077_0001
비교예 2-2
정공 수송층 형성시 전자 수송 물질을 화합물 1 대신 하기 HT-2를 사용하였다는 점을 제외하고는, 상기 실시예 2—1과 동일한 방법을 이용하여 유기 발광 소자를 제작하였다.
[HT-2]
Figure imgf000078_0001
비교예 2-3
정공 수송층 형성시 전자 수송 물질을 화합물 1 대신 하기 HT-3을 사용하였다는 점을 제외하고는, 상기 실시예 2-1과 동일한 방법을 이용하여 유기 발광 소자를 제작하였다.
-3]
Figure imgf000078_0002
비교예 2-4
정공 수송층 형성시 전자 수송 물질을 화합물 1 대신 하기 HT-4을 사용하였다는 점을 제외하고는, 상기 실시예 2—1과 동일한 방법을 이용하여 유기 발광 소자를 제작하였다.
[HT-4]
Figure imgf000079_0001
실험예 2
상기 실시예 2-1 내지 2-12 및 비교예 2-1 내지 2-4에서 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율, 휘도, 색좌표 및 수명을 측정하고 그 결과를 하기 표 2에 나타내었다. T95은 휘도가 초기휘도 (650ni t )에서 95%로 감소되는데 소요되는 시간을 의미한다 .
【표 2]
Figure imgf000079_0002
Figure imgf000080_0001
실시예 2- 화합물 3.73 5.42 (0. 143 , 265 12 21 0.042) 비교예 2- HT-1 4. 13 4.83 200 1 비교예 2- HT-2 4.21 4.74 215
2 비교예 2- HT-3 4.29 4.87 (0. 136 , 220 3 0.046) 비교예 2- HT-4 4.92 4. 10 110 으
4
상기 표 2에서 보는 바와 같이, 본 발명에 따른 화합물을 정공 수송층으로 사용하여 제조된 유기 .발광 소자의 경우에 비교예의 유기 발광 소자에 비하여 전류효율, 구동전압, 수명 및 안정성 측면에서 우수한 성능을 ^ -나타냄을 확인할 수 있다: " ― 구.체적으로, 본원 발명의 코어와 같은 구조를 가지면서 1번 및 3번 방향에 치환기가 없는 비교예 2ᅳ 1 내지 2-3의 화합물을 정공수송층으로 사용하여 제조된 유기 발광 소자는, 실시예 대비 효율이 10% 이상, 수명은 30% 이상 떨어지는 결과를 나타내었다. .
한편, 비교예 2-4의 화합물은 코어와 아릴아민기 사이의 거리가 너무 멀어서 유기 발광'소자의 특성이 크게 나빠지는 결과를 보였다. 이에, 본원 발명 실시예의 화합물의 경우, 소자의 효율을 높여주는 동시에 안정성이 크게 증가하는 것을 확인할 수 있었다. 따라서, 본 발명에 따른 화합물은 전자 차단 능력뿐만 아니라, 정공 수송 능력이 우수하여 유기 발광 소자의 전자차단층 및 /또는 정공수송층에 적용 가능함을 알 수 있다.
【부호의 설명】
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 발광층 , 8: 전자수송층

Claims

【청구범위】
【청구항. 1】
하기 화학삭 1로 표시되는 화합물:
1]
Figure imgf000083_0001
상기 화학식 1에서,
X는 0또는 S이고,
A 및 B는 각각 독립적으로, 수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N , 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 내지 3개 포함하는 C2-60 헤테로아릴이되, A 및 B가 모두 수소인 경우는 제외하고,
L은 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 0, N , Si 및 S로 구성되는 군으로부터 선택되는 해테로월자를 1개 이상을 포함하는 C2-60 헤테로아릴렌이고,
An 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N , 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 내지 3개 포함하는 C2-60 헤테로아릴이고,
¾은 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 ( 60 알킬; 치환 또는 비치환된 ( 60 할로알킬; 치환 또는 비치환된 d-60 알콕시 ; 치환 또는 비치환된 d-60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 치환 '또는 비치환된 C6-60 아릴옥시; 또는 치환 또는 비치환된 N , 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 이상 포함하는 C2-60 헤테로고리기이고,
al은 0 내지 4의 정수이다.
【청구항 2]
제 1항에 있어서,
A 및 B는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나인, 화합물:
Figure imgf000084_0001
상기에서 ,
은 0, S, 또는 CZ4Z5이고,
Ζχ 내지 ζ5는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; d-20 알킬; C o 할로알킬; C6-20 아릴; 0 또는 S의 헤테로원자를 1개 이상 포함하는 C2-20 헤테로아릴이고,
nl 내지 n3는 각각 독립적으로, 0 내지 3의 정수이다.
【청구항 3】
제 2항에 있어서,
A 및 B는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나인 , 화합물:
Figure imgf000085_0001
【청구항 4】
제 1항에 있어서, 하나인,
Figure imgf000085_0002
【청구항 5】
제 4항에 있어서,
L은 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어. 하나인, 화합물:
Figure imgf000085_0003
【청구항 6]
제 1항에 있어세
Ar: 및 Ar2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되 어느 하나인, 화합물:
Figure imgf000086_0001
상기에서 ,
Y2는 0, S, 또는 cz14z15이고,
Ζπ 내지 Ζ15는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 실릴; d-20 알킬; d_20 할로알킬; C6-2o 아릴; 0 또는 S의 해테로원자를 . 1개 이상 포함하는 C2-20 해테로아릴이되, Z14 및 Z15는 서로 연결되어 단환 또는 다환의 고라를 형성할 수 있고,
ml 내지 m3는 각각 독립적으로, 0 내지 3의 정수이다.
【청구항 7】
제 6항에 있어서
An 및 Ar2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나인, 화합물: 98
Figure imgf000087_0001
SZSTO/Z.lOZaM/X3d L9L6 \mOZ OAV
Figure imgf000088_0001
87
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000090_0002
【청구항 8]
제 1항에 있어서,
¾은 수소, 중수소, 할로겐, 시아노, 니트로, 메틸, 또는 페닐 al은 0 또는 1인 , 화합물.
【청구항 9】
제 1항에 있어서,
상기 화합물은 하기 화학식 1A 또는 1B로 표시되는, 화합물: [화학식 1A]
Figure imgf000091_0001
Figure imgf000091_0002
상기 화학식 1A 및 IB 에서 ,
X, A, B, L, An 및 Ar2에 대한 설명은 제 1항에서 정의한 바와 같다.
【청구항 10】
제 1항에 있어서,
상기 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어 하나인, 화합물:
Figure imgf000092_0001
Figure imgf000092_0002
Figure imgf000092_0003
91
Figure imgf000093_0001
Figure imgf000093_0002
Figure imgf000093_0003
Figure imgf000093_0004
Figure imgf000093_0005
92
Figure imgf000094_0001
93
Figure imgf000095_0001
94
Figure imgf000096_0001
95
Figure imgf000097_0001
Figure imgf000098_0001
97
Figure imgf000099_0001
Figure imgf000099_0002
Figure imgf000099_0003
Figure imgf000099_0004
98
Figure imgf000100_0001
Figure imgf000100_0002
Figure imgf000100_0003
99
Figure imgf000101_0001
Figure imgf000101_0002
Figure imgf000101_0003
100
Figure imgf000102_0001
Figure imgf000102_0002
Figure imgf000102_0003
Figure imgf000102_0004
101
Figure imgf000103_0001
Figure imgf000103_0002
Figure imgf000103_0003
Figure imgf000103_0004
102
Figure imgf000104_0001
Figure imgf000104_0002
Figure imgf000104_0003
103
Figure imgf000105_0001
Figure imgf000105_0002
Figure imgf000105_0003
Figure imgf000105_0004
104
Figure imgf000106_0001
105
Figure imgf000107_0001
106
Figure imgf000108_0001
Figure imgf000109_0001
Figure imgf000110_0001
Figure imgf000110_0002
109
Figure imgf000111_0001
Figure imgf000111_0002
Figure imgf000112_0001
Figure imgf000112_0002
Figure imgf000112_0003
111
Figure imgf000113_0001
Figure imgf000113_0002
Figure imgf000113_0003
Figure imgf000113_0004
제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 저 U 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제 1항 내지 제 10항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
【청구항 12]
제 11항에 있어서,
상기 화합물을 포함하는 유기물층은 정공주입층; 정공수송층; 또는 정공주입과 정공수송을 동시에 하는 층인, 유기 발광 소자.
【청구항 13】
제 11항에 있어서,
상기 화합물을 포함하는 유기물층은 전자 차단층인, 유기 발광 소자.
PCT/KR2017/015256 2017-01-26 2017-12-21 신규한 아민계 화합물 및 이를 이용한 유기발광 소자 WO2018139767A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780060444.6A CN109803966B (zh) 2017-01-26 2017-12-21 新的基于胺的化合物和使用其的有机发光器件
US16/320,826 US11261176B2 (en) 2017-01-26 2017-12-21 Amine-based compound and organic light emitting device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170012952 2017-01-26
KR10-2017-0012952 2017-01-26
KR1020170149677A KR101967383B1 (ko) 2017-01-26 2017-11-10 신규한 아민계 화합물 및 이를 이용한 유기발광 소자
KR10-2017-0149677 2017-11-10

Publications (2)

Publication Number Publication Date
WO2018139767A1 WO2018139767A1 (ko) 2018-08-02
WO2018139767A9 true WO2018139767A9 (ko) 2019-03-14

Family

ID=62978142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015256 WO2018139767A1 (ko) 2017-01-26 2017-12-21 신규한 아민계 화합물 및 이를 이용한 유기발광 소자

Country Status (2)

Country Link
US (1) US11261176B2 (ko)
WO (1) WO2018139767A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102495414B1 (ko) 2017-03-08 2023-02-02 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기
KR20220081343A (ko) * 2019-10-11 2022-06-15 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
KR20210047984A (ko) * 2019-10-21 2021-05-03 삼성디스플레이 주식회사 발광 소자 및 발광 소자용 아민 화합물

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
DE10135513B4 (de) 2001-07-20 2005-02-24 Novaled Gmbh Lichtemittierendes Bauelement mit organischen Schichten
KR101425423B1 (ko) 2005-05-30 2014-08-01 시바 홀딩 인크 전계발광 장치
KR101551526B1 (ko) 2009-08-19 2015-09-08 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자
KR101181261B1 (ko) 2010-04-21 2012-09-10 덕산하이메탈(주) 다이벤조사이오펜과 아릴아민 유도체를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101311935B1 (ko) 2010-04-23 2013-09-26 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR20120009761A (ko) 2010-07-21 2012-02-02 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101298483B1 (ko) 2011-04-01 2013-08-21 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
JP6128119B2 (ja) * 2012-05-09 2017-05-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置
JP6278894B2 (ja) 2012-11-02 2018-02-14 出光興産株式会社 有機エレクトロルミネッセンス素子
US9748492B2 (en) 2012-11-02 2017-08-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2014108938A (ja) 2012-11-30 2014-06-12 Samsung Display Co Ltd アリールアミン化合物及びそれを用いた有機電界発光素子
KR20150033082A (ko) 2013-09-23 2015-04-01 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 이를 포함하는 유기전계발광소자
JP6516407B2 (ja) * 2013-12-20 2019-05-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR102230191B1 (ko) 2014-05-14 2021-03-22 삼성디스플레이 주식회사 유기 발광 소자
US9732069B2 (en) * 2014-05-21 2017-08-15 Samsung Electronics Co., Ltd. Carbazole compound and organic light emitting device including the same
KR20160019839A (ko) 2014-08-11 2016-02-22 삼성디스플레이 주식회사 유기 일렉트로루미네센스 소자용 모노아민 재료 및 이를 사용한 유기 일렉트로루미네센스 소자
KR20160027940A (ko) 2014-09-02 2016-03-10 주식회사 엘지화학 유기 발광 소자
JP6506534B2 (ja) 2014-11-07 2019-04-24 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2016100364A (ja) 2014-11-18 2016-05-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR20160060536A (ko) 2014-11-19 2016-05-30 삼성디스플레이 주식회사 유기 전계 발광 소자
KR101535606B1 (ko) 2015-01-29 2015-07-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102559622B1 (ko) 2015-05-06 2023-08-03 주식회사 동진쎄미켐 신규한 화합물 및 이를 포함하는 유기발광소자
KR101923171B1 (ko) * 2015-05-27 2018-11-28 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102359879B1 (ko) 2015-06-25 2022-02-10 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN105503622A (zh) * 2015-12-14 2016-04-20 武汉尚赛光电科技有限公司 具有电子供体-受体结构的苯并[c]菲类的衍生物、其应用及电致发光器件
KR102521263B1 (ko) 2016-01-21 2023-04-14 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Also Published As

Publication number Publication date
WO2018139767A1 (ko) 2018-08-02
US20190169176A1 (en) 2019-06-06
US11261176B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
KR101885900B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR101953175B1 (ko) 함질소 다환 화합물 및 이를 이용하는 유기 발광 소자
JP2018521957A (ja) ヘテロ環化合物およびこれを含む有機発光素子
KR101967383B1 (ko) 신규한 아민계 화합물 및 이를 이용한 유기발광 소자
JP2020510652A (ja) 新規な化合物およびこれを用いた有機発光素子
KR20190098079A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
JP2020514335A (ja) 新規な化合物およびこれを用いた有機発光素子
JP2019535679A (ja) 新規なヘテロ環式化合物およびこれを利用した有機発光素子
JP7124260B2 (ja) 有機金属化合物およびこれを含む有機発光素子
WO2019013487A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2019017734A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2018139767A9 (ko) 신규한 아민계 화합물 및 이를 이용한 유기발광 소자
KR101868516B1 (ko) 신규한 헤테로고리 화합물 및 이를 이용한 유기발광 소자
WO2019093623A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20190027708A (ko) 신규한 페난트렌 화합물 및 이를 이용한 유기발광 소자
KR102120916B1 (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP2017521366A (ja) 複素環化合物及びこれを含む有機発光素子
CN111225904B (zh) 杂环化合物及包含其的有机发光装置
KR20180054502A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
JP2019501118A (ja) 新規な化合物およびこれを含む有機発光素子
KR20200105388A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2019004612A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR101757557B1 (ko) 다환 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018084426A1 (ko) 신규한 해테로 고리 화합물 및 이를 이용한 유기발광 소자
KR101985740B1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893783

Country of ref document: EP

Kind code of ref document: A1