WO2018139318A1 - セルロースアセテート、セルロースアセテート組成物、成形体およびフィルム - Google Patents
セルロースアセテート、セルロースアセテート組成物、成形体およびフィルム Download PDFInfo
- Publication number
- WO2018139318A1 WO2018139318A1 PCT/JP2018/001230 JP2018001230W WO2018139318A1 WO 2018139318 A1 WO2018139318 A1 WO 2018139318A1 JP 2018001230 W JP2018001230 W JP 2018001230W WO 2018139318 A1 WO2018139318 A1 WO 2018139318A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellulose acetate
- weight
- cellulose
- acetylation
- acetic acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B3/00—Preparation of cellulose esters of organic acids
- C08B3/06—Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/10—Esters of organic acids, i.e. acylates
- C08L1/12—Cellulose acetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2301/08—Cellulose derivatives
- C08J2301/10—Esters of organic acids
- C08J2301/12—Cellulose acetate
Definitions
- the present invention relates to cellulose acetate, a cellulose acetate composition, a molded product, and a film.
- Cellulose acetate is one of the organic acid esters of cellulose, which is a cellulose derivative, and its uses are diverse, such as clothing fibers, tobacco filter chips, plastics, films, paints, pharmaceuticals, food, cosmetics, and architectural applications.
- the production amount of cellulose derivatives is large and industrially important.
- cellulose acetate having a degree of acetylation of 52% or more and 59% or less is excellent in transparency; free to color; excellent in gloss and gloss; excellent in impact resistance; There is no cracking even with metal inserts; excellent gasoline resistance and excellent oil resistance; low electrification and dust resistance; good touch and feeling; secondary processing such as cutting It is easy to use; it is molded and used as a material for members that touch human skin, etc., especially by thermoplastic molding such as extrusion, and subsequent cutting, as well as vacuum and pneumatic molding. .
- a typical industrial process for producing cellulose acetate includes a so-called acetic acid method in which acetic anhydride is used as an acetylating agent, acetic acid as a diluent, and sulfuric acid as a catalyst.
- the basic steps of the acetic acid method are: (1) a pretreatment step in which pulp raw material (dissolved pulp) having a relatively high ⁇ -cellulose content is disaggregated and crushed, and then acetic acid is sprayed and mixed; An acetylation step in which the pretreated pulp of (1) is reacted with a mixed acid composed of acetic acid and an acetylation catalyst (for example, sulfuric acid); and (3) ripening cellulose acetate having a desired degree of acetylation by hydrolyzing cellulose acetate. And (4) a post-treatment step in which cellulose acetate after hydrolysis reaction is precipitated, separated, purified, stabilized and dried from the reaction solution (Patent Document 1, Non-Patent Document 1).
- Patent Document 2 a method of obtaining a cellulose mixed fatty acid ester with few bright spot foreign matters by dissolving a cellulose mixed fatty acid ester in an organic solvent, filtering this, and then evaporating and drying the organic solvent.
- Patent Document 3 After acylating cellulose using an esterifying agent containing an excess amount of acid anhydride, a stopper containing water was mixed into the reaction mixture while controlling the temperature of the reaction mixture at ⁇ 30 to 35 ° C.
- Patent Document 3 A method for reducing fine foreign matters by hydrolyzing acid anhydride
- Patent Document 4 A method for reducing fine foreign matters by hydrolyzing acid anhydride
- a bright spot foreign material is a cellulose ester film placed between two polarizers arranged in an orthogonal state (crossed nicols), light is applied from the outside of one polarizer, and the other polarizer When it is observed with a microscope from the outside, light is leaked at the foreign material portion, and it is described as a foreign material that appears as a bright spot.
- Patent Document 3 describes that the fine foreign material has a diameter of 1 ⁇ m or more and less than 10 ⁇ m, and is crossed Nicol. It is described that it is observed with a lower polarizing microscope.
- the main object of the present invention is to provide a cellulose acetate capable of obtaining a molded article containing a cellulose acetate with little fluff.
- the present inventors conducted extensive research. As a result, surprisingly, it was found that cellulose acetate capable of providing a high-quality molded product with extremely few defects can be obtained by making the amount of acetone insoluble matter in cellulose acetate 0.04 wt% or less, and completed the present invention. It came to do. That is, the present invention is as follows.
- the ratio of the molar content of glucose to the sum of the molar content of glucose, xylose and mannose is cellulose acetate having a ratio of 97% or more, as described in (1) or (2) Cellulose acetate.
- a cellulose acetate composition comprising the cellulose acetate according to any one of (1) to (3) and a plasticizer.
- a molded article comprising the cellulose acetate described in any one of (1) to (3) above.
- a film comprising the cellulose acetate described in any one of (1) to (3) above.
- a cellulose acetate capable of obtaining a molded body containing a cellulose acetate with little fluff.
- the cellulose acetate of the present disclosure has a degree of acetylation of 52% or more and 59% or less, and an acetone insoluble matter amount of 0.04 wt% or less.
- the acetylation degree of the cellulose acetate of the present disclosure is 52% or more and 59% or less, and the lower limit value of the acetylation degree is preferably 53% or more, and more preferably 53.7% or more. 54% or more is more preferable.
- the degree of acetylation is less than 52%, the dimensional stability, moisture resistance, heat resistance and the like of the molded article containing cellulose acetate are lowered.
- the upper limit of the degree of acetylation is preferably 57% or less, more preferably 56% or less, and further preferably 55.5% or less.
- the strength of the molded article containing cellulose acetate is excellent but becomes brittle.
- the strength of the molded article containing cellulose acetate is excellent but becomes brittle.
- molded articles such as textile materials for clothing, frames for glasses and sunglasses, etc.
- a plasticizer is added to obtain a softness such as a degree, the possibility of bleeding out increases.
- the acetylation degree of the present invention means the amount of bound acetic acid per unit weight of cellulose.
- the degree of acetylation follows the measurement and calculation of the degree of acetylation in ASTM: D-817-91 (test method for cellulose acetate and the like).
- required according to said measuring method can be converted into an acetyl substitution degree by a following formula. This is the most common method for determining the degree of substitution of cellulose acetate. According to the following formula, for example, the acetylation degree 52% is 2.21 in terms of acetyl substitution, and the acetylation degree 59% is 2.71 in terms of acetyl substitution.
- DS 162.14 ⁇ AV ⁇ 0.01 / (60.052-42.037 ⁇ AV ⁇ 0.01)
- the cellulose acetate of the present disclosure has an acetone insoluble matter amount of 0.04 wt% or less, and the upper limit value of the acetone insoluble matter amount is preferably 0.03 wt% or less, and more preferably 0.02 wt% or less. More preferably, it is 0.01 wt% or less. If the amount of acetone-insoluble matter exceeds 0.04 wt%, the amount of irregularities increases rapidly. Furthermore, if the amount of acetone insoluble matter increases too much, the glass filter may be clogged during measurement, making measurement impossible.
- the lower limit of the amount of acetone insoluble matter is preferably smaller and is not particularly limited. For example, from the viewpoint of production cost, it may be 0.001 wt% or more.
- the amount of acetone insoluble matter can be determined by the following method.
- a solution obtained by dissolving cellulose acetate so as to have a solid content concentration of 3 wt% in acetone is filtered under reduced pressure at room temperature (25 ° C.) using a glass filter under a reduced pressure condition of 30 mmHg.
- the glass filter 1G-4 (pore diameter: 5 to 10 ⁇ m) manufactured by Mutual Science Glass Co., Ltd. can be used. Thereafter, the dope adhering to the filtration residue is washed with acetone. The filtration residue is dried together with the glass filter until a constant weight is obtained. The weight of the glass filter before and after filtration is measured, and the amount of acetone insoluble matter is calculated from the following formula.
- Acetone insoluble matter amount (wt%) [weight of glass filter after filtration (g) ⁇ weight of glass filter before filtration (g)] / weight of cellulose acetate (g) ⁇ 100
- the cellulose acetate of the present disclosure preferably has a 6% viscosity of 30 mPa ⁇ s or more and 200 mPa ⁇ s or less. Further, the lower limit of the 6% viscosity is more preferably 40 mPa ⁇ s or more, further preferably 50 mPa ⁇ s or more, and most preferably 60 mPa ⁇ s or more. When the 6% viscosity is less than 30 mPa ⁇ s, the flowability in the injection molding is too high when obtaining a molded body, and the possibility of leakage from the mold increases.
- the upper limit of the 6% viscosity is more preferably 180 mPa ⁇ s or less, further preferably 160 mPa ⁇ s or less, and most preferably 140 mPa ⁇ s or less.
- the 6% viscosity exceeds 200 mPa ⁇ s, the flowability in the injection molding is low and the surface smoothness of the molded body may be deteriorated when a molded body is to be obtained.
- the 6% viscosity can be adjusted by appropriately adjusting the reaction time, the amount of catalyst, the reaction temperature, and the reaction concentration in the later-described acetylation step and saponification ripening step in the production of cellulose acetate.
- the 6% viscosity is obtained by dissolving cellulose acetate in a 95% aqueous acetone solution so as to be 6 wt / vol%, and then obtaining the viscosity by a fluidization time using an Ostwald viscometer.
- the cellulose acetate of the present disclosure is preferably 97% or more, more preferably 97.5% or more of the molar content of glucose in the sum of the molar content of glucose, xylose and mannose in the constituent sugar analysis. It is more preferably 98.0% or more, and most preferably 98.5% or more. If the ratio of the molar content of glucose in the sum of the molar content of glucose, xylose and mannose is less than 97%, the amount of insoluble matter in acetone tends to increase and the amount of stuff tends to increase.
- the ratio of the molar content of glucose in the sum of the molar content of glucose, xylose and mannose in the constituent sugar analysis can be determined by the following method.
- Cellulose acetate is hydrolyzed with sulfuric acid, neutralized with barium carbonate, filtered through a filter paper and an ion exchange filter, and from the data obtained by HPLC-CAD in the high performance liquid chromatography (HPLC) method, glucose, xylose and By calculating the molar content of mannose, the ratio of the molar content of glucose in the sum of the molar content of glucose, xylose and mannose can be determined.
- HPLC-CAD high performance liquid chromatography
- the cellulose acetate of the present disclosure preferably has a Haze of 10 or less, more preferably 8 or less, still more preferably 5 or less, and most preferably 4 or less.
- Haze can be measured according to the method of JIS K7105 (plastic optical property test method).
- the looseness in the present disclosure refers to a foreign substance that can be confirmed with the naked eye that can be produced when a plasticizer is blended with cellulose acetate and thermoplastic molding is performed. Buts may be caused by cellulose acetate and the plasticizer not being sufficiently compatible with each other, and the proportion of the plasticizer is small compared to the portion other than the but or no plasticizer is contained.
- acetic acid or acetic acid containing 1 to 10% by weight of sulfuric acid is added to raw material cellulose in one or two steps to activate pretreatment.
- Step (i), acetylation step (ii) for acetylating pretreated activated cellulose in the presence of a sulfuric acid catalyst, presence of sulfuric acid catalyst (or residual sulfuric acid) by partially neutralizing the sulfuric acid catalyst A series of steps comprising a saponification aging step (iii) ripening underneath, a purification and drying treatment (iv), a pulverization step (v), and a step (vi) of reducing acetone-insoluble matter contained in cellulose acetate. It goes through a process.
- the purification and drying treatment (iv) is an optional step that can be selected as appropriate.
- cellulose As the cellulose (pulp) used as the raw material of the cellulose acetate of the present disclosure, wood pulp (coniferous pulp, hardwood pulp), cotton linter and the like can be used. These celluloses may be used alone or in combination of two or more. For example, softwood pulp and cotton linter or hardwood pulp may be used in combination.
- Linter pulp is preferable because it has high cellulose purity and few colored components, and thus the transparency of the molded product is increased.
- Wood pulp is preferable because it can be stably supplied as a raw material and is advantageous in terms of cost compared to linter.
- Examples of wood pulp include hardwood pre-hydrolyzed kraft pulp.
- the wood pulp can be pulverized pulp obtained by pulverizing hardwood prehydrolyzed kraft pulp or the like into cotton. The crushing can be performed using, for example, a disc refiner.
- the ⁇ cellulose content of the raw material cellulose is preferably 90% by weight or more, more preferably 92% by weight or more, further preferably 95% by weight or more, and 97% by weight or more. Most preferred.
- the cellulose acetate obtained has a molar ratio of 97% of glucose in the sum of the molar contents of glucose, xylose and mannose in the constituent sugar analysis. This is because the above is easy.
- acetic acid and / or sulfur-containing acetic acid is 100 wt. Preferably, 10 to 500 parts by weight can be added to parts.
- a method of adding acetic acid and / or sulfur-containing acetic acid to cellulose for example, a method of adding acetic acid or sulfur-containing acetic acid in one step, or adding acetic acid and adding sulfur-containing acetic acid after a certain time has passed.
- acetic acid and / or sulfur-containing acetic acid is added to cellulose and then left to stand at 17 to 40 ° C. for 0.2 to 48 hours, or 0.1 to 24 at 17 to 40 ° C. It can be performed by time sealing and stirring.
- acetylation process (ii) In the acetylation step (ii) of acetylating the pretreated activated cellulose in the presence of a sulfuric acid catalyst, for example, adding the pretreated activated cellulose to a mixture consisting of acetic acid, acetic anhydride, and sulfuric acid, Alternatively, acetylation can be started by adding a mixture of acetic acid and acetic anhydride and sulfuric acid to the pretreated activated cellulose.
- mixtures are not particularly limited as long as they contain acetic acid and acetic anhydride, but the ratio of acetic acid to acetic anhydride is 200 to 400 parts by weight of acetic anhydride with respect to 300 to 600 parts by weight of acetic acid.
- the acetic anhydride is more preferably 240 to 280 parts by weight with respect to 350 to 530 parts by weight of acetic acid.
- the ratio of cellulose, a mixture of acetic acid and acetic anhydride, and sulfuric acid is preferably 500 to 1,000 parts by weight of the mixture of acetic acid and acetic anhydride with respect to 100 parts by weight of cellulose.
- the sulfuric acid is preferably 5 to 15 parts by weight, more preferably 7 to 13 parts by weight, and even more preferably 8 to 11 parts by weight.
- the acetylation reaction of cellulose can be carried out by stirring for 30 minutes to 36 hours from the start of acetylation at 20 to 55 ° C.
- the cellulose acetylation reaction may be carried out, for example, by heating from 20 to 55 ° C. for 5 minutes to 36 hours from the start of acetylation under stirring conditions, or from outside under stirring conditions.
- the reaction can be carried out without applying any heat inside or outside the reaction system.
- the initial stage of the acetylation reaction is a solid-liquid heterogeneous reaction, and while the depolymerization reaction is suppressed, the acetylation reaction proceeds and the unreacted product is reduced. From the viewpoint, it is preferable to raise the temperature in 2 hours or less, more preferably 1 hour or less.
- the time required for the acetylation reaction (hereinafter also referred to as acetylation time) is preferably 30 to 200 minutes.
- the acetylation time refers to the time from when raw material cellulose is charged into the reaction system and the reaction with acetic anhydride is started until the neutralizer is charged.
- the water content of the reaction mixture containing cellulose acetate after the saponification aging step is 5 to It can add so that it may become 70 mol%. If it is less than 5 mol%, the saponification reaction does not proceed and depolymerization proceeds, resulting in a low-viscosity cellulose acetate. If it exceeds 70 mol%, the cellulose ester (cellulose triacetate) after the acetylation reaction is precipitated and saponification ripening reaction Since it comes out of the system, the saponification reaction of the precipitated cellulose ester does not proceed.
- dilute acetic acid means a 1 to 50% by weight acetic acid aqueous solution.
- the magnesium acetate aqueous solution preferably has a magnesium acetate concentration of 5 to 30% by weight.
- reaction mixture containing cellulose acetate refers to any mixture containing cellulose acetate in each step until cellulose acetate is obtained.
- the sulfate ion concentration in the reaction mixture containing cellulose acetate is high, the sulfate ester cannot be removed efficiently, so an aqueous solution of an alkaline earth metal salt of acetic acid such as magnesium acetate or an acetic acid-water mixed solution is added. It is preferable to reduce the sulfate ion concentration by forming an insoluble sulfate. It is preferable to adjust the sulfate ion of the reaction mixture containing cellulose acetate to 1 to 6 parts by weight with respect to 100 parts by weight of cellulose acetate (in terms of cellulose).
- the saponification aging time (hereinafter also referred to as aging time) is not particularly limited, but when the acetylation degree is adjusted to 52% or more and 59% or less, it is preferably performed for 100 to 300 minutes, for example. In order to obtain the degree of conversion, the time may be adjusted as appropriate.
- the aging time refers to the time from the start of charging the neutralizer to the stop of the saponification reaction.
- the saponification ripening is preferably carried out by holding at a ripening temperature of 50 to 100 ° C., particularly preferably 70 to 90 ° C. for 20 to 120 minutes.
- the aging temperature refers to the temperature in the reaction system during the aging time.
- the reaction system can be maintained at a uniform and appropriate temperature by utilizing the heat of reaction between water and acetic anhydride, so that the degree of acetylation is too high or too low. Is prevented from being generated.
- the purification is performed by mixing a mixture containing cellulose acetate and a precipitating agent such as water, dilute acetic acid, or an aqueous magnesium acetate solution, and separating the produced cellulose acetate (precipitate).
- a precipitating agent such as water, dilute acetic acid, or an aqueous magnesium acetate solution
- the product can be obtained and washed with water to remove free metal components and sulfuric acid components.
- water or dilute acetic acid is preferable as the precipitant used for obtaining the cellulose acetate precipitate. This is because the sulfate in the reaction mixture containing cellulose acetate is dissolved and the sulfate in the cellulose acetate obtained as a precipitate can be easily removed.
- an alkali metal compound and / or an alkaline earth metal compound may be used as a stabilizer as necessary.
- a calcium compound such as calcium hydroxide may be added.
- a method of stirring the reaction mixture containing cellulose acetate and the precipitating agent using a commercial mixer, or the precipitant in the reaction mixture containing cellulose acetate. And kneading using a biaxial kneader For example, in the case of a method of stirring using a commercial mixer, a reaction mixture containing cellulose acetate and a precipitant necessary for precipitating cellulose acetate are mixed at a time and stirred.
- the precipitating agent can be added to the reaction mixture containing cellulose acetate in several times, but just before the precipitation point is reached, 0. It is preferable to add 5 to 2 times the amount of the precipitant.
- the cellulose acetate (precipitate) is preferably separated by mixing the precipitating agent, followed by filtration, centrifugation, and the like.
- drying is not particularly limited as a method thereof, and a known one can be used, and for example, drying can be performed under conditions such as blowing and decompression.
- drying method include hot air drying.
- drying is not particularly limited as a method thereof, and a known one can be used, and for example, drying can be performed under conditions such as blowing and decompression.
- drying method include hot air drying.
- the method for pulverizing the precipitate of cellulose acetate is not limited.
- a conventional pulverizer such as a sample mill, a hammer mill, a turbo mill, an atomizer, a cutter mill, a bead mill, a ball mill, a roll mill, a jet mill, or a pin mill can be used. Further, it may be freeze pulverization, dry pulverization at normal temperature, or wet pulverization. Among these, it is preferable to use a hammer mill or a turbo mill because of its excellent pulverization ability.
- Step of reducing acetone insoluble matter (vi) Cellulose acetate having an acetone insoluble matter amount of 0.04 wt% or less according to the present disclosure is difficult to obtain by a general cellulose acetate production method, and the step (vi) of reducing acetone insoluble matter from cellulose acetate is performed. It can be obtained by going through.
- the method that can be employed in the step (vi) of reducing the amount of acetone insoluble matter contained in cellulose acetate is not particularly limited as long as the amount of acetone insoluble matter can be 0.04 wt% or less. Examples include a method in which acetate is dissolved in a solvent and filtration is performed, and then cellulose acetate is obtained as a precipitate from the filtrate (precipitation treatment).
- the cellulose acetate which concerns on the process (vi) which reduces the low molecular weight component contained in a cellulose acetate may be any of various forms, for example, a powder form, a granular form, a fiber form, a flake form, etc.
- the solvent is not limited as long as cellulose acetate can be dissolved, but acetone, dichloromethane, acetic acid, or dimethylformamide, which can easily reduce acetone-insoluble matter by filtration, is preferable, acetone and dichloromethane are more preferable, and acetone is more preferable.
- the filter used for the filtration treatment is not limited as long as it can reduce the insoluble matter of acetone.
- glass filter for example, glass filter; filter cloth [gold width (specification # 4000) manufactured by Omi Textile Co., Ltd.] or manufactured by Toyo Dyeing Co., Ltd. Can be used such as filter paper; sintered metal [Vekipore made by Kansai Wire Mesh Co., Ltd.] and the like.
- the filter particle size of the filter is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and further preferably 5 to 20 ⁇ m.
- the filtration particle size can be measured based on ASTM E128-61.
- the precipitation treatment can be performed by adding a poor solvent of cellulose acetate to the filtrate.
- a poor solvent water and alcohol are preferable, and water is more preferable.
- the molded object containing the cellulose acetate of this indication is obtained by shape
- the molding method include injection molding, extrusion molding, vacuum molding, profile molding, foam molding, injection press, press molding, blow molding, gas injection molding, and the like.
- the shape of the molded body is not particularly limited, and may be, for example, a pellet, a film, a sheet, or a fiber. These are suitable shapes in the OA / home appliance field, the electrical / electronic field, the communication field, the sanitary field, the transportation vehicle field such as automobiles, the housing-related field such as furniture and building materials, and the miscellaneous goods field.
- the molded article containing the cellulose acetate of the present disclosure may be produced by mixing and drying the cellulose acetate of the present disclosure and a plasticizer, and molding using the cellulose acetate composition adsorbed with the plasticizer.
- cellulose acetate adsorbed with a plasticizer is kneaded with an extruder such as a single screw or twin screw extruder and formed into pellets, and melt kneaded with a kneader such as a heating roll or a Banbury mixer.
- a method of forming is mentioned.
- after forming into a pellet it may be re-dissolved to form a film or the like using, for example, a single or twin screw extruder equipped with a T-die.
- the cellulose acetate and the plasticizer can be mixed with a mixer such as a planetary mill, a Henschel mixer, a vibration mill, or a ball mill. It is preferable to use a Henschel mixer because homogeneous mixing and dispersion are possible in a short time.
- the degree of mixing is not particularly limited. For example, in the case of a Henschel mixer, mixing is preferably performed for 10 minutes to 1 hour.
- drying can be performed.
- the drying method include a method of allowing to stand at 50 to 105 ° C. for 1 to 48 hours for drying.
- plasticizers include the following. Aromatic carboxylic acid esters [dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, di-2-ethylhexyl phthalate, and the like, dimethoxyethyl phthalate, etc. C1-6 alkoxy C1-12 alkyl esters such as phthalic acid, C1-12 alkyl / aryl-C1-3 alkyl esters such as butylbenzyl phthalate, C1- such as ethylphthalylethylene glycolate, butylphthalylbutylene glycolate, etc.
- Trimellitic acid tri-C1-12 alkyl esters such as 6 alkylphthalyl C2-4 alkylene glycolate, trimethyl trimellitic acid, triethyl trimellitic acid, trioctyl trimellitic acid, tri-2-ethylhexyl trimellitic acid Pyromellitic acid tetra-C1-12 alkyl ester such as pyromellitic acid tetraoctyl]; phosphoric acid ester [tributyl phosphate, tricresyl phosphate, triphenyl phosphate, etc.]; fatty acid ester [dibutyl adipate, dioctyl adipate, Adipate such as butoxyethoxyethyl benzyl adipate, dibutoxyethoxyethyl adipate, diethyl azelaate, dibutyl azelate, azelaic acid such as dioctyl azelate, sebacate
- plasticizers diethyl phthalate, triphenyl phosphate or triacetin is preferably used because of its good compatibility with cellulose acetate.
- plasticizers are added up to about 40 parts by weight with respect to 100 parts by weight of cellulose acetate according to the present disclosure, it is difficult for the molded product to pass through the manufacturing process.
- the amount of plasticizer added is preferably 20 to 40 parts by weight, more preferably 25 to 38 parts by weight, and even more preferably 28 to 36 parts by weight with respect to 100 parts by weight of cellulose acetate according to the present disclosure. If the added amount of the plasticizer is less than 20 parts by weight, the molded product tends to be spotted (spot-like spots), and if it exceeds 40 parts by weight, the bending strength of the molded product is lowered.
- cellulose acetate and plasticizer When mixing cellulose acetate and plasticizer, conventional additives such as other stabilizers (for example, antioxidants, UV absorbers, heat stabilizers, light-resistant stabilizers, etc.) depending on the application and specifications of the molded product , Colorants (dyes, pigments, etc.), antistatic agents, flame retardant aids, lubricants, antiblocking agents, dispersants, fluidizing agents, anti-dripping agents, antibacterial agents, and the like.
- other cellulose esters for example, organic acid esters such as cellulose propionate and cellulose butyrate, inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate
- other polymers for example, organic acid esters such as cellulose propionate and cellulose butyrate, inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate
- other polymers for example, organic acid esters such as cellulose propionate and
- the degree of acetylation of cellulose acetate was determined by a method for measuring the degree of acetylation in ASTM-D-817-91 (testing method for cellulose acetate and the like). 1.9 g of dried cellulose acetate is precisely weighed and dissolved in 150 ml of a mixed solvent of acetone and dimethyl sulfoxide (volume ratio 4: 1), 30 ml of 1N aqueous sodium hydroxide solution is added, and the mixture is stirred at 25 ° C. for 2 hours. Turned into. Phenolphthalein was added as an indicator, and excess sodium hydroxide was titrated with 1N-sulfuric acid (concentration factor: F).
- ⁇ Acetone insoluble matter amount> 10.0 g of dried cellulose acetate is precisely weighed and dissolved in 322.0 g of acetone at 25 ° C., and a glass filter (pore size 5 to 10 ⁇ m: manufactured by Reciprocal Chemical Glass Manufacturing Co., Ltd.) at room temperature (25 ° C.) under a reduced pressure of 30 mmHg. Filtered under reduced pressure using 1G-4). Thereafter, the dope adhering to the filtration residue was washed with 200 mL of acetone. The filtration residue was dried together with the glass filter until a constant weight was reached. The weight of the glass filter before and after filtration was measured, and the amount of acetone insoluble matter was calculated from the following formula.
- Acetone insoluble matter amount (wt%) [weight of glass filter after filtration (g) ⁇ weight of glass filter before filtration (g)] / weight of cellulose acetate (g) ⁇ 100
- the viscometer coefficient was measured using the standard solution for viscometer calibration [made by Showa Oil Co., Ltd., trade name “JS-200” (based on JIS Z 8809)] in the same manner as described above, and the following formula ( Obtained from 2).
- Viscometer coefficient ⁇ Absolute viscosity of standard solution (mPa ⁇ s) ⁇ Density of solution (0.827 g / cm 3 ) ⁇ / ⁇ Density of standard solution (g / cm 3 ) ⁇ Number of seconds flowing down of standard solution (s) ( 2)
- Cellulose acetate is hydrolyzed with sulfuric acid, neutralized with barium carbonate, filtered through a filter paper and an ion exchange filter, and then obtained from HPLC-CAD (Agilent 1200 series system) among high performance liquid chromatography (HPLC) methods.
- HPLC-CAD Alignment 1200 series system
- HPLC high performance liquid chromatography
- CoronaPlus CAD detector manufactured by ESA Biosciences
- Nitrogen gas pressure 35 psi
- Nebulizer 30 ° C
- ⁇ Haze analysis> The Haze value in the transmitted light of the cellulose acetate solution was measured.
- the apparatus used was a product name “Haze Meter NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd., and the measurement conditions were a measurement diameter of 30 mm and a C light source.
- To 12 g of dried cellulose acetate 8.8 g of methanol and 79.2 g of methylene chloride were added and dissolved, and defoamed to prepare a cellulose acetate solution.
- This cellulose acetate solution was put into a 45 mm (L) ⁇ 45 mm (W) ⁇ 10 mm (D) glass cell, and the haze value was measured.
- the activated pulp was added to a mixture consisting of 323 parts by weight acetic acid, 245 parts by weight acetic anhydride, and 13.1 parts by weight sulfuric acid.
- the mixture was previously cooled to 5 ° C. It took 40 minutes to adjust the maximum temperature from 5 ° C. to 40 ° C., and acetylated for 90 minutes from the time when the pulp was added to the mixture (acetylation process).
- a neutralizing agent (24% magnesium acetate aqueous solution) was added over 3 minutes so that the amount of sulfuric acid (aged sulfuric acid amount) was adjusted to 2.5 parts by weight. Further, after raising the temperature of the reaction bath to 75 ° C., water was added to make the reaction bath moisture (ripening moisture) concentration 52 mol%.
- the aging water concentration was expressed in mol% by multiplying the ratio of the reaction bath water to acetic acid expressed in molar ratio by 100. Thereafter, aging was carried out at 85 ° C. for 100 minutes, and aging was stopped by neutralizing sulfuric acid with magnesium acetate to obtain a reaction mixture containing cellulose acetate (aging process).
- Dilute acetic acid (10 wt%) was kneaded into the reaction mixture containing cellulose acetate using a biaxial kneader, and cellulose acetate was precipitated by a kneading precipitation method.
- dilute acetic acid was kneaded into the reaction mixture containing cellulose acetate three times.
- the reaction mixture becomes uniform, and then 0.5 times (weight ratio) at the second time.
- the third time 0.6 times the amount (weight ratio), 1.5 times the amount (weight ratio) was added in total. Precipitation occurred when dilute acetic acid (10 wt%) was added 0.6 times (weight ratio) for the third time.
- the precipitated cellulose acetate was washed with water, immersed in a dilute calcium hydroxide aqueous solution (20 ppm), filtered and dried, and then used with a Makino type grinder (manufactured by Hadano Sangyo Co., Ltd., model number: DD-2-3.7). And crushed.
- the grinding conditions were a rotational speed of 2450 rpm and a screen diameter of ⁇ 5.0 mm.
- the grinding conditions were a rotational speed of 2450 rpm and a screen diameter of ⁇ 5.0 mm.
- Example 1 After adding 80 parts by weight of acetone to 20 parts by weight of the cellulose acetate obtained in Comparative Example 1, it was completely dissolved by shaking for 3 hours. The obtained cellulose acetate solution was passed through a filter (manufactured by Kansai Wire Mesh Co., Ltd., Vekipore 15AL3, filtration particle size 15 ⁇ m) under pressure (2 kg / cm 2 ). 110 parts by weight of distilled water was added to the obtained cellulose acetate solution, and the precipitated cellulose acetate was filtered with a filter paper (manufactured by Kiriyama Seisakusho, Kiriyama filter paper No. 5C 40 ⁇ ).
- a filter paper manufactured by Kiriyama Seisakusho, Kiriyama filter paper No. 5C 40 ⁇ .
- cellulose acetate 150 parts by weight of distilled water was added to cellulose acetate, and centrifugal dehydration (rotation speed: 1000 rpm, 3 minutes) was performed. Thereafter, the cellulose acetate was obtained by drying at 80 ° C. for 12 hours, and pulverized using a Makino type pulverizer (manufactured by Hadano Sangyo Co., Ltd., model number: DD-2-3.7). The grinding conditions were a rotational speed of 2450 rpm and a screen diameter of ⁇ 5.0 mm.
- Example 2 After adding 80 parts by weight of dichloromethane and 4 parts by weight of methanol to 16 parts by weight of the cellulose acetate obtained in Comparative Example 1, the mixture was completely dissolved by shaking for 3 hours. The obtained cellulose acetate solution was passed through a filter (manufactured by Kansai Wire Mesh Co., Ltd., Vekipore 15AL3, filtration particle size 15 ⁇ m) under pressure (3 kg / cm 2 ). 289 parts by weight of methanol was added to the obtained cellulose acetate solution, and the precipitated cellulose acetate was filtered with a filter paper (manufactured by Kiriyama Seisakusho, Kiriyama filter paper No. 5C 40 ⁇ ).
- a filter paper manufactured by Kiriyama Seisakusho, Kiriyama filter paper No. 5C 40 ⁇ .
- cellulose acetate 150 parts by weight of distilled water was added to cellulose acetate, and centrifugal dehydration (rotation speed: 1000 rpm, 3 minutes) was performed. Thereafter, the cellulose acetate was obtained by drying at 80 ° C. for 12 hours, and pulverized using a Makino type pulverizer (manufactured by Hadano Sangyo Co., Ltd., model number: DD-2-3.7). The grinding conditions were a rotational speed of 2450 rpm and a screen diameter of ⁇ 5.0 mm.
- Example 3 Using coniferous sulfite pulp with an ⁇ -cellulose content of 97.0 wt%, the acetylation time at 85 ° C. being 100 minutes, and the reaction bath moisture (ripening moisture) concentration being 39 mol%, the same as in Example 1 Cellulose acetate was obtained.
- the film formed from cellulose acetate having an acetone insoluble matter amount of 0.04 wt% or less is a high-quality film with a small number of foreign matters and extremely few foreign matters. It was confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
ブツの少ないセルロースアセテートを含有する成形体を得ることができるセルロースアセテートを提供することを目的とする。 酢化度が52%以上59%以下であり、アセトン不溶解物量が0.04wt%以下であることを特徴とするセルロースアセテート。
Description
本発明は、セルロースアセテート、セルロースアセテート組成物、成形体およびフィルムに関する。
セルロースアセテートは、セルロース誘導体であるセルロースの有機酸エステルの一つであって、その用途は、衣料品繊維、タバコフィルター・チップ、プラスチックス、フィルム、塗料、医薬品、食料、化粧品、建築用途など多岐にわたり、セルロース誘導体の中でも生産量が多く、工業的に重要なものである。
特に、セルロースジアセテートと称される、酢化度52%以上59%以下程度のセルロースアセテートは、透明性に優れる;着色が自由である;艶・光沢が素晴らしい;耐衝撃性に優れる;強靱であり金属インサートをしてもクラックが発生しにくい;耐ガソリン性にすぐれ、耐油性が抜群である;帯電性が少なく、塵がつきにくい;感触、フィーリングが良い;切削などの二次加工が容易である;等のさまざまな特徴があり、特に人の肌などに触れる部材の材料として、押出成形などの熱可塑成形及びその後の切削加工、並びに真空・圧空成形等により成形され使用されている。
代表的なセルロースアセテートの工業的製法としては無水酢酸を酢化剤、酢酸を希釈剤、硫酸を触媒とするいわゆる酢酸法が挙げられる。酢酸法の基本的工程は、(1)α-セルロース含有率の比較的高いパルプ原料(溶解パルプ)を、離解・解砕後、酢酸を散布混合する前処理工程と、(2)無水酢酸、酢酸および酢化触媒(例えば硫酸)よりなる混酸で、(1)の前処理パルプを反応させる酢化工程と、(3)セルロースアセテートを加水分解して所望の酢化度のセルロースアセテートとする熟成工程と、(4)加水分解反応の終了したセルロースアセテートを反応溶液から沈澱分離、精製、安定化、乾燥する後処理工程より成る(特許文献1、非特許文献1)。
以上のような方法で製造されるセルロースアセテートを素材として用い、成形加工して得られるフィルム等の各種の成形体は、若干の各種の異物を含むことが多く、要求される他の諸性質を満足していても著しい商品価値の低下を招いている。
それ故、異物を低減させたセルロースアセテートを得る方法が開発されてきた。例えば、セルロース混合脂肪酸エステルを有機溶媒に溶解し、これをろ過後、有機溶媒を気散し乾燥することで輝点異物の少ないセルロース混合脂肪酸エステルを得る方法(特許文献2)、セルロースの水酸基に対して過剰量の酸無水物含むエステル化剤を用いてセルロースのアシル化を行った後、反応混合物の温度を-30~35℃に制御しながら、反応混合物に水を含む停止剤を混合して酸無水物を加水分解することで、微小異物を低減させる方法(特許文献3)、セルロースエステル溶液とアルコール類を混合した後、貧溶媒を用いてセルロールエステルを沈殿させることでゲル状異物を低減させる方法(特許文献4)があげられる。
特許文献2には、輝点異物とは、直交状態(クロスニコル)で配置した2枚の偏光子の間にセルロースエステルフィルムを置き、一方の偏光子の外側から光を当て、他方の偏光子の外側から顕微鏡で観察すると、異物部分で光が漏れ、輝点となって見える異物であることが記載され、特許文献3には、微小異物は、その直径が1μm以上10μm未満で、クロスニコル下の偏光顕微鏡で観察されることが記載され、特許文献4には、「ゲル状異物」とは、二枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光は漏れてこないが、フィルム表面に凹凸として観測されて、透過型の顕微鏡で見たときに不定形である異物のことであると記載されている。
近年、より優れた光沢やより高い透明性を生かしたファッション性が追求される等の理由から、ファッションに用いる成形体の材料となるセルロースアセテートにもより高い品質が求められるようになり、異物を十分に低減したセルロースアセテートが求められている。特許文献2~4に記載される技術は、上記のとおり、クロスニコル状態で、また顕微鏡で確認する必要がある微小な異物である輝点異物またはゲル状異物を低減しようとするものであるが、セルロースアセテートに可塑剤をブレンドして熱可塑成形する際に生じ得る肉眼でも確認できるような異物(以下、ブツと称する場合がある)を十分に低減できるものではない。
Macromol.Symp.2004,208,49-60
本発明の主たる目的は、ブツの少ないセルロースアセテートを含有する成形体を得ることができるセルロースアセテートを提供することにある。
上記課題を解決するために、本発明者らは、鋭意研究を行った。その結果、意外にもセルロースアセテート中のアセトン不溶解物量を0.04wt%以下にすることで、極めてブツの少ない高品質な成形体を提供できるセルロースアセテートが得られることを見出し、本発明を完成するに至った。すなわち、本発明は以下のとおりである。
(1)酢化度が52%以上59%以下であり、アセトン不溶解物量が0.04wt%以下であることを特徴とするセルロースアセテート。
(2)6%粘度が30mPa・s以上200mPa・s以下であることを特徴とする、(1)に記載のセルロースアセテート。
(3)構成糖分析において、グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合が97%以上であるセルロースアセテートであることを特徴とする、(1)または(2)に記載のセルロースアセテート。
(4)前記(1)~(3)のいずれか1項に記載のセルロースアセテート及び可塑剤を含有することを特徴とするセルロースアセテート組成物。
(5)前記(1)~(3)のいずれか1項に記載のセルロースアセテートを含有することを特徴とする成形体。
(6)前記(1)~(3)のいずれか1項に記載のセルロースアセテートを含有することを特徴とするフィルム。
本発明によれば、ブツの少ないセルロースアセテートを含有する成形体を得ることができるセルロースアセテートを提供することが可能となる。
以下、好ましい実施の形態の一例を具体的に説明する。
本開示のセルロースアセテートは酢化度が52%以上59%以下であり、アセトン不溶解物量が0.04wt%以下であることを特徴とする。
本開示のセルロースアセテートは酢化度が52%以上59%以下であり、アセトン不溶解物量が0.04wt%以下であることを特徴とする。
[酢化度]
本開示のセルロースアセテートの酢化度は、52%以上59%以下であるところ、酢化度の下限値としては、53%以上であることが好ましく、53.7%以上であることがより好ましく、54%以上であることがさらに好ましい。酢化度が52%未満であると、セルロースアセテートを含有する成形体の寸法安定性や耐湿性、耐熱性などが低くなる。一方、酢化度の上限値としては、57%以下であることが好ましく、56%以下であることがより好ましく、55.5%以下であることがさらに好ましい。酢化度が59%を超えると、セルロースアセテートを含有する成形体の強度に優れるが脆くなり、例えば、衣料用等の繊維材料、メガネやサングラスのフレーム等の成形品に用いる場合、適した伸度等やわらかさを得るために可塑剤を大量に添加するとブリードアウトを生じる可能性が高くなる。
本開示のセルロースアセテートの酢化度は、52%以上59%以下であるところ、酢化度の下限値としては、53%以上であることが好ましく、53.7%以上であることがより好ましく、54%以上であることがさらに好ましい。酢化度が52%未満であると、セルロースアセテートを含有する成形体の寸法安定性や耐湿性、耐熱性などが低くなる。一方、酢化度の上限値としては、57%以下であることが好ましく、56%以下であることがより好ましく、55.5%以下であることがさらに好ましい。酢化度が59%を超えると、セルロースアセテートを含有する成形体の強度に優れるが脆くなり、例えば、衣料用等の繊維材料、メガネやサングラスのフレーム等の成形品に用いる場合、適した伸度等やわらかさを得るために可塑剤を大量に添加するとブリードアウトを生じる可能性が高くなる。
ここで、本発明の酢化度とは、セルロース単位重量当たりの結合酢酸量を意味する。酢化度は、ASTM:D-817-91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算に従う。
なお、上記の測定法に準じて求めた酢化度を下記式でアセチル置換度に換算することができる。これは、最も一般的なセルロースアセテートの置換度の求め方である。下記式によれば、例えば、酢化度52%はアセチル置換度で2.21、酢化度59%はアセチル置換度で2.71となる。
DS=162.14×AV×0.01/(60.052-42.037×AV×0.01)
DS:アセチル置換度
AV:酢化度(%)
DS=162.14×AV×0.01/(60.052-42.037×AV×0.01)
DS:アセチル置換度
AV:酢化度(%)
[アセトン不溶解物量]
本開示のセルロースアセテートは、アセトン不溶解物量が0.04wt%以下であるところ、アセトン不溶解物量の上限値としては、0.03wt%以下であることが好ましく、0.02wt%以下がより好ましく、0.01wt%以下であることがさらに好ましい。アセトン不溶解物量が0.04wt%を超えるとブツが急激に増えるため好ましくない。さらに、アセトン不溶解物量が増えすぎれば、測定時にガラスフィルターが目詰まりして測定不能となる場合がある。アセトン不溶解物量の下限値としては、より小さい方が好ましく、特に限定されるものではないが、例えば、製造コストの観点からは、0.001wt%以上であってもよい。
本開示のセルロースアセテートは、アセトン不溶解物量が0.04wt%以下であるところ、アセトン不溶解物量の上限値としては、0.03wt%以下であることが好ましく、0.02wt%以下がより好ましく、0.01wt%以下であることがさらに好ましい。アセトン不溶解物量が0.04wt%を超えるとブツが急激に増えるため好ましくない。さらに、アセトン不溶解物量が増えすぎれば、測定時にガラスフィルターが目詰まりして測定不能となる場合がある。アセトン不溶解物量の下限値としては、より小さい方が好ましく、特に限定されるものではないが、例えば、製造コストの観点からは、0.001wt%以上であってもよい。
アセトン不溶解物量は下記の方法により求めることができる。アセトンに、3wt%固形分濃度になるようにセルロースアセテートを溶解した溶液を、ガラスフィルターを使用して、30mmHgの減圧条件下、室温(25℃)にて減圧濾過する。ガラスフィルターとしては相互理化学硝子製作所製の1G-4(孔径5~10μm)を用いることができる。その後、濾過残渣に付着しているドープをアセトンにて洗浄する。濾過残渣をガラスフィルターごと恒量になるまで乾燥する。これらの濾過前後でのガラスフィルター重量を測定し、次式よりアセトン不溶解物量を算出する。
アセトン不溶解物量(wt%)=〔濾過後ガラスフィルター重量(g)-濾過前ガラスフィルター重量(g)〕/セルロースアセテート重量(g)×100
アセトン不溶解物量(wt%)=〔濾過後ガラスフィルター重量(g)-濾過前ガラスフィルター重量(g)〕/セルロースアセテート重量(g)×100
[6%粘度]
本開示のセルロースアセテートは、6%粘度が30mPa・s以上200mPa・s以下であることが好ましい。また、6%粘度の下限値は40mPa・s以上であることがより好ましく、50mPa・s以上であることがさらに好ましく、60mPa・s以上であることが最も好ましい。6%粘度が30mPa・s未満であると、成形体を得ようとする場合に、射出成型における流動性が高すぎ金型から洩れ出る可能性が高くなる。一方、6%粘度の上限値は180mPa・s以下であることがより好ましく、160mPa・s以下であることがさらに好ましく、140mPa・s以下であることが最も好ましい。6%粘度が200mPa・sを超えると、成形体を得ようとする場合に、射出成型における流動性が低く成形体の表面平滑性が悪化する可能性がある。
本開示のセルロースアセテートは、6%粘度が30mPa・s以上200mPa・s以下であることが好ましい。また、6%粘度の下限値は40mPa・s以上であることがより好ましく、50mPa・s以上であることがさらに好ましく、60mPa・s以上であることが最も好ましい。6%粘度が30mPa・s未満であると、成形体を得ようとする場合に、射出成型における流動性が高すぎ金型から洩れ出る可能性が高くなる。一方、6%粘度の上限値は180mPa・s以下であることがより好ましく、160mPa・s以下であることがさらに好ましく、140mPa・s以下であることが最も好ましい。6%粘度が200mPa・sを超えると、成形体を得ようとする場合に、射出成型における流動性が低く成形体の表面平滑性が悪化する可能性がある。
6%粘度は、セルロースアセテートの製造における後述の酢化工程およびケン化熟成工程における反応時間、触媒量、反応温度、反応濃度を適宜調整することにより調整することができる。
ここで、6%粘度は、セルロースアセテートを95%アセトン水溶液に6wt/vol%となるよう溶解させ、オストワルド粘度計を用いた流化時間により求められるものである。
[構成糖比]
本開示のセルロースアセテートは構成糖分析において、グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合が97%以上であることが好ましく、97.5%以上であることがより好ましく、98.0%以上であることがさらに好ましく、98.5%以上であることが最も好ましい。グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合は97%未満であると、アセトン不溶解物量が多くなり、ブツ量が多くなる傾向があるため望ましくない。
本開示のセルロースアセテートは構成糖分析において、グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合が97%以上であることが好ましく、97.5%以上であることがより好ましく、98.0%以上であることがさらに好ましく、98.5%以上であることが最も好ましい。グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合は97%未満であると、アセトン不溶解物量が多くなり、ブツ量が多くなる傾向があるため望ましくない。
構成糖分析におけるグルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合は以下の方法により求めることができる。
セルロースアセテートを硫酸によって加水分解し、炭酸バリウムによって中和し、ろ紙およびイオン交換フィルターによってろ過した後、高速液体クロマトグラフィー(HPLC)法のうち、HPLC-CADによって得られたデータからグルコース、キシロースおよびマンノースのモル含量を算出し、グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合を求めることができる。
[Haze]
本開示のセルロースアセテートはHazeが10以下であることが好ましく、8以下であることがより好ましく、5以下であることがさらに好ましく、4以下であることが最も好ましい。アセトン不溶解物量が少ない程、Hazeは低くなる。また、Hazeがより低い程、成形品の透明性が高くなる。
本開示のセルロースアセテートはHazeが10以下であることが好ましく、8以下であることがより好ましく、5以下であることがさらに好ましく、4以下であることが最も好ましい。アセトン不溶解物量が少ない程、Hazeは低くなる。また、Hazeがより低い程、成形品の透明性が高くなる。
Hazeは、JIS K7105(プラスチックの光学的特性試験方法)の方法に従って測定することができる。
[ブツ]
本開示におけるブツとは、セルロースアセテートに可塑剤をブレンドして熱可塑成形する際に生じ得る肉眼でも確認できるような異物をいう。ブツは、セルロースアセテートと可塑剤とが十分に相溶せず、ブツ以外の部分と比較して可塑剤の割合が少ないか、可塑剤が含まれないことによって生じ得る。
本開示におけるブツとは、セルロースアセテートに可塑剤をブレンドして熱可塑成形する際に生じ得る肉眼でも確認できるような異物をいう。ブツは、セルロースアセテートと可塑剤とが十分に相溶せず、ブツ以外の部分と比較して可塑剤の割合が少ないか、可塑剤が含まれないことによって生じ得る。
[セルロースアセテートの製造]
セルロースアセテートの製造方法について詳述する。本開示に係るセルロースアセテートの好ましい製造方法としては、原料セルロースに酢酸または1~10重量%の硫酸を含む酢酸(含硫酢酸)を一段または二段に分けて添加して前処理活性化する活性化工程(i)と、硫酸触媒の存在下で、前処理活性化したセルロースを酢化する酢化工程(ii)と、前記硫酸触媒を部分中和し、硫酸触媒(又は残存硫酸)の存在下で熟成するケン化熟成工程(iii)と、精製及び乾燥処理(iv)と、粉砕工程(v)と、セルロースアセテートに含まれるアセトン不溶解物を低減する工程(vi)とを含む一連の工程を経ることが挙げられる。当該製造方法において、特に精製及び乾燥処理(iv)は、適宜その採否を選択できる、任意工程である。なお、一般的なセルロースアセテートの製造方法については、「木材化学」(上)(右田ら、共立出版(株)1968年発行、第180頁~第190頁)を参照できる。
セルロースアセテートの製造方法について詳述する。本開示に係るセルロースアセテートの好ましい製造方法としては、原料セルロースに酢酸または1~10重量%の硫酸を含む酢酸(含硫酢酸)を一段または二段に分けて添加して前処理活性化する活性化工程(i)と、硫酸触媒の存在下で、前処理活性化したセルロースを酢化する酢化工程(ii)と、前記硫酸触媒を部分中和し、硫酸触媒(又は残存硫酸)の存在下で熟成するケン化熟成工程(iii)と、精製及び乾燥処理(iv)と、粉砕工程(v)と、セルロースアセテートに含まれるアセトン不溶解物を低減する工程(vi)とを含む一連の工程を経ることが挙げられる。当該製造方法において、特に精製及び乾燥処理(iv)は、適宜その採否を選択できる、任意工程である。なお、一般的なセルロースアセテートの製造方法については、「木材化学」(上)(右田ら、共立出版(株)1968年発行、第180頁~第190頁)を参照できる。
(原料セルロース)
本開示のセルロースアセテートの原料となるセルロース(パルプ)としては、木材パルプ(針葉樹パルプ、広葉樹パルプ)や綿花リンターなどが使用できる。これらのセルロースは単独で又は二種以上組み合わせてもよく、例えば、針葉樹パルプと、綿花リンター又は広葉樹パルプとを併用してもよい。
本開示のセルロースアセテートの原料となるセルロース(パルプ)としては、木材パルプ(針葉樹パルプ、広葉樹パルプ)や綿花リンターなどが使用できる。これらのセルロースは単独で又は二種以上組み合わせてもよく、例えば、針葉樹パルプと、綿花リンター又は広葉樹パルプとを併用してもよい。
リンターパルプについて述べる。リンターパルプは、セルロース純度が高く、着色成分が少ないことから、成形品の透明度が高くなるため好ましい。
次に、木材パルプについて述べる。木材パルプは、原料として安定供給できるため及びリンターに比べコスト的に有利であるため好ましい。木材パルプとしては、例えば、広葉樹前加水分解クラフトパルプ等が挙げられる。また、木材パルプは、広葉樹前加水分解クラフトパルプ等を綿状に解砕した解砕パルプを用いることができる。解砕は、例えば、ディスクリファイナーを用いて行うことができる。
また、原料セルロースのαセルロース含量は、90重量%以上であることが好ましく、92重量%以上であることがより好ましく、95重量%以上であることがさらに好ましく、97重量%以上であることが最も好ましい。不溶解残渣を少なくし、成形品の透明性を損なわないため、また、得られるセルロースアセテートが、構成糖分析において、グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合を97%以上としやすいためである。
原料セルロースがシート状の形態で供給されるなど、以降の工程で取扱いにくい場合は、原料セルロースを乾式で解砕処理する工程を経ることが好ましい。
(活性化工程(i))
原料セルロースに酢酸または1~10重量%の硫酸を含む酢酸(含硫酢酸)を添加して前処理活性化する活性化工程(i)において、酢酸及び/または含硫酢酸は、原料セルロース100重量部に対して、好ましくは10~500重量部を添加することができる。また、セルロースに酢酸及び/または含硫酢酸を添加する方法としては、例えば、酢酸もしくは含硫酢酸を一段階で添加する方法、または、酢酸を添加して一定時間経過後、含硫酢酸を添加する方法、含硫酢酸を添加して一定時間経過後、酢酸を添加する方法等の酢酸または含硫酢酸を2段階以上に分割して添加する方法等が挙げられる。添加の具体的手段としては、噴霧してかき混ぜる方法が挙げられる。
原料セルロースに酢酸または1~10重量%の硫酸を含む酢酸(含硫酢酸)を添加して前処理活性化する活性化工程(i)において、酢酸及び/または含硫酢酸は、原料セルロース100重量部に対して、好ましくは10~500重量部を添加することができる。また、セルロースに酢酸及び/または含硫酢酸を添加する方法としては、例えば、酢酸もしくは含硫酢酸を一段階で添加する方法、または、酢酸を添加して一定時間経過後、含硫酢酸を添加する方法、含硫酢酸を添加して一定時間経過後、酢酸を添加する方法等の酢酸または含硫酢酸を2段階以上に分割して添加する方法等が挙げられる。添加の具体的手段としては、噴霧してかき混ぜる方法が挙げられる。
そして、前処理活性化は、セルロースに酢酸及び/または含硫酢酸を添加した後、17~40℃下で0.2~48時間静置する、または17~40℃下で0.1~24時間密閉及び攪拌すること等により行うことができる。
(酢化工程(ii))
硫酸触媒の存在下で、前処理活性化したセルロースを酢化する酢化工程(ii)において、例えば、酢酸、無水酢酸、および硫酸からなる混合物に、前処理活性化したセルロースを添加すること、または前処理活性化したセルロースに、酢酸と無水酢酸の混合物および硫酸を添加すること等により酢化を開始することができる。
硫酸触媒の存在下で、前処理活性化したセルロースを酢化する酢化工程(ii)において、例えば、酢酸、無水酢酸、および硫酸からなる混合物に、前処理活性化したセルロースを添加すること、または前処理活性化したセルロースに、酢酸と無水酢酸の混合物および硫酸を添加すること等により酢化を開始することができる。
またこれらの混合物には、酢酸と無水酢酸とが含まれていれば、特に限定されないが、酢酸と無水酢酸との割合としては、酢酸300~600重量部に対し、無水酢酸200~400重量部であることが好ましく、酢酸350~530重量部に対し、無水酢酸240~280重量部であることがより好ましい。
酢化反応における、セルロース、酢酸と無水酢酸の混合物、および硫酸の割合としては、セルロース100重量部に対して、酢酸と無水酢酸の混合物は500~1,000重量部であることが好ましく、濃硫酸は5~15重量部であることが好ましく、7~13重量部であることがより好ましく、8~11重量部であることがさらに好ましい。
酢化工程(ii)において、セルロースの酢化反応は、20~55℃下で酢化を開始した時から30分~36時間、攪拌することにより行うことができる。
また、セルロースの酢化反応は、例えば、攪拌条件下、酢化を開始した時から5分~36時間要して20~55℃に昇温して行うこと、または、撹拌条件下、外部から反応系の内外には一切の熱は加えず行うことができる。酢化反応初期は固液不均一系での反応となり解重合反応を抑えつつ酢化反応を進ませ未反応物を減らすため可能な限り時間を掛けて昇温するのが良いが、生産性の観点からは、2時間以下、さらに好ましくは1時間以下で昇温を行うことが好ましい。
また、酢化反応にかかる時間(以下、酢化時間ともいう。)は、30~200分であることが望ましい。ここで、酢化時間とは、原料セルロースが反応系内に投入され、無水酢酸と反応を開始した時点から中和剤投入までの時間をいう。
(ケン化熟成工程(iii))
前記硫酸触媒を部分中和し、硫酸触媒(又は残存硫酸)の存在下で熟成するケン化熟成工程(iii)において、前記酢化反応により、硫酸は硫酸エステルとしてセルロースに結合しているため、前記酢化反応終了後、熱安定性向上のためこの硫酸エステルをケン化して除去する。ケン化熟成に際して、酢化反応停止のために水、希酢酸、又は酢酸マグネシウム水溶液などの中和剤を添加する。そして、水を添加する場合、セルロースアセテートを含む反応混合物中に存在する無水酢酸と反応して酢酸を生成させ、ケン化熟成工程後のセルロースアセテートを含む反応混合物の水分量が酢酸に対し5~70mol%になるように添加することができる。5mol%未満であると、ケン化反応が進まず解重合が進み、低粘度のセルロースアセテートとなり、70mol%を超えると、酢化反応終了後のセルロースエステル(セルローストリアセテート)が析出しケン化熟成反応系から出るため、析出したセルロースエステルのケン化反応が進まなくなる。
前記硫酸触媒を部分中和し、硫酸触媒(又は残存硫酸)の存在下で熟成するケン化熟成工程(iii)において、前記酢化反応により、硫酸は硫酸エステルとしてセルロースに結合しているため、前記酢化反応終了後、熱安定性向上のためこの硫酸エステルをケン化して除去する。ケン化熟成に際して、酢化反応停止のために水、希酢酸、又は酢酸マグネシウム水溶液などの中和剤を添加する。そして、水を添加する場合、セルロースアセテートを含む反応混合物中に存在する無水酢酸と反応して酢酸を生成させ、ケン化熟成工程後のセルロースアセテートを含む反応混合物の水分量が酢酸に対し5~70mol%になるように添加することができる。5mol%未満であると、ケン化反応が進まず解重合が進み、低粘度のセルロースアセテートとなり、70mol%を超えると、酢化反応終了後のセルロースエステル(セルローストリアセテート)が析出しケン化熟成反応系から出るため、析出したセルロースエステルのケン化反応が進まなくなる。
ここで、希酢酸とは、1~50重量%の酢酸水溶液をいう。また、酢酸マグネシウム水溶液は、酢酸マグネシウムの濃度が5~30重量%であることが好ましい。
なお、セルロースアセテートを含む反応混合物とは、セルロースアセテートを得るまでの各工程におけるセルロースアセテートを含む混合物のいずれも指す。
また、セルロースアセテートを含む反応混合物における硫酸イオン濃度が高いと効率よく硫酸エステルを除去することができないため、酢酸マグネシウム等の酢酸のアルカリ土類金属塩の水溶液又は酢酸-水混合溶液を添加して不溶性の硫酸塩を形成させることにより、硫酸イオン濃度を低下させることが好ましい。セルロースアセテート100重量部(セルロース換算)に対し、セルロースアセテートを含む反応混合物の硫酸イオンを1~6重量部に調整することが好ましい。なお、例えば、セルロースアセテートを含む反応混合物に酢酸マグネシウムの酢酸-水混合溶液を添加することにより、酢化反応の停止とセルロースアセテート100重量部(セルロース換算)に対する硫酸イオンの重量比の低下とを同時に行うこともできる。
ケン化熟成の時間(以下、熟成時間ともいう。)は、特に限定されないが、酢化度を52%以上59%以下に調整する場合、例えば、100~300分間行うことが好ましく、目的の酢化度とするためにはその時間を適宜調整すればよい。ここで、熟成時間は、中和剤の投入開始からケン化反応停止までの時間をいう。
また、ケン化熟成は、好ましくは50~100℃、特に好ましくは70~90℃の熟成温度で20~120分間保持することにより行う。ここで、熟成温度とは、熟成時間における反応系内の温度をいう。
ケン化熟成工程においては、水と無水酢酸との反応熱を利用することにより、反応系全体を均一でかつ適正な温度に保持することができるため、酢化度が高すぎるものや低すぎるものが生成することが防止される。
(精製及び乾燥処理(iv))
精製及び乾燥処理(iv)のうち、精製は、セルロースアセテートを含む混合物と水、希酢酸、又は酢酸マグネシウム水溶液等の沈澱剤とを混合し、生成したセルロースアセテート(沈澱物)を分離して沈殿物を得、水洗により遊離の金属成分や硫酸成分などを除去することにより行うことができる。ここで、セルロースアセテートの沈殿物を得る際に用いる沈澱剤としては、水または希酢酸が好ましい。セルロースアセテートを含む反応混合物中の硫酸塩を溶解し、沈澱物として得られるセルロースアセテート中の硫酸塩を除去しやすいためである。
精製及び乾燥処理(iv)のうち、精製は、セルロースアセテートを含む混合物と水、希酢酸、又は酢酸マグネシウム水溶液等の沈澱剤とを混合し、生成したセルロースアセテート(沈澱物)を分離して沈殿物を得、水洗により遊離の金属成分や硫酸成分などを除去することにより行うことができる。ここで、セルロースアセテートの沈殿物を得る際に用いる沈澱剤としては、水または希酢酸が好ましい。セルロースアセテートを含む反応混合物中の硫酸塩を溶解し、沈澱物として得られるセルロースアセテート中の硫酸塩を除去しやすいためである。
特に、前記熟成反応の後(完全中和の後)、セルロースアセテートの熱安定性を高めるため、水洗に加えてさらに、必要に応じて安定剤として、アルカリ金属化合物及び/又はアルカリ土類金属化合物、特に水酸化カルシウムなどのカルシウム化合物を添加してもよい。また、水洗の際に安定剤を用いてもよい。
セルロースアセテートを含む反応混合物と沈澱剤を混合する具体的な手段としては、セルロースアセテートを含む反応混合物と沈澱剤とを業務用ミキサーを用いて撹拌する方法、またはセルロースアセテートを含む反応混合物に沈澱剤を添加し、二軸ニーダーを用いて練り込む方法などが挙げられる。例えば、業務用ミキサーを用いて撹拌する方法の場合、セルロースアセテートを含む反応混合物とセルロースアセテートを沈澱させるのに必要量の沈澱剤とを一度に混合し、撹拌する。二軸ニーダーを用いて練り込む方法の場合、沈澱剤を数回に分けてセルロースアセテートを含む反応混合物に添加することができるが、沈澱点を超える直前において、セルロースアセテートを含む反応混合物の0.5~2倍量の沈澱剤を一度に添加することが好ましい。
セルロースアセテート(沈澱物)の分離は、沈殿剤の混合の後、ろ過、遠心分離などにより行うことが好ましい。
精製及び乾燥処理(iv)のうち、乾燥は、その方法としては特に限定されず、公知のものを用いることができ、例えば、送風や減圧などの条件下乾燥を行うことができる。乾燥方法としては、例えば、熱風乾燥が挙げられる。
精製及び乾燥処理(iv)のうち、乾燥は、その方法としては特に限定されず、公知のものを用いることができ、例えば、送風や減圧などの条件下乾燥を行うことができる。乾燥方法としては、例えば、熱風乾燥が挙げられる。
(粉砕工程(v))
粉砕工程(v)について、セルロースアセテートの沈殿物を粉砕する方法は限定されない。粉砕は、慣用の粉砕機、例えば、サンプルミル、ハンマーミル、ターボミル、アトマイザー、カッターミル、ビーズミル、ボールミル、ロールミル、ジェットミル、ピンミルなどを用いることができる。また、凍結粉砕、常温での乾式粉砕、または湿式粉砕でもよい。中でも、粉砕処理能力に優れることから、ハンマーミルまたはターボミルを用いることが好ましい。
粉砕工程(v)について、セルロースアセテートの沈殿物を粉砕する方法は限定されない。粉砕は、慣用の粉砕機、例えば、サンプルミル、ハンマーミル、ターボミル、アトマイザー、カッターミル、ビーズミル、ボールミル、ロールミル、ジェットミル、ピンミルなどを用いることができる。また、凍結粉砕、常温での乾式粉砕、または湿式粉砕でもよい。中でも、粉砕処理能力に優れることから、ハンマーミルまたはターボミルを用いることが好ましい。
(アセトン不溶解物を低減する工程(vi))
本開示のアセトン不溶解物量が0.04wt%以下であるセルロースアセテートは一般的なセルロースアセテートの製造方法で取得することは困難であり、セルロースアセテートからアセトン不溶解物を低減する工程(vi)を経ることにより得ることができる。
本開示のアセトン不溶解物量が0.04wt%以下であるセルロースアセテートは一般的なセルロースアセテートの製造方法で取得することは困難であり、セルロースアセテートからアセトン不溶解物を低減する工程(vi)を経ることにより得ることができる。
セルロースアセテートに含まれるアセトン不溶解物量を低減する工程(vi)において採用可能な方法は、アセトン不溶解物量が0.04wt%以下とすることができれば、特に限定されるわけではないが、例えばセルロースアセテートを溶媒に溶解し、ろ過処理を実施した後、ろ液からセルロースアセテートを沈殿物として取得する(沈殿処理)方法等が挙げられる。なお、セルロースアセテートに含まれる低分子量成分を低減する工程(vi)に係るセルロースアセテートは、種々の形態、例えば、粉末状、粒状、繊維状、フレーク状などのいずれであってもよい。
溶媒としては、セルロースアセテートを溶解できる限り制限はされないが、アセトン不溶解物をろ過で低減させやすいアセトン、ジクロロメタン、酢酸、またはジメチルホルムアミドが好ましく、アセトン、ジクロロメタンがより好ましく、アセトンがさらに好ましい。
ろ過処理に用いるフィルターについてはアセトン不溶解物を低減できるものであれば制限はされず、例えば、ガラスフィルター;濾布[近江織物株式会社製の金巾(仕様#4000)や東洋染色工業株式会社製の起毛ネル(仕様:縦20番手、横10番手 60本、120本打ち込み)など];濾紙;焼結金属[関西金網株式会社製のベキポアなど]等を用いることができる。
また、アセトン不溶解物を効率的に除去するため、フィルターの濾過粒度は、1~100μmが好ましく、3~50μmがより好ましく、5~20μmがさらに好ましい。前記濾過粒度はASTM E128-61に基づいて測定することができる。
沈殿処理は、ろ液にセルロースアセテートの貧溶媒を加えて実施できる。貧溶媒としては水、アルコールが好ましく、水がさらに好ましい。
[成形体]
本開示のセルロースアセテートを含有する成形体は、本開示のセルロースアセテートを成形することにより得られる。成形方法としては、射出成形、押出成形、真空成形、異型成形、発泡成形、インジェクションプレス、プレス成形、ブロー成形、ガス注入成形等が挙げられる。
本開示のセルロースアセテートを含有する成形体は、本開示のセルロースアセテートを成形することにより得られる。成形方法としては、射出成形、押出成形、真空成形、異型成形、発泡成形、インジェクションプレス、プレス成形、ブロー成形、ガス注入成形等が挙げられる。
当該成形体の形状は特に制限されないが、例えば、ペレット、フィルム、シート、ファイバーなどであってよい。これらは、OA・家電機器分野、電気・電子分野、通信機器分野、サニタリー分野、自動車等の輸送車両分野、家具・建材等の住宅関連分野、雑貨分野等において適した形状である。
本開示のセルロースアセテートを含有する成形体は、本開示のセルロースアセテートと可塑剤を混合、乾燥することにより、可塑剤が吸着したセルロースアセテート組成物を用いて成形することにより製造してもよい。具体的には、例えば、可塑剤が吸着したセルロースアセテートを、一軸又は二軸押出機などの押出機で混練してペレットに成形する方法、加熱ロールやバンバリーミキサー等の混練機で溶融混練して成形する方法が挙げられる。また、ペレットに成形した後、例えば、T-ダイを装着した一軸または二軸押出機を用いて、再溶解し、フィルム等を成形してもよい。
本開示のセルロースアセテートに可塑剤を混合してセルロースアセテート組成物とする場合、セルロースアセテートと可塑剤との混合は、遊星ミル、ヘンシェルミキサー、振動ミル、ボールミルなどの混合機により行うことができる。短時間で均質な混合分散が可能であるため、ヘンシェルミキサーを用いることが好ましい。また、混合の程度は特に限定されるものではないが、例えば、ヘンシェルミキサーの場合、好ましくは10分~1時間混合する。
また、セルロースアセテートと可塑剤の混合後、乾燥を行うことができる。乾燥方法としては、例えば、50~105℃下で、1~48時間静置して乾燥する方法が挙げられる。
可塑剤としては、例えば以下のものを挙げることができる。芳香族カルボン酸エステル[フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジ-2-エチルヘキシルなどのフタル酸ジC1-12アルキルエステル、フタル酸ジメトキシエチルなどのフタル酸C1-6アルコキシC1-12アルキルエステル、フタル酸ブチルベンジルなどのフタル酸C1-12アルキル・アリール-C1-3アルキルエステル、エチルフタリルエチレングリコレート、ブチルフタリルブチレングリコレートなどのC1-6アルキルフタリルC2-4アルキレングリコレート、トリメリット酸トリメチル、トリメリット酸トリエチル、トリメリット酸トリオクチル、トリメリット酸トリ2-エチルヘキシルなどのトリメリット酸トリC1-12アルキルエステル、ピロメリット酸テトラオクチルなどのピロメリット酸テトラC1-12アルキルエステルなど];リン酸エステル[リン酸トリブチル、リン酸トリクレジル、リン酸トリフェニルなど];脂肪酸エステル[アジピン酸ジブチル、アジピン酸ジオクチル、アジピン酸ブトキシエトキシエチル・ベンジル、アジピン酸ジブトキシエトキシエチルなどのアジピン酸エステル、アゼライン酸ジエチル、アゼライン酸ジブチル、アゼライン酸ジオクチルなどのアゼライン酸エステル、セバシン酸ジブチル、セバシン酸ジオクチルなどのセバシン酸エステル、オレイン酸ブチル、リシノール酸メチルアセチルなど];多価アルコール(グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなど)の低級脂肪酸エステル[トリアセチン、ジグリセリンテトラアセテートなど];グリコールエステル(ジプロピレングリコールジベンゾエートなど)、クエン酸エステル[クエン酸アセチルトリブチルなど];アミド類[N-ブチルベンゼンスルホンアミドなど];エステルオリゴマー(カプロラクトンオリゴマーなど)などを含有してもよい。これらの可塑剤は、単独でまたは二種以上組み合わせて使用してもよい。
これらの可塑剤の中でも、セルロースアセテートと相溶性が良いため、フタル酸ジエチル、リン酸トリフェニルまたはトリアセチンを用いることが好ましい。
本開示に係るセルロースアセテート100重量部に対し、これらの可塑剤を40重量部程度まで添加しても、成形体の製造工程通過性の低下が生じにくい。成形体の製造工程通過性の低下の例としては、例えば、セルロースアセテートの成形体製造工程において、可塑剤を添加したセルロースアセテートをホッパーを用いて押出機に送る場合に、ホッパー内でブリッジが生じること等が挙げられる。本開示に係るセルロースアセテート100重量部に対し、可塑剤の添加量は、20~40重量部が好ましく、25~38重量部がより好ましく、28~36重量部がさらに好ましい。可塑剤の添加量が、20重量部未満であると、成形体のブツ(スポット状の斑)が生じやすくなり、40重量部を超えると、成形体の曲げ強さが低くなる。
セルロースアセテートと可塑剤の混合時に、成形体の用途・仕様に応じ、慣用の添加剤、例えば、他の安定化剤(例えば、酸化防止剤、紫外線吸収剤、熱安定剤、耐光安定剤など)、着色剤(染料、顔料など)、帯電防止剤、難燃助剤、滑剤、アンチブロッキング剤、分散剤、流動化剤、ドリッピング防止剤、抗菌剤などを含んでいてもよい。また、他のセルロースエステル(例えば、セルロースプロピオネート、セルロースブチレートなどの有機酸エステル、硝酸セルロース、硫酸セルロース、リン酸セルロースなどの無機酸エステル)や他の高分子などを併用してもよい。
以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲が限定されるものではない。
後述する実施例に記載の各物性は以下の方法で評価した。
<酢化度>
セルロースアセテートの酢化度は、ASTM-D-817-91(セルロースアセテートなどの試験方法)における酢化度の測定方法により求めた。乾燥したセルロースアセテート1.9gを精秤し、アセトンとジメチルスルホキシドとの混合溶媒(容量比4:1)150mlに溶解した後、1N-水酸化ナトリウム水溶液30mlを添加し、25℃で2時間ケン化した。フェノールフタレインを指示薬として添加し、1N-硫酸(濃度ファクター:F)で過剰の水酸化ナトリウムを滴定した。また、上記と同様の方法でブランク試験を行い、下記式に従って酢化度を算出した。
酢化度(%)=[6.5×(B-A)×F]/W
(式中、Aは試料での1N-硫酸の滴定量(ml)、Bはブランク試験での1N-硫酸の滴定量(ml)、Fは1N-硫酸の濃度ファクター、Wは試料の重量を示す)。
セルロースアセテートの酢化度は、ASTM-D-817-91(セルロースアセテートなどの試験方法)における酢化度の測定方法により求めた。乾燥したセルロースアセテート1.9gを精秤し、アセトンとジメチルスルホキシドとの混合溶媒(容量比4:1)150mlに溶解した後、1N-水酸化ナトリウム水溶液30mlを添加し、25℃で2時間ケン化した。フェノールフタレインを指示薬として添加し、1N-硫酸(濃度ファクター:F)で過剰の水酸化ナトリウムを滴定した。また、上記と同様の方法でブランク試験を行い、下記式に従って酢化度を算出した。
酢化度(%)=[6.5×(B-A)×F]/W
(式中、Aは試料での1N-硫酸の滴定量(ml)、Bはブランク試験での1N-硫酸の滴定量(ml)、Fは1N-硫酸の濃度ファクター、Wは試料の重量を示す)。
<アセトン不溶解物量>
乾燥したセルロースアセテート10.0gを精秤し、25℃のアセトン322.0gに溶解し、30mmHgの減圧条件下、室温(25℃)にてガラスフィルター(孔径5~10μm:相互理化学硝子製作所製の1G-4)を使用して減圧濾過した。その後、濾過残渣に付着しているドープをアセトン200mLにて洗浄した。濾過残渣をガラスフィルターごと恒量になるまで乾燥した。これらの濾過前後でのガラスフィルター重量を測定し、次式よりアセトン不溶解物量を算出した。
アセトン不溶解物量(wt%)=〔濾過後ガラスフィルター重量(g)-濾過前ガラスフィルター重量(g)〕/セルロースアセテート重量(g)×100
乾燥したセルロースアセテート10.0gを精秤し、25℃のアセトン322.0gに溶解し、30mmHgの減圧条件下、室温(25℃)にてガラスフィルター(孔径5~10μm:相互理化学硝子製作所製の1G-4)を使用して減圧濾過した。その後、濾過残渣に付着しているドープをアセトン200mLにて洗浄した。濾過残渣をガラスフィルターごと恒量になるまで乾燥した。これらの濾過前後でのガラスフィルター重量を測定し、次式よりアセトン不溶解物量を算出した。
アセトン不溶解物量(wt%)=〔濾過後ガラスフィルター重量(g)-濾過前ガラスフィルター重量(g)〕/セルロースアセテート重量(g)×100
<6%粘度>
セルロースアセテートの6%粘度は、下記の方法で測定した。三角フラスコに乾燥試料3.00g、95%アセトン水溶液を39.90g入れ、密栓して約1.5時間攪拌した。その後、回転振盪機で約1時間振盪して完溶させた。得られた6wt/vol%の溶液を所定のオストワルド粘度計の標線まで移し、25±1℃で約15分間整温した。計時標線間の流下時間を測定し、次式(1)により6%粘度を算出した。
6%粘度(mPa・s)=流下時間(s)×粘度計係数 (1)
セルロースアセテートの6%粘度は、下記の方法で測定した。三角フラスコに乾燥試料3.00g、95%アセトン水溶液を39.90g入れ、密栓して約1.5時間攪拌した。その後、回転振盪機で約1時間振盪して完溶させた。得られた6wt/vol%の溶液を所定のオストワルド粘度計の標線まで移し、25±1℃で約15分間整温した。計時標線間の流下時間を測定し、次式(1)により6%粘度を算出した。
6%粘度(mPa・s)=流下時間(s)×粘度計係数 (1)
粘度計係数は、粘度計校正用標準液[昭和石油社製、商品名「JS-200」(JIS Z 8809に準拠)]を用いて上記と同様の操作で流下時間を測定し、次式(2)より求めた。
粘度計係数={標準液絶対粘度(mPa・s)×溶液の密度(0.827g/cm3)}/{標準液の密度(g/cm3)×標準液の流下秒数(s) (2)
粘度計係数={標準液絶対粘度(mPa・s)×溶液の密度(0.827g/cm3)}/{標準液の密度(g/cm3)×標準液の流下秒数(s) (2)
<構成糖分析>
セルロースアセテートを硫酸によって加水分解し、炭酸バリウムによって中和し、ろ紙およびイオン交換フィルターによってろ過した後、高速液体クロマトグラフィー(HPLC)法のうち、HPLC-CAD(Agilent1200シリーズシステム)から得られたデータを用いて、グルコース、キシロースおよびマンノースのモル含量を算出し、グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合を求めた。
セルロースアセテートを硫酸によって加水分解し、炭酸バリウムによって中和し、ろ紙およびイオン交換フィルターによってろ過した後、高速液体クロマトグラフィー(HPLC)法のうち、HPLC-CAD(Agilent1200シリーズシステム)から得られたデータを用いて、グルコース、キシロースおよびマンノースのモル含量を算出し、グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合を求めた。
HPLC測定条件は、以下のとおりである。
カラム:Asahipak NH2P-50 4E (4.6mmI.D.×250mm)
ガードカラム:Asahipak NH2P-50G 4A(4.6mmI.D.×10mm)
カラム温度:20℃
移動相:水/アセトニトリル=25/75(v/v)
移動相流速:1.0mL/min
カラム:Asahipak NH2P-50 4E (4.6mmI.D.×250mm)
ガードカラム:Asahipak NH2P-50G 4A(4.6mmI.D.×10mm)
カラム温度:20℃
移動相:水/アセトニトリル=25/75(v/v)
移動相流速:1.0mL/min
検出器:CoronaPlus CAD検出器(ESA Biosciences製)
窒素ガス圧力:35psi
ネブライザー:30℃
窒素ガス圧力:35psi
ネブライザー:30℃
<Haze分析>
セルロースアセテート溶液の透過光におけるHaze値を測定した。装置は日本電色工業製、商品名「Haze Meter NDH2000」を用い、測定条件は測定径30mm、C光源を選択した。乾燥させたセルロースアセテート12gに、メタノール8.8g、及び塩化メチレン79.2gを加えて溶解させ、脱泡しセルロースアセテート溶液を調製した。このセルロースアセテート溶液を45mm(L)×45mm(W)×10mm(D)ガラスセルに入れHaze値を測定した。
セルロースアセテート溶液の透過光におけるHaze値を測定した。装置は日本電色工業製、商品名「Haze Meter NDH2000」を用い、測定条件は測定径30mm、C光源を選択した。乾燥させたセルロースアセテート12gに、メタノール8.8g、及び塩化メチレン79.2gを加えて溶解させ、脱泡しセルロースアセテート溶液を調製した。このセルロースアセテート溶液を45mm(L)×45mm(W)×10mm(D)ガラスセルに入れHaze値を測定した。
<ブツ評価>
セルロースアセテートフィルムの表面に光を当てて観察される異物(ブツ:スポット状の斑)の個数を70cm2(縦横7cm×10cm)当たりの個数を目視にて評価した。
セルロースアセテートフィルムの表面に光を当てて観察される異物(ブツ:スポット状の斑)の個数を70cm2(縦横7cm×10cm)当たりの個数を目視にて評価した。
<比較例1>
αセルロース含量97.8wt%の針葉樹サルファイトパルプをディスクリファイナーで綿状に解砕し、解砕パルプを得た。100重量部の解砕パルプ(含水率8%)に26.8重量部の酢酸を噴霧し、良くかき混ぜた後、前処理として60時間静置し活性化した(活性化工程)。
αセルロース含量97.8wt%の針葉樹サルファイトパルプをディスクリファイナーで綿状に解砕し、解砕パルプを得た。100重量部の解砕パルプ(含水率8%)に26.8重量部の酢酸を噴霧し、良くかき混ぜた後、前処理として60時間静置し活性化した(活性化工程)。
活性化したパルプを、323重量部の酢酸、245重量部の無水酢酸、13.1重量部の硫酸からなる混合物に加えた。当該混合物は予め5℃に冷却しておいた。40分を要して5℃から40℃の最高温度に調整し、パルプを混合物に加えた時点から90分間酢化した(酢化工程)。中和剤(24%酢酸マグネシウム水溶液)を、硫酸量(熟成硫酸量)が2.5重量部に調整されるように3分間かけて添加した。さらに、反応浴を75℃に昇温した後、水を添加し、反応浴水分(熟成水分)濃度を52mol%とした。なお、熟成水分濃度は、反応浴水分の酢酸に対する割合をモル比で表わしたものに100を乗じてmol%で示した。その後、85℃で100分間熟成を行ない、酢酸マグネシウムで硫酸を中和することで熟成を停止し、セルロースアセテートを含む反応混合物を得た(熟成工程)。
得られたセルロースアセテートを含む反応混合物に希酢酸(10wt%)を二軸ニーダーを用いて練り込み、練込沈澱方式でセルロースアセテートを沈澱させた。このとき、セルロースアセテートを含む反応混合物に対し、3回に分け希酢酸を練り込んだ。セルロースアセテートを含む反応混合物に対し1回目に0.4倍量(重量比)の希酢酸(10wt%)を練り込み反応混合物が均一になった後、2回目に0.5倍量(重量比)、3回目に0.6倍量(重量比)、合計で1.5倍量(重量比)を添加した。希酢酸(10wt%)を3回目に0.6倍量(重量比)添加した際に沈澱が生じた。
沈澱したセルロースアセテートを水洗し、希水酸化カルシウム水溶液(20ppm)に浸漬した後、濾別し乾燥し、マキノ式粉砕機(槇野産業株式会社製、型番:DD-2-3.7)を用いて粉砕した。粉砕条件は、回転速度2450rpm、スクリーン径φ5.0mmとした。
得られたセルロースアセテートについて、酢化度、アセトン不溶解物量、6%粘度、構成糖比を測定した。結果は、表1に示した。
得られたセルロースアセテート100重量部とDEP(フタル酸ジエチル)35重量部をヘンシェルミキサーによって混合し、80℃で12時間乾燥した後、二軸押出機(シリンダー温度:200℃、ダイス温度:220℃)に供給し、押し出してペレット化した。このペレットを用いて、150mm幅のT-ダイを装着した1軸押出機I(型番:GT-25A、(株)プラスチック光学研究所製)により、230℃で再溶解し200μmのフィルムを成形した。得られたフィルムのブツ異物数の結果を、表1に示した。
<比較例2>
比較例1で得られたセルロースアセテート20重量部にアセトン80重量部を加えた後、3時間振盪して完全に溶解した。得られたセルロースアセテート溶液に蒸留水110重量部を加え、析出したセルロースアセテートを濾紙(有限会社 桐山製作所製、桐山ろ紙 No.5C 40φ)で濾過した。セルロースアセテートに蒸留水150重量部を加え、遠心脱水(回転数1000rpm、3分間)した。その後、80℃にて12時間乾燥しセルロースアセテートを取得し、マキノ式粉砕機(槇野産業株式会社製、型番:DD-2-3.7)を用いて粉砕した。粉砕条件は、回転速度2450rpm、スクリーン径φ5.0mmとした。
比較例1で得られたセルロースアセテート20重量部にアセトン80重量部を加えた後、3時間振盪して完全に溶解した。得られたセルロースアセテート溶液に蒸留水110重量部を加え、析出したセルロースアセテートを濾紙(有限会社 桐山製作所製、桐山ろ紙 No.5C 40φ)で濾過した。セルロースアセテートに蒸留水150重量部を加え、遠心脱水(回転数1000rpm、3分間)した。その後、80℃にて12時間乾燥しセルロースアセテートを取得し、マキノ式粉砕機(槇野産業株式会社製、型番:DD-2-3.7)を用いて粉砕した。粉砕条件は、回転速度2450rpm、スクリーン径φ5.0mmとした。
得られたセルロースアセテートについて、酢化度、アセトン不溶解物量、6%粘度、構成糖比を測定した。結果は、表1に示した。
得られたセルロースアセテート100重量部とDEP(フタル酸ジエチル)35重量部をヘンシェルミキサーによって混合し、80℃で12時間乾燥した後、二軸押出機(シリンダー温度:200℃、ダイス温度:220℃)に供給し、押し出してペレット化した。このペレットを用いて、150mm幅のT-ダイを装着した1軸押出機I(型番:GT-25A、(株)プラスチック光学研究所製)により、230℃で再溶解し200μmのフィルムを成形した。得られたフィルムのブツ異物数の結果を、表1に示した。
<実施例1>
比較例1で得られたセルロースアセテート20重量部にアセトン80重量部を加えた後、3時間振盪して完全に溶解した。得られたセルロースアセテート溶液をフィルター(関西金網株式会社製、ベキポア15AL3、濾過粒度15μm)に加圧下(2kg/cm2)で通した。得られたセルロースアセテート溶液に蒸留水110重量部を加え、沈殿したセルロースアセテートを濾紙(有限会社 桐山製作所製、桐山ろ紙 No.5C 40φ)で濾過した。セルロースアセテートに蒸留水150重量部を加え、遠心脱水(回転数1000rpm、3分間)した。その後、80℃にて12時間乾燥しセルロースアセテートを取得し、マキノ式粉砕機(槇野産業株式会社製、型番:DD-2-3.7)を用いて粉砕した。粉砕条件は、回転速度2450rpm、スクリーン径φ5.0mmとした。
比較例1で得られたセルロースアセテート20重量部にアセトン80重量部を加えた後、3時間振盪して完全に溶解した。得られたセルロースアセテート溶液をフィルター(関西金網株式会社製、ベキポア15AL3、濾過粒度15μm)に加圧下(2kg/cm2)で通した。得られたセルロースアセテート溶液に蒸留水110重量部を加え、沈殿したセルロースアセテートを濾紙(有限会社 桐山製作所製、桐山ろ紙 No.5C 40φ)で濾過した。セルロースアセテートに蒸留水150重量部を加え、遠心脱水(回転数1000rpm、3分間)した。その後、80℃にて12時間乾燥しセルロースアセテートを取得し、マキノ式粉砕機(槇野産業株式会社製、型番:DD-2-3.7)を用いて粉砕した。粉砕条件は、回転速度2450rpm、スクリーン径φ5.0mmとした。
得られたセルロースアセテートについて、酢化度、アセトン不溶解物量、6%粘度、構成糖比を測定した。結果は、表1に示した。
得られたセルロースアセテート100重量部とDEP(フタル酸ジエチル)35重量部をヘンシェルミキサーによって混合し、80℃で12時間乾燥した後、二軸押出機(シリンダー温度:200℃、ダイス温度:220℃)に供給し、押し出してペレット化した。このペレットを用いて、150mm幅のT-ダイを装着した1軸押出機I(型番:GT-25A、(株)プラスチック光学研究所製)により、230℃で再溶解し200μmのフィルムを成形した。得られたフィルムのブツ異物数の結果を、表1に示した。
<実施例2>
比較例1で得られたセルロースアセテート16重量部にジクロロメタン80重量部とメタノール4重量部を加えた後、3時間振盪して完全に溶解した。得られたセルロースアセテート溶液をフィルター(関西金網株式会社製、ベキポア15AL3、濾過粒度15μm)に加圧下(3kg/cm2)で通した。得られたセルロースアセテート溶液にメタノール289重量部を加え、沈殿したセルロースアセテートを濾紙(有限会社 桐山製作所製、桐山ろ紙 No.5C 40φ)で濾過した。セルロースアセテートに蒸留水150重量部を加え、遠心脱水(回転数1000rpm、3分間)した。その後、80℃にて12時間乾燥しセルロースアセテートを取得し、マキノ式粉砕機(槇野産業株式会社製、型番:DD-2-3.7)を用いて粉砕した。粉砕条件は、回転速度2450rpm、スクリーン径φ5.0mmとした。
比較例1で得られたセルロースアセテート16重量部にジクロロメタン80重量部とメタノール4重量部を加えた後、3時間振盪して完全に溶解した。得られたセルロースアセテート溶液をフィルター(関西金網株式会社製、ベキポア15AL3、濾過粒度15μm)に加圧下(3kg/cm2)で通した。得られたセルロースアセテート溶液にメタノール289重量部を加え、沈殿したセルロースアセテートを濾紙(有限会社 桐山製作所製、桐山ろ紙 No.5C 40φ)で濾過した。セルロースアセテートに蒸留水150重量部を加え、遠心脱水(回転数1000rpm、3分間)した。その後、80℃にて12時間乾燥しセルロースアセテートを取得し、マキノ式粉砕機(槇野産業株式会社製、型番:DD-2-3.7)を用いて粉砕した。粉砕条件は、回転速度2450rpm、スクリーン径φ5.0mmとした。
得られたセルロースアセテートについて、酢化度、アセトン不溶解物量、6%粘度、構成糖比を測定した。結果は、表1に示した。
得られたセルロースアセテート100重量部とDEP(フタル酸ジエチル)35重量部をヘンシェルミキサーによって混合し、80℃で12時間乾燥した後、二軸押出機(シリンダー温度:200℃、ダイス温度:220℃)に供給し、押し出してペレット化した。このペレットを用いて、150mm幅のT-ダイを装着した1軸押出機I(型番:GT-25A、(株)プラスチック光学研究所製)により、230℃で再溶解し200μmのフィルムを成形した。得られたフィルムのブツ異物数の結果を、表1に示した。
<実施例3>
αセルロース含量97.0wt%の針葉樹サルファイトパルプを使用し、85℃での酢化時間を100分とし、反応浴水分(熟成水分)濃度を39mol%と点以外は、実施例1と同様にしてセルロースアセテートを取得した。
αセルロース含量97.0wt%の針葉樹サルファイトパルプを使用し、85℃での酢化時間を100分とし、反応浴水分(熟成水分)濃度を39mol%と点以外は、実施例1と同様にしてセルロースアセテートを取得した。
得られたセルロースアセテートについて、酢化度、アセトン不溶解物量、6%粘度、構成糖比を測定した。結果は、表1に示した。
得られたセルロースアセテート100重量部とDEP(フタル酸ジエチル)35重量部をヘンシェルミキサーによって混合し、80℃で12時間乾燥した後、二軸押出機(シリンダー温度:200℃、ダイス温度:220℃)に供給し、押し出してペレット化した。このペレットを用いて、150mm幅のT-ダイを装着した1軸押出機I(型番:GT-25A、(株)プラスチック光学研究所製)により、230℃で再溶解し200μmのフィルムを成形した。得られたフィルムのブツ異物数の結果を、表1に示した。
Claims (6)
- 酢化度が52%以上59%以下であり、アセトン不溶解物量が0.04wt%以下であることを特徴とするセルロースアセテート。
- 6%粘度が30mPa・s以上200mPa・s以下であることを特徴とする、請求項1に記載のセルロースアセテート。
- 構成糖分析において、グルコース、キシロースおよびマンノースのモル含量の和におけるグルコースのモル含量の割合が97%以上であることを特徴とする、請求項1または2に記載のセルロースアセテート。
- 請求項1~3のいずれか1項に記載のセルロースアセテート及び可塑剤を含有することを特徴とするセルロースアセテート組成物。
- 請求項1~3のいずれか1項に記載のセルロースアセテートを含有することを特徴とする成形体。
- 請求項1~3のいずれか1項に記載のセルロースアセテートを含有することを特徴とするフィルム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18745054.9A EP3575328A4 (en) | 2017-01-25 | 2018-01-17 | CELLULOSE ACETATE, COMPOSITION OF CELLULOSE ACETATE, MOLDED BODY, AND FILM |
CN201880008344.3A CN110337451B (zh) | 2017-01-25 | 2018-01-17 | 乙酸纤维素、乙酸纤维素组合物、成型体及膜 |
US16/480,515 US11440973B2 (en) | 2017-01-25 | 2018-01-17 | Cellulose acetate, cellulose acetate composition, molded article, and film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-011243 | 2017-01-25 | ||
JP2017011243A JP6802720B2 (ja) | 2017-01-25 | 2017-01-25 | セルロースアセテートおよび成形体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139318A1 true WO2018139318A1 (ja) | 2018-08-02 |
Family
ID=62979272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001230 WO2018139318A1 (ja) | 2017-01-25 | 2018-01-17 | セルロースアセテート、セルロースアセテート組成物、成形体およびフィルム |
Country Status (6)
Country | Link |
---|---|
US (1) | US11440973B2 (ja) |
EP (1) | EP3575328A4 (ja) |
JP (1) | JP6802720B2 (ja) |
CN (1) | CN110337451B (ja) |
TW (1) | TWI712618B (ja) |
WO (1) | WO2018139318A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109181009A (zh) * | 2018-08-21 | 2019-01-11 | 温州由板有眼塑胶科技有限公司 | 一种醋酸纤维颗粒热熔工艺方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021144914A1 (ja) * | 2020-01-16 | 2021-07-22 | 株式会社ダイセル | セルロースアセテートペレット |
CN112175243B (zh) * | 2020-09-21 | 2023-05-05 | 桂林理工大学 | 一种高性能醋酸纤维素复合材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659801A (en) | 1979-10-22 | 1981-05-23 | Daicel Chem Ind Ltd | New production process of cellulose acetate |
JPH1045801A (ja) * | 1996-07-30 | 1998-02-17 | Daicel Chem Ind Ltd | セルロースアセテート溶液の製造方法 |
JPH1045802A (ja) * | 1996-07-30 | 1998-02-17 | Daicel Chem Ind Ltd | セルロースアセテート溶液の製造方法 |
JP2000511588A (ja) * | 1997-03-19 | 2000-09-05 | ローディア アセトウ アクチェンゲゼルシャフト | セルロースアセテートの製造方法 |
JP2007138141A (ja) | 2005-10-21 | 2007-06-07 | Fujifilm Corp | セルロースアシレートの製造方法、セルロースアシレートフィルム、並びに、該フィルムを用いた偏光板、位相差フィルム、光学フィルムおよび液晶表示装置 |
JP2008056819A (ja) | 2006-08-31 | 2008-03-13 | Daicel Chem Ind Ltd | セルロース混合脂肪酸エステル、その製造方法 |
JP2012025896A (ja) | 2010-07-27 | 2012-02-09 | Konica Minolta Opto Inc | セルロースエステルとその製造方法、及び光学フィルム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0590401B1 (en) * | 1992-09-24 | 1999-12-15 | Daicel Chemical Industries, Ltd. | Process for the preparation of a fatty acid ester of cellulose |
JP3749746B2 (ja) | 1995-09-14 | 2006-03-01 | ダイセル化学工業株式会社 | 均質な酢酸セルロース |
EP1465944B1 (en) | 2002-01-16 | 2015-02-25 | Eastman Chemical Company | Novel carbohydrate esters and polyol esters as plasticizers for polymers, compositions and articles including such plasticizers and methods of using the same |
US8148518B2 (en) * | 2007-02-14 | 2012-04-03 | Eastman Chemical Company | Cellulose esters and their production in carboxylated ionic liquids |
JP4774121B2 (ja) | 2010-01-29 | 2011-09-14 | ダイセル化学工業株式会社 | 位相差フィルム用セルロースジアセテート |
GB2489491A (en) | 2011-03-31 | 2012-10-03 | British American Tobacco Co | Cellulose acetate and plasticizer blends |
CN108368182B (zh) * | 2015-10-08 | 2022-01-21 | 株式会社大赛璐 | 乙酸纤维素、乙酸纤维素的制造方法及制造装置 |
-
2017
- 2017-01-25 JP JP2017011243A patent/JP6802720B2/ja active Active
-
2018
- 2018-01-17 EP EP18745054.9A patent/EP3575328A4/en active Pending
- 2018-01-17 US US16/480,515 patent/US11440973B2/en active Active
- 2018-01-17 CN CN201880008344.3A patent/CN110337451B/zh active Active
- 2018-01-17 WO PCT/JP2018/001230 patent/WO2018139318A1/ja unknown
- 2018-01-23 TW TW107102356A patent/TWI712618B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659801A (en) | 1979-10-22 | 1981-05-23 | Daicel Chem Ind Ltd | New production process of cellulose acetate |
JPH1045801A (ja) * | 1996-07-30 | 1998-02-17 | Daicel Chem Ind Ltd | セルロースアセテート溶液の製造方法 |
JPH1045802A (ja) * | 1996-07-30 | 1998-02-17 | Daicel Chem Ind Ltd | セルロースアセテート溶液の製造方法 |
JP2000511588A (ja) * | 1997-03-19 | 2000-09-05 | ローディア アセトウ アクチェンゲゼルシャフト | セルロースアセテートの製造方法 |
JP2007138141A (ja) | 2005-10-21 | 2007-06-07 | Fujifilm Corp | セルロースアシレートの製造方法、セルロースアシレートフィルム、並びに、該フィルムを用いた偏光板、位相差フィルム、光学フィルムおよび液晶表示装置 |
JP2008056819A (ja) | 2006-08-31 | 2008-03-13 | Daicel Chem Ind Ltd | セルロース混合脂肪酸エステル、その製造方法 |
JP2012025896A (ja) | 2010-07-27 | 2012-02-09 | Konica Minolta Opto Inc | セルロースエステルとその製造方法、及び光学フィルム |
Non-Patent Citations (3)
Title |
---|
MACROMOL. SYMP., vol. 208, 2004, pages 49 - 60 |
MIGITA ET AL.: "Wood Chemistry", vol. 1, 1968, KYORITSU PUBLISHING CO., LTD., pages: 180 - 190 |
See also references of EP3575328A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109181009A (zh) * | 2018-08-21 | 2019-01-11 | 温州由板有眼塑胶科技有限公司 | 一种醋酸纤维颗粒热熔工艺方法 |
Also Published As
Publication number | Publication date |
---|---|
US11440973B2 (en) | 2022-09-13 |
US20190389976A1 (en) | 2019-12-26 |
CN110337451A (zh) | 2019-10-15 |
JP2018119053A (ja) | 2018-08-02 |
EP3575328A4 (en) | 2020-09-23 |
CN110337451B (zh) | 2021-07-27 |
JP6802720B2 (ja) | 2020-12-16 |
EP3575328A1 (en) | 2019-12-04 |
TWI712618B (zh) | 2020-12-11 |
TW201831523A (zh) | 2018-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018139319A1 (ja) | セルロースアセテートフレークの製造方法 | |
EP3263603B1 (en) | Cellulose acetate powder and method of producing cellulose acetate powder | |
JP2017052961A (ja) | セルロースアセテート粉体およびセルロースアセテート粉体の製造方法 | |
WO2018139318A1 (ja) | セルロースアセテート、セルロースアセテート組成物、成形体およびフィルム | |
EP3521316A1 (en) | Cellulose acetate and method for producing cellulose acetate | |
TWI668234B (zh) | 乙酸纖維素及成形體 | |
JP3655960B2 (ja) | セルロースエステル溶液およびセルロースエステルフイルムの製造方法 | |
TWI839566B (zh) | 乙酸纖維素顆粒 | |
JP3974058B2 (ja) | セルロースの混合脂肪酸エステル溶液の調製方法およびセルロースの混合脂肪酸エステルフイルムの製造方法 | |
WO2017217502A1 (ja) | セルロース誘導体、セルロース系樹脂組成物、成形体及びこれを用いた製品 | |
JP4986429B2 (ja) | 主として未反応セルロースからなる微小異物の少ないセルロースエステル、その製造方法および当該セルロースエステルからなる成形体 | |
EP3985070A1 (en) | Resin composition containing cellulose nanocrystals | |
JP3932997B2 (ja) | セルロースエステル組成物の製造方法 | |
CN106573990B (zh) | 乙酸纤维素薄片及其制造方法 | |
DE112018000739T5 (de) | Harzzusammensetzung und geformter Harzgegenstand | |
JP2004091702A (ja) | セルロースエステル組成物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18745054 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018745054 Country of ref document: EP Effective date: 20190826 |