WO2018139119A1 - 波長変換フィルム - Google Patents

波長変換フィルム Download PDF

Info

Publication number
WO2018139119A1
WO2018139119A1 PCT/JP2017/045699 JP2017045699W WO2018139119A1 WO 2018139119 A1 WO2018139119 A1 WO 2018139119A1 JP 2017045699 W JP2017045699 W JP 2017045699W WO 2018139119 A1 WO2018139119 A1 WO 2018139119A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
meth
acrylate
group
layer
Prior art date
Application number
PCT/JP2017/045699
Other languages
English (en)
French (fr)
Inventor
諭司 國安
達也 大場
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780084488.2A priority Critical patent/CN110214285B/zh
Publication of WO2018139119A1 publication Critical patent/WO2018139119A1/ja
Priority to US16/519,460 priority patent/US10784417B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a wavelength conversion film.
  • LCDs liquid crystal display devices
  • LCDs liquid crystal display devices
  • Quantum dots (Quantum Dot, QD, and quantum dots) emitted by converting the wavelength of incident light in order to increase the light utilization efficiency and improve the color reproducibility with the power saving of the LCD backlight. It has been proposed to use a wavelength conversion layer containing a light emitting material (phosphor).
  • a quantum dot is an electronic state in which the direction of movement is limited in all three dimensions, and when a semiconductor nanoparticle is three-dimensionally surrounded by a high potential barrier, the nanoparticle is quantum. It becomes a dot.
  • Quantum dots exhibit various quantum effects. For example, the “quantum size effect” in which the density of states of electrons (energy level) is discretized appears. According to this quantum size effect, the absorption wavelength and emission wavelength of light can be controlled by changing the size of the quantum dot.
  • such quantum dots are dispersed in a resin or the like and used, for example, as a wavelength conversion film for performing wavelength conversion, disposed between a backlight and a liquid crystal panel.
  • the quantum dots When excitation light enters the wavelength conversion film from the backlight, the quantum dots are excited and emit fluorescence.
  • white light can be realized by using quantum dots having different light emission characteristics and causing each quantum dot to emit light having a narrow half-value width of red light, green light, or blue light. Since fluorescence by quantum dots has a narrow half-value width, it is possible to make white light obtained by appropriately selecting a wavelength high brightness and to have a design excellent in color reproducibility.
  • the wavelength conversion film protects the wavelength conversion layer by laminating a gas barrier film on both main surfaces of a resin layer (hereinafter also referred to as “wavelength conversion layer”) containing a quantum dot, which is a wavelength conversion layer containing quantum dots. Configured to do.
  • Patent Document 1 describes coated particles in which quantum dots are dispersed in a base material and the outer surface is coated with a low oxygen permeable resin, and this coated particle is used for an optical film. Has been.
  • the wavelength conversion film has a structure in which the wavelength conversion layer is sandwiched between the gas barrier films and the gas barrier property of the gas barrier film is high, the light is emitted from the wavelength conversion film. It has been found that the problem of low brightness occurs.
  • a gas barrier film has a barrier layer made of an inorganic material or an organic material.
  • the barrier layer of the gas barrier film having a high gas barrier property is formed more densely. Therefore, the light that is incident on the wavelength conversion layer of the wavelength conversion film, and the light that is wavelength-converted and emitted by the wavelength conversion layer of the wavelength conversion film are absorbed more when passing through the gas barrier film (barrier layer). It is thought that the brightness is lowered.
  • This invention is made in view of the said situation, Comprising: It aims at providing the wavelength conversion film which can suppress deterioration of the quantum dot by oxygen and can suppress the fall of a brightness
  • the present inventors have a wavelength conversion layer and an auxiliary layer that sandwiches the wavelength conversion layer, and the wavelength conversion layer comprises polyvinyl alcohol and wavelength conversion particles.
  • the wavelength conversion layer has polyvinyl alcohol, and a cured product particle of a (meth) acrylate compound enclosing the wavelength conversion particle, A wavelength conversion film in which the oxygen permeability of the auxiliary layer is 1.0 ⁇ 10 0 to 1.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm).
  • the wavelength conversion film as described in (6) which has a support layer which supports the layer which consists of silicon oxide used as an auxiliary
  • the present invention it is possible to provide a wavelength conversion film capable of suppressing deterioration of quantum dots due to oxygen and suppressing a decrease in luminance.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate is used in the meaning of at least one of acrylate and methacrylate, or any one of them. The same applies to “(meth) acryloyl”.
  • the wavelength conversion film of the present invention is A wavelength conversion layer, and an auxiliary layer sandwiching the wavelength conversion layer,
  • the wavelength conversion layer has polyvinyl alcohol, and a cured product particle of a (meth) acrylate compound enclosing the wavelength conversion particle,
  • This is a wavelength conversion film in which the oxygen permeability of the auxiliary layer is 1.0 ⁇ 10 0 to 1.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm).
  • FIG. 1 is a cross-sectional view schematically showing an example of a wavelength conversion film according to the present invention.
  • a wavelength conversion film 10a shown in FIG. 1 includes a wavelength conversion layer 12 having a binder 16 made of polyvinyl alcohol and a plurality of cured particles 18 dispersed in the binder 16, and an auxiliary layer 14a sandwiching the wavelength conversion layer 12. It has an auxiliary layer 14b.
  • the cured product particles 18 are “cured product particles of (meth) acrylate compound” in the present invention.
  • grains 18 have a function which encloses wavelength conversion particles, such as a quantum dot, and wavelength-converts the light which injected into the wavelength conversion film, and radiate
  • the oxygen permeability of the auxiliary layer 14a and the auxiliary layer 14b is 1.0 ⁇ 10 0 to 1.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm), respectively. It is.
  • the wavelength conversion layer 12 has a configuration in which a plurality of cured particles 18 including wavelength conversion particles such as quantum dots are dispersed in polyvinyl alcohol as the binder 16. And the wavelength conversion layer 12 is sandwiched between the auxiliary layer 14a and the auxiliary layer 14b having an oxygen transmission rate of 1.0 ⁇ 10 0 to 1.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm). Have a configuration.
  • the wavelength conversion layer has a configuration in which cured particles enclosing the wavelength conversion particles are dispersed in a binder made of polyvinyl alcohol having a high barrier property, and the wavelength conversion layer is sandwiched between auxiliary layers having a predetermined range of oxygen permeability.
  • the wavelength conversion particles are directly dispersed in a resin having a high barrier property (low oxygen transmission coefficient), aggregation or the like occurs and the dispersion is not properly performed. Therefore, by setting the wavelength conversion particles in the cured product particles 18 and dispersing the cured product particles 18 in the binder 16, even if a resin having a high barrier property is used as the binder 16, The wavelength conversion particles can be appropriately dispersed in the binder 16.
  • the wavelength conversion particles existing in the vicinity of the surface of the wavelength conversion layer are deteriorated by oxygen, and the emission intensity is reduced. There is a fear.
  • the present invention has a configuration in which the wavelength conversion layer 12 is sandwiched between the auxiliary layer 14a and the auxiliary layer 14b whose oxygen permeability is 1.0 ⁇ 10 0 cc / (m 2 ⁇ day ⁇ atm) or less. Therefore, it can suppress that the wavelength conversion particle which exists in the surface vicinity of a wavelength conversion layer protects from oxygen, degrades, and can suppress the fall of emitted light intensity.
  • the oxygen permeability of each of the auxiliary layer 14a and the auxiliary layer 14b is set to 1.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm) or more, thereby absorbing light when passing through the auxiliary layer. Can be suppressed. Moreover, since it is not necessary to use an expensive barrier film having a high barrier property, the cost can be reduced.
  • the oxygen permeability of the auxiliary layer is a value measured by a gas permeability test method based on JIS K 716-26-2 2006.
  • a gas permeability test method based on JIS K 716-26-2 2006.
  • OX-TRAN1_50 manufactured by MOCON
  • the measurement temperature was 23 ° C. and the humidity was 50%.
  • the wavelength conversion layer 12 is held between the auxiliary layer 14a and the auxiliary layer 14b.
  • the present invention is not limited to this, and as in the wavelength conversion film 10b shown in FIG.
  • the structure which has a support layer which supports a layer may be sufficient.
  • the wavelength conversion film 10b has a configuration in which a support layer 20a, an auxiliary layer 14a, a wavelength conversion layer 12, an auxiliary layer 14b, and a support layer 20b are laminated in this order.
  • the wavelength conversion layer 12, the auxiliary layer 14a, and the auxiliary layer 14b may be laminated directly, or may be laminated via an adhesive or the like.
  • an adhesive There is no limitation as an adhesive, The various well-known adhesive material used with an optical film can be utilized. Specifically, an adhesive sheet such as an OCA (Optically Clear Adhesive) sheet may be used, or an organic layer obtained by curing a resin by polymerization or heat may be used.
  • OCA Optically Clear Adhesive
  • the wavelength conversion layer 12 includes a binder 16 and a plurality of cured product particles 18 dispersed in the binder 16.
  • the thickness of the wavelength conversion layer 12 is not limited, but is preferably less than 100 ⁇ m and more preferably less than 50 ⁇ m from the viewpoint that the decrease in emission intensity can be more suitably suppressed and the decrease in luminance due to light absorption can be suppressed. preferable.
  • the thickness of the wavelength conversion layer 12 is measured as follows. The wavelength conversion layer 12 is cut in the thickness direction with a microtome using a diamond knife, and the cut surface is observed with a microscope, and the boundary between the wavelength conversion layer 12 and the auxiliary layer 14a and the boundary between the wavelength conversion layer 12 and the auxiliary layer 14b. Is measured at five points, and the average value is taken as the thickness of the wavelength conversion layer 12.
  • grains 18 are the particulate matters of the (meth) acrylate compound which includes the wavelength conversion particle
  • the average particle diameter of the cured product particles 18 is not particularly limited, and may be set as appropriate according to the thickness of the wavelength conversion layer 12, the amount of the cured product particles 18 in the wavelength conversion layer 12, and the like.
  • the average particle size of the cured product particles 18 is preferably 0.5 to 5 ⁇ m. Setting the average particle diameter of the cured product particles 18 to 0.5 ⁇ m or more is preferable in that the cured product particles 18 can be dispersed in the binder 16 without aggregation. By making the average particle diameter of the cured product particles 18 5 ⁇ m or less, it is preferable in that the wavelength conversion layer 12 can be thinned.
  • the content of the cured product particles 18 in the wavelength conversion layer 12 is appropriately set according to the particle diameter of the cured product particles 18, the content of the wavelength conversion particles in the cured product particles 18, the degree of saponification of the PVA used as the binder 16, etc. However, 6 to 60% by volume is preferable, and 20 to 40% by volume is more preferable.
  • cured material particle 18 in the wavelength conversion layer 12 6 volume% or more it is preferable at the point that light emission of sufficient brightness
  • the content of the hardened particles 18 in the wavelength conversion layer 12 is set to 60% by volume or less, the effect of preventing the deterioration of the wavelength conversion particles by the binder 16 can be suitably obtained. It is preferable in that it can be dispersed in the resin.
  • the cured product particles 18 may include one type of wavelength conversion particle, or may include two or more types of wavelength conversion particles of different types.
  • the base material of the cured product particles 18 is a (meth) acrylate compound.
  • the (meth) acrylate compound as the base material of the cured particle 18 enclosing the wavelength conversion particle, aggregation of the wavelength conversion particle can be suppressed and the wavelength conversion particle can be appropriately dispersed in the cured particle 18. .
  • the (meth) acrylate compound is obtained by polymerizing a monofunctional or polyfunctional (meth) acrylate monomer (polymerizable compound).
  • the polymerizable compound may be a monomer prepolymer or polymer as long as it has polymerizability.
  • Monofunctional- Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present embodiment is not limited thereto.
  • the amount of the monofunctional (meth) acrylate monomer used is such that the viscosity of the solution of the curable composition is in a preferable range with respect to 100 parts by mass of the total amount of the curable compound contained in the solution of the curable composition to be cured particles. From the viewpoint of adjustment, it is preferably 10 parts by mass or more, more preferably 10 to 80 parts by mass.
  • polymerizable monomer having two polymerizable groups include a bifunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups.
  • Bifunctional polymerizable unsaturated monomers are suitable for reducing the viscosity of the composition.
  • (meth) acrylate compounds that are excellent in reactivity and have no problems such as residual catalyst are preferable.
  • the use amount of the bifunctional (meth) acrylate monomer is such that the viscosity of the solution of the curable composition is within a preferable range with respect to 100 parts by mass of the total amount of the curable compound contained in the solution of the curable composition to be the cured particles. From the viewpoint of adjustment, it is preferably 5 parts by mass or more, and more preferably 10 to 80 parts by mass.
  • polymerizable monomer having three or more polymerizable groups examples include polyfunctional polymerizable unsaturated monomers having three or more ethylenically unsaturated bond-containing groups. These polyfunctional polymerizable unsaturated monomers are excellent in terms of imparting mechanical strength. In the present embodiment, (meth) acrylate compounds that are excellent in reactivity and have no problems such as residual catalyst are preferable.
  • ECH Epichlorohydrin modified glycerol tri (meth) acrylate
  • EO ethylene oxide modified glycerol tri (meth) acrylate
  • PO propylene oxide modified glycerol tri (meth) acrylate
  • pentaerythritol triacrylate pentaerythritol Tetraacrylate
  • EO-modified phosphate triacrylate trimethylolpropane tri (meth) acrylate
  • tris (acryloxyethyl) isocyanurate dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) a Chlorate
  • EO-modified glycerol tri (meth) acrylate PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate and pentaerythritol tetra (meth) acrylate are preferably used in the present invention.
  • the amount of the polyfunctional (meth) acrylate monomer used is 100 parts by weight of the total amount of the curable compound contained in the solution of the curable composition to be the cured product particles, from the viewpoint of the strength of the cured product particles after curing. It is preferable to set it as 5 mass parts or more, and it is preferable to set it as 95 mass parts or less from a viewpoint of the gelatinization suppression of the solution of a curable composition.
  • the (meth) acrylate monomer is preferably an alicyclic acrylate.
  • monofunctional (meth) acrylate monomers include dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate.
  • bifunctional (meth) acrylate monomer include tricyclodecane dimethanol di (meth) acrylate.
  • the total amount of the polymerizable compound in the curable composition forming the cured product particles is 70 to 99 parts by mass with respect to 100 parts by mass of the curable composition from the viewpoint of handling and curability of the composition. Is more preferable, and 85 to 97 parts by mass is more preferable.
  • acrylate is more preferable from the viewpoint of composition viscosity and photocurability.
  • a polyfunctional polymerizable compound having two or more polymerizable functional groups is preferred.
  • the blending ratio of the monofunctional (meth) acrylate compound and the polyfunctional (meth) acrylate compound is preferably 80/20 to 0/100, more preferably 70/30 to 0/100 by weight, / 60 to 0/100 is preferable. By selecting an appropriate ratio, sufficient curability can be obtained and the composition can have a low viscosity.
  • the ratio of the bifunctional (meth) acrylate to the trifunctional or higher functional (meth) acrylate is preferably 100/0 to 20/80, more preferably 100/0. To 50/50, more preferably 100/0 to 70/30. Since the trifunctional or higher functional (meth) acrylate has a higher viscosity than the bifunctional (meth) acrylate, the higher the bifunctional (meth) acrylate, the lower the viscosity of the composition.
  • the polymerizable compound preferably contains a compound containing a substituent having an aromatic structure and / or an alicyclic hydrocarbon structure from the viewpoint of increasing the impermeability to oxygen.
  • the aromatic structure and / or alicyclic carbonization is preferred.
  • the polymerizable compound having a hydrogen structure is contained in an amount of 50% by mass or more, and more preferably 80% by mass or more.
  • a (meth) acrylate compound having an aromatic structure is preferable.
  • Examples of the (meth) acrylate compound having an aromatic structure include monofunctional (meth) acrylate compounds having a naphthalene structure, such as 1- or 2-naphthyl (meth) acrylate, 1- or 2-naphthylmethyl (meth) acrylate, 1 Particularly preferred are-or 2-naphthylethyl (meth) acrylate, monofunctional acrylates such as benzyl acrylate having a substituent on the aromatic ring, and bifunctional acrylates such as catechol diacrylate and xylylene glycol diacrylate.
  • Polymerizable compounds having an alicyclic hydrocarbon structure include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and adamantyl (meth).
  • Preferred are acrylate, tricyclodecanyl (meth) acrylate, tetracyclododecanyl (meth) acrylate and the like.
  • acrylate is preferred to methacrylate from the viewpoint of excellent curability.
  • the curable compound forming the cured product particles may include both a (meth) acrylate compound having an aromatic structure and / or an alicyclic hydrocarbon structure and a (meth) acrylate having a fluorine atom as the polymerizable compound.
  • a compounding ratio 80% by mass or more of the total polymerizable compound component is a (meth) acrylate compound having an aromatic structure and / or an alicyclic hydrocarbon structure, and 0.1 to 10% by mass has a fluorine atom ( A meth) acrylate is preferred.
  • a blend system in which a (meth) acrylate compound having an aromatic structure and / or an alicyclic hydrocarbon structure is a liquid at 1 atm 25 ° C., and a (meth) acrylate having a fluorine atom is a solid at 1 atm 25 ° C. preferable.
  • the total content of the polymerizable compound in the curable compound forming the cured particles is 50 to 99.5% by mass in all components excluding the solvent.
  • 70 to 99% by mass is more preferable, and 90 to 99% by mass is particularly preferable.
  • the curable compound forming the cured product particles relates to the polymerizable compound component, and more preferably the content of the polymerizable compound having a viscosity of 3 to 2000 mPa ⁇ s at 25 ° C. is 80% by mass or more based on the total polymerizable compound.
  • the polymerizable compound of 5 to 1000 mPa ⁇ s is 80% by mass or more, more preferably the polymerizable compound of 7 to 500 mPa ⁇ s is 80% by mass or more, and 10 to 300 mPa ⁇ s. It is most preferable that the polymerizable compound of s is 80% by mass or more.
  • the polymerizable compound contained in the curable compound forming the cured particles is preferably 50% by mass or more of the polymerizable compound that is liquid at 25 ° C. in terms of temporal stability.
  • phosphors can be used as the wavelength converting particles.
  • phosphors in which semiconductor fine particles are doped with rare earth, and semiconductor nano particles (quantum dots, quantum rods) are also preferably used.
  • Phosphors can be used alone, but in order to obtain a desired fluorescence spectrum, a plurality of phosphors having different wavelengths may be used in combination, or a combination of phosphors having different material configurations (for example, A combination of a rare earth-doped garnet and quantum dots may be used.
  • Exposure to oxygen means exposure to an oxygen-containing environment such as in the atmosphere. Degradation by reaction with oxygen means that phosphor performance is degraded by oxidation of the phosphor ( It means that the luminous performance is reduced compared to before the reaction with oxygen.
  • the phosphor of the present invention is not limited to quantum dots, and other fluorescent dyes that deteriorate due to oxygen, etc. There is no particular limitation as long as it is a material that converts energy into light or converts light into electricity.
  • a quantum dot is a fine particle of a compound semiconductor having a size of several nanometers to several tens of nanometers, and at least is excited by incident excitation light to emit fluorescence.
  • the phosphor of the present embodiment includes at least one kind of quantum dot and can also include two or more kinds of quantum dots having different emission characteristics.
  • Known quantum dots include a quantum dot (A) having an emission center wavelength in a wavelength range of 600 nm to 680 nm, a quantum dot (B) having an emission center wavelength in a wavelength range of 500 nm to less than 600 nm, There is a quantum dot (C) having an emission center wavelength in a wavelength band of 400 nm or more and less than 500 nm.
  • the quantum dot (A) is excited by excitation light to emit red light, the quantum dot (B) emits green light, The dot (C) emits blue light.
  • red light emitted from the quantum dots (A), quantum dots (B) red light emitted from the quantum dots (A), quantum dots (B)
  • the white light can be realized by the green light emitted by) and the blue light transmitted through the cured particles.
  • red light emitted from the quantum dots (A) and quantum dots (B) by making ultraviolet light incident on the cured particles containing the quantum dots (A), (B), and (C) as excitation light.
  • White light can be realized by green light emitted by the blue light and blue light emitted by the quantum dots (C).
  • the cured product particles may include two or more types of quantum dots, or two or more types of cured product particles that include one kind of quantum dots. It is good also as a structure.
  • quantum dots for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but are not limited to those described here.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • the content of the quantum dots is preferably about 0.01 to 10% by mass, and more preferably 0.05 to 5% by mass with respect to the total amount of the cured particles.
  • the content of the wavelength conversion particles in the cured product particles 18 is preferably 0.1% by mass or more, it is preferable in that a sufficient amount of the wavelength conversion particles can be retained and light emission with high luminance becomes possible.
  • the wavelength conversion particles are suitably dispersed in the cured product particles 18 so that light emission with high quantum yield and high luminance is possible. This is preferable.
  • Quantum dots may be added in the form of particles in a solution of the curable composition to be cured particles, or may be added in the form of a dispersion dispersed in an organic solvent.
  • the addition in the state of a dispersion is preferable from the viewpoint of suppressing the aggregation of the quantum dot particles.
  • the organic solvent used for dispersing the quantum dots is not particularly limited.
  • quantum dots for example, core-shell type semiconductor nanoparticles are preferable from the viewpoint of improving durability.
  • the core II-VI semiconductor nanoparticles, III-V semiconductor nanoparticles, multi-component semiconductor nanoparticles, and the like can be used. Specific examples include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, InP, InAs, and InGaP, but are not limited thereto. Among these, CdSe, CdTe, InP, and InGaP are preferable from the viewpoint of emitting visible light with high efficiency.
  • the shell CdS, ZnS, ZnO, GaAs, and a composite thereof can be used, but the shell is not limited thereto.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • the quantum dots may be spherical particles, may be rod-like particles called quantum rods, and may be tetrapod-type particles. From the viewpoint of narrowing the light emission half width (full width at half maximum, FWHM) and expanding the color reproduction range, spherical quantum dots or rod-like quantum dots (that is, quantum rods) are preferable.
  • a ligand having a Lewis basic coordinating group may be coordinated on the surface of the quantum dot. It is also possible to use quantum dots already coordinated with such a ligand.
  • Lewis basic coordinating groups include amino groups, carboxy groups, mercapto groups, phosphine groups, and phosphine oxide groups. Specific examples include hexylamine, decylamine, hexadecylamine, octadecylamine, oleylamine, myristylamine, laurylamine, oleic acid, mercaptopropionic acid, trioctylphosphine, and trioctylphosphine oxide. Of these, hexadecylamine, trioctylphosphine, and trioctylphosphine oxide are preferable, and trioctylphosphine oxide is particularly preferable.
  • Quantum dots coordinated with these ligands can be produced by a known synthesis method. For example, a method described in JP-A-2007-277514, C.I. B. Murray, D.M. J. et al. Norris, M.M. G. Bawendi, Journal American Chemical Society, 1993, 115 (19), pp 8706-8715, or The Journal Physical Chemistry, 101, pp 9463-9475, 1997.
  • the quantum dot which the ligand coordinated can use a commercially available thing without a restriction
  • the solution of the curable composition forming the cured product particles can contain a polymerization initiator, and the polymerization initiator can contain a known polymerization initiator.
  • the polymerization initiator for example, paragraph 0037 of JP2013-043382A can be referred to.
  • the polymerization initiator is preferably 0.1 mol% or more, more preferably 0.5 to 2 mol% of the total amount of the curable compound contained in the solution.
  • the total curable composition excluding the volatile organic solvent preferably contains 0.1% by mass to 10% by mass, and more preferably 0.2% by mass to 8% by mass.
  • grains contains a photoinitiator.
  • the photopolymerization initiator any compound can be used as long as it is a compound that generates an active species that polymerizes the above-described polymerizable compound by light irradiation.
  • the photopolymerization initiator include a cationic polymerization initiator and a radical polymerization initiator, and a radical polymerization initiator is preferred.
  • a plurality of photopolymerization initiators may be used in combination.
  • the content of the photopolymerization initiator is, for example, 0.01 to 15% by mass, preferably 0.1 to 12% by mass, and more preferably 0.2 to 7% by mass in the entire composition excluding the solvent. %.
  • the total amount becomes the said range.
  • the content of the photopolymerization initiator is 0.01% by mass or more because sensitivity (fast curability) and coating film strength tend to be improved.
  • the content of the photopolymerization initiator is 15% by mass or less, light transmittance, colorability, handleability and the like tend to be improved, which is preferable.
  • dyes and / or pigments may act as radical trapping agents, affecting photopolymerization and sensitivity.
  • the amount of the photopolymerization initiator added is optimized in these applications.
  • dyes and / or pigments are not essential components, and the optimal range of the photopolymerization initiator may be different from that in the field of curable compositions for liquid crystal display color filters. is there.
  • radical photopolymerization initiator for example, a commercially available initiator can be used.
  • these examples for example, those described in paragraph No. 0091 of JP-A No. 2008-105414 can be preferably used.
  • acetophenone compounds, acylphosphine oxide compounds, and oxime ester compounds are preferred from the viewpoints of curing sensitivity and absorption characteristics.
  • acetophenone compound examples include hydroxyacetophenone compounds, dialkoxyacetophenone compounds, and aminoacetophenone compounds.
  • Irgacure® 2959 (1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one), preferably available from BASF as a hydroxyacetophenone compound Irgacure® 184 (1-hydroxycyclohexyl phenyl ketone), Irgacure® 500 (1-hydroxycyclohexyl phenyl ketone, benzophenone), Darocur® 1173 (2-hydroxy-2-methyl-1- Phenyl-1-propan-1-one).
  • the dialkoxyacetophenone compound is preferably Irgacure (registered trademark) 651 (2,2-dimethoxy-1,2-diphenylethane-1-one) available from BASF.
  • Irgacure (registered trademark) 369 (2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1
  • Irgacure (registered trademark) 379 (available from BASF Corporation) is preferable.
  • EG (2-dimethylamino-2- (4methylbenzyl) -1- (4-morpholin-4-ylphenyl) butan-1-one)
  • Irgacure® 907 (2-methyl-1 [4 -Methylthiophenyl] -2-morpholinopropan-1-one).
  • acylphosphine oxide-based compound preferably Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) available from BASF, Irgacure (registered trademark) 1800 (bis (2, 6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide), Lucirin® TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) available from BASF, Lucirin® TPO-L (2,4 , 6-trimethylbenzoylphenylethoxyphosphine oxide).
  • Irgacure (registered trademark) 819 bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
  • Irgacure (registered trademark) 1800 bis (2, 6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide
  • Irgacure registered trademark
  • OXE01 (1,2-octanedione, 1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime)
  • Irgacure available from BASF Corporation
  • OXE02 ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime)
  • a sulfonium salt compound, an iodonium salt compound, an oxime sulfonate compound, and the like are preferable.
  • 4-methylphenyl [4-(2-methylpropyl) phenyliodonium hexafluorophosphate (IRGACURE250 manufactured by BASF), IRGACURE PAG103, 108, 121, 203 (manufactured by BASF) and the like.
  • the photopolymerization initiator needs to be selected in a timely manner with respect to the wavelength of the light source to be used, but is preferably one that does not generate gas during exposure.
  • the curable compound that forms the cured product particles is a radical polymerizable curable composition in which the polymerizable compound is a radical polymerizable compound and the photopolymerization initiator is a radical polymerization initiator that generates radicals upon light irradiation. Is preferred.
  • the solution of the curable composition that forms the cured particles may contain a polymer dispersant, a viscosity modifier, a surfactant, an antioxidant, an oxygen getter agent, a polymerization inhibitor, inorganic particles, and the like.
  • the curable composition for forming the cured product particles may include a polymer dispersant for dispersing the quantum dots in the cured product particles.
  • the polymer dispersant is a compound having a coordinating group coordinated on the surface of the quantum dot and represented by the following general formula I.
  • the polymer dispersant having the structure of the general formula I is difficult to desorb due to multipoint adsorption and can impart high dispersibility. Further, since the adsorbing groups are densely packed at the end, it is difficult to cross-link between particles, and an increase in liquid viscosity that causes entrainment of bubbles can be suppressed.
  • A is an organic group having a coordinating group coordinated to a quantum dot
  • Z is an (n + m + 1) -valent organic linking group
  • X 1 and X 2 are a single bond or a divalent group.
  • R 1 represents an alkyl group, alkenyl group or alkynyl group which may have a substituent
  • P represents a polyacrylate skeleton, polymethacrylate skeleton, polyacrylamide skeleton having a degree of polymerization of 3 or more.
  • a group having a polymer chain including at least one polymer skeleton selected from a polymethacrylamide skeleton, a polyester skeleton, a polyurethane skeleton, a polyurea skeleton, a polyamide skeleton, a polyether skeleton, a polyvinyl ether skeleton, and a polystyrene skeleton.
  • n and m are each independently a number of 1 or more, l is a number of 0 or more, and n + m + 1 is an integer of 2 or more and 10 or less.
  • the n A's may be the same or different.
  • the m Ps may be the same or different.
  • 1 X 1 and R 1 may be the same or different.
  • X 1 and X 2 represent a single bond or a divalent organic linking group.
  • the divalent organic linking group includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 Groups comprising from 20 to 20 sulfur atoms are included, which may be unsubstituted or substituted.
  • the divalent organic linking groups X 1 and X 2 can be a single bond or 1 to 50 carbon atoms, 0 to 8 nitrogen atoms, 0 to 25 oxygen atoms, 1 to A divalent organic linking group consisting of up to 100 hydrogen atoms and 0 to 10 sulfur atoms is preferred. Single bond, or 1 to 30 carbon atoms, 0 to 6 nitrogen atoms, 0 to 15 oxygen atoms, 1 to 50 hydrogen atoms, and 0 to 7 A divalent organic linking group consisting of up to sulfur atoms is more preferred. Single bond, or 1 to 10 carbon atoms, 0 to 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms, and 0 to 5 Particularly preferred are divalent organic linking groups consisting of up to sulfur atoms.
  • divalent organic linking groups X 1 and X 2 include a group composed of a combination of the following structural units (which may form a ring structure).
  • examples of the substituent include carbon having 1 to 20 carbon atoms such as methyl and ethyl, carbon such as phenyl and naphthyl. Carbon number such as aryloxy group having 6 to 16 carbon atoms, hydroxyl group, amino group, carboxyl group, sulfonamido group, N-sulfonylamido group, acetoxy group and the like, acyloxy group having 1 to 6 carbon atoms, methoxy group, ethoxy group, etc.
  • the (n + m + 1) -valent organic linking group represented by Z includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, and 1 to 200. Group consisting of up to 20 hydrogen atoms and 0 to 20 sulfur atoms, which may be unsubstituted or further substituted.
  • the (n + m + 1) -valent organic linking group Z includes 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 40 oxygen atoms, and 1 to 120 hydrogen atoms. And groups consisting of 0 to 10 sulfur atoms are preferred, 1 to 50 carbon atoms, 0 to 10 nitrogen atoms, 0 to 30 oxygen atoms, 1 to 100 More preferred are groups consisting of up to 0 hydrogen atoms and 0 to 7 sulfur atoms, 1 to 40 carbon atoms, 0 to 8 nitrogen atoms, 0 to 20 oxygen atoms. Particularly preferred are groups consisting of atoms, 1 to 80 hydrogen atoms, and 0 to 5 sulfur atoms.
  • Examples of the (n + m + l) -valent organic linking group Z include the following structural units or groups formed by combining structural units (which may form a ring structure).
  • organic linking group Z represents a site bonded to A, X 1 and X 2 in the general formula I.
  • examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, and a carbon number of 6 such as a phenyl group and a naphthyl group. From 1 to 16 carbon atoms such as aryl groups, hydroxyl groups, amino groups, carboxyl groups, sulfonamido groups, N-sulfonylamido groups, acetoxy groups and the like, acyloxy groups having 1 to 6 carbon atoms, methoxy groups, ethoxy groups and the like.
  • Alkoxy groups up to 6 halogen atoms such as chlorine and bromine, alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group and cyclohexyloxycarbonyl group, carbonate esters such as cyano group and t-butyl carbonate Group, and the like.
  • the most preferable (n + m + 1) -valent organic linking group Z is the following group from the viewpoint of availability of raw materials, ease of synthesis, monomers, and solubility in various solvents.
  • R 1 is an alkyl group, alkenyl group or alkynyl group which may have a substituent.
  • the number of carbon atoms is preferably 1 to 30, and more preferably 1 to 20 carbon atoms.
  • the substituent include, for example, an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, an aryl group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group, a hydroxyl group, and an amino group.
  • Such as an acyloxy group having 1 to 6 carbon atoms such as a carboxyl group, a sulfonamide group, an N-sulfonylamide group and an acetoxy group, an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, chlorine, bromine, etc.
  • Examples thereof include an alkoxycarbonyl group having 2 to 7 carbon atoms such as a halogen atom, a methoxycarbonyl group, an ethoxycarbonyl group, and a cyclohexyloxycarbonyl group, a carbonic acid ester group such as a cyano group, and t-butyl carbonate.
  • the polymer chain P in the present invention has a polyacrylate skeleton, polymethacrylate skeleton, polyacrylamide skeleton, polymethacrylamide skeleton, polyester skeleton, polyurethane skeleton, polyurea skeleton, polyamide skeleton, polyether skeleton, polyvinyl ether having a polymerization degree of 3 or more. It includes at least one polymer skeleton selected from a skeleton and a polystyrene skeleton, and includes a polymer, a modified product, or a copolymer having these polymer skeletons.
  • a polyether / polyurethane copolymer a copolymer of a polyether / vinyl monomer polymer, and the like can be given.
  • the polymer chain may be any of a random copolymer, a block copolymer, and a graft copolymer.
  • a polymer or copolymer having a polyacrylate skeleton is particularly preferable.
  • the polymer chain P is preferably soluble in a solvent.
  • the affinity with the solvent is low, for example, when used as a ligand, the affinity with the dispersion medium is weakened, and it may be impossible to secure an adsorption layer sufficient for dispersion stabilization.
  • the monomer that forms the polymer chain P is not particularly limited, and examples thereof include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, and itaconic acid diesters. Aliphatic polyesters, (meth) acrylamides, aliphatic polyamide styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile, monomers having acidic groups, and the like are preferable. Hereinafter, preferable examples of these monomers will be described.
  • Examples of (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate , Isobutyl (meth) acrylate, t-butyl (meth) acrylate, amyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, 2-Methylhexyl acrylate, t-octyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate, (meth
  • Examples of crotonic acid esters include butyl crotonate and hexyl crotonate.
  • Examples of vinyl esters include vinyl acetate, vinyl chloroacetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.
  • Examples of maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.
  • Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, and dibutyl fumarate.
  • Examples of itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.
  • aliphatic polyesters examples include polycaprolactone and polyvalerolactone.
  • (Meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl Acrylic (meth) amide, Nt-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N -Diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-nitrophenyl acrylamide, N-ethyl-N-phenyl acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide, N- Methylo Le acrylamide, N- hydroxy
  • aliphatic polyamides examples include polycaprolactam and polyvalerolactam
  • styrenes examples include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloromethyl
  • acidsic substance for example, t-Boc and the like
  • vinyl ethers include methyl vinyl ether, ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, octyl vinyl ether, methoxyethyl vinyl ether, and phenyl vinyl ether.
  • Examples of vinyl ketones include methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, and phenyl vinyl ketone.
  • Examples of olefins include ethylene, propylene, isobutylene, butadiene, isoprene and the like.
  • Examples of maleimides include maleimide, butyl maleimide, cyclohexyl maleimide, and phenyl maleimide.
  • (meth) acrylonitrile heterocyclic groups substituted with vinyl groups (eg, vinylpyridine, N-vinylpyrrolidone, vinylcarbazole, etc.), N-vinylformamide, N-vinylacetamide, N-vinylimidazole, vinylcaprolactone, etc. it can.
  • vinyl groups eg, vinylpyridine, N-vinylpyrrolidone, vinylcarbazole, etc.
  • N-vinylformamide N-vinylacetamide
  • N-vinylimidazole N-vinylimidazole
  • vinylcaprolactone etc. it can.
  • the polymer chain P is more preferably a group represented by the following general formula P1.
  • E represents at least one of —O—, —CO—, —COO—, —COOR y , an epoxy group, an oxetanyl group, an alicyclic epoxy group, an alkylene group, an alkyl group, and an alkenyl group.
  • R y is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • np is a number of 3 or more and 500 or less.
  • a plurality of E and R 2 may be the same or different.
  • np is preferably 3 to 500, more preferably 4 to 200, and still more preferably 5 to 100.
  • the polymer dispersant may be a compound represented by the following general formula II in which n and m are 1 and l is 0 in the general formula I.
  • A is preferably a group represented by the following general formula A1.
  • X 3 is a single bond or a divalent organic linking group
  • X 4 is an (a1 + 1) valent organic linking group
  • L is a coordinating group
  • a1 is 1 or more. It is an integer of 2 or less.
  • X 3 has the same meaning as X 2 in formula I, and the preferred range is also the same.
  • (A1 + 1) valent organic linking group X 4 includes 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 40 oxygen atoms, and 1 to 120 hydrogen atoms.
  • Preferred is a group consisting of atoms and 0 to 10 sulfur atoms, preferably 1 to 50 carbon atoms, 0 to 10 nitrogen atoms, 0 to 30 oxygen atoms, 1 to More preferred are groups consisting of up to 100 hydrogen atoms and 0 to 7 sulfur atoms, 1 to 40 carbon atoms, 0 to 8 nitrogen atoms, 0 to 20 atoms.
  • Particularly preferred are groups consisting of oxygen atoms, 1 to 80 hydrogen atoms, and 0 to 5 sulfur atoms.
  • (a1 + 1) -valent organic linking group X 4 can be a group composed of combination structural unit or structural units of the following (may form a ring structure).
  • substituents include carbon numbers such as an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group. 1 to 6 carbon atoms such as aryl group, hydroxyl group, amino group, carboxyl group, sulfonamido group, N-sulfonylamido group, acetoxy group, etc. having 6 to 16 carbon atoms, methoxy group, ethoxy group, etc.
  • alkoxy groups such as chlorine and bromine, alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group and cyclohexyloxycarbonyl group, cyano group, carbonic acid such as t-butyl carbonate, etc.
  • An ester group and the like.
  • the coordinating group L is preferably at least one selected from an amino group, a carboxy group, a mercapto group, a phosphine group, and a phosphine oxide group. Of these, a carboxy group and a phosphine oxide group are more preferable.
  • the following are preferable as the group containing the coordinating group L and the divalent organic linking group X 4 .
  • groups * indicates a site binding to X 3.
  • Such X 4 has a length of less than about 1 nm and has a plurality of coordinating groups within this length range. For this reason, since a ligand can adsorb
  • the polymer dispersant may be a compound represented by the following general formula III.
  • X 5 and X 6 are a single bond or a divalent organic linking group
  • R 3 and R 4 are a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • P is a degree of polymerization.
  • a and b are each independently a number of 1 or more, and a + b is 2 or more and 1000 or less.
  • the plurality of L may be the same or different.
  • Plural Ps may be the same or different.
  • X 5 and X 6 are a single bond or a divalent organic linking group.
  • X 5 and X 6 as the divalent organic linking group have the same meaning as the divalent organic linking group X 2 in formula I.
  • groups containing —COO—, —CONH—, —O— and the like are preferable from the viewpoints of availability of materials and ease of synthesis.
  • R 3 and R 4 are each an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group.
  • polymer chain P in the general formula III the following are preferable.
  • np is preferably 3 to 300, more preferably 4 to 200, and more preferably 5 to 100.
  • polymer dispersant represented by the general formula III include the following.
  • the a: b of the polymer dispersant is preferably 1: 9 to 7: 3, more preferably 2: 8 to 5: 5.
  • the molecular weight of the polymer dispersant is preferably 2000 to 100,000, more preferably 3000 to 50000, and particularly preferably 5000 to 30000 in terms of weight average molecular weight. When the weight average molecular weight is within this range, the quantum dots can be favorably dispersed in the acrylic monomer.
  • the ligands of the general formulas I and II can be synthesized by known synthesis methods. For example, in the method described in JP-A-2007-277514, it can be synthesized by replacing the organic dye moiety with a coordination moiety.
  • the polymer dispersant of the general formula III can be synthesized by copolymerization of a corresponding monomer or a polymer to a precursor polymer. Examples of the monomer having a steric repulsion group in the side chain include commercially available products such as BLEMMER AE-400 (NOF Corporation) and BLEMMER AP-800 (NOF Corporation).
  • the solution of the curable composition forming the cured product particles may contain a viscosity modifier as necessary. They can be adjusted to the desired viscosity by adding viscosity modifiers.
  • the viscosity modifier is preferably a filler having a particle size of 5 nm to 300 nm.
  • the viscosity modifier may be a thixotropic agent.
  • the thixotropic property refers to the property of reducing the viscosity with respect to the increase in shear rate in the liquid composition
  • the thixotropic agent includes the liquid composition by including it. It refers to a material having a function of imparting thixotropic properties to the composition.
  • thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite.
  • sericite bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, organic smectite and the like.
  • the solution of the curable composition that forms the cured particles may contain at least one surfactant containing 20% by mass or more of fluorine atoms.
  • the surfactant preferably contains 25% by mass or more of fluorine atoms, and more preferably contains 28% by mass or more.
  • the upper limit is not particularly defined, but is, for example, 80% by mass or less, and preferably 70% by mass or less.
  • the surfactant used in the present invention is preferably a compound having an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom.
  • An alkyl group containing a fluorine atom is a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the alkyl group containing a fluorine atom may further have a substituent other than the fluorine atom.
  • the cycloalkyl group containing a fluorine atom is a monocyclic or polycyclic cycloalkyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the cycloalkyl group containing a fluorine atom may further have a substituent other than the fluorine atom.
  • An aryl group containing a fluorine atom is an aryl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • the aryl group containing a fluorine atom may further have a substituent other than the fluorine atom.
  • the molecular weight of the surfactant is preferably 300 to 10,000, and more preferably 500 to 5,000.
  • the content of the surfactant in the entire composition excluding the solvent is, for example, 0.01 to 10% by mass, preferably 0.1 to 7% by mass, and more preferably 0.5 to 4% by mass. It is. When using 2 or more types of surfactant, the total amount becomes the said range.
  • surfactants examples include the product names Florard FC-430 and FC-431 (manufactured by Sumitomo 3M), the product name Surflon "S-382" (manufactured by Asahi Glass), EFTOP "EF-122A, 122B, 122C, EF- 121, EF-126, EF-127, MF-100 ”(manufactured by Tochem Products), trade names PF-636, PF-6320, PF-656, PF-6520 (all OMNOVA), trade names FT250, FT251, DFX18 (all manufactured by Neos Co., Ltd.), trade names Unidyne DS-401, DS-403, DS-451 (all manufactured by Daikin Industries, Ltd.), trade names Megafuck 171, 172, 173, 178K, 178A (all manufactured by DIC Corporation), trade names X-70-090, X-70-091, X-70-0 2, X-70-093, (all manufactured by Shin-Etsu Chemical
  • the curable composition for forming the cured product particles preferably contains a known antioxidant.
  • the antioxidant suppresses fading caused by heat or light irradiation and fading caused by various oxidizing gases such as ozone, active oxygen, NOx, and SOx (X is an integer).
  • oxidizing gases such as ozone, active oxygen, NOx, and SOx (X is an integer).
  • X is an integer.
  • by adding an antioxidant there are advantages that coloring of cured particles can be prevented and a reduction in film thickness due to decomposition can be reduced. Two or more kinds of antioxidants may be used as the antioxidant.
  • the antioxidant is preferably 0.2% by mass or more, more preferably 1% by mass or more, based on the total mass of the curable compound. More preferably, it is at least mass%.
  • antioxidants may be altered by interaction with oxygen. The altered antioxidant may induce the decomposition of the curable composition containing the quantum dots, and may cause deterioration of adhesion, brittleness, and quantum dot emission efficiency. From the viewpoint of preventing these, it is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the antioxidant is preferably at least one of a radical inhibitor, a metal deactivator, a singlet oxygen scavenger, a superoxide scavenger, or a hydroxy radical scavenger.
  • antioxidants include phenolic antioxidants, hindered amine antioxidants, quinone antioxidants, phosphorus antioxidants, and thiol antioxidants.
  • phenolic antioxidants examples include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-ditert-butyl-4- Hydroxybenzyl) phosphonate, 1,6-hexamethylenebis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4,4′-thiobis (6-tert-butyl-m-cresol) 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 4,4'-butylidenebis (6-tert-butyl- m-cresol), 2,2′-ethylidenebis (4,6-ditert-butylphenol), 2,2′-ethylidenebis (4-secondarybutyl-6-tert-butylphenol) 1,1,3-tris (2-
  • phosphorus antioxidants include trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phos.
  • thiol antioxidant examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate; and pentaerythritol tetra ( ⁇ -alkylmercaptopropionic acid) ester And the like.
  • the hindered amine antioxidant is also referred to as HALS (Hidered amine light stabilizers), and has a structure in which all hydrogen atoms on the 2nd and 6th carbons of piperidine are substituted with methyl groups, preferably represented by the following formula 1.
  • HALS Hidered amine light stabilizers
  • X in Formula 1 represents a hydrogen atom or an alkyl group.
  • HALS having a pentamethyl-4-piperidyl group is particularly preferably employed.
  • Many HALS having a structure in which a group represented by the formula 1 is bonded to a —COO— group, that is, a group represented by the following formula 2 are commercially available.
  • HALS that can be preferably used in the present invention include those represented by the following formulas.
  • 2,2,6,6-tetramethyl-4-piperidyl group is represented by R
  • 1,2,2,6,6-pentamethyl-4-piperidyl group is represented by R ′.
  • CH 2 (COOR ′) CH (COOR ′) CH (COOR ′) CH 2 COOR ′ compounds represented by Formula 3, and the like.
  • Tinuvin 123 Tinuvin 144, Tinuvin 765, Tinuvin 770, Tinuvin 622, Chimassorb 944, Chimassorb 119 (all of which are trade names of Ciba Specialty Chemicals), Adeka Stub LA52, Adeka Stub LA57 , Adeka Stub LA62, Adeka Stub LA67, Adeka Stub LA82, Adeka Stub LA87, Adeka Stub LX335 (all of which are trade names of Asahi Denka Kogyo Co., Ltd.) and the like, but are not limited thereto.
  • HALS those having relatively small molecules are preferred because they are easy to diffuse.
  • Preferred HALS from this viewpoint includes a compound represented by ROC ( ⁇ O) (CH 2 ) 8 C ( ⁇ O) OR, R′OC ( ⁇ O) C (CH 3 ) ⁇ CH 2 .
  • the antioxidant is at least one of a hindered phenol compound, a hindered amine compound, a quinone compound, a hydroquinone compound, a triferol compound, an aspartic acid compound, or a thiol compound, a citric acid compound, More preferably, it is at least one of an ascorbic acid compound and a tocopherol compound.
  • a hindered phenol compound a hindered amine compound, a quinone compound, a hydroquinone compound, a triferol compound, an aspartic acid compound, or thiol, citric acid, tocopheryl acetic acid, and tocopheryl phosphate itself, or a salt or ester compound thereof.
  • Etc. are preferable.
  • oxygen getter agent a known substance used as a getter agent can be used, and either an inorganic getter agent or an organic getter agent may be used.
  • Metal oxide, metal halide, metal sulfate, metal perchloric acid It is preferable to include at least one compound selected from a salt, a metal carbonate, a metal alkoxide, a metal carboxylate, a metal chelate, or a zeolite (aluminosilicate).
  • Such oxygen getter agents include calcium oxide (CaO), barium oxide (BaO), magnesium oxide (MgO), strontium oxide (SrO), lithium sulfate (Li 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), sulfuric acid.
  • the organic getter agent is not particularly limited as long as it is a material that takes in water by a chemical reaction and does not become opaque before and after the reaction.
  • the organometallic compound means a compound having a metal-carbon bond, a metal-oxygen bond, a metal-nitrogen bond, or the like.
  • the aforementioned bond is broken by the hydrolysis reaction to form a metal hydroxide.
  • hydrolytic polycondensation may be performed after the reaction with the metal hydroxide to increase the molecular weight.
  • an organic metal compound that has good reactivity with water that is, a metal atom that easily breaks various bonds with water.
  • a metal atom that easily breaks various bonds with water include aluminum, silicon, titanium, zirconium, silicon, bismuth, strontium, calcium, copper, sodium, and lithium.
  • cesium, magnesium, barium, vanadium, niobium, chromium, tantalum, tungsten, chromium, indium, iron, and the like can be given.
  • a desiccant of an organometallic compound having aluminum as a central metal is preferable in terms of dispersibility in a resin and reactivity with water.
  • Organic groups include unsaturated hydrocarbons such as methoxy group, ethoxy group, propoxy group, butoxy group, 2-ethylhexyl group, octyl group, decyl group, hexyl group, octadecyl group, stearyl group, saturated hydrocarbon, branched unsaturated carbon Examples include ⁇ -diketonato groups such as alkoxy groups, carboxyl groups, aceethylacetonato groups, and dipivaloylmethanato groups containing hydrogen, branched saturated hydrocarbons, and cyclic hydrocarbons. Among these, aluminum ethyl acetoacetates having 1 to 8 carbon atoms represented by the following chemical formula are preferably used because they can form a sealing composition having excellent transparency.
  • R 5 to R 8 represent an organic group including an alkyl group having 1 to 8 carbon atoms, an aryl group, an alkoxy group, a cycloalkyl group, and an acyl group, and M represents a trivalent metal atom.
  • R 5 to R 8 may be the same or different organic groups.
  • the aluminum ethyl acetoacetates having 1 to 8 carbon atoms are commercially available from, for example, Kawaken Fine Chemical Co., Ltd. and Hope Pharmaceutical Co., Ltd.
  • the oxygen getter agent is in the form of particles or powder.
  • the average particle diameter of the oxygen getter agent may be usually in the range of less than 20 ⁇ m, preferably 10 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1 ⁇ m or less. From the viewpoint of scattering properties, the average particle size of the oxygen getter agent is preferably 0.3 to 2 ⁇ m, and more preferably 0.5 to 1.0 ⁇ m.
  • the average particle diameter here refers to the average value of the particle diameters calculated from the particle size distribution measured by the dynamic light scattering method.
  • the solution of the curable composition that forms the cured product particles may contain a polymerization inhibitor.
  • the content of the polymerization inhibitor is 0.001 to 1% by mass, more preferably 0.005 to 0.5% by mass, and still more preferably 0.008 to 0.
  • By blending an appropriate amount of a polymerization inhibitor of 05% by mass it is possible to suppress a change in viscosity over time while maintaining high curing sensitivity.
  • the addition amount of the polymerization inhibitor is excessive, there is an appropriate amount because poor curing due to polymerization inhibition or coloring of the cured product occurs.
  • the polymerization inhibitor may be added during production of the polymerizable monomer, or may be added later to the cured composition.
  • Preferred polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-tert-butylphenol) 2,2'-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine cerium salt, phenothiazine, phenoxazine, 4-methoxynaphthol, 2,2,6,6-tetramethyl Examples include piperidine-1-oxyl free radical, 2,2,6,6-tetramethylpiperidine, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical, nitrobenzene, dimethylaniline and the like.
  • p-benzoquino 2,2,6,6-tetramethylpiperidine-1-oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical, phenothiazine.
  • These polymerization inhibitors suppress the generation of polymer impurities not only during the production of the polymerizable monomer but also during storage of the cured composition, and suppress the deterioration of pattern formation during imprinting.
  • the solution of the curable composition for forming the cured particles contains inorganic particles.
  • the impermeability to oxygen can be increased by containing inorganic particles.
  • the inorganic particles include silica particles, alumina particles, zirconium oxide particles, zinc oxide particles, titanium oxide particles, and inorganic layered compounds such as mica and talc.
  • the solution of the curable composition forming the cured product particles may include a release agent, a silane coupling agent, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, and an adhesive as necessary.
  • Accelerators, thermal polymerization initiators, colorants, elastomer particles, photoacid multipliers, photobase generators, basic compounds, flow regulators, antifoaming agents, and the like may be added.
  • the method for preparing the solution of the curable composition for forming the cured product particles is not particularly limited, and may be performed according to a general procedure for preparing the curable composition.
  • ⁇ Binder> As the binder in the wavelength conversion layer 12, a material having a high gas barrier property and capable of suitably dispersing the cured product particles of the (meth) acrylate compound is used.
  • the material for forming the binder preferably has an oxygen permeability coefficient of 1.0 ⁇ 10 1 (cc ⁇ 10 ⁇ m) / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability coefficient of the binder is a value measured by a gas permeability test method based on JIS K 716-26-2 2006.
  • a measuring device an oxygen permeability measuring device OX-TRAN1_50 manufactured by MOCON can be used.
  • the measurement temperature was 23 ° C. and the humidity was 50%.
  • OX-TRAN1_50 manufactured by MOCON
  • the measurement temperature was 23 ° C. and the humidity was 50%.
  • For the oxygen transmission coefficient, (fm ⁇ 10 ⁇ m) / (s ⁇ Pa) can be used as the SI unit.
  • (1fm ⁇ 10 ⁇ m) / (s ⁇ Pa) 8.752 (cc ⁇ 10 ⁇ m) / (m 2 ⁇ day ⁇ atm).
  • Examples of the material having an oxygen permeability coefficient in the above range include polyvinyl alcohol (PVA) and a copolymer resin (BVOH) of butenediol and vinyl alcohol. Moreover, these may contain 2 or more types.
  • PVA polyvinyl alcohol
  • BVOH copolymer resin
  • the polyvinyl alcohol may be a modified polyvinyl alcohol having a substituent such as a vinyl group and a (meth) acryloyl group, a carboxyl group, or a carbonyl group.
  • a modified polyvinyl alcohol having at least one of a vinyl group and a (meth) acryloyl group as a material of the binder, the binder and the cured product particles are at least partially chemically bonded via a polymerizable crosslinking group; The durability of the wavelength conversion layer can be improved.
  • the oxygen permeability coefficient of polyvinyl alcohol is about 1.0 ⁇ 10 0 to 1.0 ⁇ 10 1 (cc ⁇ 10 ⁇ m) / (m 2 ⁇ day ⁇ atm).
  • the oxygen transmission coefficient of the butenediol / vinyl alcohol copolymer resin is about 1.0 ⁇ 10 ⁇ 1 (cc ⁇ 10 ⁇ m) / (m 2 ⁇ day ⁇ atm).
  • the saponification degree of polyvinyl alcohol is preferably 86 to 97 mol%.
  • the lower the degree of saponification the higher the affinity with the (meth) acrylate compound that is the base material of the cured product particles, and thus the dispersibility of the cured product particles is improved. Therefore, by setting the degree of saponification to the above range, the cured product particles can be suitably dispersed while enhancing the gas barrier property of the binder.
  • the saponification degree is a value measured according to JIS K 6726 1994.
  • the auxiliary layer 14a and the auxiliary layer 14b have an oxygen permeability of 1.0 ⁇ 10 0 to 1.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm), and sandwich and protect the wavelength conversion layer 12. Is a layer.
  • the auxiliary layer 14a and the auxiliary layer 14b have the same configuration except that they are arranged on different surfaces of the wavelength conversion layer 12, and therefore it is not necessary to distinguish between the auxiliary layer 14a and the auxiliary layer 14b in the following description. The two are collectively referred to as an auxiliary layer.
  • the auxiliary layer may be made of an organic material or an inorganic material as long as it has transparency to visible light and the oxygen permeability satisfies the above range.
  • transparent to visible light means that the linear transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere light transmittance measuring device. It can be calculated by subtracting the rate.
  • auxiliary layer 14a and the auxiliary layer 14b may be made of the same material or different materials.
  • the thickness of an auxiliary layer should just be a thickness with which oxygen permeability satisfy
  • the thickness of the auxiliary layer 14a and the thickness of the auxiliary layer 14b may be the same or different.
  • the auxiliary layer is preferably thin and has a low self-supporting property, so that the auxiliary layer is preferably supported by the support layer as shown in FIG.
  • the support layer 20a and the support layer 20b support the auxiliary layer.
  • the support layer preferably supports the auxiliary layer when the auxiliary layer is made of an inorganic material, but is not limited thereto, and supports the auxiliary layer when the auxiliary layer is made of an organic material. There may be.
  • the support layer 20a and the support layer 20b have the same configuration except that the support layer 20a is disposed on the auxiliary layer 14a and the support layer 20b is disposed on the auxiliary layer 14b. When it is not necessary to distinguish 20a and the support layer 20b, both are collectively called a support layer.
  • the support layer is preferably a flexible belt-like support that is transparent to visible light.
  • transparent to visible light means that the linear transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere type light transmittance measuring device. It can be calculated by subtracting the rate.
  • the support layer include a polyethylene terephthalate film, a film made of a polymer having a cyclic olefin structure, and a polystyrene film.
  • the average film thickness of the support layer is preferably 10 ⁇ m or more and 500 ⁇ m or less, more preferably 20 ⁇ m or more and 400 ⁇ m or less, and more preferably 30 ⁇ m or more and 300 ⁇ m or less from the viewpoints of impact resistance and ease of handling of the wavelength conversion film.
  • Absorption of light with a wavelength of 450 nm is used in an embodiment in which retroreflection of light is increased, such as when the concentration of quantum dots (cured particles) contained in the wavelength conversion layer is reduced or when the thickness of the wavelength conversion layer is reduced. Since the rate is preferably lower, the average film thickness of the support layer is preferably 40 ⁇ m or less, and more preferably 25 ⁇ m or less, from the viewpoint of suppressing a decrease in luminance.
  • the support layer preferably has an in-plane retardation Re (589) at a wavelength of 589 nm of 1000 nm or less. More preferably, it is 500 nm or less, and further preferably 200 nm or less.
  • Re (589) of the support layer is in the above range, it is preferable because foreign matters and defects are more easily found during inspection using a polarizing plate.
  • Re (589) can be measured by making light having an input wavelength of 589 nm incident in the normal direction of the film using AxoScan OPMF-1 (manufactured by Optoscience).
  • the wavelength conversion film of the present invention is not limited to the configuration having a wavelength conversion layer and an auxiliary layer, or further a support layer, and may further have various functional layers used in an optical film such as a light scattering layer. Good.
  • the manufacturing method of the wavelength conversion film is: A wavelength conversion particle is dispersed in a mixed solution of a polymerizable compound that becomes a (meth) acrylate compound and a polymerization initiator, and a preparation step of preparing a solution (dispersion) of the curable composition; An emulsification step in which a solution (dispersion) of the curable composition is placed in an aqueous solution of a material to be a binder and stirred to emulsify; A particle forming step of forming a cured particle by polymerizing the curable composition by irradiating light to an aqueous binder solution (emulsified solution) obtained by emulsifying a solution of the curable composition; A coating step of coating a binder aqueous solution (coating solution) containing the cured particles on
  • a solution (dispersion) of a curable composition containing wavelength conversion particles such as quantum dots is prepared.
  • a solution (dispersion) is prepared. Note that the dispersion liquid may not contain an organic solvent.
  • the prepared dispersion is put into an aqueous solution of a material to be a binder and stirred to emulsify. Stirring may be performed using a commercially available stirrer.
  • the aqueous binder solution may be prepared by dissolving a compound serving as a binder such as PVA in water. In addition, it is preferable to use pure water or ion exchange water as water.
  • the concentration of the aqueous solution is not particularly limited, and may be appropriately set according to the compound serving as the binder, the amount of the dispersion, the diameter of the cured product particles, and the like.
  • grains is hydrophobic, and the wavelength conversion particle
  • the compound used as a binder is hydrophilic. Therefore, the dispersion is dispersed in the aqueous binder solution in a state in which the wavelength conversion particles are encapsulated in the droplets of the curable composition as a base material. Accordingly, by appropriately adjusting the shearing force at the time of stirring, the viscosity of the dispersion, the viscosity of the aqueous binder solution, and the like, the diameter of the dispersed liquid droplet can be adjusted to a desired diameter.
  • an emulsifier may be added.
  • an emulsifier an anionic surfactant, a cationic surfactant, a nonionic surfactant, or the like can be used.
  • the binder solution (emulsion) in which the dispersion is emulsified and dispersed is irradiated with light such as ultraviolet rays (UV light) or heated to polymerize the curable composition to obtain cured particles.
  • light such as ultraviolet rays (UV light) or heated to polymerize the curable composition to obtain cured particles.
  • UV light ultraviolet rays
  • a binder aqueous solution (coating solution) in which the cured particles prepared as described above are dispersed is applied on an auxiliary layer prepared in advance.
  • coating solution a binder aqueous solution in which the cured particles prepared as described above are dispersed
  • various known coating methods such as spin coating, die coating, bar coating, and spray coating can be used.
  • what is necessary is just to adjust the coating film thickness of a coating liquid so that the thickness of the wavelength conversion layer after drying may turn into desired thickness.
  • auxiliary layer is made of a resin material
  • a solution containing a resin material for forming the auxiliary layer such as EVOH or PVA is prepared, and applied to the temporary support and cured to form the auxiliary layer.
  • a commercially available film may be used.
  • a poval film, eval film manufactured by Kuraray Co., Ltd.
  • G-Polymer Nippon Synthetic Chemical Industry Co., Ltd.
  • auxiliary layer is made of an inorganic material
  • vacuum deposition, CCP-CVD (capacitive coupling type plasma chemical vapor deposition), ICP-CVD (inductive coupling type plasma chemical vapor deposition) is applied to one surface of a support layer such as a PET film.
  • An auxiliary layer may be formed by forming an inorganic film by a known vapor deposition method such as vapor deposition) or sputtering.
  • the coating film formed on the auxiliary layer in the coating step is dried and cured to form a wavelength conversion layer.
  • aqueous solution drying methods such as heating and drying with a heater, heating and drying with warm air, and heating and heating using a heater and warm air can be used. is there.
  • auxiliary layer a laminate of the auxiliary layer and the support layer
  • another auxiliary layer is adhered and laminated on the formed wavelength conversion layer.
  • Various known pressure-sensitive adhesives used in optical films can be used for attaching the wavelength conversion layer and the auxiliary layer.
  • an auxiliary layer consists of resin materials
  • the solution containing the resin material which forms an auxiliary layer may be prepared, and it may apply
  • the wavelength conversion film is produced.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration of the backlight unit.
  • the backlight unit 102 includes a light source 101A that emits primary light (blue light L B ) and a light guide plate 101B that guides and emits the primary light emitted from the light source 101A.
  • the reflecting plate 102A, the light guide plate 101B, the wavelength conversion film 100, and the retroreflective member 102B are shown separated from each other, but actually, these may be formed in close contact with each other. Good.
  • the wavelength conversion film 100 is a wavelength conversion film of the present invention, at least a portion of the primary light L B emitted from the surface light source 101C as excitation light, emits fluorescence composed of the fluorescent secondary light (green Light L G , red light L R ) and primary light L B that has passed through the wavelength conversion film 100 are emitted.
  • the wavelength conversion film 100, the wavelength conversion layer comprising a cured product particles containing a quantum dot light emitting quantum dots and the red light L R for emitting green light L G is the auxiliary layer by irradiation of the blue light L B
  • the wavelength conversion film is sandwiched.
  • L B , L G , and L R emitted from the wavelength conversion film 100 are incident on the retroreflective member 102B, and each incident light is transmitted between the retroreflective member 102B and the reflecting plate 102A. It repeats reflection and passes through the wavelength conversion film 100 many times.
  • a sufficient amount of excitation light blue light L B
  • a necessary amount of fluorescence L G , L R
  • a backlight unit that is a multi-wavelength light source.
  • blue light having an emission center wavelength in a wavelength band of 430 to 480 nm and a peak of emission intensity having a half width of 100 nm or less, and an emission center wavelength in a wavelength band of 500 to 600 nm and having a half width of It is preferable to emit green light having an emission intensity peak of 100 nm or less and red light having an emission center wavelength in a wavelength band of 600 nm to 680 nm and a emission intensity peak having a half width of 100 nm or less.
  • the wavelength band of blue light emitted from the backlight unit is more preferably 440 nm to 460 nm.
  • the wavelength band of the green light emitted from the backlight unit is preferably 520 nm to 560 nm, and more preferably 520 nm to 545 nm.
  • the wavelength band of red light emitted from the backlight unit is more preferably 610 nm to 640 nm.
  • the half-value widths of the emission intensity of blue light, green light, and red light emitted from the backlight unit are all preferably 80 nm or less, more preferably 50 nm or less, and 40 nm or less. More preferably, it is more preferably 30 nm or less. Among these, it is particularly preferable that the half-value width of each emission intensity of blue light is 25 nm or less.
  • the light source 101A is a blue light emitting diode that emits blue light having a light emission center wavelength in a wavelength band of 430 nm to 480 nm, for example, but an ultraviolet light emitting diode that emits ultraviolet light may be used.
  • a laser light source other than a light emitting diode can be used.
  • the cured particles in the wavelength conversion layer of the wavelength conversion film are phosphors that emit blue light, ultraviolet phosphors that emit green light, and red light. A phosphor that emits light may be included.
  • the planar light source 101C may be a planar light source including a light source 101A and a light guide plate 101B that guides and emits primary light emitted from the light source 101A. It may be a planar light source that is arranged in a plane parallel to the wavelength conversion film 100 and includes a diffusion plate instead of the light guide plate 101B.
  • the former planar light source is generally called an edge light system, and the latter planar light source is generally called a direct type.
  • a planar light source is used as the light source has been described as an example.
  • a light source other than the planar light source can be used as the light source.
  • FIG. 3 illustrates the edge light method using a light guide plate, a reflection plate, or the like as a constituent member, but it may be a direct type. Any known light guide plate can be used without any limitation.
  • the retroreflective member 102B may be configured by a known diffusion plate, diffusion sheet, prism sheet (for example, BEF series manufactured by Sumitomo 3M), a light guide, or the like.
  • the configuration of the retroreflective member 102B is described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • FIG. 4 is a schematic diagram showing a schematic configuration of the liquid crystal display device.
  • the liquid crystal display device 104 includes the backlight unit 102 according to the above-described embodiment and the liquid crystal cell unit 103 disposed to face the retroreflective member side of the backlight unit.
  • the liquid crystal cell unit 103 has a configuration in which the liquid crystal cell 110 is sandwiched between polarizing plates 120 and 130.
  • the polarizing plates 120 and 130 have both main surfaces of the polarizers 122 and 132, respectively.
  • the polarizing plate protective films 121 and 123 and 131 and 133 are used for the protection.
  • liquid crystal cell 110 there are no particular limitations on the liquid crystal cell 110, the polarizing plates 120 and 130, and the components of the liquid crystal display device 104, and those manufactured by known methods and commercially available products can be used without any limitation. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
  • the drive mode of the liquid crystal cell 110 is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB). ) And other modes can be used.
  • the liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto.
  • a configuration of a VA mode liquid crystal display device a configuration disclosed in Japanese Patent Application Laid-Open No. 2008-262161 is given as an example.
  • the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
  • the liquid crystal display device 104 further includes an accompanying functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an accompanying functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an optical compensation member that performs optical compensation as necessary
  • an adhesive layer In addition to (or instead of) color filter substrates, thin layer transistor substrates, lens films, diffusion sheets, hard coat layers, antireflection layers, low reflection layers, antiglare layers, etc., forward scattering layers, primer layers, antistatic layers Further, a surface layer such as an undercoat layer may be disposed.
  • the backlight side polarizing plate 120 may have a retardation film as the polarizing plate protective film 123 on the liquid crystal cell 110 side.
  • a retardation film a known cellulose acylate film or the like can be used.
  • the backlight unit 102 and the liquid crystal display device 104 include the wavelength conversion film of the present invention. Therefore, the backlight unit and the liquid crystal display device having the same effects as those of the wavelength conversion film of the present invention and having a light emission intensity of the wavelength conversion layer including the quantum dots are hardly reduced.
  • Example 1 ⁇ Production of wavelength conversion film> A wavelength conversion film having a configuration in which a wavelength conversion layer formed by dispersing cured particles of (meth) acrylate compounds encapsulating quantum dots as wavelength conversion particles in a binder was sandwiched between auxiliary layers was produced.
  • Dispersion 1 having the following composition was prepared.
  • ⁇ Toluene dispersion of quantum dot 1 emission maximum: 520 nm
  • Toluene dispersion of quantum dot 2 emission maximum: 630 nm
  • DCP Dicyclopentanyl acrylate
  • Irgacure TPO mass-photopolymerization initiator
  • A-1 synthetic product
  • Quantum dot 1 INP530-10 (manufactured by NN-labs)
  • Quantum dot 2 INP620-10 (manufactured by NN-labs)
  • the prepared dispersion 1 was put into an aqueous solution of a material to be a binder and stirred to emulsify.
  • a binder material Kuraray Poval PVA-CST (manufactured by Kuraray Co., Ltd., saponification degree: 95.5 to 96.5 mol%) was used, and the mixture was heated and dissolved to obtain an aqueous binder solution.
  • the amount of water was adjusted so that the binder aqueous solution had a temperature of 23 ° C. and a viscosity of 100 cP.
  • Dispersion 1 prepared in this binder aqueous solution was added, and emulsified by stirring with a resolver to obtain an emulsion.
  • the quantity ratio of the solution of the curable composition and the aqueous binder solution was adjusted so that the volume ratio of the cured product particles in the wavelength conversion layer after forming the wavelength conversion layer was 30%.
  • a binder aqueous solution (coating liquid) containing the cured particles prepared as described above was applied on the auxiliary layer prepared in advance.
  • the auxiliary layer was produced as follows. Polyvinyl alcohol (PVA) was used as a material for the auxiliary layer. Polyvinyl alcohol was dissolved in water to prepare an aqueous solution, which was coated on a temporary support and dried to prepare an auxiliary layer having a thickness of 50 ⁇ m. The oxygen permeability of the auxiliary layer was measured by a gas permeability test method based on JIS K 7126 and found to be 1.0 ⁇ 10 0 cc / (m 2 ⁇ day ⁇ atm).
  • the coating liquid applied on the auxiliary layer was dried and cured to form a wavelength conversion layer.
  • the film thickness of the wavelength conversion layer after drying was 50 ⁇ m.
  • Example 2 A wavelength conversion film was prepared in the same manner as in Example 1 except that Kuraray Poval PVA205 (manufactured by Kuraray Co., Ltd., saponification degree: 870. to 89.0 mol%) was used as the binder material.
  • Kuraray Poval PVA205 manufactured by Kuraray Co., Ltd., saponification degree: 870. to 89.0 mol% was used as the binder material.
  • Example 3 A wavelength conversion film was produced in the same manner as in Example 2 except that butenediol / vinyl alcohol copolymer resin (BVOH, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was used as the material for the auxiliary layer.
  • the oxygen permeability of the auxiliary layer was 2.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm).
  • Example 4 A wavelength conversion film was produced in the same manner as in Example 2 except that ethylene / vinyl alcohol copolymer resin (EVOH) was used as a material for the auxiliary layer and the thickness of the auxiliary layer was set to 100 ⁇ m.
  • the oxygen permeability of the auxiliary layer was 1.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm).
  • Example 5 A wavelength conversion film was produced in the same manner as in Example 1 except that an auxiliary layer and a support layer made of silicon oxide (SiO x ) were used.
  • a specific manufacturing method is as follows.
  • a polyethylene terephthalate (PET) film manufactured by Toyobo Co., Ltd., trade name “Cosmo Shine (registered trademark) A4300”, thickness 50 ⁇ m
  • PET polyethylene terephthalate
  • a silicon oxide film was formed using a general vacuum vapor deposition apparatus to produce a laminated film.
  • the thickness of the silicon nitride film was 0.10 ⁇ m.
  • the coating solution was applied and then dried and cured to form a wavelength conversion layer.
  • a laminated film produced in the same manner as described above was stuck on the formed wavelength conversion layer using an adhesive (OCA8146-1 manufactured by 3M) to produce a wavelength conversion film.
  • the laminated film was laminated on the wavelength conversion layer with the auxiliary layer (silicon oxide film) of the laminated film facing the wavelength conversion layer side.
  • the oxygen permeability of the auxiliary layer was 1.0 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm).
  • Example 1 A wavelength conversion film was produced in the same manner as in Example 1 except that the auxiliary layer was not provided.
  • Example 2 A wavelength conversion film was produced in the same manner as in Example 5 except that the thickness of the silicon nitride film was 0.12 ⁇ m.
  • the oxygen permeability of the auxiliary layer was 0.9 ⁇ 10 ⁇ 2 cc / (m 2 ⁇ day ⁇ atm).
  • a commercially available tablet terminal equipped with a blue light source in the backlight unit (trade name “Kindle (registered trademark) Fire HDX 7”, manufactured by Amazon, hereinafter simply referred to as “Kindle Fire HDX 7”) may be disassembled and back. The light unit was taken out. Instead of the wavelength conversion film QDEF (Quantum Dot Enhancement Film) incorporated in the backlight unit, the wavelength conversion film of Example or Comparative Example was incorporated. In this way, a liquid crystal display device was produced.
  • QDEF Quantum Dot Enhancement Film
  • the manufactured liquid crystal display device is turned on so that the entire surface becomes white display, and the luminance is measured with a luminance meter (trade name “SR3”, manufactured by TOPCON) installed at a position of 520 mm in the vertical direction with respect to the surface of the light guide plate. It was measured.
  • the initial luminance Y 0 (cd / m 2 ) was evaluated based on the following evaluation criteria. -Evaluation criteria- A: Y 0 ⁇ 530 B: 530> Y 0 ⁇ 515 C: 515> Y 0 ⁇ 500 D: 500 ⁇ Y 0
  • each wavelength conversion film was placed on a commercially available blue light source (OPSM-H150X142B manufactured by OPTEX-FA), and the wavelength conversion film was irradiated with blue light continuously for 1000 hours. After 1000 hours, the wavelength conversion film was taken out and incorporated into Kindle Fire HDX 7 in the same manner as described above, the luminance was measured, and the relative luminance Y L after light endurance with respect to the initial luminance Y 0 was calculated. The relative luminance Y L, and evaluated based on the following evaluation criteria.
  • -Evaluation criteria- A: Y L ⁇ 95% B: 95%> Y L ⁇ 90% C: 90%> Y L ⁇ 80% D: 80%> Y L The results are shown in Table 1.
  • the example of the present invention has higher initial luminance than the comparative example, and can suppress a decrease in luminance over time. Further, from the comparison between Example 1 and Example 2, when the binder material is polyvinyl alcohol, the saponification degree is preferably 86 to 97 mol%. From the above, the effects of the present invention are clear.
  • Wavelength conversion film 10a, 10b Wavelength conversion film 12 Wavelength conversion layer 14a, 14b Auxiliary layer 16 Binder 18 Cured particles 20a, 20b Support layer 100 Wavelength conversion film 101A Light source 101B Light guide plate 101C Planar light source 102 Backlight unit 102A Reflector 102B Retroreflective Member 103 Liquid crystal cell unit 104 Liquid crystal display device 110 Liquid crystal cell 120, 130 Polarizing plate 121, 123, 131, 133 Polarizing plate protective film 122, 132 Polarizer

Abstract

酸素による量子ドットの劣化を抑制し、かつ、輝度の低下を抑制できる波長変換フィルムを提供する。波長変換層と、波長変換層を挟持する補助層とを有し、波長変換層が、ポリビニルアルコール、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子を有し、補助層の酸素透過度が1.0×100~1.0×10-2cc/(m2・day・atm)である。

Description

波長変換フィルム
 本発明は、波長変換フィルムに関する。
 液晶表示装置(Liquid Crystal Display、LCD)などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。近年の液晶表示装置において、LCD性能改善としてさらなる省電力化や色再現性向上等が求められている。
 LCDのバックライトの省電力化に伴って、光利用効率を高め、また、色再現性を向上するために、入射光の波長を変換して出射する量子ドット(Quantum Dot、QD、量子点とも呼ばれる。)を発光材料(蛍光体)として含んだ波長変換層を利用することが提案されている。
 量子ドットとは、三次元全方向において移動方向が制限された電子の状態のことであり、半導体のナノ粒子が、高いポテンシャル障壁で三次元的に囲まれている場合に、このナノ粒子は量子ドットとなる。量子ドットは種々の量子効果を発現する。例えば、電子の状態密度(エネルギー準位)が離散化される「量子サイズ効果」が発現する。この量子サイズ効果によれば、量子ドットの大きさを変化させることで、光の吸収波長や発光波長を制御できる。
 一般に、このような量子ドットは、樹脂等の中に分散されて、例えば、波長変換を行う波長変換フィルムとして、バックライトと液晶パネルとの間に配置されて用いられる。
 バックライトから波長変換フィルムに励起光が入射すると、量子ドットが励起され蛍光を発光する。ここで異なる発光特性を有する量子ドットを用い、各量子ドットに赤色光、緑色光もしくは青色光の半値幅の狭い光を発光させることにより白色光を具現化することができる。量子ドットによる蛍光は半値幅が狭いため、波長を適切に選択することで得られる白色光を高輝度にすること、および色再現性に優れる設計にすることが可能である。
 ところで、量子ドットは、水分や酸素により劣化しやすく、特に光酸化反応により発光強度が低下するという問題がある。そのため、波長変換フィルムは、量子ドットを含んだ波長変換層である量子ドットを含む樹脂層(以下、「波長変換層」ともいう)の両主面にガスバリアフィルムを積層して波長変換層を保護するように構成される。
 また、特許文献1には、母材内に量子ドットを分散させて、外表面を低酸素透過性の樹脂でコーティングした被覆粒子が記載されており、この被覆粒子を光学フィルムに用いることが記載されている。
特許第5744033号
 ここで、本発明者らの検討によれば、波長変換フィルムの構成を、波長変換層をガスバリアフィルムで挟む構成とした場合に、ガスバリアフィルムのガスバリア性が高いと、波長変換フィルムから出射される輝度が低くなるという問題が生じることがわかった。
 一般に、ガスバリアフィルムは、無機材料あるいは有機材料からなるバリア層を有してなる。ガスバリア性の高いガスバリアフィルムのバリア層はより緻密に形成される。そのため、波長変換フィルムの波長変換層に入射する光、および、波長変換フィルムの波長変換層で波長変換され出射される光がガスバリアフィルム(バリア層)を通過する際により多く吸収されてしまうため、輝度が低くなってしまうと考えられる。
 本発明は、上記事情に鑑みてなされたものであって、酸素による量子ドットの劣化を抑制し、かつ、輝度の低下を抑制できる波長変換フィルムを提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、波長変換層と、波長変換層を挟持する補助層と、を有し、波長変換層が、ポリビニルアルコール、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有し、補助層の酸素透過度が1.0×100~1.0×10-2cc/(m2・day・atm)であることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
 (1) 波長変換層と、波長変換層を挟持する補助層と、を有し、
 波長変換層が、ポリビニルアルコール、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有し、
 補助層の酸素透過度が1.0×100~1.0×10-2cc/(m2・day・atm)である波長変換フィルム。
 (2) ポリビニルアルコールのけん化度が86~97mol%である(1)に記載の波長変換フィルム。
 (3) 補助層の少なくとも一方が、ポリビニルアルコールからなる層である(1)または(2)に記載の波長変換フィルム。
 (4) 補助層の少なくとも一方が、ブテンジオールとビニルアルコールとの共重合樹脂からなる層である(1)~(3)のいずれかに記載の波長変換フィルム。
 (5) 補助層の少なくとも一方が、エチレンとビニルアルコールとの共重合樹脂からなる層である(1)~(4)のいずれかに記載の波長変換フィルム。
 (6) 補助層の少なくとも一方が、珪素酸化物からなる層である(1)~(5)のいずれかに記載の波長変換フィルム。
 (7) 補助層となる珪素酸化物からなる層を支持する支持層を有する(6)に記載の波長変換フィルム。
 本発明によれば、酸素による量子ドットの劣化を抑制し、かつ、輝度の低下を抑制できる波長変換フィルムを提供することができる。
本発明の波長変換フィルムの一例を模式的に示す断面図である。 本発明の波長変換フィルムの他の一例を模式的に示す断面図である。 波長変換フィルムを備えたバックライトユニットの概略構成断面図である。 バックライトユニットを備えた液晶表示装置の概略構成断面図である。
 以下、図面を参照して、本発明に係る波長変換フィルムの実施の形態について説明する。本明細書の図面において、視認しやすくするために各部の縮尺を適宜変更して示している。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、『(メタ)アクリレート』とは、アクリレートとメタクリレートとの少なくとも一方、または、いずれかの意味で用いるものとする。『(メタ)アクリロイル』等も同様である。
<波長変換フィルム>
 本発明の波長変換フィルムは、
 波長変換層と、波長変換層を挟持する補助層と、を有し、
 波長変換層が、ポリビニルアルコール、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有し、
 補助層の酸素透過度が1.0×100~1.0×10-2cc/(m2・day・atm)である波長変換フィルムである。
 図1は、本発明に係る波長変換フィルムの一例を模式的に示す断面図である。
 図1に示す波長変換フィルム10aは、ポリビニルアルコールからなるバインダー16とバインダー16中に分散された複数の硬化物粒子18と有する波長変換層12、および、波長変換層12を挟持する補助層14a、補助層14bを有する。
 硬化物粒子18は、本発明における『(メタ)アクリレート化合物の硬化物粒子』である。また、硬化物粒子18は、量子ドット等の波長変換粒子を内包し、波長変換フィルムに入射した光を波長変換して出射する機能を有する。
 ここで、本発明に係る波長変換フィルム10aにおいて、補助層14aおよび補助層14bの酸素透過度がそれぞれ1.0×100~1.0×10-2cc/(m2・day・atm)である。
 前述のとおり、本発明者らの検討によれば、量子ドットを樹脂バインダーの中に分散させた波長変換層を有し波長変換を行う波長変換フィルムにおいて、酸素による量子ドットの劣化を抑制するため、波長変換層をガスバリアフィルムで挟んで波長変換層を保護する構成では、波長変換フィルムから出射される光の輝度が低下してしまうという問題があることがわかった。
 これは、ガスバリア性の高いガスバリアフィルムのバリア層は緻密に形成されているため、バリア層を通過する際の光の吸収が大きくなるためと考えられる。
 これに対して、本発明に係る波長変換フィルム10aは、波長変換層12が、量子ドット等の波長変換粒子を内包する複数の硬化物粒子18がバインダー16であるポリビニルアルコール中に分散された構成を有し、かつ、波長変換層12が、酸素透過度1.0×100~1.0×10-2cc/(m2・day・atm)の補助層14a、補助層14bに挟持された構成を有する。
 波長変換層を、波長変換粒子を内包する硬化物粒子がバリア性の高いポリビニルアルコールからなるバインダー中に分散された構成とし、さらに、波長変換層を所定の範囲の酸素透過度の補助層で挟持する構成とすることで、光の吸収が大きくなる高いガスバリア性を有するガスバリアフィルムを用いずに波長変換粒子を保護することができ、従って、波長変換フィルムから出射される光の輝度が低下するのを抑制できる。
 ここで、バリア性の高い(酸素透過係数の低い)樹脂中に直接、波長変換粒子を分散させても、凝集等が生じて適正に分散されない。そこで、波長変換粒子を硬化物粒子18に含有させて、硬化物粒子18をバインダー16中に分散させる構成とすることで、バインダー16としてバリア性の高い樹脂を用いても、硬化物粒子18すなわち波長変換粒子をバインダー16中に適正に分散させることができる。
 また、単に、波長変換粒子を含有する硬化物粒子をバインダー中に分散させる構成とした場合には、波長変換層の表面近傍に存在する波長変換粒子が酸素により劣化して、発光強度が低下するおそれがある。
 これに対して、本発明では、波長変換層12を、酸素透過度が1.0×100cc/(m2・day・atm)以下の補助層14aおよび補助層14bで挟持した構成を有するので、波長変換層の表面近傍に存在する波長変換粒子を酸素から保護して劣化するのを抑制でき、発光強度の低下を抑制することができる。
 その際、補助層14aおよび補助層14bそれぞれの酸素透過度を1.0×10-2cc/(m2・day・atm)以上とすることで、補助層を通過する際の光の吸収を抑制できる。
 また、高価な高いバリア性を有するバリアフィルムを用いる必要がないため、コストを削減できる。
 なお、補助層の酸素透過度は、JIS K 7126-2 2006に基づくガス透過度試験方法にて測定した値である。測定装置としては、MOCON社製酸素透過率測定器OX-TRAN1_50を用いることができる。測定温度は23℃、湿度は50%とした。
 酸素透過度は、SI単位として、fm/(s・Pa)を用いることができる。1fm/(s・Pa)=8.752cc/(m2・day・atm)で換算することが可能である。fmはフェムトメートルと読み、1fm=10-15mを表わす。
 また、図1に示す例では、波長変換層12を補助層14aおよび補助層14bで挾持する構成としたがこれに限定はされず、図2に示す波長変換フィルム10bのように、さらに、補助層を支持する支持層を有する構成であってもよい。図2に示すように、波長変換フィルム10bは、支持層20a、補助層14a、波長変換層12、補助層14bおよび支持層20bがこの順に積層された構成を有する。
 また、波長変換層12と補助層14aおよび補助層14bとは、直接積層されていてもよいし、粘着剤等を介して積層されていてもよい。
 粘着剤としては限定はなく、光学フィルムで用いられる種々の公知の粘着材料が利用可能である。具体的には、OCA(Optically Clear Adhesive)シート等の粘着シートを用いてもよく、あるいは、重合や熱などにより樹脂を硬化させた有機層であってもよい。
 以下に、本発明の波長変換フィルムの各構成要素について説明する。
[波長変換層]
 波長変換層12は、バインダー16と、バインダー16中に分散された複数の硬化物粒子18とを有する。
 波長変換層12の厚みには限定はないが、発光強度の低下をより好適に抑制できる点、および、光の吸収に起因する輝度低下を抑制できる点から、100μm未満が好ましく、50μm未満がより好ましい。
 なお、波長変換層12の厚みは、以下のようにして測定される。
 ダイヤモンドナイフを使用したミクロトームで波長変換層12を厚み方向に切断し、切断面を顕微鏡で観察して、波長変換層12と補助層14aとの境界および波長変換層12と補助層14bとの境界との間の距離を5点計測して、その平均値を波長変換層12の厚みとする。
(硬化物粒子)
 硬化物粒子18は、波長変換粒子を内包する(メタ)アクリレート化合物の粒子状物である。
 硬化物粒子18の平均粒子径は、特に限定は無く、波長変換層12の厚さ、波長変換層12における硬化物粒子18の量等に応じて、適宜、設定すればよい。硬化物粒子18の平均粒子径は、0.5~5μmが好ましい。
 硬化物粒子18の平均粒子径を0.5μm以上とすることにより、凝集することなくバインダー16に硬化物粒子18を分散できる等の点で好ましい。
 硬化物粒子18の平均粒子径を5μm以下とすることにより、波長変換層12の薄膜化を図れる等の点で好ましい。
 波長変換層12中における、硬化物粒子18の含有量は、硬化物粒子18の粒子径、硬化物粒子18における波長変換粒子の含有量、バインダー16となるPVAのけん化度等に応じて適宜設定すればよいが、6~60体積%が好ましく、20~40体積%がより好ましい。
 波長変換層12における硬化物粒子18の含有量を6体積%以上とすることにより、十分な輝度の発光を行うことができる、波長変換層12すなわち波長変換フィルムを薄くできる等の点で好ましい。
 波長変換層12における硬化物粒子18の含有量を60体積%以下とすることにより、バインダー16による波長変換粒子の劣化防止効果を好適に得られる、波長変換層12内に硬化物粒子18を好適に分散できる等の点で好ましい。
 また、硬化物粒子18は、1種の波長変換粒子を内包するものであってもよいし、種類の異なる2種以上の波長変換粒子を内包するものであってもよい。
-(メタ)アクリレート化合物-
 硬化物粒子18の母材は(メタ)アクリレート化合物である。
 波長変換粒子を内包する硬化物粒子18の母材として(メタ)アクリレート化合物を用いることで、波長変換粒子の凝集を抑制して波長変換粒子を硬化物粒子18中に適正に分散させることができる。
 (メタ)アクリレート化合物は、単官能又は多官能(メタ)アクリレートモノマー(重合性化合物)を重合したものである。重合性化合物は、重合性を有していれば、モノマーのプレポリマーやポリマーであってもよい。
 --単官能のもの--
 単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合((メタ)アクリロイル基)を分子内に1個有するモノマーを挙げることができる。それらの具体例として以下に化合物を挙げるが、本実施形態はこれに限定されるものではない。
 メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレート;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキル又はジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノ又はジ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミドなどが挙げられる。
 単官能(メタ)アクリレートモノマーの使用量は、硬化物粒子となる硬化性組成物の溶液に含まれる硬化性化合物の全量100質量部に対して、硬化性組成物の溶液の粘度を好ましい範囲に調整する観点からは、10質量部以上とすることが好ましく、10~80質量部とすることがより好ましい。
 --2官能のもの--
 重合性基を2つ有する重合性単量体として、エチレン性不飽和結合含有基を2個有する2官能重合性不飽和単量体を挙げることができる。2官能の重合性不飽和単量体は組成物を低粘度にするのに適している。本実施形態では、反応性に優れ、残存触媒などの問題の無い(メタ)アクリレート系化合物が好ましい。
 特に、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等が本発明に好適に用いられる。
 2官能(メタ)アクリレートモノマーの使用量は、硬化物粒子となる硬化性組成物の溶液に含まれる硬化性化合物の全量100質量部に対して、硬化性組成物の溶液の粘度を好ましい範囲に調整する観点からは、5質量部以上とすることが好ましく、10~80質量部とすることがより好ましい。
 --3官能以上のもの--
 重合性基を3つ以上有する重合性単量体として、エチレン性不飽和結合含有基を3個以上有する多官能重合性不飽和単量体を挙げることができる。これら多官能の重合性不飽和単量体は機械的強度付与の点で優れる。本実施形態では、反応性に優れ、残存触媒などの問題の無い(メタ)アクリレート系化合物が好ましい。
 具体的には、ECH(Epichlorohydrin)変性グリセロールトリ(メタ)アクリレート、EO(ethylene oxide)変性グリセロールトリ(メタ)アクリレート、PO(propylene oxide)変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が好適である。
 これらの中で特に、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートが本発明に好適に用いられる。
 多官能(メタ)アクリレートモノマーの使用量は、硬化物粒子となる硬化性組成物の溶液に含まれる硬化性化合物の全量100質量部に対して、硬化後の硬化物粒子の強度の観点からは、5質量部以上とすることが好ましく、硬化性組成物の溶液のゲル化抑制の観点からは、95質量部以下とすることが好ましい。
 また、硬化物粒子の耐熱性をより向上させる観点から、(メタ)アクリレートモノマーは脂環式アクリレートであることが好ましい。そのような単官能(メタ)アクリレートモノマーとしては、たとえばジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレ-トが挙げられる。また、2官能(メタ)アクリレートモノマーとしては、たとえばトリシクロデカンジメタノールジ(メタ)アクリレートが挙げられる。
 また、硬化物粒子を形成する硬化性組成物中の重合性化合物の総量は、組成物の取扱いおよび硬化性の観点から硬化性組成物100質量部に対して、70~99質量部であることが好ましく、85~97質量部であることがより好ましい。
 上述した(メタ)アクリレート化合物の中でも、組成物粘度、光硬化性の観点から、アクリレートがより好ましい。また、本発明では、重合性官能基を2つ以上有する多官能重合性化合物が好ましい。本発明では特に、単官能(メタ)アクリレート化合物と多官能(メタ)アクリレート化合物の配合比が、重量比で80/20~0/100が好ましく、70/30~0/100がより好ましく、40/60~0/100であることが好ましい。適切な比率を選択することで、十分な硬化性を有し、且つ組成物を低粘度とすることができる。
 上記多官能(メタ)アクリレート化合物において、上記2官能(メタ)アクリレートと上記3官能以上の(メタ)アクリレートの比率は、質量比で100/0~20/80が好ましく、より好ましくは100/0~50/50、さらに好ましくは100/0~70/30である。上記3官能以上の(メタ)アクリレートは上記2官能(メタ)アクリレートよりも粘度が高いため、上記2官能(メタ)アクリレートが多い方が組成物の粘度を下げられるため好ましい。
 重合性化合物としては芳香族構造および/または脂環炭化水素構造を有する置換基を含有している化合物を含むことが酸素に対する不透過性を高める観点から好ましく、芳香族構造および/または脂環炭化水素構造を有する重合性化合物を成分中50質量%以上含有していることがより好ましく、80質量%以上含有していることがさらに好ましい。芳香族構造を有する重合性化合物としては、芳香族構造を有する(メタ)アクリレート化合物が好ましい。芳香族構造を有する(メタ)アクリレート化合物としては、ナフタレン構造を有する単官能(メタ)アクリレート化合物、例えば1-または2-ナフチル(メタ)アクリレート、1-または2-ナフチルメチル(メタ)アクリレート、1-または2-ナフチルエチル(メタ)アクリレート、芳香環上に置換基を有するベンジルアクリレートなどの単官能アクリレート、カテコールジアクリレート、キシリレングリコールジアクリレートなどの2官能アクリレートが特に好ましい。脂環炭化水素構造を有する重合性化合物としてはイソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレートなどが好ましい。
 また、重合性化合物として、(メタ)アクリレートを用いる場合、硬化性に優れる観点からメタアクリレートよりも、アクリレートの方が好ましい。
 硬化物粒子を形成する硬化性化合物は、重合性化合物として、芳香族構造および/または脂環炭化水素構造を有する(メタ)アクリレート化合物とフッ素原子を有する(メタ)アクリレートの両方を含んでも良い。配合比としては、全重合性化合物成分の80質量%以上が芳香族構造および/または脂環炭化水素構造を有する(メタ)アクリレート化合物であり、0.1~10質量%がフッ素原子を有する(メタ)アクリレートであることが好ましい。さらに、芳香族構造および/または脂環炭化水素構造を有する(メタ)アクリレート化合物が1気圧25℃で液体であり、フッ素原子を有する(メタ)アクリレートが1気圧25℃で固体であるブレンド系が好ましい。
 硬化物粒子を形成する硬化性化合物中における重合性化合物の総含有量は、硬化性改善、硬化性化合物の粘度改善の観点から、溶剤を除いた全成分中、50~99.5質量%が好ましく、70~99質量%がさらに好ましく、90~99質量%が特に好ましい。
 硬化物粒子を形成する硬化性化合物は、重合性化合物成分に関し、より好ましくは25℃における粘度が3~2000mPa・sである重合性化合物の含有量が全重合性化合物に対し80質量%以上であることが好ましく、5~1000mPa・sの重合性化合物が80質量%以上であることがより好ましく、7~500mPa・sの重合性化合物が80質量%以上であることが特に好ましく、10~300mPa・sの重合性化合物が80質量%以上であることが最も好ましい。
 硬化物粒子を形成する硬化性化合物に含まれる重合性化合物は、25℃において液体である重合性化合物が全重合性化合物中50質量%以上であることが経時安定性の観点で好ましい。
-波長変換粒子-
 波長変換粒子としては、公知の各種蛍光体を用いることができる。
 例えば、希土類ドーピングガーネット、ケイ酸塩、アルミン酸塩、リン酸塩、セラミックス蛍光体、硫化物蛍光体、窒化物蛍光体等の無機蛍光体、および、有機蛍光染料および有機蛍光顔料を始めとする有機蛍光物質などである。また、半導体微粒子に希土類をドープした蛍光体、および、半導体のナノ微粒子(量子ドット、量子ロッド)も好適に用いられる。蛍光体は1種単独で用いることもできるが、所望の蛍光スペクトルが得られるように、異なる波長のものを複数混ぜて使用してもよいし、異なる素材構成の蛍光体同士の組み合わせ(例えば、希土類ドーピングガーネットと量子ドットとの組み合わせ)として用いてもよい。
 ここで、上述した蛍光体は酸素に暴露されると酸素と反応して蛍光体としての性能が劣化する。酸素に暴露されるとは、大気中など酸素を含む環境下に曝されることを意味し、酸素と反応して劣化するとは、蛍光体が酸化されることによりその蛍光体の性能が劣化(低下)することを意味し、主として発光性能が酸素と反応する前と比較して低下することをいう。
 以下においては、酸素により劣化する蛍光体として、主に量子ドットを例として説明するが、本発明の蛍光体としては、量子ドットに限らず、その他の酸素により劣化する蛍光色素など、外部からのエネルギーを光に変換する、あるいは光を電気に変換する材料であれば特に限定はされない。
 --量子ドット--
 量子ドットは、数nm~数十nmの大きさをもつ化合物半導体の微粒子であり、少なくとも、入射する励起光により励起され蛍光を発光する。
 本実施形態の蛍光体としては、少なくとも一種の量子ドットを含み、発光特性の異なる二種以上の量子ドットを含むこともできる。公知の量子ドットには、600nm以上680nm以下の範囲の波長帯域に発光中心波長を有する量子ドット(A)、500nm以上~600nm未満の範囲の波長帯域に発光中心波長を有する量子ドット(B)、400nm以上500nm未満の波長帯域に発光中心波長を有する量子ドット(C)があり、量子ドット(A)は、励起光により励起され赤色光を発光し、量子ドット(B)は緑色光を、量子ドット(C)は青色光を発光する。例えば、量子ドット(A)と量子ドット(B)を含む硬化物粒子(波長変換層)へ励起光として青色光を入射させると、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光と、硬化物粒子を透過した青色光により、白色光を具現化することができる。または、量子ドット(A)、(B)、および(C)を含む硬化物粒子に励起光として紫外光を入射させることにより、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および量子ドット(C)により発光される青色光により、白色光を具現化することができる。
 発光特性の異なる二種以上の量子ドットを含む場合には、硬化物粒子が二種以上の量子ドットを内包する構成としてもよいし、一種の量子ドットを内包する硬化物粒子を二種以上有する構成としてもよい。
 量子ドットについては、例えば特開2012-169271号公報段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。量子ドットとしては、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調整することができる。
 量子ドットの含有量は、硬化物粒子の全量に対して、例えば0.01~10質量%程度であるのが好ましく、0.05~5質量%がより好ましい。
 硬化物粒子18中における波長変換粒子の含有量を0.1質量%以上とすることにより、十分な量の波長変換粒子を保持して高輝度な発光が可能になる等の点で好ましい。
 硬化物粒子18における波長変換粒子の含有量を10質量%以下とすることにより、硬化物粒子18内で波長変換粒子を好適に分散して高い量子収率で高輝度な発光が可能になる等の点で好ましい。
 量子ドットは、硬化物粒子となる硬化性組成物の溶液中に粒子の状態で添加してもよく、有機溶媒に分散した分散液の状態で添加してもよい。分散液の状態で添加することが、量子ドットの粒子の凝集を抑制する観点から好ましい。量子ドットの分散のために使用される有機溶媒は、特に限定されるものではない。
 量子ドットとしては、例えば、コアーシェル型の半導体ナノ粒子が、耐久性を向上する観点から好ましい。コアとしては、II-VI族半導体ナノ粒子、III-V族半導体ナノ粒子、及び多元系半導体ナノ粒子等を用いることができる。具体的には、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、InP、InAs、InGaP等が挙げられるが、これらに限定されない。中でも、CdSe、CdTe、InP、InGaPが、高効率で可視光を発光する観点から、好ましい。シェルとしては、CdS、ZnS、ZnO、GaAs、およびこれらの複合体を用いることができるが、これらに限定されない。量子ドットの発光波長は、通常、粒子の組成およびサイズにより調整することができる。
 量子ドットは、球形の粒子であってもよく、また、量子ロッドとも呼ばれる、棒状の粒子であってもよく、さらに、テトラポッド型の粒子であってもよい。発光半値幅(full width at half maximum,FWHM)を狭くし、色再現域を拡大する観点からは、球形の量子ドット、または棒状の量子ドット(すなわち、量子ロッド)が好ましい。
 量子ドットの表面には、ルイス塩基性の配位性基を有する配位子が配位していても良い。また、すでにこのような配位子が配位した量子ドットを用いることも可能である。ルイス塩基性の配位性基としては、アミノ基、カルボキシ基、メルカプト基、ホスフィン基、およびホスフィンオキシド基、等を挙げることができる。具体的には、ヘキシルアミン、デシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン、オレイン酸、メルカプトプロピオン酸、トリオクチルホスフィン、およびトリオクチルホスフィンオキシド等を上げることができる。なかでも、ヘキサデシルアミン、トリオクチルホスフィン、およびトリオクチルホスフィンオキシドが好ましく、トリオクチルホスフィンオキシドが特に好ましい。
 これらの配位子が配位した量子ドットは、公知の合成方法によって作製することができる。例えば、特開2007-277514号に記載の方法、C.B.Murray,D.J.Norris、M.G.Bawendi,Journal Amarican Chemical Society,1993,115(19),pp8706-8715、または、The Journal Physical Chemistry,101,pp9463-9475,1997に記載された方法によって合成することができる。また、配位子が配位した量子ドットは、市販のものを何ら制限無く用いることができる。例えば、Lumidot(シグマアルドリッチ社製)を挙げることができる。
-重合開始剤-
 硬化物粒子を形成する硬化性組成物の溶液は、重合開始剤を含むことができ、重合開始剤としては、公知の重合開始剤を含むことができる。重合開始剤については、例えば、特開2013-043382号公報の段落0037を参照できる。重合開始剤は、溶液に含まれる硬化性化合物の全量の0.1モル%以上であることが好ましく、0.5~2モル%であることがより好ましい。また、揮発性有機溶媒を除いた全硬化性組成物中に質量%として、0.1質量%~10質量%含むことが好ましく、さらに好ましくは0.2質量%~8質量%である。
 ―-光重合開始剤-―
 硬化物粒子を形成する硬化性組成物は、光重合開始剤を含むことが好ましい。光重合開始剤としては、光照射により上述の重合性化合物を重合する活性種を発生する化合物であればいずれのものでも用いることができる。光重合開始剤としては、カチオン重合開始剤、ラジカル重合開始剤が挙げられ、ラジカル重合開始剤が好ましい。また、本発明において、光重合開始剤は複数種を併用してもよい。
 光重合開始剤の含有量は、溶剤を除く全組成物中、例えば、0.01~15質量%であり、好ましくは0.1~12質量%であり、さらに好ましくは0.2~7質量%である。2種類以上の光重合開始剤を用いる場合は、その合計量が上記範囲となる。
 光重合開始剤の含有量が0.01質量%以上であると、感度(速硬化性)、塗膜強度が向上する傾向にあり好ましい。一方、光重合開始剤の含有量を15質量%以下とすると、光透過性、着色性、取り扱い性などが向上する傾向にあり、好ましい。染料および/または顔料を含む系では、これらがラジカルトラップ剤として働くことがあり、光重合性、感度に影響を及ぼす。その点を考慮して、これらの用途では、光重合開始剤の添加量が最適化される。一方で、本発明に用いられる組成物では、染料および/または顔料は必須成分でなく、光重合開始剤の最適範囲が液晶ディスプレイカラーフィルタ用硬化性組成物等の分野のものとは異なる場合がある。
 ラジカル光重合開始剤としては、例えば、市販されている開始剤を用いることができる。これらの例としては、例えば、特開平2008-105414号公報の段落番号0091に記載のものを好ましく採用することができる。この中でもアセトフェノン系化合物、アシルホスフィンオキサイド系化合物、オキシムエステル系化合物が硬化感度、吸収特性の観点から好ましい。
 アセトフェノン系化合物として好ましくはヒドロキシアセトフェノン系化合物、ジアルコキシアセトフェノン系化合物、アミノアセトフェノン系化合物が挙げられる。ヒドロキシアセトフェノン系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)2959(1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン)、Irgacure(登録商標)184(1-ヒドロキシシクロヘキシルフェニルケトン)、Irgacure(登録商標)500(1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン)、Darocur(登録商標)1173(2-ヒドロキシ-2-メチル-1-フェニル-1-プロパン-1-オン)が挙げられる。ジアルコキシアセトフェノン系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)651(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)が挙げられる。
 アミノアセトフェノン系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)369(2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1)、Irgacure(登録商標)379(EG)(2-ジメチルアミノー2ー(4メチルベンジル)-1-(4-モルフォリン-4-イルフェニル)ブタン-1-オン)、Irgacure(登録商標)907(2-メチル-1[4-メチルチオフェニル]-2-モルフォリノプロパン-1-オン)が挙げられる。
 アシルホスフィンオキサイド系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)、Irgacure(登録商標)1800(ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド)、BASF社から入手可能なLucirin TPO(2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド)、Lucirin TPO-L(2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサイド)が挙げられる。
 オキシムエステル系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)OXE01(1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム))、Irgacure(登録商標)OXE02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム))が挙げられる。
 カチオン光重合開始剤としては、スルホニウム塩化合物、ヨードニウム塩化合物、オキシムスルホネート化合物などが好ましく、4-メチルフェニル[4 -(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート(ローデア製 PI2074)、4-メチルフェニル[4 -(2-メチルプロピル)フェニルヨードニウムヘキサフルオロフォスフェート(BASF社製IRGACURE250)、IRGACURE PAG103、108、121、203(BASF社製)などが挙げられる。
 光重合開始剤は、使用する光源の波長に対して適時に選択する必要があるが、露光中にガスを発生させないものが好ましい。
 硬化物粒子を形成する硬化性化合物は、重合性化合物がラジカル重合性化合物であり、光重合開始剤が光照射によりラジカルを発生するラジカル重合開始剤であるラジカル重合性硬化性組成物であることが好ましい。
-その他の添加剤-
 硬化物粒子を形成する硬化性組成物の溶液は、高分子分散剤、粘度調整剤、界面活性剤、酸化防止剤、酸素ゲッター剤、重合禁止剤、無機粒子等を含有してもよい。
 --高分子分散剤--
 硬化物粒子を形成する硬化性組成物は、量子ドットを硬化物粒子中に分散させるための高分子分散剤を含んでもよい。
 高分子分散剤は、量子ドットの表面に配位する配位性基を有し、下記一般式Iで表される化合物である。
 一般式Iの構造をもつ高分子分散剤は多点吸着ゆえに脱離しにくく、高い分散性を付与することができる。また吸着基が末端に密集しているため粒子間架橋しにくく、気泡巻き込みを引き起こす液粘度増加を抑制することができる。
Figure JPOXMLDOC01-appb-C000001
 一般式I中、Aは、量子ドットに配位する配位性基を有する有機基であり、Zは(n+m+l)価の有機連結基であり、XおよびXは、単結合または2価の有機連結基であり、Rは、置換基を有してもよいアルキル基、アルケニル基またはアルキニル基を表し、Pは、重合度が3以上のポリアクリレート骨格、ポリメタクリレート骨格、ポリアクリルアミド骨格、ポリメタクリルアミド骨格、ポリエステル骨格、ポリウレタン骨格、ポリウレア骨格、ポリアミド骨格、ポリエーテル骨格、ポリビニルエーテル骨格、およびポリスチレン骨格から選択される少なくとも1つのポリマー骨格を含む高分子鎖を有する基である。nおよびmは、各々独立に1以上の数であり、lは0以上の数であり、n+m+lは2以上10以下の整数である。n個のAは、同一であっても異なっていてもよい。m個のPは、同一であっても異なっていてもよい。l個のXおよびRは、それぞれ同一であっても異なっていてもよい。
 一般式I中、XおよびXは、単結合または2価の有機連結基を表す。2価の有機連結基としては、1~100個までの炭素原子、0個~10個までの窒素原子、0個~50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基を有していてもよい。
 2価の有機連結基XおよびXは、単結合、または、1から50個までの炭素原子、0個から8個までの窒素原子、0個から25個までの酸素原子、1個から100個までの水素原子、および0個から10個までの硫黄原子から成り立つ2価の有機連結基が好ましい。単結合、または、1から30個までの炭素原子、0個から6個までの窒素原子、0個から15個までの酸素原子、1個から50個までの水素原子、および0個から7個までの硫黄原子から成り立つ2価の有機連結基がより好ましい。単結合、または、1から10個までの炭素原子、0個から5個までの窒素原子、0個から10個までの酸素原子、1個から30個までの水素原子、および0個から5個までの硫黄原子から成り立つ2価の有機連結基が特に好ましい。
 2価の有機連結基XおよびXは、具体的な例として、下記の構造単位が組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 2価の有機連結基XおよびXが置換基を有する場合、置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。
 Zで表される(n+m+l)価の有機連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基をさらに有していてもよい。
 (n+m+l)価の有機連結基Zとしては、1から60個までの炭素原子、0個から10個までの窒素原子、0個から40個までの酸素原子、1個から120個までの水素原子、および0個から10個までの硫黄原子から成り立つ基が好ましく、1から50個までの炭素原子、0個から10個までの窒素原子、0個から30個までの酸素原子、1個から100個までの水素原子、および0個から7個までの硫黄原子から成り立つ基がより好ましく、1から40個までの炭素原子、0個から8個までの窒素原子、0個から20個までの酸素原子、1個から80個までの水素原子、および0個から5個までの硫黄原子から成り立つ基が特に好ましい。
 (n+m+l)価の有機連結基Zは、下記の構造単位または構造単位が組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 (n+m+l)価の有機連結基Zの具体例(1)~(20)を以下に示す。但し、本発明においては、これらに制限されるものではない。下記の有機連結基中の*は、一般式I中のA、X、およびXと結合する部位を示す。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 (n+m+l)価の有機連結基Zが置換基を有する場合、置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基、等が挙げられる。
 上記の具体例の中でも、原料の入手性、合成の容易さ、モノマー、および各種溶媒への溶解性の観点から、最も好ましい(n+m+l)価の有機連結基Zは下記の基である。
Figure JPOXMLDOC01-appb-C000007
 一般式I中、Rは、置換基を有してもよいアルキル基、アルケニル基またはアルキニル基である。炭素数1から30が好ましく、炭素数1から20がより好ましい。置換基としては、置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基、等が挙げられる。
 本発明における高分子鎖Pは、重合度が3以上のポリアクリレート骨格、ポリメタクリレート骨格、ポリアクリルアミド骨格、ポリメタクリルアミド骨格、ポリエステル骨格、ポリウレタン骨格、ポリウレア骨格、ポリアミド骨格、ポリエーテル骨格、ポリビニルエーテル骨格、およびポリスチレン骨格から選択される少なくとも1つのポリマー骨格を含むものであり、これらのポリマー骨格を有する重合体、変性物、または共重合体をも含む意味である。例えば、ポリエーテル/ポリウレタン共重合体、ポリエーテル/ビニルモノマーの重合体の共重合体等が挙げられる。また、高分子鎖は、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよい。中でも、ポリアクリレート骨格からなる重合体もしくは共重合体が特に好ましい。
 さらには、高分子鎖Pは溶媒に可溶であることが好ましい。溶媒との親和性が低いと、例えば、配位子として使用した場合、分散媒との親和性が弱まり、分散安定化に充分な吸着層を確保できなくなることがある。
 上記高分子鎖Pを形成するモノマーとしては、特に制限されないが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、脂肪族ポリエステル、(メタ)アクリルアミド類、脂肪族ポリアミドスチレン類、ビニルエーテル類、ビニルケトン類、オレフィン類、マレイミド類、(メタ)アクリロニトリル、酸性基を有するモノマーなどが好ましい。
 以下、これらのモノマーの好ましい例について説明する。
 (メタ)アクリル酸エステル類の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸t-オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸アセトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-(2-メトキシエトキシ)エチル、(メタ)アクリル酸3-フェノキシ-2-ヒドロキシプロピル、(メタ)アクリル酸-2-クロロエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、(メタ)アクリル酸ビニル、(メタ)アクリル酸2-フェニルビニル、(メタ)アクリル酸1-プロペニル、(メタ)アクリル酸アリル、(メタ)アクリル酸2-アリロキシエチル、(メタ)アクリル酸プロパルギル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジエチレングリコールモノメチルエーテル、(メタ)アクリル酸ジエチレングリコールモノエチルエーテル、(メタ)アクリル酸トリエチレングリコールモノメチルエーテル、(メタ)アクリル酸トリエチレングリコールモノエチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノエチルエーテル、(メタ)アクリル酸β-フェノキシエトキシエチル、(メタ)アクリル酸ノニルフェノキシポリエチレングリコール、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸トリフロロエチル、(メタ)アクリル酸オクタフロロペンチル、(メタ)アクリル酸パーフロロオクチルエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸トリブロモフェニルオキシエチル、(メタ)アクリル酸-γ-ブチロラクトンなどが挙げられる。
 クロトン酸エステル類の例としては、クロトン酸ブチル、およびクロトン酸ヘキシル等が挙げられる。
 ビニルエステル類の例としては、ビニルアセテート、ビニルクロロアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、および安息香酸ビニルなどが挙げられる。
 マレイン酸ジエステル類の例としては、マレイン酸ジメチル、マレイン酸ジエチル、およびマレイン酸ジブチルなどが挙げられる。
 フマル酸ジエステル類の例としては、フマル酸ジメチル、フマル酸ジエチル、およびフマル酸ジブチルなどが挙げられる。
 イタコン酸ジエステル類の例としては、イタコン酸ジメチル、イタコン酸ジエチル、およびイタコン酸ジブチルなどが挙げられる。
 脂肪族ポリエステル類の例としては、ポリカプロラクトンおよびポリバレロラクトンなどが挙げられる。
 (メタ)アクリルアミド類としては、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチルアクリル(メタ)アミド、N-t-ブチル(メタ)アクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N-(2-メトキシエチル)(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-ニトロフェニルアクリルアミド、N-エチル-N-フェニルアクリルアミド、N-ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミド、N-メチロールアクリルアミド、N-ヒドロキシエチルアクリルアミド、ビニル(メタ)アクリルアミド、N,N-ジアリル(メタ)アクリルアミド、N-アリル(メタ)アクリルアミドなどが挙げられる。
 脂肪族ポリアミド類の例としては、ポリカプロラクタムおよびポリバレロラクタムなどが挙げられる
 スチレン類の例としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えばt-Bocなど)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、およびα-メチルスチレンなどが挙げられる。
 ビニルエーテル類の例としては、メチルビニルエーテル、エチルビニルエーテル、2-クロロエチルビニルエーテル、ヒドロキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテル、メトキシエチルビニルエーテルおよびフェニルビニルエーテルなどが挙げられる。
 ビニルケトン類の例としては、メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトンなどが挙げられる。
 オレフィン類の例としては、エチレン、プロピレン、イソブチレン、ブタジエン、イソプレンなどが挙げられる。
 マレイミド類の例としては、マレイミド、ブチルマレイミド、シクロヘキシルマレイミド、フェニルマレイミドなどが挙げられる。
 (メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、N-ビニルピロリドン、ビニルカルバゾールなど)、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルイミダゾール、ビニルカプロラクトン等も使用できる。
 高分子鎖Pは、さらに下記一般式P1で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式P1中、Eは、-O-、-CO-、-COO-、-COOR、エポキシ基、オキセタニル基、脂環式エポキシ基、アルキレン基、アルキル基、およびアルケニル基の少なくとも1つから構成される置換基であり、Rは、水素原子、または炭素数1から6のアルキル基であり、Rは、水素原子または炭素数1から6のアルキル基である。npは3以上500以下の数である。複数のEおよびRは、各々同一であっても異なっていてもよい。
 一般式P1で表される高分子鎖として、下記のものが挙げられる。
 npは、3~500が好ましく、4~200がより好ましく、5~100がさらに好ましい。
Figure JPOXMLDOC01-appb-C000009
 高分子分散剤は、さらに一般式Iにおいて、nおよびmが1であり、lが0であり、下記一般式IIで表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000010
 Aは、下記一般式A1で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式A1中、Xは、単結合または2価の有機連結基であり、Xは、(a1+1)価の有機連結基であり、Lは配位性基であり、a1は、1以上2以下の整数である。Xは、一般式IにおけるXと同義であり、好ましい範囲も同じである。
 (a1+1)価の有機連結基Xとしては、1から60個までの炭素原子、0個から10個までの窒素原子、0個から40個までの酸素原子、1個から120個までの水素原子、および0個から10個までの硫黄原子から成り立つ基が好ましく、1から50個までの炭素原子、0個から10個までの窒素原子、0個から30個までの酸素原子、1個から100個までの水素原子、および0個から7個までの硫黄原子から成り立つ基がより好ましく、1から40個までの炭素原子、0個から8個までの窒素原子、0個から20個までの酸素原子、1個から80個までの水素原子、および0個から5個までの硫黄原子から成り立つ基が特に好ましい。
 (a1+1)価の有機連結基Xの具体的な例として、下記の構造単位または構造単位が組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。
Figure JPOXMLDOC01-appb-C000012
 (a1+1)価の有機連結基Xが置換基を有する場合、置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基、等が挙げられる。
 配位性基Lは、アミノ基、カルボキシ基、メルカプト基、ホスフィン基、およびホスフィンオキシド基から選択される少なくとも1つが好ましい。なかでもカルボキシ基およびホスフィンオキシド基がさらに好ましい。
 上記一般式A1において、配位性基Lと2価の有機連結基Xを含む基としては、下記のものが好ましい。下記の基中*は、Xと結合する部位を示す。
Figure JPOXMLDOC01-appb-C000013
 このようなXは、長さが約1nmよりも小さく、この長さの範囲に複数の配位性基を有する。このため、配位子が、量子ドットにさらに密な状態で多点吸着することができるため、強固に配位する。これにより、量子ドットは、配位子が外れることなく、量子ドットの表面を覆っているため、量子ドット表面の表面準位の生成、量子ドットの酸化、および量子ドットの凝集を防ぎ、発効効率の低下を抑制することができる。また、量子ドットに既に配位子が配位している場合であっても、その配位子の隙間に高分子分散剤が入りこむことが可能であり、さらに、量子ドットの発効効率の低下を抑制することができる。
 高分子分散剤は、下記一般式IIIで表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000014
 一般式III中、XおよびXは、単結合または2価の有機連結基であり、RおよびRは、水素原子または炭素数1から6のアルキル基であり、Pは、重合度が3以上のポリアクリレート骨格、ポリメタクリレート骨格、ポリアクリルアミド骨格、ポリメタクリルアミド骨格、ポリエステル骨格、ポリウレタン骨格、ポリウレア骨格、ポリアミド骨格、ポリエーテル骨格、ポリビニルエーテル骨格、およびポリスチレン骨格から選択される少少なくとも1つのポリマー骨格を含む高分子鎖を有する基である。aおよびbは、各々独立に1以上の数であり、a+bは、2以上1000以下である。複数のLは、各々同一であっても異なっていてもよい。複数のPは、各々同一であっても異なっていてもよい。
 XおよびXは、単結合または2価の有機連結基である。2価の有機連結基としてのXおよびXは、一般式Iにおける2価の有機連結基Xと同義である。特に、-COO-、-CONH-、-O-等を含む基が、素材入手や合成の容易さの観点から好ましい。
 RおよびRは、炭素数1から6のアルキル基であり、水素原子またはメチル基が好ましい。
 一般式IIIにおける高分子鎖Pとしては、以下のものが好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記高分子鎖Pにおいて、npは、3~300が好ましく、4~200がより好ましく、5~100がより好ましい。
 一般式IIIで表される高分子分散剤の具体例として、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 上記高分子分散剤のa:bは、1:9~7:3が好ましく、2:8~5:5がより好ましい。
 高分子分散剤の分子量としては、重量平均分子量で、2000~100000が好ましく、3000~50000がより好ましく、5000~30000が特に好ましい。重量平均分子量がこの範囲内であると、量子ドットを、アクリルモノマー中へ良好に分散させることができる。
(高分子分散剤の合成)
 一般式IおよびIIの配位子は、公知の合成法によって合成することができる。例えば、特開2007-277514号公報に記載の方法において、有機色素部位を配位性部位に置き換えることで合成することができる。
 一般式IIIの高分子分散剤は、対応するモノマーの共重合や前駆体ポリマーへ高分子反応により合成できる。側鎖に立体反発基を有するモノマーとしては、例えば、ブレンマーAE-400(日油株式会社)、ブレンマーAP-800(日油株式会社)等の市販品を挙げることができる。
 --粘度調整剤--
 硬化物粒子を形成する硬化性組成物の溶液は、必要に応じて粘度調整剤を含んでもよい。粘度調整剤を添加することによって、それらを所望の粘度に調整することが可能である。粘度調整剤は、粒径が5nm~300nmであるフィラーであることが好ましい。また、粘度調整剤はチキソトロピー剤であってもよい。なお、本発明および本明細書中、チキソトロピー性とは、液状組成物において、せん断速度の増加に対して粘性を減じる性質を指し、チキソトロピー剤とは、それを液状組成物に含ませることによって、組成物にチキソトロピー性を付与する機能を有する素材のことを指す。チキソトロピー剤の具体例としては、ヒュームドシリカ、アルミナ、窒化珪素、二酸化チタン、炭酸カルシウム、酸化亜鉛、タルク、雲母、長石、カオリナイト(カオリンクレー)、パイロフィライト(ろう石クレー)、セリサイト(絹雲母)、ベントナイト、スメクタイト・バーミキュライト類(モンモリロナイト、バイデライト、ノントロナイト、サポナイトなど)、有機ベントナイト、有機スメクタイト等が挙げられる。
 --界面活性剤--
 硬化物粒子を形成する硬化性組成物の溶液は、フッ素原子を20質量%以上含有する少なくとも1種の界面活性剤を含んでいても良い。
 界面活性剤は、フッ素原子を25質量%以上含有することが好ましく、28質量%以上含有することがより好ましい。上限値としては、特に定めるものではないが、例えば80質量%以下であり、好ましくは70質量%以下である。
 本発明で用いる界面活性剤としては、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基またはフッ素原子を有するアリール基を有する化合物であることが好ましい。
 フッ素原子を含んだアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された直鎖又は分岐鎖アルキル基である。このアルキル基は、炭素数が1~10であることが好ましく、炭素数が1~4であることがより好ましい。このフッ素原子を含んだアルキル基は、フッ素原子以外の置換基を更に有していてもよい。
 フッ素原子を含んだシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環式又は多環式のシクロアルキル基である。このフッ素原子を含んだシクロアルキル基は、フッ素原子以外の置換基を更に有していてもよい。
 フッ素原子を含んだアリール基は、少なくとも1つの水素原子がフッ素原子で置換されたアリール基である。このアリール基としては、例えば、フェニル基及びナフチル基が挙げられる。このフッ素原子を含んだアリール基は、フッ素原子以外の置換基を更に有していてもよい。
 このような構造を有することによって表面偏在能が良好となり、また重合体との部分的な相溶が生じて相分離が抑制されると考えられる。
 界面活性剤の分子量は、300~10000が好ましく、500~5000がより好ましい。
 界面活性剤の含有量は、溶剤を除く全組成物中、例えば、0.01~10質量%であり、好ましくは0.1~7質量%であり、さらに好ましくは0.5~4質量%である。2種類以上の界面活性剤を用いる場合は、その合計量が上記範囲となる。
 界面活性剤の例としては、商品名フロラードFC-430、FC-431(住友スリーエム社製)、商品名サーフロン「S-382」(旭硝子製)、EFTOP「EF-122A、122B、122C、EF-121、EF-126、EF-127、MF-100」(トーケムプロダクツ社製)、商品名PF-636、PF-6320、PF-656、PF-6520(いずれもOMNOVA社)、商品名フタージェントFT250、FT251、DFX18(いずれも(株)ネオス製)、商品名ユニダインDS-401、DS-403、DS-451(いずれもダイキン工業(株)製)、商品名メガファック171、172、173、178K、178A、(いずれもDIC(株)製)、商品名X-70-090、X-70-091、X-70-092、X-70-093、(いずれも信越化学工業社製)、商品名メガファックR-08、XRB-4(いずれもDIC(株)製)が挙げられる。
 --酸化防止剤--
 硬化物粒子を形成する硬化性組成物には、公知の酸化防止剤を含有することが好ましい。酸化防止剤は、熱や光照射による退色およびオゾン、活性酸素、NOx、SOx(Xは整数)などの各種の酸化性ガスによる退色を抑制するものである。特に本発明では、酸化防止剤を添加することにより、硬化物粒子の着色防止や、分解による膜厚減少を低減できるという利点がある。
 また、酸化防止剤として2種類以上の酸化防止剤を用いてもよい。
 硬化物粒子を形成する硬化性組成物において、酸化防止剤は、硬化性化合物の全質量に対し、0.2質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。一方、酸化防止剤は酸素との間での相互作用により変質することがある。変質した酸化防止剤は量子ドット含有する硬化性組成物の分解を誘引することがあり、密着性低下、脆性悪化、量子ドット発光効率低下をもたらすおそれがある。これらを防止する観点から20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 酸化防止剤としては、ラジカル阻害剤,金属不活性化剤,一重項酸素消去剤,スーパーオキシド消去剤,またはヒドロキシラジカル消去剤のうち少なくとも1種であることが好ましい。かかる酸化防止剤としては、フェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、キノン系酸化防止剤、リン系酸化防止剤、チオール系酸化防止剤等が例示される。
 フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン((アデカスタブAO-60 (株)ADEKA製))、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。
 リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト;トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコール及び2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の添加量は、ポリオレフィン系樹脂100質量部に対して0.001~10質量部であることが好ましく、特に0.05~5質量部であることが好ましい。
 チオール系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類;及びペンタエリスリトールテトラ(β-アルキルメルカプトプロピオン酸)エステル類等が挙げられる。
 ヒンダードアミン系酸化防止剤は、HALS(Hidered amine light stabilizers)とも称され、ピペリジンの2位及び6位の炭素上の全ての水素原子がメチル基で置換された構造、好ましくは下記式1で表わされる基を有する。ただし、式1中Xは水素原子又はアルキル基を表す。下記式1で表わされる基のなかでも、Xが水素原子である2,2,6,6-テトラメチル-4-ピペリジル基、又はXがメチル基である1,2,2,6,6-ペンタメチル-4-ピペリジル基を有するHALSが特に好ましく採用される。なお、式1で表わされる基が-COO-基に結合している構造、すなわち下記式2で表わされる基を有するHALSが数多く市販されているがこれらは好ましく使用できる。
Figure JPOXMLDOC01-appb-C000017
 具体的に本発明で好ましく使用できるHALSを挙げると、例えば以下の式で表わされるものが挙げられる。なお、ここで2,2,6,6-テトラメチル-4-ピペリジル基をR、1,2,2,6,6-ペンタメチル-4-ピペリジル基をR’で表す。
ROC(=O)(CHC(=O)OR、ROC(=O)C(CH)=CH、R’OC(=O)C(CH)=CH、CH(COOR)CH(COOR)CH(COOR)CHCOOR、CH(COOR’)CH(COOR’)CH(COOR’)CHCOOR’、式3で表わされる化合物等。
Figure JPOXMLDOC01-appb-C000018
 具体的には、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン等のヒンダードアミン化合物が挙げられる。
 また、具体的な商品としては、チヌビン123、チヌビン144、チヌビン765、チヌビン770、チヌビン622、チマソーブ944、チマソーブ119(以上はいずれも、チバ・スペシャリティ・ケミカルズ社商品名)、アデカスタブLA52、アデカスタブLA57、アデカスタブLA62、アデカスタブLA67、アデカスタブLA82、アデカスタプLA87、アデカスタブLX335(以上はいずれも旭電化工業社商品名)等を挙げることができるが、これらに限定されない。
 HALSのなかでも分子が比較的小さいものは拡散しやすく好ましい。この観点で好ましいHALSとしては、ROC(=O)(CHC(=O)OR、R’OC(=O)C(CH)=CHで表わされる化合物等である。
 上記した酸化防止剤のうち、ヒンダードフェノール化合物,ヒンダードアミン化合物,キノン化合物,ヒドロキノン化合物,トリフェロール化合物,アスパラギン酸化合物,または,チオール化合物のうち少なくとも1種であることがより好ましく、クエン酸化合物,アスコルビン酸化合物,または,トコフェロール化合物のうち少なくとも1種であることが更に好ましい。これらの化合物としては特に制限されないが、ヒンダードフェノール,ヒンダードアミン,キノン,ヒドロキノン,トリフェロール,アスパラギン酸,チオール,クエン酸,トコフェリル酢酸,及び,トコフェリルリン酸それ自体、またはそれらの塩やエステル化合物等が好ましく挙げられる。
 以下に、酸化防止剤の一例を示す。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 -酸素ゲッター剤-
 酸素ゲッター剤としては、ゲッター剤として用いられる公知の物質を用いることができ、無機系ゲッター剤又は有機系ゲッター剤のいずれでもよく、金属酸化物、金属ハロゲン化物、金属硫酸塩、金属過塩素酸塩、金属炭酸塩、金属アルコキシド、金属カルボキシレート、金属キレート、またはゼオライト(アルミノケイ酸塩)の中から選ばれた少なくとも1種の化合物を含むことが好ましい。
 かかる酸素ゲッター剤としては、酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化マグネシウム(MgO)、酸化ストロンチウム(SrO)、硫酸リチウム(LiSO)、硫酸ナトリウム(NaSO)、硫酸カルシウム(CaSO)、硫酸マグネシウム(MgSO)、硫酸コバルト(CoSO)、硫酸ガリウム(Ga(SO)、硫酸チタン(Ti(SO)、硫酸ニッケル(NiSO)等が挙げられる。
 有機系ゲッター剤としては、化学反応により水を取り込み、その反応前後で不透明化しない材料であれば特に制限されない。ここで、有機金属化合物とは、金属-炭素結合や金属-酸素結合、金属-窒素結合等を有する化合物を意味する。水と有機金属化合物とが反応すると加水分解反応により、前述の結合が切れて金属水酸化物になる。金属によっては金属水酸化物に反応後に加水分解重縮合を行い高分子量化してもよい。
 金属アルコキシド、金属カルボキシレート、及び金属キレートの金属としては、有機金属化合物として水との反応性が良いもの、すなわち、水により各種結合と切れやすい金属原子を用いることが好ましい。具体的には、アルミニウム、ケイ素、チタン、ジルコニウム、ケイ素、ビスマス、ストロンチウム、カルシウム、銅、ナトリウム、リチウムが挙げられる。また、セシウム、マグネシウム、バリウム、バナジウム、ニオブ、クロム、タンタル、タングステン、クロム、インジウム、鉄などが挙げられる。特にアルミニウムを中心金属として持つ有機金属化合物の乾燥剤が樹脂中への分散性や水との反応性の点で好適である。有機基は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、2-エチルヘキシル基、オクチル基、デシル基、ヘキシル基、オクタデシル基、ステアリル基などの不飽和炭化水素、飽和炭化水素、分岐不飽和炭化水素、分岐飽和炭化水素、環状炭化水素を含有したアルコキシ基やカルボキシル基、アセエチルアセトナト基、ジピバロイルメタナト基などのβ-ジケトナト基が挙げられる。
 中でも、下記化学式に示す、炭素数が1~8のアルミニウムエチルアセトアセテート類が、透明性に優れた封止組成物を形成できる点から好適に用いられる。
Figure JPOXMLDOC01-appb-C000028
(式中、R~Rは炭素数1個以上8個以下のアルキル基,アリール基,アルコキシ基,シクロアルキル基,アシル基を含む有機基を示し、Mは3価の金属原子を示す。なお、R~Rはそれぞれ同じ有機基でも異なる有機基でもよい。)
 上記炭素数が1~8のアルミニウムエチルアセトアセテート類は、例えば、川研ファインケミカル株式会社、ホープ製薬株式会社から上市されており、入手可能である。
 酸素ゲッター剤は粒子状又は粉末状である。酸素ゲッター剤の平均粒子径は通常20μm未満の範囲とすれば良く、好ましくは10μm以下、より好ましくは2μm以下、更に好ましくは1μm以下である。散乱性の観点から、酸素ゲッター剤の平均粒子径は、0.3~2μmであることが好ましく、0.5~1.0μmであることがより好ましい。ここでいう平均粒径とは、動的光散乱法によって測定した粒度分布から算出した、粒子径の平均値をいう。
-重合禁止剤-
 硬化物粒子を形成する硬化性組成物の溶液には、重合禁止剤を含有してもよい。重合禁止剤の含有量としては、全重合性単量体に対し、0.001~1質量%であり、より好ましくは0.005~0.5質量%、さらに好ましくは0.008~0.05質量%である、重合禁止剤を適切な量配合することで高い硬化感度を維持しつつ経時による粘度変化が抑制できる。一方、重合禁止剤の添加量が過剰となる場合、重合阻害による硬化不良や硬化物の着色が発生するため適量が存在する。重合禁止剤は重合性単量体の製造時に添加してもよいし、硬化組成物に後から添加してもよい。好ましい重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩、フェノチアジン、フェノキサジン、4-メトキシナフトール、2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、ニトロベンゼン、ジメチルアニリン等が挙げられ、好ましくはp-ベンゾキノン、2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、フェノチアジンである。これら重合禁止剤は重合性単量体の製造時だけでなく、硬化組成物の保存時においてもポリマー不純物の生成を抑制し、インプリント時のパターン形成性の劣化を抑制する。
 --無機粒子--
 さらに、硬化物粒子を形成する硬化性組成物の溶液には、無機粒子を含有することが好ましい。無機粒子を含有することで酸素に対する不透過性を高めることができる。無機粒子の一例として、シリカ粒子、アルミナ粒子、酸化ジルコニウム粒子、酸化亜鉛粒子、酸化チタン粒子、マイカやタルク等の無機層状化合物が挙げられる。また無機粒子は平板状であることが酸素に対する不透過性を高める観点から好ましく、無機粒子のアスペクト比(r=a/b、ただしa>b)は、2以上1000以下が好ましく、10以上800以下がより好ましく、20以上500以下であることが特に好ましい、アスペクトト比が大きい方が酸素に対する不透過性を高める効果に優れるため好ましいが、大きすぎると膜の物理強度や硬化用組成物中の粒子分散性に劣る。
 硬化物粒子を形成する硬化性組成物の溶液には、上述の成分の他に必要に応じて離型剤、シランカップリング剤、紫外線吸収剤、光安定剤、老化防止剤、可塑剤、密着促進剤、熱重合開始剤、着色剤、エラストマー粒子、光酸増殖剤、光塩基発生剤、塩基性化合物、流動調製剤、消泡剤等を添加してもよい。
 硬化物粒子を形成する硬化性組成物の溶液の調製方法は特に制限されず、一般的な硬化性組成物の調製手順により実施すればよい。
<バインダー>
 波長変換層12においてバインダーとしては、(メタ)アクリレート化合物の硬化物粒子を好適に分散でき、ガスバリア性の高い材料が用いられる。
 バインダーの形成材料は、酸素透過係数が1.0×101(cc・10μm)/(m2・day・atm)以下であるのが好ましい。
 なお、バインダーの酸素透過係数は、JIS K 7126-2 2006に基づくガス透過度試験方法にて測定した値である。測定装置としては、MOCON社製酸素透過率測定器OX-TRAN1_50を用いることができる。測定温度は23℃、湿度は50%とした。
 酸素透過係数は、SI単位として、(fm・10μm)/(s・Pa)を用いることができる。(1fm・10μm)/(s・Pa)=8.752(cc・10μm)/(m2・day・atm)で換算することが可能である。fmはフェムトメートルと読み、1fm=10-15mを表わす。
 酸素透過係数が上記範囲にある材料としては、ポリビニルアルコール(PVA)、および、ブテンジオールとビニルアルコールとの共重合樹脂(BVOH)等が挙げられる。
 また、これらを2種以上を含んでいてもよい。
 ポリビニルアルコールは、ビニル基および(メタ)アクリロイル基、カルボキシル基、カルボニル基等の置換基を有する変性ポリビニルアルコールであってもよい。
 バインダーの材料として、ビニル基および(メタ)アクリロイル基の少なくとも一方を有する変性ポリビニルアルコールを用いることで、バインダーと硬化物粒子とが、少なくとも一部、重合性架橋基を介して化学結合した状態とすることができ、波長変換層の耐久性を向上することができる。
 ポリビニルアルコールの酸素透過係数は、1.0×100~1.0×101(cc・10μm)/(m・day・atm)程度である。
 また、ブテンジオール・ビニルアルコール共重合樹脂の酸素透過係数は、1.0×10-1(cc・10μm)/(m・day・atm)程度である。
 また、ポリビニルアルコールのけん化度は86~97mol%が好ましい。
 ポリビニルアルコールは、けん化度が高いほどガスバリア性が高くなる。一方で、けん化度が低いほど、硬化物粒子の母剤である(メタ)アクリレート化合物との親和性が高くなるため硬化物粒子の分散性が良くなる。従って、けん化度を上記範囲とすることで、バインダーのガスバリア性を高くしつつ、硬化物粒子を好適に分散することができる。
 なお、本発明におけるけん化度は、JIS K 6726 1994にしたがい測定される値とする。
[補助層]
 補助層14aおよび補助層14bは、酸素透過度が1.0×100~1.0×10-2cc/(m2・day・atm)であり、波長変換層12を挟持して保護する層である。
 なお、補助層14aおよび補助層14bは、波長変換層12の異なる面に配置される以外は同様の構成を有するので、以下の説明において補助層14aと補助層14bとを区別する必要がない場合には、両者をまとめて、補助層ともいう。
 補助層は、可視光に対して透明性を有し、酸素透過度が上記範囲を満たすものであれば、有機材料からなるものであってもよいし、無機材料からなるものであってもよい。
 ここで可視光に対して透明とは、可視光領域における線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS-K7105に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。
 補助層として用いられる有機材料としては、ポリビニルアルコール(PVA)、ブテンジオールとビニルアルコールとの共重合樹脂(BVOH)、エチレンとビニルアルコールとの共重合樹脂(EVOH)等が挙げられる。
 また、無機材料としては、珪素酸化物(SiO)等が挙げられる。
 なお、補助層14aと補助層14bとは、同じ材料であってもよいし、異なる材料であってもよい。
 また、補助層の厚みは、補助層の形成材料に応じて、酸素透過度が上記範囲を満たす厚みとすればよい。
 なお、補助層14aの厚みと補助層14bの厚みとは、同じであってもよいし、異なっていてもよい。
 また、補助層の材料として無機材料を用いる場合には、補助層の厚みが薄く自己支持性が低いため、図2に示すように、補助層を支持層で支持する構成とすることが好ましい。
[支持層]
 支持層20aおよび支持層20bは、補助層を支持するものである。
 前述のとおり、支持層は、補助層が無機材料からなる場合に、好適に補助層を支持するが、これに限定はされず、補助層が有機材料からなる場合に補助層を支持するものであってもよい。
 なお、支持層20aおよび支持層20bは、支持層20aが補助層14a上に配置され、支持層20bが補助層14b上に配置される以外は同様の構成を有するので、以下の説明において支持層20aと支持層20bとを区別する必要がない場合には、両者をまとめて、支持層ともいう。
 支持層としては、可視光に対して透明である可撓性を有する帯状の支持体が好ましい。ここで可視光に対して透明とは、可視光領域における線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS-K7105に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。可撓性を有する基材については、特開2007-290369号公報段落0046~0052、特開2005-096108号公報段落0040~0055を参照できる。
 支持層としては、ポリエチレンテレフタレートフィルム、環状オレフィン構造を有するポリマーからなるフィルム、およびポリスチレンフィルム等が、好ましい例として挙げられる。
 支持層の平均膜厚は、波長変換フィルムの耐衝撃性、取り扱いやすさ等の観点から、10μm以上500μm以下であることが好ましく、20μm以上400μm以下であることがより好ましく、30μm以上300μm以下であることが好ましい。波長変換層に含まれる量子ドット(硬化物粒子)の濃度を低減した場合や、波長変換層の厚みを低減した場合のように、光の再帰反射を増加させる態様では、波長450nmの光の吸収率がより低いことが好ましいため、輝度低下を抑制する観点から、支持層の平均膜厚は、40μm以下であることが好ましく、25μm以下であることがさらに好ましい。
 また、支持層は、波長589nmにおける面内リターデーションRe(589)が1000nm以下であることが好ましい。500nm以下であることがより好ましく、200nm以下であることがさらに好ましい。
 波長変換フィルムを作製した後、異物や欠陥の有無を検査する際、2枚の偏光板を消光位に配置し、その間に波長変換フィルムを差し込んで観察することで、異物や欠陥を見つけやすい。支持層のRe(589)が上記範囲であると、偏光板を用いた検査の際に、異物や欠陥をより見つけやすくなるため、好ましい。
 ここで、Re(589)は、AxoScan OPMF-1(オプトサイエンス社製)を用いて、入力波長589nmの光をフィルム法線方向に入射させることにより測定することができる。
 本発明の波長変換フィルムは、波長変換層および補助層、あるいはさらに、支持層を有する構成に限定はされず、さらに、光散乱層等の光学フィルムで用いられる各種の機能層を有する構成としてもよい。
 <波長変換フィルムの製造方法>
 本発明の波長変換フィルムの製造方法には限定はない、以下、好適な製造方法の一例について説明する。
 波長変換フィルムの製造方法は、
 波長変換粒子を、(メタ)アクリレート化合物となる重合性化合物と重合開始剤との混合溶液中に分散し、硬化性組成物の溶液(分散液)を調製する調製工程と、
 上記硬化性組成物の溶液(分散液)を、バインダーとなる材料の水溶液中に入れて攪拌し、乳化させる乳化工程と、
 硬化性組成物の溶液を乳化させたバインダー水溶液(乳化液)に光照射を行って、硬化性組成物を重合させて硬化物粒子を形成する粒子形成工程と、
 上記硬化物粒子を含むバインダー水溶液(塗布液)を補助層上に塗布する塗布工程と、
 補助層上に塗布した塗布液を乾燥し硬化させて波長変換層を形成する硬化工程と、
 波長変換層上に補助層を積層する積層工程と、を含む。
  (調製工程)
 調製工程では、量子ドット等の波長変換粒子を含む硬化性組成物の溶液(分散液)を調製する。具体的には、有機溶媒中に分散された波長変換粒子、重合性化合物、重合開始剤、および、高分子分散剤等の各成分をタンクなどにより混合し、硬化物粒子を形成する硬化性化合物の溶液(分散液)を調製する。なお、分散液には有機溶媒を含んでいなくても構わない。
  (乳化工程)
 乳化工程では、調製した分散液を、バインダーとなる材料の水溶液中に入れて攪拌し、乳化させる。攪拌は市販の攪拌器を用いて行えばよい。
 バインダー水溶液は、PVAなどのバインダーとなる化合物を水に溶解し調製すればよい。なお、水は、純水あるいはイオン交換水を用いるのが好ましい。
 この水溶液の濃度には、特に限定はなく、バインダーとなる化合物、分散液の投入量、硬化物粒子の径等に応じて、適宜、設定すればよい。
 硬化物粒子の母材となる硬化性組成物は疎水性であり、かつ、波長変換粒子も疎水性である。一方、バインダーとなる化合物は親水性である。そのため、分散液は母材となる硬化性組成物の液滴の中に波長変換粒子を内包した状態で、バインダー水溶液に分散される。
 従って、攪拌の際のせん断力、分散液の粘度、バインダー水溶液の粘度、等を適宜、調整することで、液滴化した分散液の径を所望の径に調整することができる。 
 また、乳化工程においては、乳化剤を添加してもよい。乳化剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤等を用いることができる。
  (粒子形成工程)
 粒子形成工程では、分散液を乳化させて分散させたバインダー水溶液(乳化液)に紫外線(UV光)等の光を照射して、あるいは、加熱して硬化性組成物を重合させて硬化物粒子を形成する。
 なお、粒子形成工程においては、攪拌しつつ紫外線を照射するのが好ましい。
  (塗布工程)
 塗布工程では、上記のようにして作製した硬化物粒子が分散されたバインダー水溶液(塗布液)をあらかじめ準備した補助層上に塗布する。
 塗布液の塗布方法には、特に限定はなく、スピンコート法、ダイコート法、バーコート法、および、スプレー塗布等の公知の塗布方法が、各種利用可能である。
 なお、塗布液の塗膜厚さは、乾燥後の波長変換層の厚みが所望の厚みになるように調整すればよい。
 ここで、補助層が樹脂材料からなる場合には、EVOH、PVA等の補助層を形成する樹脂材料を含む溶液を調製し、仮支持体上に塗布、硬化して補助層を形成してもよいし、市販のフィルムを用いてもよい。補助層として利用可能な市販のフィルムとしては、ポバールフィルム、エバールフィルム((株)クラレ製)、G-Polymer(日本合成化学工業(株))、等が利用可能である。
 補助層が無機材料からなる場合には、PETフィルム等の支持層の一面に、真空蒸着、CCP-CVD(容量結合型プラズマ化学気相蒸着法)、ICP-CVD(誘導結合型プラズマ化学気相蒸着法)、スパッタリング等の公知の気相成膜法で無機膜を形成して補助層とすればよい。
  (硬化工程)
 硬化工程では、塗布工程で補助層上に形成された塗膜を乾燥して硬化させ、波長変換層を形成する。
 塗布液の加熱乾燥方法には、特に限定はなく、ヒータによる加熱乾燥、温風による加熱乾燥、ヒータと温風とを併用する加熱乾燥等、公知の水溶液の乾燥方法が、各種、利用可能である。
  (積層工程)
 積層工程では形成した波長変換層上に、もう1つの補助層(補助層と支持層との積層物)を貼着して積層する。波長変換層と補助層との貼着には、光学フィルムで用いられる種々の公知の粘着剤が利用可能である。
 あるいは、補助層が樹脂材料からなる場合には、補助層を形成する樹脂材料を含む溶液を調製し、波長変換層上に塗布、硬化して補助層を形成してもよい。
 以上により、波長変換フィルムが作製される。
<バックライトユニット>
 図面を参照して、本発明の波長変換フィルムを備えたバックライトユニットについて説明する。図3は、バックライトユニットの概略構成を示す模式図である。
 図3に示されるように、バックライトユニット102は、一次光(青色光L)を出射する光源101Aと光源101Aから出射された一次光を導光して出射する導光板101Bとからなる面状光源101Cと、面状光源101C上に備えられてなる波長変換フィルム100と、面状光源101Cを挟んで波長変換フィルム100と対向配置される反射板102Aと、再帰反射性部材102Bとを備えている。なお、図3においては、反射板102A、導光板101B、波長変換フィルム100および再帰反射性部材102Bは離間した図を示しているが、実際には、これらは互いに密着して形成されていてもよい。
 波長変換フィルム100は、本発明の波長変換フィルムであり、面状光源101Cから出射された一次光Lの少なくとも一部を励起光として、蛍光を発光し、この蛍光からなる二次光(緑色光L,赤色光L)および波長変換フィルム100を透過した一次光Lを出射するものである。例えば、波長変換フィルム100は、青色光Lの照射により緑色光Lを発光する量子ドットと赤色光Lを発光する量子ドットとを内包する硬化物粒子を含む波長変換層が補助層に挟持されてなる波長変換フィルムである。
 図3において、波長変換フィルム100から出射されたL,L,Lは、再帰反射性部材102Bに入射し、入射した各光は、再帰反射性部材102Bと反射板102Aとの間で反射を繰り返し、何度も波長変換フィルム100を通過する。その結果、波長変換フィルム100では十分な量の励起光(青色光L)が波長変換層内の硬化物粒子(波長変換粒子)によって吸収され、必要な量の蛍光(L,L)が発光し、再帰反射性部材102Bから白色光Lが具現化されて出射される。
 高輝度かつ高い色再現性の実現の観点からは、バックライトユニットとして、多波長光源化されたものを用いることが好ましい。例えば、430~480nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する青色光と、500~600nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する緑色光と、600nm~680nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する赤色光とを発光することが好ましい。
 より一層の輝度および色再現性の向上の観点から、バックライトユニットが発光する青色光の波長帯域は、440nm~460nmであることがより好ましい。
 同様の観点から、バックライトユニットが発光する緑色光の波長帯域は、520nm~560nmであることが好ましく、520nm~545nmであることがより好ましい。
 また、同様の観点から、バックライトユニットが発光する赤色光の波長帯域は、610nm~640nmであることがより好ましい。
 また同様の観点から、バックライトユニットが発光する青色光、緑色光および赤色光の各発光強度の半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが一層好ましい。これらの中でも、青色光の各発光強度の半値幅が25nm以下であることが、特に好ましい。
 上記において光源101Aとしては、例えば430nm~480nmの波長帯域に発光中心波長を有する青色光を発光する青色発光ダイオードであるが、紫外光を発光する紫外線発光ダイオードを用いてもよい。光源101Aとしては、発光ダイオードの他レーザー光源等を使用することができる。紫外光を発光する光源を備えた場合には、波長変換フィルムの波長変換層の硬化物粒子において、紫外光の照射により青色光を発光する蛍光体、緑色光を発光する蛍光体、および赤色光を発光する蛍光体を含むものとすればよい。
 面状光源101Cは、図3に示すように、光源101Aと光源101Aから出射された一次光を導光させて出射させる導光板101Bとからなる面状光源であってもよいし、光源101Aが波長変換フィルム100と平行な平面状に並べて配置され、導光板101Bに替えて拡散板を備えた面状光源であっても良い。前者の面状光源は一般にエッジライト方式、後者の面状光源は一般に直下型方式と呼ばれている。
 なお、本実施形態では、光源として面状光源を用いた場合を例に説明したが、光源としては面状光源以外の光源も使用することができる。
 バックライトユニットの構成としては、図3では、導光板や反射板などを構成部材とするエッジライト方式について説明したが、直下型方式であっても構わない。導光板としては、公知のものを何ら制限なく使用することができる。
 また、反射板102Aとしては、特に制限は無く、公知のものを用いることができ、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。
 再帰反射性部材102Bは、公知の拡散板や拡散シート、プリズムシート(例えば、住友スリーエム社製BEFシリーズなど)、導光器等から構成されていてもよい。再帰反射性部材102Bの構成については、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。
<液晶表示装置>
 上述のバックライトユニット102は液晶表示装置に応用することができる。図4は、液晶表示装置の概略構成を示す模式図である。
 図4に示されるように、液晶表示装置104は上記実施形態のバックライトユニット102とバックライトユニットの再帰反射性部材側に対向配置された液晶セルユニット103とを備えてなる。
 液晶セルユニット103は、図4に示されるように、液晶セル110を偏光板120と130とで挟持した構成としており、偏光板120,130は、それぞれ、偏光子122、132の両主面を偏光板保護フィルム121と123、131と133で保護された構成としている。
 液晶表示装置104を構成する液晶セル110、偏光板120、130およびその構成要素については特に限定はなく、公知の方法で作製されるものや市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。
 液晶セル110の駆動モードについては特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。液晶セルは、VAモード、OCBモード、IPSモード、又はTNモードであることが好ましいが、これらに限定されるものではない。VAモードの液晶表示装置の構成としては、特開2008-262161号公報に示す構成が一例として挙げられる。ただし、液晶表示装置の具体的構成には特に制限はなく、公知の構成を採用することができる。
 液晶表示装置104には、さらに必要に応じて光学補償を行う光学補償部材、接着層などの付随する機能層を有する。また、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(又はそれに替えて)、前方散乱層、プライマー層、帯電防止層、下塗り層等の表面層が配置されていてもよい。
 バックライト側偏光板120は、液晶セル110側の偏光板保護フィルム123として、位相差フィルムを有していてもよい。このような位相差フィルムとしては、公知のセルロースアシレートフィルム等を用いることができる。
 バックライトユニット102および液晶表示装置104は、上記本発明の波長変換フィルムを備えてなる。従って、上記本発明の波長変換フィルムと同様の効果を奏し、量子ドットを含む波長変換層の発光強度が低下しにくい、高輝度なバックライトユニットおよび液晶表示装置となる。
 以下に実施例に基づき本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
<波長変換フィルムの作製>
 波長変換粒子として量子ドットを内包する(メタ)アクリレート化合物の硬化物粒子をバインダー中に分散してなる波長変換層を補助層で挟持した構成を有する波長変換フィルムを作製した。
 (調製工程)
 硬化物粒子を形成する硬化性組成物の溶液として、量子ドット、硬化性化合物、および重合開始剤などの各成分をタンクなどにより混合し、溶液1(分散液1)を調製した。
-分散液1の組成-
 下記の組成の分散液1を調製した。
・量子ドット1のトルエン分散液(発光極大:520nm)  20質量部
・量子ドット2のトルエン分散液(発光極大:630nm)   2質量部
・ジシクロペンタニルアクリレート(DCP:FA-513AS(日立化成(株)製))
                           78.8質量部
・光重合開始剤(イルガキュアTPO(BASF(株)製))  0.2質量部
・高分子分散剤(A-1(合成品))               1質量部
 上記量子ドット1、2としては、下記のコアーシェル構造(InP/ZnS)を有するナノ結晶を用いた。
 ・量子ドット1:INP530-10(NN-labs社製)
 ・量子ドット2:INP620-10(NN-labs社製)
 (乳化工程)
 調製した分散液1を、バインダーとなる材料の水溶液中に入れて攪拌し、乳化させた。
 バインダーの材料としては、クラレポバールPVA-CST(株式会社クラレ製、けん化度95.5~96.5mol%)を用い、水に投入し加熱して溶解しバインダー水溶液を得た。バインダー水溶液は、温度23℃で、粘度が100cPとなるように水の量を調整した。
 このバインダー水溶液に調製した分散液1を投入して、リゾルバーで攪拌して乳化させて乳化液を得た。
 硬化性組成物の溶液とバインダー水溶液との量比は、波長変換層形成後の波長変換層中における硬化物粒子の体積比率が30%となるように調整した。
 (粒子形成工程)
 乳化液を攪拌しつつ、紫外線を照射して、硬化性組成物を重合させて硬化物粒子を形成し、塗布液を作製した。
 紫外線の照射は、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を3000mJ/cm2照射して硬化性組成物を硬化させた。
 (塗布工程)
 上記のようにして作製した硬化物粒子を含むバインダー水溶液(塗布液)を、あらかじめ準備した補助層上に塗布した。
 ここで、補助層は次のようにして作製した。
 補助層の材料としてはポリビニルアルコール(PVA)を用いた。ポリビニルアルコールを水に溶解し水溶液を調製し、仮支持体上に塗布し、乾燥させて厚み50μmの補助層を作製した。
 補助層の酸素透過度を、JIS K 7126に基づくガス透過度試験方法にて測定したところ、1.0×100cc/(m2・day・atm)であった。
 (硬化工程)
 補助層上に塗布した塗布液を乾燥し硬化させて波長変換層を形成した。
 乾燥後の波長変換層の膜厚は、50μmであった。
 (積層工程)
 先と同様にして作製したもう1つの補助層を、粘着剤を介して波長変換層上に貼着し、波長変換層が補助層に挟持されてなる波長変換フィルムを作製した。
[実施例2]
 バインダーの材料として、クラレポバールPVA205(株式会社クラレ製、けん化度870.~89.0mol%)を用いた以外は、実施例1と同様にして波長変換フィルムを作製した。
[実施例3]
 補助層の材料として、ブテンジオール・ビニルアルコール共重合樹脂(BVOH、日本合成化学工業株式会社製)を用いた以外は、実施例2と同様にして波長変換フィルムを作製した。
 補助層の酸素透過度は、2.0×10-2cc/(m2・day・atm)であった。
[実施例4]
 補助層の材料として、エチレン・ビニルアルコール共重合樹脂(EVOH)を用い、補助層の厚みを100μmとした以外は、実施例2と同様にして波長変換フィルムを作製した。
 補助層の酸素透過度は、1.0×10-2cc/(m2・day・atm)であった。
[実施例5]
 珪素酸化物(SiO)からなる補助層および支持層を有する構成とした以外は、実施例1と同様にして波長変換フィルムを作製した。
 具体的な作製方法は以下のとおりである。
 支持層としてポリエチレンテレフタレート(PET)フィルム(東洋紡社製、商品名「コスモシャイン(登録商標)A4300」、厚さ50μm)を用いた。
 この支持層上に、一般的な真空蒸着装置を用いて酸化ケイ素膜を形成し、積層フィルムを作製した。窒化ケイ素膜の厚みは0.10μmとした。
 作製した積層フィルムの補助層の上に、上記塗布液を塗布した後、乾燥し硬化させて波長変換層を形成した。
 次に、形成した波長変換層上に、上記と同様にして作製した積層フィルムを、粘着剤(3M社製OCA8146-1)を用いて貼着し、波長変換フィルムを作製した。なお、積層フィルムの補助層(酸化ケイ素膜)を波長変換層側に向けて、積層フィルムを波長変換層上に積層した。
 なお、補助層の酸素透過度は、1.0×10-2cc/(m2・day・atm)であった。
[比較例1]
 補助層を有さない以外は実施例1と同様にして波長変換フィルムを作製した。
[比較例2]
 窒化ケイ素膜の厚みを0.12μmとした以外は、実施例5と同様にして波長変換フィルムを作製した。補助層の酸素透過度は、0.9×10-2cc/(m2・day・atm)であった。
<評価項目>
 実施例および比較例で作製した波長変換フィルムの発光性能の経時変化を以下のように測定し、評価した。
 (初期輝度)
 バックライトユニットに青色光源を備える市販のタブレット端末(商品名「Kindle(登録商標)Fire HDX 7」、Amazon社製、以下、単にKindle Fire HDX 7と記載する場合がある。)を分解し、バックライトユニットを取り出した。バックライトユニットに組み込まれていた波長変換フィルムQDEF(Quantum Dot Enhancement Film)に代えて実施例または比較例の波長変換フィルムを組み込んだ。このようにして液晶表示装置を作製した。
 作製した液晶表示装置を点灯させ、全面が白表示になるようにし、導光板の面に対して垂直方向520mmの位置に設置した輝度計(商品名「SR3」、TOPCON社製)にて輝度を測定した。そして初期輝度Y(cd/m)を下記評価基準に基づいて評価した。
-評価基準-
 A:Y≧530
 B:530>Y≧515
 C:515>Y≧500
 D:500≧Y
 (光耐久性の評価)
 85℃に保たれた部屋で、市販の青色光源(OPTEX-FA株式会社製OPSM-H150X142B)上に各波長変換フィルムを置き、波長変換フィルムに対して青色光を1000時間連続で照射した。1000時間後、波長変換フィルムを取り出し、上記と同様にしてKindle Fire HDX 7に組み込み、輝度を測定し、初期輝度Yに対する光耐久後の相対輝度Yを算出した。相対輝度Yを、下記評価基準に基づいて評価した。
-評価基準-
 A:Y≧95%
 B:95%>Y≧90%
 C:90%>Y≧80%
 D:80%>Y
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000029
 表1に示す結果から、本発明の実施例は、比較例に比して初期輝度が高く、また、経時による輝度の低下を抑制できることがわかる。
 また、実施例1および実施例2の対比からバインダーの材料がポリビニルアルコールの場合には、けん化度は86~97mol%が好ましいことがわかる。
 以上より本発明の効果は明らかである。
  10a、10b 波長変換フィルム
  12 波長変換層
  14a、14b 補助層
  16 バインダー
  18 硬化物粒子
  20a、20b 支持層
  100 波長変換フィルム
  101A 光源
  101B 導光板
  101C 面状光源
  102 バックライトユニット
  102A 反射板
  102B 再帰反射性部材
  103 液晶セルユニット
  104 液晶表示装置
  110 液晶セル
  120、130 偏光板
  121、123、131、133 偏光板保護フィルム
  122、132 偏光子

Claims (7)

  1.  波長変換層と、前記波長変換層を挟持する補助層と、を有し、
     前記波長変換層が、ポリビニルアルコール、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有し、
     前記補助層の酸素透過度が1.0×100~1.0×10-2cc/(m2・day・atm)である波長変換フィルム。
  2.  前記ポリビニルアルコールのけん化度が86~97mol%である請求項1に記載の波長変換フィルム。
  3.  前記補助層の少なくとも一方が、ポリビニルアルコールからなる層である請求項1または2に記載の波長変換フィルム。
  4.  前記補助層の少なくとも一方が、ブテンジオールとビニルアルコールとの共重合樹脂からなる層である請求項1~3のいずれか一項に記載の波長変換フィルム。
  5.  前記補助層の少なくとも一方が、エチレンとビニルアルコールとの共重合樹脂からなる層である請求項1~4のいずれか一項に記載の波長変換フィルム。
  6.  前記補助層の少なくとも一方が、珪素酸化物からなる層である請求項1~5のいずれか一項に記載の波長変換フィルム。
  7.  前記補助層となる前記珪素酸化物からなる層を支持する支持層を有する請求項6に記載の波長変換フィルム。
PCT/JP2017/045699 2017-01-24 2017-12-20 波長変換フィルム WO2018139119A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780084488.2A CN110214285B (zh) 2017-01-24 2017-12-20 波长转换膜
US16/519,460 US10784417B2 (en) 2017-01-24 2019-07-23 Wavelength conversion film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-010382 2017-01-24
JP2017010382A JP6714522B2 (ja) 2017-01-24 2017-01-24 波長変換フィルム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/519,460 Continuation US10784417B2 (en) 2017-01-24 2019-07-23 Wavelength conversion film

Publications (1)

Publication Number Publication Date
WO2018139119A1 true WO2018139119A1 (ja) 2018-08-02

Family

ID=62979534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045699 WO2018139119A1 (ja) 2017-01-24 2017-12-20 波長変換フィルム

Country Status (4)

Country Link
US (1) US10784417B2 (ja)
JP (1) JP6714522B2 (ja)
CN (1) CN110214285B (ja)
WO (1) WO2018139119A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023416A (ko) * 2017-06-29 2020-03-04 메르크 파텐트 게엠베하 반도체 발광 나노입자를 포함하는 조성물
CN109423275B (zh) * 2017-08-29 2020-03-31 纳晶科技股份有限公司 量子点组合物、量子点发光材料、其制备方法及含有其的发光器件
US11095038B2 (en) * 2017-10-23 2021-08-17 Nec Corporation Polarization control plate
KR102418724B1 (ko) * 2017-12-05 2022-07-08 삼성디스플레이 주식회사 표시 장치 및 그 제조방법
CN109272870B (zh) * 2018-10-08 2021-08-31 惠科股份有限公司 一种显示面板和制作方法
JP2021081607A (ja) * 2019-11-20 2021-05-27 東洋インキScホールディングス株式会社 光波長変換部材及び発光デバイス
CN113248953B (zh) * 2020-02-12 2023-02-21 东友精细化工有限公司 光转换固化性组合物、固化膜、量子点发光二极管及图像显示装置
CN111864092A (zh) * 2020-07-15 2020-10-30 武汉华星光电半导体显示技术有限公司 显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210488A (ja) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd 偏光性積層フィルムの製造方法
WO2015194630A1 (ja) * 2014-06-20 2015-12-23 富士フイルム株式会社 転写材料、液晶パネルの製造方法および液晶表示装置の製造方法
US20160161066A1 (en) * 2014-12-08 2016-06-09 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
US20160161088A1 (en) * 2014-12-09 2016-06-09 Lg Electronics Inc. Light conversion film, and backlight unit and display device having the same
WO2017010394A1 (ja) * 2015-07-10 2017-01-19 富士フイルム株式会社 積層フィルムおよび積層フィルムの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580351B1 (ko) * 1997-04-17 2006-05-16 가부시끼가이샤 구레하 방습 필름 및 전기 발광 소자
US7229703B2 (en) * 2003-03-31 2007-06-12 Dai Nippon Printing Co. Ltd. Gas barrier substrate
CN102482457B (zh) 2009-09-09 2015-04-15 Qd视光有限公司 包含纳米颗粒的颗粒、其应用和方法
JP5366765B2 (ja) * 2009-11-10 2013-12-11 日東電工株式会社 偏光板および画像表示装置
TWI592305B (zh) * 2010-11-10 2017-07-21 Sumitomo Chemical Co Polarizing film and polarizing plate manufacturing method
KR101851726B1 (ko) * 2011-11-23 2018-04-24 엘지이노텍 주식회사 표시장치
JP2015102857A (ja) * 2013-11-28 2015-06-04 富士フイルム株式会社 光変換部材、バックライトユニット、および液晶表示装置、ならびに光変換部材の製造方法
KR102016407B1 (ko) * 2015-06-18 2019-09-02 후지필름 가부시키가이샤 적층 필름
JP6509091B2 (ja) * 2015-10-20 2019-05-08 富士フイルム株式会社 波長変換積層フィルム
JP6600013B2 (ja) * 2015-12-22 2019-10-30 富士フイルム株式会社 波長変換フィルム
JP6806555B2 (ja) * 2016-12-19 2021-01-06 富士フイルム株式会社 波長変換フィルムおよび波長変換フィルムの製造方法
JP6732045B2 (ja) * 2016-12-19 2020-07-29 富士フイルム株式会社 波長変換フィルムおよびバックライトユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210488A (ja) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd 偏光性積層フィルムの製造方法
WO2015194630A1 (ja) * 2014-06-20 2015-12-23 富士フイルム株式会社 転写材料、液晶パネルの製造方法および液晶表示装置の製造方法
US20160161066A1 (en) * 2014-12-08 2016-06-09 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
US20160161088A1 (en) * 2014-12-09 2016-06-09 Lg Electronics Inc. Light conversion film, and backlight unit and display device having the same
WO2017010394A1 (ja) * 2015-07-10 2017-01-19 富士フイルム株式会社 積層フィルムおよび積層フィルムの製造方法

Also Published As

Publication number Publication date
CN110214285B (zh) 2021-08-03
JP6714522B2 (ja) 2020-06-24
JP2018120058A (ja) 2018-08-02
US20190348578A1 (en) 2019-11-14
CN110214285A (zh) 2019-09-06
US10784417B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2018139119A1 (ja) 波長変換フィルム
WO2018139120A1 (ja) 波長変換フィルム
US10982135B2 (en) Phosphor-containing film and backlight unit
US10781369B2 (en) Wavelength conversion member and backlight unit
US11914172B2 (en) Light absorbing body-containing film and backlight unit
KR102191226B1 (ko) 형광체 함유 필름 및 백라이트 유닛
US11549054B2 (en) Phosphor-containing film and backlight unit
US11136496B2 (en) Phosphor-containing film and backlight unit
JP6698510B2 (ja) 波長変換フィルムおよびバックライトユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894057

Country of ref document: EP

Kind code of ref document: A1