WO2018135473A1 - インターナル、流動床式反応装置およびトリクロロシランの製造方法 - Google Patents

インターナル、流動床式反応装置およびトリクロロシランの製造方法 Download PDF

Info

Publication number
WO2018135473A1
WO2018135473A1 PCT/JP2018/000967 JP2018000967W WO2018135473A1 WO 2018135473 A1 WO2018135473 A1 WO 2018135473A1 JP 2018000967 W JP2018000967 W JP 2018000967W WO 2018135473 A1 WO2018135473 A1 WO 2018135473A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
fluidized bed
internal
bed reactor
reaction
Prior art date
Application number
PCT/JP2018/000967
Other languages
English (en)
French (fr)
Inventor
恭之 阪上
卓也 間島
義晶 山下
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to DE112018000045.1T priority Critical patent/DE112018000045T5/de
Priority to JP2018563330A priority patent/JP7102351B2/ja
Priority to CN201880002605.0A priority patent/CN109414670A/zh
Priority to KR1020197000109A priority patent/KR20190103133A/ko
Priority to US16/305,297 priority patent/US20200330946A1/en
Publication of WO2018135473A1 publication Critical patent/WO2018135473A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/34Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles

Definitions

  • the present invention relates to an internal, fluidized bed reactor and a method for producing trichlorosilane.
  • a fluidized bed reactor is used as a device for providing a chemical reaction utilizing contact between a fluid gas and a solid (generally powder).
  • a reaction between gas and solid occurs in the following order.
  • a gas is introduced from below into the powder placed on the inner bottom of the reactor.
  • the powder is fluidized by the rising gas to form a fluidized bed.
  • a reaction occurs when the powder and gas come into contact with each other.
  • Patent Documents 1 to 4 disclose fluidized bed reactors for use in the production of trichlorosilane.
  • various members are provided in the reaction furnace as members for promoting the reaction between gas and solid (hereinafter also referred to as “internal” in the present specification).
  • a fluidized bed reactor is disclosed.
  • an internal is configured by installing a gas flow control member and a heat transfer tube disposed so as to surround the gas flow control member in the reaction furnace. Yes.
  • the internal is intended to promote the reaction by causing a tubular member to exist in the fluidized bed and disturbing the gas flow.
  • the inventors of the present application have intensively studied and found that the efficiency in discharging a solid component from the fluidized bed reactor is also important in the method for producing trichlorosilane. That is, the powder as a solid component easily deposits on the upper surface of the deposit of Patent Document 3, and in the ball-shaped internal of Patent Document 4, the powder as a solid component easily deposits on the upper part of the ball. That is, in any of the techniques of Patent Document 3 and Patent Document 4, the solid component remains on the internal during the reaction or when the solid component is discharged after the completion of the reaction.
  • one embodiment of the present invention has been made in view of the above problems. Therefore, one embodiment of the present invention is a novel internal capable of the following (1) and (2), a fluidized bed reactor equipped with the internal, and trichlorosilane using the fluidized bed reactor.
  • the object is to provide a production method: (1) to promote the reaction between gas and solid; and (2) to suppress the deposition of solid components.
  • the inventors of the present application are provided with a resistor having a shape in which the upper surface forms a cone shape with respect to an internal for installation in a fluidized bed reactor.
  • the internal is an internal for installation in a fluidized bed reactor, and the internal includes a resistor having a shape in which the upper surface forms a cone shape. It is characterized by.
  • FIG. 1 It is a perspective view of an internal concerning one embodiment of the present invention.
  • (A)-(c) is the figure which looked at the resistor based on one Embodiment of this invention from the horizontal direction.
  • (D) And (e) is a perspective view of the resistor based on one Embodiment of this invention.
  • (A)-(c) is a perspective view of the resistor which concerns on one Embodiment of this invention.
  • (D) And (f) is the figure which looked at the resistor which concerns on one Embodiment of this invention from the horizontal direction.
  • (E) And (g) is a projection figure at the time of irradiating light from the vertically upper direction to the resistor which concerns on (d) and (f), respectively. It is sectional drawing at the time of seeing the fluid bed type reaction device concerning one embodiment of the present invention from the horizontal direction. It is a figure which shows the conversion rate from tetrachlorosilane to trichlorosilane.
  • the internal which concerns on one Embodiment of this invention is an internal for installing in a fluidized bed type
  • the said internal is provided with the resistor which has a shape where an upper surface forms a cone shape.
  • the internal according to the embodiment of the present invention may be simply referred to as “the present internal”.
  • the “fluidized bed reactor” may be simply referred to as “apparatus”.
  • this internal includes the above-described configuration, it has the following advantages: (1) Bubbles made of gas supplied for reaction come into contact with the resistor provided in the internal and the bubbles are dispersed. As a result, the bubbles become smaller (bubble subdivision). Thereby, the gas-solid contact area is increased. Therefore, the advantage that a desired reaction is promoted in the apparatus in which the present internal is installed; and (2) the resistance body has a conical shape, so that a vertical upper side of the internal during the reaction. The retention of the powder falling from the surface is reduced.
  • FIG. 1 is a perspective view of an internal 10 according to an embodiment of the present invention.
  • the internal 10 includes a resistor 11 having a shape in which an upper surface forms a cone shape, and a support 12 for holding the resistor 11.
  • Resistor 11 > The resistor 11 will be described with reference to FIG. 2A to 2C are views of the resistor 11 as seen from the horizontal direction. 2D and 2E are perspective views of the resistor 11. As illustrated in FIG. 2A, the resistor 11 has an upper surface 13 and a lower surface 14.
  • the “upper surface 13” of the resistor 11 is intended to mean a part that enters the field of view when the resistor 11 is viewed from above and a part that enters the field of view when the resistor 11 is viewed from the horizontal direction. To do.
  • the “lower surface 14” of the resistor 11 intends a portion other than the “upper surface 13” of the resistor 11. Therefore, referring to FIGS. 2A to 2E, the underline of each figure is the lower surface 14, and the upper part of the lower line is the upper surface 13.
  • the resistor 11 has a shape in which the upper surface 13 forms a cone shape.
  • the phrase “the upper surface 13 has a conical shape” can also be said to be “the upper surface 13 has a surface forming a conical shape”.
  • the “surface that forms a cone” is a surface that approaches the vertical line from vertically downward to vertically upward when a vertical line passing through the apex of the resistor 11 is drawn. It is a plane including straight lines that intersect at 90 ° or less.
  • “the apex of the resistor 11” intends the point that is located at the uppermost position in the resistor 11.
  • the “surface forming the cone shape” of the upper surface 13 may be referred to as “conical surface 13a” or “conical side wall”.
  • the upper surface 13 of the resistor 11 may have a cylinder face 13b in addition to the conical surface 13a.
  • the “body face 13b” refers to a surface parallel to the vertical direction.
  • the resistor 11 may be configured by combining a conical surface 13 a and a body surface 13 b.
  • the shape of the resistor 11 examples include, but are not limited to, the shape illustrated in FIG. 2, for example, the cone shape (a), the top shape (b), and the stepped shape (c). Further, the resistor 11 may have a shape obtained by combining (a) to (c) of FIG. For example, in one drawing, the resistor 11 may have a conical shape in some parts, but the other part may have a shape showing a coma shape, or in one figure, it shows a conical shape. However, in the figure seen from the other side, it may be a shape showing a frame type.
  • the resistor 11 may have a circular bottom shape like the cone shown in FIG. 2D, and the bottom shape like the triangular pyramid shown in FIG. It may be a triangle.
  • the shape of the bottom surface of the resistor 11 is not limited to these, and may be, for example, an ellipse, a rectangle, or a polygon.
  • the “bottom surface” is a surface represented by a projection view when light is applied to the resistor 11 from vertically above.
  • the resistor 11 is preferably conical, particularly conical, from the viewpoint of bubble fragmentation.
  • the shape of the lower surface 14 of the resistor 11 is not particularly limited, and may be flat or have a recess.
  • the resistor 11 has a hole penetrating the lower surface 14 and the upper surface 13.
  • the place where the hole is formed is not particularly limited, and the hole may be formed in the top of the resistor 11.
  • the resistor 11 has an advantage that the reaction in the device in which the internal 10 including the resistor is installed is further promoted by forming a hole penetrating the lower surface 14 and the upper surface 13. This is because the bubbles made of gas introduced into the apparatus pass through the holes and become smaller (in other words, the bubbles are further subdivided), so that the contact area between the gas and the solid is further increased. caused by.
  • the number of holes formed in the resistor 11 is not particularly limited, but is preferably 1 or more, more preferably 2 or more, further preferably 4 or more, and particularly preferably 6 or more from the viewpoint of fragmentation of bubbles. .
  • the arrangement of the holes to be formed is not particularly limited, but it is preferable that they are equally arranged from the viewpoint of subdividing the bubbles.
  • the shape of the hole formed in the resistor 11 is not particularly limited, and examples thereof include a quadrangle, a rhombus, a polygon, a circle, and an ellipse.
  • the shape of the hole formed in the resistor 11 is preferably circular from the viewpoint of ease of processing.
  • FIGS. 3A and 3B are perspective views of the resistor 11.
  • the lower surface 14 has a recess, and a hole penetrating the lower surface 14 and the upper surface 13 is formed.
  • the resistor 11 shown in FIG. 3A is formed with a square hole at the approximate center of the resistor 11 in the vertical direction.
  • a total of six holes are formed in the resistor 11 at equal intervals. These six holes are formed on the same horizontal cross section.
  • FIG. 3B has a circular hole formed at the top of the resistor 11 and at substantially the center in the vertical direction of the resistor 11.
  • a total of six holes are formed at approximately the center in the vertical direction, three holes are formed on the same cross section in the horizontal direction, and the other three holes are different in the horizontal direction. Are formed in the same cross-sectional shape.
  • FIGS. 3A and 3B show only three of the six holes formed substantially in the center in the vertical direction.
  • FIG. 3C is a perspective view of the resistor 11.
  • the resistor 11 has an angle ⁇ formed by a vertical line p passing through the apex of the resistor 11 and a straight line s included in the cone-shaped side wall.
  • the ⁇ may be referred to as “inclination angle ⁇ ”.
  • the resistor 11 illustrated in FIG. 3C has an inclination angle ⁇ of 45 ° as the inclination angle ⁇ of the conical side wall of the upper surface 13.
  • the inclination angle ⁇ of the conical side wall of the upper surface 13 is preferably 45 ° or less, more preferably 40 ° or less, with respect to the vertical line p passing through the apex of the resistor 11, 35 More preferably, it is not more than 30 °, particularly preferably not more than 30 °.
  • the lower limit of the inclination angle ⁇ of the conical side wall of the upper surface 13 is not particularly limited, but may be 10 ° or more.
  • the resistor 11 has an inclined angle ⁇ of the conical side wall of the upper surface 13 that is 45 ° or less with respect to the vertical line p passing through the apex of the resistor 11, so that the flow of the powder is smooth. It has the advantage that it can be done. This can further suppress the accumulation of solid (powder) on the upper surface 13 of the resistor 11, so that the powder falling from vertically above the internal 10 stays in the vicinity of the upper surface 13 of the resistor 11. This is due to the decrease.
  • the resistor 11 having an inclination angle ⁇ of the conical side wall of the upper surface 13 of 45 ° or less with respect to the vertical line p passing through the apex of the resistor 11 is a solid (powder) to the upper surface 13 of the resistor 11. ) Is further reduced. Therefore, the powder can be more easily extracted from the fluidized bed reactor.
  • the powder is metallic silicon.
  • the horizontal outer diameter of the resistor 11 is X 1 and the height of the resistor 11 is X 2 . Further, as illustrated in FIG. 4 to be described later, the horizontal direction of the inner diameter of the fluidized bed reactor 100 and Y 1.
  • the size of the resistor 11 preferably satisfies the following (1) or (2), more preferably satisfies both (1) and (2): (1) Outside of the resistor 11 in the horizontal direction the diameter X 1, it and horizontal inner diameter Y 1 of the resistor 11 fluidized bed reactor internals 10 is installed with a is a 0.05 ⁇ X 1 / Y 1 ⁇ 0.25; (2) The ratio between the height X 2 of the resistor and the outer diameter X 1 is 0.5 ⁇ X 2 / X 1 ⁇ 5.
  • the size of the resistor 11 is more preferably 0.05 ⁇ X 1 / Y 1 ⁇ 0.20, more preferably 0.05 ⁇ X 1 / Y 1 ⁇ 0.15, and 0 It is particularly preferable to satisfy .05 ⁇ X 1 / Y 1 ⁇ 0.10.
  • the size of the resistor 11 is more preferably 0.5 ⁇ X 2 / X 1 ⁇ 3, more preferably 0.5 ⁇ X 2 / X 1 ⁇ 2, It is particularly preferable to satisfy ⁇ X 2 / X 1 ⁇ 1.
  • the occurrence of slugging of the fluidized bed in the device can be suppressed.
  • the reaction is promoted.
  • the size of the resistor 11 satisfies the above (2), in the device in which the internal 10 including the resistor 11 is installed, the flow of the fluidized bed in the device becomes a smooth flow.
  • the apparatus has the advantage that the desired reaction is promoted. The determination of the occurrence of slagging can be performed within the scope of technical knowledge of those skilled in the art using the slagging determination formula by Kairns et al.
  • FIG. 3D is a diagram of the resistor 11 viewed from the horizontal direction
  • FIG. 3E is a projection when light is applied to the resistor 11 according to FIG. 3D from above
  • FIG. 3F is a diagram of the resistor 11 viewed from the horizontal direction
  • FIG. 3G is a projection when light is vertically applied to the resistor 11 according to FIG. FIG.
  • the upper surface 13 of the resistor 11 may have a horizontal surface 13c in addition to the conical surface 13a and the body surface 13b.
  • the “horizontal surface 13 c” refers to a surface of the upper surface 13 that is perpendicular to the vertical direction.
  • the resistor 11 may be configured by combining a conical surface 13a and a horizontal surface 13c.
  • the uppermost surface 13 of the resistor 11 may be a horizontal surface 13 c that is a surface that is located at the uppermost vertical position of the resistor 11.
  • S1 is an area of a projected view when light is applied to the resistor 11 from vertically above. Further, as shown in FIGS. 3D and 3F, the sum of the areas of the upper surface 13 having the inclination angle ⁇ exceeding 45 ° on the upper surface 13 of the resistor 11 is S2.
  • S1 includes S2.
  • the resistor 11 is preferably as small as the ratio of S2 and S1, S2 / S1, is small. Specifically, S2 / S1 is preferably less than 0.5, more preferably less than 0.3, even more preferably less than 0.2, and particularly preferably 0.1 or less.
  • the resistor 11 has a recess on the lower surface 14 and a hole penetrating the lower surface 14 and the upper surface 13 is formed in the horizontal surface 13c.
  • the resistor 11 has a recess on the lower surface 14 and a hole penetrating the lower surface 14 and the upper surface 13 is formed in the horizontal surface 13c.
  • the sum of the upper surface 13 excluding the hole is S2.
  • the resistor 11 has an advantage that the powder can be smoothly flowed when S2 / S1 is less than 0.5. This can further suppress the accumulation of solid (powder) on the upper surface 13 of the resistor 11, so that the powder falling from vertically above the internal 10 stays in the vicinity of the upper surface 13 of the resistor 11. This is due to the decrease. Further, since the resistor 11 having S2 / S1 of less than 0.5 has less solid (powder) deposited on the upper surface 13 of the resistor 11, the powder is more removed from the fluidized bed reactor. It can be easily extracted.
  • the internal 10 shown in FIG. 1 includes a plurality of resistor groups 11a (specifically, seven) including a plurality of resistor bodies 11 on the same cross section in the horizontal direction.
  • the resistor 11 included in one of the resistor groups 11a is shown in gray and surrounded by a dotted line.
  • the number of resistors 11 included in the internal 10 is not particularly limited.
  • the internal 10 preferably has two or more horizontal cross sections, more preferably three or more horizontal cross sections, and even more preferably four or more horizontal cross sections, from the viewpoint of bubble fragmentation.
  • the resistors 11 are provided on the cross section, particularly preferably on five or more horizontal cross sections.
  • the internal 10 is preferably provided with two or more resistors 11, more preferably 10 or more resistors, and more preferably 20 or more resistors on the same cross section in the horizontal direction from the viewpoint of bubble fragmentation. More preferably, the body 11 is provided, and 30 or more resistors 11 are particularly preferably provided.
  • the internal 10 is preferably provided with two or more resistor groups 11a including a plurality of resistors 11 on the same cross section in the horizontal direction from the viewpoint of subdividing bubbles, more preferably three or more, It is more preferable that four or more are provided, and it is particularly preferable that five or more are provided.
  • the internal 10 includes the resistors 11 on the plurality of horizontal cross sections and / or includes the resistor group 11a including the plurality of resistors 11 on the same horizontal cross section.
  • the positional relationship of the plurality of resistors 11 when the internal 10 includes the resistors 11 on a plurality of horizontal cross sections will be described.
  • the resistor a1 is present on a horizontal cross section and the resistor b1 is present on a horizontal cross section adjacent to the cross section in the vertical direction.
  • the vertical center lines of the resistor a1 and the resistor b1 may overlap each other or may not overlap each other, but it is preferable that they do not overlap from the viewpoint of bubble fragmentation. .
  • the resistors 11 in the resistor group 11a are arranged at a certain interval from each other. It is preferred that The “fixed interval” can affect the occurrence of slugging of the fluidized bed in the apparatus in which the internal 10 is installed. Therefore, the “fixed interval” can be appropriately set for the purpose of preventing the occurrence of the slugging.
  • the internal 10 includes the resistors 11 on a plurality of horizontal cross sections and includes at least one resistor group 11a including the plurality of resistors 11 on the same horizontal cross section, each horizontal
  • the number of the plurality of resistors 11 formed on the cross section in the direction may be the same or different.
  • the number of the resistors 11 can be appropriately set in consideration of the fragmentation of bubbles, the prevention of slugging, the arrangement of members other than the internal included in the apparatus, and the like.
  • the material of the resistor 11 is not particularly limited, but may be a material that can withstand various conditions (for example, temperature and pressure) of a reaction performed in the apparatus, a chemical reaction, and abrasion due to powder. preferable.
  • Examples of the material of the resistor 11 include nickel, nickel-based alloys (such as incoloy and inconel), and SUS. Among these, SUS is preferable from the viewpoint of cost.
  • the support 12 is not particularly limited as long as it can hold the resistor 11.
  • the structure may be such that it is held in contact with the upper surface 13 of the resistor 11, may be configured to be held by penetrating the resistor 11, or those May be combined.
  • the shape of the support 12 is not particularly limited as long as it can support the resistor 11. It may be comprised from a plate-shaped body like FIG. 1, and may be comprised from a prism or a cylinder. In addition, the support 12 may be configured by combining the members having various shapes described above. Moreover, when a prism or a round column is used, the inside thereof may be a cavity.
  • the shape of the support 12 is preferably small in horizontal cross-sectional area from the viewpoint of making the flow of the fluidized bed in the apparatus a smooth flow. Therefore, a plate-like body is used, and the plate-like surface is It is preferable to be configured to be parallel to the vertical direction.
  • the material of the support 12 is not particularly limited, but may be a material that can withstand various conditions (for example, temperature and pressure) of a reaction performed in the apparatus, a chemical reaction, and abrasion due to powder. preferable.
  • Examples of the material of the resistor 11 include nickel, nickel-based alloys (such as incoloy and inconel), and SUS. Among these, SUS is preferable from the viewpoint of cost.
  • FIG. 4 is a cross-sectional view of the fluidized bed reactor 100 according to one embodiment of the present invention when viewed from the horizontal direction.
  • the “fluidized bed reactor according to an embodiment of the present invention” may be simply referred to as “the present apparatus”.
  • the fluidized bed reactor 100 includes a reaction furnace 20, a powder supply unit 30 that supplies a solid (powder) to the reaction furnace 20, and a gas introduction unit 40 that introduces a gas for reacting with the powder. And a gas collecting unit 50 that collects the reaction product gas generated by the reaction.
  • the reaction furnace 20 further includes an internal 10, a partition wall 60, an ejection hole 70, and an ejection hole cap 71 therein.
  • the reaction furnace 20 is provided with a body portion 21 extending in the vertical direction, which is mostly a straight cylinder, a bottom portion 22 connected to the lower portion of the body portion, and a top surface portion 23 connected to the upper end of the body portion. ing.
  • the internal space of the body portion 21 and the internal space of the bottom portion 22 are partitioned by a horizontal partition wall 60.
  • the internal space of the trunk portion 21 and the internal space of the top surface portion 23 are configured to communicate with each other.
  • the inner diameter of the fluidized bed reactor 100 and an inner diameter of the reactor 20 is represented by Y 1.
  • the shape of the bottom portion 22 and the top surface portion 23 is not limited to the shape described in FIG. 4, in other words, the shape formed to be approximately the same diameter as the body portion 21, and the diameters of the body portion 21 and the top surface portion 23 are different. It may be configured to have a shape.
  • the top surface portion 23 is preferably configured to have a larger diameter than the body portion 21.
  • a tapered portion that increases in diameter vertically upward may be formed on the way from the body portion 21 to the top surface portion 23.
  • the inner diameter of the top surface portion 23 is preferably 1.3 to 1.6 times the inner diameter of the body portion 21.
  • the powder supply unit 30 is formed in the top surface portion 23 and is configured to penetrate the top surface portion 23 in the vertical direction, so that a solid (powder) is formed from the outside of the reaction furnace 20 to the inside of the reaction furnace 20. Makes it possible to supply.
  • a gas introduction part 40 is formed at the bottom part 22 of the reaction furnace 20.
  • the gas introduction part 40 is configured to penetrate the wall of the bottom part 22, thereby enabling the gas used for the reaction to be introduced into the inside of the bottom part 22 of the reaction furnace 20 from the outside of the reaction furnace 20. To do.
  • the partition wall 60 is installed on the boundary surface between the body portion 21 and the bottom portion 22.
  • the body part 21 and the bottom part 22 are separated by the partition wall 60.
  • the powder supplied from the powder supply unit 30 to the inside of the reaction furnace 20 is prevented from entering the bottom 22 by the partition wall 60.
  • the ejection hole 70 is formed in the partition wall 60, and is configured to penetrate the partition wall 60 in the vertical direction, thereby introducing the gas introduced into the bottom portion 22 by the gas introduction unit 40 into the body portion 21. Make it possible.
  • the ejection hole cap 71 is formed in the upper part of the ejection hole 70, and is comprised so that the hole of the ejection hole 70 by the side of the trunk
  • the gas collecting unit 50 is formed on the top surface part 23 and can collect the reaction product gas.
  • the following reaction can be performed.
  • Powder is supplied from the powder supply unit 30 to the inner bottom of the reaction furnace 20 (in other words, on the partition wall 60).
  • Gas used for the reaction is introduced from the outside into the bottom 22 lumen of the fluidized bed reactor 100 through the gas introduction unit 40. The gas introduced into the lumen of the bottom portion 22 further passes through the ejection hole 70 and is introduced into the body portion 21 from below the powder.
  • the powder is fluidized by the rising gas, and a fluidized bed is formed in the body portion 21.
  • the reaction occurs when the powder and gas come into contact with each other.
  • the reaction product gas generated by the reaction is collected from the gas collection unit 50.
  • the region where the fluidized bed is formed may be referred to as “fluidized bed forming region 80”.
  • the fluidized bed type reaction apparatus 100 is intended to perform a desired reaction in the apparatus and to obtain a reaction product gas generated by the reaction, and includes the gas collecting unit 50 described above. ing.
  • the reaction product generated by the reaction performed in the fluidized bed reactor 100 is not limited to gas, but may be liquid and solid, or a mixture of gas, liquid and solid. Therefore, the fluidized bed reaction apparatus 100 may include a collection unit for various reaction products in accordance with the form of the reaction product generated by the reaction performed in the apparatus.
  • the collection part for the reaction product can be appropriately selected within the technical range that can be generally known by those skilled in the art.
  • the fluidized bed reactor 100 is provided with the internal 10 in the fluidized bed forming region 80.
  • the internal 10 is [1. It is preferable that it is an internal described in [Internal].
  • the internal 10 includes a plurality (specifically five) of resistor groups 11a including a plurality of resistors 11 on the same horizontal cross section, and one of the resistor groups 11a.
  • the resistor 11 included in the resistor group 11a is shown in gray and surrounded by a dotted line.
  • the internal 10 does not necessarily have to be entirely contained in the fluidized bed forming region 80.
  • the internal 10 is accommodated in the fluidized bed forming region 80, it is possible to enjoy the advantages of the internal 10. Since more advantages of the internal 10 can be received, it is preferable that the number of the resistors 11 accommodated in the fluidized bed forming region 80 is larger among the resistors 11 included in the internal 10. Therefore, it is particularly preferable that all the resistors 11 included in the internal 10 are accommodated in the fluidized bed forming region 80.
  • the fluidized bed reactor 100 has the same advantages as the internal 10 by providing the internal 10 in the fluidized bed forming region 80.
  • the internal 10 includes a resistor group 11 a including a plurality of resistors 11 on the same cross section in the horizontal direction.
  • the resistor group 11 a the horizontal of the fluidized bed reactor 100 is used.
  • the area occupied by the resistor 11 with respect to the cross-sectional area in the direction is preferably 0.1% to 10% per one of the resistors 11.
  • the fluidized bed reactor 100 is a reactor that generates a desired reaction more efficiently.
  • the internal 10 including the resistor group 11a including the resistor 11 having a specific occupation area with respect to the horizontal cross-sectional area of the apparatus is installed, the internal fluid flow in the fluidized bed reactor 100. Occurrence of slugging of the layer is also suppressed, so that the desired reaction can be further promoted.
  • the internal 10 includes a resistor group 11 a including a plurality of resistors 11 on the same cross section in the horizontal direction.
  • the resistor group 11 a the horizontal of the fluidized bed reactor 100 is used.
  • the sum of the area occupied by the resistor 11 with respect to the sectional area in the direction is preferably 0.2% to 30%.
  • the fluidized bed reactor 100 is a reactor that generates a desired reaction more efficiently.
  • an internal 10 including a resistor group 11a including the resistor 11 so that the sum of the occupied area of the resistor 11 is 0.2% to 30% with respect to the horizontal sectional area of the device. Since it is installed, the occurrence of slugging of the fluidized bed can be suppressed in the fluidized bed reactor 100. Therefore, the desired reaction can be further promoted.
  • the internal 10 is preferably provided with the resistor 11 within a range of 5% to 80% with respect to the height H of the fluidized bed forming region 80.
  • “Within a range of 5% to 80%” means that the fluidized bed forming region 80 from the position H1 of 5% vertically above the lower end of the fluidized bed forming region 80 with respect to the height H of the fluidized bed forming region 80.
  • the provision of the resistor 11 within the above range means that the lower end h1 of the vertically lowermost resistor 11 to the upper end h2 of the vertically uppermost resistor 11 are included in the range of H1 to H2.
  • the internal 10 when the internal 10 includes a plurality of resistors 11, one or more resistors 11 out of the resistors 11 included in the internal 10 are high in the fluidized bed formation region 80. It suffices to be provided within a range of 5% to 80% with respect to the height H. Of the resistors 11 provided in the internal 10, the more resistors 11 provided in a range of 5% to 80% with respect to the height H of the fluidized bed forming region 80 is more preferable. It is particularly preferable that all of the resistors 11 included in the internal 10 are provided within a range of 5% to 80% with respect to the height H of the fluidized bed forming region 80.
  • the internal 10 includes a plurality of resistors 11 in the range of 20% to 70% with respect to the height H of the fluidized bed forming region 80.
  • the fluidized bed reactor 100 illustrated in FIG. 1 illustrates the fluidized bed reactor 100 illustrated in FIG.
  • a method for producing trichlorosilane according to an embodiment of the present invention includes supplying metal silicon powder, gaseous tetrachlorosilane, and hydrogen to a fluidized bed reactor, and using the gaseous tetrachlorosilane and hydrogen to produce metal silicon powder. It is preferable that the production method of trichlorosilane is characterized in that a reduction reaction of tetrachlorosilane is carried out by fluidizing.
  • the “method for producing trichlorosilane according to one embodiment of the present invention” may be simply referred to as “the present production method”.
  • the fluidized bed type reactor is described in [2.
  • the fluidized bed reactor described in the “Fluidized bed reactor” is preferable.
  • this production method has an advantage that the tetrachlorosilane reduction reaction is promoted in the fluidized bed reactor 100 and the conversion rate from tetrachlorosilane to trichlorosilane is improved.
  • the metal silicon powder is supplied to the inside of the reaction furnace 20 through the powder supply unit 30 by airflow transfer.
  • Metallic silicon is a batch feed.
  • the measured metal silicon is put into a drum or the like included in the powder supply unit 30 installed in the upper part of the reaction furnace 20. Thereafter, the gas phase of the drum is replaced with hydrogen and the pressure is increased (pressure higher than the reactor pressure), and the automatic valve installed in the supply pipe to the reactor 20 included in the powder supply unit 30 is opened.
  • the metal silicon is introduced into the reaction furnace 20 by its own pressure and its own weight. Since the amount of metal silicon input depends on the load of the reactor 20, the measured value is changed according to the load.
  • hydrogen gas is used as a carrier gas for air flow transfer, and the supply amount of the metal silicon powder is adjusted by controlling the flow rate of the carrier gas.
  • gaseous tetrachlorosilane and hydrogen are supplied to the bottom 22 of the reaction furnace 20 by the gas introduction unit 40.
  • Gaseous tetrachlorosilane and hydrogen supplied from the gas introduction unit 40 are also referred to as reaction gas.
  • the reaction gas is supplied into the body portion 21 from the bottom portion 22 of the reaction furnace 20 through the ejection holes 70 provided in the partition wall 60.
  • the supplied metal silicon powder is fluidized by the supplied reaction gas and is lifted by the rising flow of the reaction gas.
  • a fluidized bed is formed by fluidizing the metal silicon powder.
  • a reduction reaction of tetrachlorosilane specifically a reaction represented by the following reaction formula (1), occurs between the reaction gas and the metal silicon powder.
  • Si + 2H 2 + 3SiCl 4 ⁇ 4SiHCl 3 (1)
  • Gaseous trichlorosilane is obtained by the above reaction.
  • a mixture of metal silicon powder in a fluidized state and a reactive gas rises through the internal 10 in the body portion 21 of the reaction furnace 20.
  • the reaction gas is bubbled and exists in the fluid mixture, and as the reaction gas rises, the reaction gas bubbles gradually grow and become larger.
  • the enlarged bubbles pass through the internal 10, they are in contact with the resistor 11 included in the internal 10 to be subdivided.
  • the resistor 11 included in the internal 10 to be subdivided.
  • the bubbles are further subdivided by passing through the holes.
  • the internal gas 10 including the resistor 11 is installed, so that the reaction gas rises up to the top of the reaction furnace 20 while maintaining the bubble diameter relatively small.
  • the reduction reaction of tetrachlorosilane occurs when the reaction gas comes into contact with the metal silicon powder.
  • the bubble diameter of a reactive gas is small, the contact area of a metal silicon powder and a reactive gas increases, and the reaction efficiency of the reduction reaction of tetrachlorosilane is improved.
  • gaseous tetrachlorosilane can be efficiently converted to gaseous trichlorosilane.
  • the gaseous trichlorosilane rising to the top surface portion 23 of the reaction furnace 20 in this way is collected by the gas collection portion 50 provided on the top surface portion 23 and taken out to the outside of the reaction furnace 20.
  • trichlorosilane is produced by the above-described reduction reaction of tetrachlorosilane.
  • the reaction that occurs in this production method is not limited to the reduction reaction of tetrachlorosilane.
  • a chlorination reaction represented by the following reaction formula (2) occurs, and trichlorosilane can be produced. Si + 3HCl ⁇ SiHCl 3 + H 2 (2)
  • the chlorination reaction represented by the reaction formula (2) may occur simultaneously.
  • a fluidized bed reactor characterized in that the internal according to any one of [1] to [5] is provided in a fluidized bed forming region.
  • the internal includes a resistor group including a plurality of the resistors on the same cross section in the horizontal direction, and the resistor group has the resistance to the cross-sectional area in the horizontal direction of the fluidized bed reactor.
  • the internal includes a resistor group including a plurality of the resistors on the same cross section in the horizontal direction.
  • the resistance to the horizontal cross-sectional area of the fluidized bed reactor The fluidized bed reactor according to [6] or [7], wherein the sum of the body occupied area is 0.2% to 30%.
  • the metal silicon powder, gaseous tetrachlorosilane and hydrogen are supplied to the fluidized bed reactor according to any one of [6] to [10], and the gaseous tetrachlorosilane and hydrogen are used.
  • a small scale fluidized bed apparatus was made.
  • the characteristics of the fluidized bed generated in the fluidized bed apparatus when various internals were installed in the fluidized bed apparatus, and the residual amount of metal silicon when the powder was taken out from the fluidized bed apparatus were evaluated. From the viewpoint of evaluating these, in the fluidized bed apparatus in Example 1, it is sufficient if a fluidized bed is generated (in other words, a reduction reaction of tetrachlorosilane is not necessary), and as a gas to be introduced into the fluidized bed apparatus. Used air.
  • the inner diameter (Y 1 ) of the fluidized bed apparatus used for the study is 600 mm.
  • the resistor was a conical shape having a maximum outer diameter (X 1 ) of 160 mm and a height (X 2 ) of 80 mm.
  • X 1 maximum outer diameter
  • X 2 height
  • the resistor six rectangular holes having a width of 20 mm and a height of 5 mm were formed at approximately equal intervals in the vertical center of the upper surface.
  • the inclination angle ⁇ of the resistor was 45 °.
  • the resistor was held by a columnar support having a diameter of 10 mm as the support passed through the center line of the resistor, and one resistor was held per support. A total of seven resistors were provided such that the lower ends of the resistors were positioned 1 m vertically upward from the partition wall.
  • the dummy tube was a cylindrical shape having a diameter (outer diameter) (X 1 ) of 60.5 mm and a height (X 2 ) of 1000 mm.
  • a total of four dummy tubes were provided such that their lower ends were positioned 1 m vertically upward from the partition wall.
  • the perforated plate was a disk shape having a diameter (outer diameter) (X 1 ) that matched the inner diameter of the apparatus and a thickness (height) (X 2 ) of 9 mm.
  • X 1 outer diameter
  • X 2 thickness
  • 187 holes having a diameter of 25 mm were formed at equal intervals.
  • One perforated plate was provided so that the lower end thereof was positioned 1 m vertically upward from the partition wall.
  • the flow conditions are as follows. -Filling layer height of supplied metal silicon: about 2000mm ⁇ Temperature in fluidized bed apparatus: normal temperature ⁇ Pressure in fluidized bed apparatus: about 20 kPaG ⁇ Temperature of air supplied into the fluidized bed apparatus: room temperature ⁇ Pressure of air supplied into the fluidized bed apparatus: about 30 kPaG As a result, there is no internal or (A) resistor, (B) dummy tube, or (C) fluidized bed formation region height (H in other words, fluidized bed height) in a device equipped with a perforated plate Were 2143.6 mm, 2178.6 mm, 213.1 mm, or 212.9 mm vertically upward from the partition wall, respectively.
  • Bubble ratio (%) (1 ⁇ (packed bed height / fluid bed height)) ⁇ 100
  • the packed bed height is the vertical height of the metal silicon supplied from the powder supply unit from the partition wall, and was measured using a measure.
  • the fluidized bed height is the height of the fluidized bed generated in the fluidized bed when fluidized under the conditions described above, and was measured using a measure.
  • a large bubble ratio means that the bubble diameter is small, and therefore the desired reaction efficiency can be promoted, so that the bubble ratio is preferably large.
  • the bubble ratio was evaluated according to the following criteria, and the results are shown in Table 1. ⁇ : 8% or more ⁇ : 7.5% or more and less than 8% ⁇ : 7% or more and less than 7.5% ⁇ : Less than 7% (Pressure trend)
  • the pressure trend is a change in the difference in pressure of the gas phase between the lowermost part of the fluidized bed and the upper part of the fluidized bed in the fluidized bed. The pressure trend was measured as follows.
  • the first pressure transmitter on the side of the fluidized bed apparatus at a height of 300 mm from the fluidized bed bottom plate (partition) and the second pressure transmitter at a position 1000 mm higher than the powder level of the fluidized bed. Measurements were taken every second. For the pressure trend, the difference between the measured pressure values of the first pressure transmitter and the second pressure transmitter was taken as an indicator of the fluidized state of the fluidized bed.
  • the metal silicon dispersibility is large because a desired reaction can proceed efficiently.
  • the metal silicon dispersibility was evaluated by visually observing the behavior of the metal silicon during the reaction in consideration of the internal shape, and the visual results were evaluated according to the following criteria. Table 1 shows the results. (Double-circle): It does not have an internal or the internal has not prevented the up-and-down movement of metal silicon. ⁇ : Internal slightly hinders the movement of metal silicon up and down. (Triangle
  • the residual amount of metal silicon is the amount of metal silicon powder remaining in the reaction furnace when unreacted metal silicon powder is taken out from the fluidized bed.
  • the small amount of metal silicon remaining indicates that unreacted metal silicon powder can be easily and sufficiently removed from the reaction furnace, and the smaller amount of metal silicon is more preferable.
  • the amount of metal silicon remaining was evaluated by visually observing the presence or absence of metal silicon powder on the internal after the reaction, and the results were shown in Table 1. ⁇ : Almost no metallic silicon powder is present on the internal ⁇ : Many metallic silicon powders are present on the internal.
  • the internal comprising the resistor is particularly excellent from the viewpoint of the bubble rate and pressure trend.
  • the internal including the resistor has a sufficiently excellent effect from the viewpoints of metal silicon dispersibility and metal silicon remaining amount. Therefore, from the results in Table 1, it can be seen that the internal with the resistor is the most excellent as a comprehensive evaluation of the internal.
  • Example 2 Production of trichlorosilane was carried out as follows using a fluidized bed reactor equipped with an internal having a resistor that was highly evaluated in Example 1 and a fluidized bed reactor not equipped with an internal. Went to.
  • the inside diameter (Y 1 ) of the fluidized bed reactor used for the study is 2300 mm.
  • the resistor had a conical shape with a maximum inner diameter (X 1 ) of 160 mm and a height (X 2 ) of 80 mm.
  • X 1 maximum inner diameter
  • X 2 height
  • eight circular holes having a width of 20 mm were formed at substantially equal intervals in the vertical center of the upper surface.
  • the inclination angle ⁇ of the resistor was 45 °.
  • the resistor was held by a lattice-like support made of a plate having a width of 50 mm.
  • the internal was configured so that four sets in the vertical direction were provided with 25 to 32 sets of resistors on the same cross section in the horizontal direction.
  • the reaction conditions are as follows. -Filled layer height of supplied metal silicon: about 5000 mm. -Temperature in the reactor: 540 ° C -Pressure in the reactor: 2.8 MPaG ⁇ Hydrogen temperature supplied to the body: 550 ° C ⁇ Hydrogen pressure supplied into the body: 2.9 MPaG -Temperature of tetrachlorosilane supplied into the body: 550 ° C -Pressure of tetrachlorosilane supplied into the body part: 2.9 MPaG
  • the metal silicon was supplied to a height of about 5000 mm while forming a fluidized bed. Therefore, the fluidized bed forming region in the fluidized bed reactor was about 5000 mm, which is the same as the height of the packed bed of metal silicon.
  • F is the amount of tetrachlorosilane supplied (in other words, the amount of feed tetrachlorosilane), and R is the amount of tetrachlorosilane in the reaction product gas.
  • the conversion rate in each of the devices with or without internal (A) to (C) increased from the start of operation (reaction) and stabilized after a few days (referred to as device conversion rate). It turns out that it becomes. Without internal (A) to (C), the average value of all device conversions was 24.5%. On the other hand, in the presence of internal, the device conversion rate was 25.7%. That is, the conversion rate of the fluidized bed reactor equipped with the internal was improved by about 1.05 times compared with the fluidized bed reactor not equipped with the internal.
  • a novel internal capable of promoting a reaction between a gas and a solid, a fluidized bed type reactor equipped with the internal, and trichlorosilane using the fluidized bed type reactor It is possible to provide a manufacturing method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Silicon Compounds (AREA)

Abstract

気体と固体との反応を促進し得る新規のインターナル、当該インターナルを備える流動床式反応装置、および、当該流動床式反応装置を用いたトリクロロシランの製造方法を提供する。本発明に係るインターナルは、流動床式反応装置内に設置するためのインターナルであり、上記インターナルは、上面が錐状を成す形状を有する抵抗体を備える。

Description

インターナル、流動床式反応装置およびトリクロロシランの製造方法
 本発明は、インターナル、流動床式反応装置およびトリクロロシランの製造方法に関する。
 流動ガスと固体(一般的には粉体)との接触を利用した化学反応を提供する装置として、流動床式反応装置が用いられている。
 一般に、流動床式反応装置では、以下の順で気体と固体との反応が生じる。(i)反応炉の内底部に置かれた粉体にその下方から気体(ガス)を導入する。(ii)粉体が上昇するガスによって流動され、流動層が形成される。(iii)上記流動層中において、粉末とガスとが接触することにより、反応が生じる。
 従来、気体と固体との反応の促進を目的とした、様々な流動床式反応装置が報告されている。例えば特許文献1~4には、トリクロロシランの製造に用いられるための流動床式反応装置が開示されている。上記文献では、反応炉内に、気体と固体との反応を促進させるための部材(以下、本明細書中では、「インターナル」と称する場合もある。)として様々な部材を備えている、流動床式反応装置が開示されている。
 特許文献1および2に記載の流動床式反応装置では、反応炉内に、ガス流制御部材と、ガス流制御部材を取り囲むように配置された伝熱管とを設置してインターナルが構成されている。上記インターナルは、筒状の部材を流動層中に存在せしめ、ガス流を攪乱することにより、反応を促進しようとするものである。
 特許文献3に記載の流動床式反応装置では、反応炉下部にあるガスの噴出孔の近傍に、複数の有孔小片と、これら有孔小片同士の間に介在する複数の塊状部材とが、混在した状態で堆積することによりインターナルを構成している。また、特許文献4に記載の流動床式反応装置では、反応炉下部にあるガスの噴出孔の近傍に、ボール状ガス拡散材を複数備えることによりインターナルを構成している。上記特許文献3及び4において、インターナルは、ガス噴出口の近傍に設けられ、ガス噴出口から供給するガスを拡散せしめることを目的とするものである。
特開2009-120467号公報 特開2010-189256号公報 特開2009-120473号公報 特開2010-184846号公報
 しかしながら、上述のような従来技術では、流動床式反応装置内において、流動層における気体と固体との反応を促進させる点で十分とはいえず、依然として改善の余地があった。また、本願の発明者らが鋭意検討したところ、流動床式反応装置内から固体成分を排出する際の効率性も、トリクロロシランの製造方法において重要であることを独自に見出した。即ち、前記特許文献3の堆積物の上面に固体成分である粉体が堆積し易く、また、特許文献4のボール状のインターナルでは、ボール上部に固体成分である粉体が堆積し易い。すなわち、特許文献3および特許文献4のいずれの技術においても、反応時、或いは、反応終了後の固体成分の排出において、インターナル上に固体成分が残留する。
 本発明の一実施形態は、上記問題点に鑑みなされたものである。従って、本発明の一実施形態は、下記(1)および(2)が可能である新規のインターナル、当該インターナルを備える流動床式反応装置および当該流動床式反応装置を用いたトリクロロシランの製造方法を提供することを目的とする:(1)気体と固体との反応を促進すること;および(2)固体成分の堆積を抑制すること。
 本願の発明者らは、上述した課題を解決すべく鋭意検討を重ねた結果、流動床式反応装置内に設置するためのインターナルにつき、上面が錐状を成す形状を有する抵抗体を備えることにより、上述した課題を解決し得ることを見出し、本発明を完成するに至った。
 即ち、本発明の一実施形態に係るインターナルは、流動床式反応装置内に設置するための、インターナルであり、上記インターナルは、上面が錐状を成す形状を有する抵抗体を備えることを特徴とする。
 本発明の一態様によれば、流動床式反応装置において気体と固体との反応を促進し得るとともに、流動床式反応装置から固体成分の効率的な排出も可能であるという効果を奏する。
本発明の一実施形態に係るインターナルの斜視図である。 (a)~(c)は本発明の一実施形態に係る抵抗体を水平方向からみた図である。(d)および(e)は本発明の一実施形態に係る抵抗体の斜視図である。 (a)~(c)は、本発明の一実施形態に係る抵抗体の斜視図である。(d)および(f)は、本発明の一実施形態に係る抵抗体を水平方向からみた図である。(e)および(g)は、それぞれ(d)および(f)に係る抵抗体に鉛直上方から光を当てた際の投影図である。 本発明の一実施形態に係る流動床式反応装置を水平方向からみた際の断面図である。 テトラクロロシランからトリクロロシランへの転化率を示す図である。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能である。即ち、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。
 〔1.インターナル〕
 本発明の一実施形態に係るインターナルは、流動床式反応装置内に設置するためのインターナルであり、上記インターナルは、上面が錐状を成す形状を有する抵抗体を備える。なお、本明細書中では、「本発明の一実施形態にかかるインターナル」を、単に「本インターナル」と称する場合もある。また、本明細書中では、「流動床式反応装置」を、単に「装置」と称する場合もある。
 本インターナルは、上記構成を含むため、以下のような利点を有する:(1)インターナルが備える抵抗体に、反応のために供給された気体からなる気泡が接触して該気泡が分散することにより、該気泡が小さくなる(気泡の細分化)。それによって、気体-固体の接触面積が増加する。従って、本インターナルが設置された装置内で所望の反応が促進される、という利点;また、(2)上記抵抗体が錐状の形状を有することにより、反応時において、インターナルの鉛直上方から落下する粉体の滞留は少なくなる。これによって、本インターナルが設置された装置内では、粉体の流動がスムースに行われることが可能となる、という利点;さらに、(3)上記抵抗体が錐状の形状を有することにより、本インターナルが設置された装置内から粉体を排出する際、装置内、特にインターナルの抵抗体上面における粉体の滞留を防止することが可能となる、という利点。
 図1は、本発明の一実施形態に係るインターナル10の斜視図である。図1に示すとおり、インターナル10は、上面が錐状を成す形状を有する抵抗体11、抵抗体11を保持するための支持体12を備える。
 <1-1.抵抗体11>
 図2を参照して抵抗体11を説明する。図2の(a)~(c)は抵抗体11を水平方向からみた図である。図2の(d)および(e)は抵抗体11の斜視図である。図2の(a)に図示されたように、抵抗体11は、上面13および下面14を有する。
 本明細書中において、抵抗体11の「上面13」とは、抵抗体11を鉛直上方から見たときに視界に入る部分、および抵抗体11を水平方向からみたときに視界に入る部分を意図する。抵抗体11の「下面14」とは、抵抗体11の「上面13」以外の部分を意図する。従って、図2の(a)~(e)を参照すると、各図の下線が下面14となり、下線よりも上部は全て上面13となる。
 抵抗体11は、上面13が錐状を成す形状を有する。上記「上面13が錐状を成す形状を有する」とは、「上面13が錐状を形成する面を有する」とも換言し得る。上記「錐状を形成する面」とは、抵抗体11の頂点を通る鉛直線を引いたときに、鉛直下方から鉛直上方に向かって当該鉛直線に近づく面であり、かつ、当該鉛直線と90°以下で交わる直線を含む面である。ここで、「抵抗体11の頂点」とは、抵抗体11において最も鉛直上方にある点を意図する。本明細書中では、上面13が有している「錐状を形成する面」を、「錐状面13a」または「錐状側壁」と称する場合もある。
 なお、「錐状」は、「錘状」と言い換えることも可能である。「錘状」とした場合、用語「錘状面」および「錘状側壁」が意図するものは、「錐状面」および「錐状側壁」が意図するものと、それぞれ同じである。
 抵抗体11の上面13は、錐状面13a以外に、胴直面13bを有していてもよい。上記「胴直面13b」とは、鉛直方向と平行である面をいう。図2の(b)および(c)で図示されるように、抵抗体11は、錐状面13aと胴直面13bとが組み合わされて構成されていてもよい。
 抵抗体11の形状の例としては、図2に図示された形状、例えば、(a)の錐型、(b)のコマ型、(c)の段々型、が挙げられるがこれらに限定されない。また、抵抗体11は、図2の(a)~(c)を組み合わせた形状であってもよい。例えば、一つの図において、抵抗体11は、ある部分は錐型を示すが、他の部分はコマ型を示すような形状であってもよく、または、一方向からみた図では錐型を示すが、他方からみた図ではコマ型を示すような形状であってもよい。
 また、図2の(a)~(c)において図示された図は、全て、抵抗体11の頂点を通る鉛直線に対して左右対称であるが、抵抗体11はこれに限定されない。また、抵抗体11は、図2の(d)に図示された円錐のように、底面の形状が円形でもよく、図2の(e)に図示された三角錐のように、底面の形状が三角形でもよい。抵抗体11の底面の形状はこれらに限定されず、例えば楕円形、四角形、または多角形であってもよい。ここで、上記「底面」とは、抵抗体11に鉛直上方から光を当てた際の投影図で表される面である。
 抵抗体11は、気泡の細分化の観点から、錐型、特に、円錐型であることが好ましい。
 抵抗体11の下面14の形状は、特に限定されず、平坦であってもよく、凹部を有していてもよい。
 抵抗体11は、下面14と上面13とを貫通する孔が形成されていることが好ましい。抵抗体11において、孔が形成される場所は特に限定されず、抵抗体11の頭頂部に孔が形成されていてもよい。抵抗体11は、下面14と上面13とを貫通する孔が形成されていることにより、当該抵抗体を備えるインターナル10が設置された装置内での反応がより促進されるという利点を有する。これは、装置に導入された気体からなる気泡が、孔を通過することによって、気泡がより小さくなる(言い換えれば気泡がさらに細分化する)ため、気体と固体との接触面積がより増加することに起因する。
 抵抗体11に形成される孔の数は特に限定されないが、気泡の細分化の観点から、1つ以上が好ましく、2つ以上がより好ましく、4つ以上がさらに好ましく、6つ以上が特に好ましい。抵抗体11に2つ以上の孔が形成される場合には、形成される孔の配置は特に限定されないが、気泡の細分化の観点から、均等に配置されることが好ましい。
 また、抵抗体11に形成される孔の形状は特に限定されず、四角形、菱形、多角形、円形および楕円形などが挙げられる。抵抗体11に形成される孔の形状は、加工の簡便さの観点から、円形が好ましい。
 孔が形成された抵抗体11の一例を、図3の(a)および(b)を参照して説明する。図3の(a)および(b)は、抵抗体11の斜視図である。当該抵抗体11は、下面14が凹部を有し、かつ、下面14と上面13とを貫通する孔が形成されている。
 図3の(a)に図示された抵抗体11は、抵抗体11の鉛直方向略中央に四角形の孔が形成されている。図3の(a)では、抵抗体11には、等間隔に合計6つの孔が形成されている。これら6つの孔は、水平方向の同一断面上に形成されている。
 図3の(b)に図示された抵抗体11は、抵抗体11の頭頂部、および、抵抗体11の鉛直方向略中央に、円形の孔が形成されている。鉛直方向略中央に形成されている孔は、等間隔に合計6つ形成されており、3つの孔は水平方向の同一断面上に形成されており、他の3つの孔は、水平方向の異なる、同一断面状に形成されている。なお、便宜上、図3の(a)および(b)には、鉛直方向略中央に形成されている6つの孔のうちの3つの孔のみ示す。
 図3の(c)は、抵抗体11の斜視図である。図3の(c)に図示されたように、抵抗体11は、抵抗体11の頂点を通る鉛直線pと上記錐状側壁に含まれる直線sとが形成する角θを有する。上記θを「傾斜角θ」と称する場合もある。図3の(c)に図示された抵抗体11は、上面13の錐状側壁の傾斜角θとして、45°の傾斜角θを有する。抵抗体11は、上面13の錐状側壁の傾斜角θが、抵抗体11の頂点を通る鉛直線pに対して45°以下であることが好ましく、40°以下であることがより好ましく、35°以下であることがさらに好ましく、30°以下であることが特に好ましい。上面13の錐状側壁の傾斜角θの下限は、特に限定されないが、10°以上であってもよい。
 抵抗体11は、上述したように、上面13の錐状側壁の傾斜角θが、抵抗体11の頂点を通る鉛直線pに対して45°以下であることにより、粉体の流動をスムースに行うことが可能となる、という利点を有する。これは、抵抗体11の上面13への固体(粉体)の堆積をより一層抑えることができるため、インターナル10の鉛直上方から落下する粉体の抵抗体11の上面13の近傍における滞留が少なくなることに起因する。また、上面13の錐状側壁の傾斜角θが、抵抗体11の頂点を通る鉛直線pに対して45°以下である抵抗体11は、当該抵抗体11の上面13への固体(粉体)の堆積がより一層少なくなる。そのため、上記粉体を流動床式反応装置からより容易に抜き取ることが可能となる。上記抵抗体11を備えるインターナル10が設置された装置が後述するトリクロロシラン製造方法において用いられる場合には、上記粉体は金属シリコンである。
 図3の(c)に図示されたように、抵抗体11の水平方向の外径をX、抵抗体11の高さをXとする。また、後述される図4に図示されたように、流動床式反応装置100の水平方向の内径をYとする。抵抗体11の大きさとしては、次の(1)または(2)を満たすことが好ましく、(1)および(2)を共に満たすことがより好ましい:(1)抵抗体11の水平方向の外径Xと、当該抵抗体11を備えるインターナル10が設置される流動床式反応装置の水平方向の内径Yとが、0.05≦X/Y≦0.25であること;(2)上記抵抗体の高さXと上記外径Xとの比が、0.5≦X/X≦5であること。
 抵抗体11の大きさとしては、0.05≦X/Y≦0.20を満たすことがより好ましく、0.05≦X/Y≦0.15を満たすことがさらに好ましく、0.05≦X/Y≦0.10を満たすことが特に好ましい。また、抵抗体11の大きさとしては、0.5≦X/X≦3を満たすことがより好ましく、0.5≦X/X≦2を満たすことがさらに好ましく、0.5≦X/X≦1を満たすことが特に好ましい。
 抵抗体11の大きさが上記(1)を満たすことにより、当該抵抗体11を備えるインターナル10が設置された装置では、装置内の流動層のスラッギングの発生が抑えられるため、装置内で所望の反応が促進される、という利点を有する。また、抵抗体11の大きさが上記(2)を満たすことにより、当該抵抗体11を備えるインターナル10が設置された装置では、装置内の流動層の流れがスムースな流れとなるため、当該装置で所望の反応が促進される、という利点を有する。なお、上記スラッギング発生の判定は、Keairnsらによるスラッギング判定式を用いて、当業者の技術的知識の範囲内で、行うことが可能である。
 図3の(d)は、抵抗体11を水平方向からみた図であり、図3の(e)は、図3の(d)に係る抵抗体11に鉛直上方から光を当てた際の投影図である。図3の(f)は、抵抗体11を水平方向からみた図であり、図3の(g)は、図3の(f)に係る抵抗体11に鉛直上方から光を当てた際の投影図である。
 図3の(d)および(f)に図示されたように、抵抗体11の上面13は、錐状面13aおよび胴直面13b以外に、水平面13cを有していてもよい。上記「水平面13c」とは、上面13のうち、鉛直方向と垂直である面をいう。図3の(d)および(f)で図示されるように、抵抗体11は、錐状面13aと水平面13cとが組み合わされて構成されていてもよい。図3の(d)および(f)で図示されるように、抵抗体11の上面13は、抵抗体11の最も鉛直上方にある面が、水平面13cであってもよい。
 図3の(e)および(g)に図示されたように、抵抗体11に鉛直上方から光を当てた際の投影図の面積、をS1とする。また図3の(d)および(f)に図示されたように、抵抗体11が有する上面13において、傾斜角θが45°を超える上面13の面積の和をS2とする。S1はS2を含む。抵抗体11は、S2とS1との比、S2/S1が小さければ小さいほど好ましい。具体的には、S2/S1は0.5未満であることが好ましく、0.3未満であることがより好ましく、0.2未満であることがさらに好ましく、0.1以下が特に好ましい。
 図3の(f)に図示された抵抗体11は、下面14が凹部を有し、かつ、水平面13cに、下面14と上面13とを貫通する孔が形成されている。図3の(f)に図示されたように、傾斜角θが45°を超える上面13に孔が形成されている場合には、孔を除いた上面13の和がS2となる。
 抵抗体11は、S2/S1が0.5未満であることにより、粉体の流動をスムースに行うことが可能となる、という利点を有する。これは、抵抗体11の上面13への固体(粉体)の堆積をより一層抑えることができるため、インターナル10の鉛直上方から落下する粉体の抵抗体11の上面13の近傍における滞留が少なくなることに起因する。また、S2/S1が0.5未満である抵抗体11は、当該抵抗体11の上面13への固体(粉体)の堆積がより一層少ないため、上記粉体を流動床式反応装置からより容易に抜き取ることが可能となる。
 図1に示されたインターナル10は、複数の水平方向の断面上に抵抗体11を備え、かつ、水平方向の同一断面上に複数の抵抗体11を備えている。本明細書中では、水平方向の同一断面上に設けられた複数の抵抗体を、「抵抗体群」とも称する。図1に示されたインターナル10は、水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11aを複数(具体的には7つ)備えており、それらの抵抗体群11aのうちの一つの抵抗体群11aが含んでいる抵抗体11は、灰色で、かつ点線で囲って、図示されている。しかしながら、インターナル10が備える抵抗体11の数は、特に限定されない。インターナル10は、気泡の細分化の観点から、好ましくは2つ以上の水平方向の断面上に、より好ましくは3つ以上の水平方向の断面上に、さらに好ましくは4つ以上の水平方向の断面上に、特に好ましくは5つ以上の水平方向の断面上に、抵抗体11を備える。インターナル10は、気泡の細分化の観点から、水平方向の同一断面上に、2以上の抵抗体11を備えることが好ましく、10以上の抵抗体11を備えることがより好ましく、20以上の抵抗体11を備えることがさらに好ましく、30以上の抵抗体11を備えることが特に好ましい。インターナル10は、気泡の細分化の観点から、水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11a、を2つ以上備えることが好ましく、3つ以上備えることがより好ましく、4つ以上備えることがさらに好ましく、5つ以上備えることが特に好ましい。
 インターナル10が、上述したように、複数の水平方向の断面上に抵抗体11を備えること、および/または、水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11aを備えることによって、以下のような利点を有する。即ち、当該インターナル10が設置された装置では、流動層の水平方向および/または鉛直方向の様々な位置において、抵抗体11による利点を享受することが可能となる。言い換えれば、流動層の水平方向および/または高さ方向の様々な位置において、気体と固体との接触面積がより増加する利点を享受することが可能となり、故に、当該装置で所望の反応が促進される、という利点を有する。
 インターナル10が、複数の水平方向の断面上に抵抗体11を備える場合の、複数の抵抗体11の位置関係について説明する。インターナル10において、水平方向のある断面上に抵抗体a1が存在し、上記断面と鉛直方向で隣り合う水平方向断面上に抵抗体b1が存在する場合を想定する。この場合には、抵抗体a1と抵抗体b1との互いの鉛直方向の中心線は、重なり合ってもよく、重なり合わなくともよいが、気泡の細分化の観点からは、重なり合わないことが好ましい。
 インターナル10が、水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11a、を備える場合には、抵抗体群11aにおいて各々の抵抗体11は、互いに一定の間隔をあけて配置されることが好ましい。上記「一定の間隔」は、インターナル10が設置された装置内における、流動層のスラッギングの発生に影響を与え得る。従って、上記「一定の間隔」は、上記スラッギングの発生を防止することを目的として、適宜設定され得る。
 インターナル10が複数の水平方向の断面上に抵抗体11を備え、かつ、水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11aを少なくとも一つ備える場合には、各々の水平方向の断面上に形成される複数の抵抗体11の数は、同じであってもよく、異なっていてもよい。当該抵抗体11の数は、気泡の細分化、スラッギングの発生防止、および、装置が備えるインターナル以外の部材の配置などを考慮して、適宜設定され得る。
 抵抗体11の材質は、特に限定されるわけではないが、装置内で行われる反応の各種条件(例えば温度および圧力など)、化学反応、および粉体による摩耗などに耐えられる材質であることが好ましい。抵抗体11の材質としては、例えば、ニッケル、ニッケル基合金(インコロイ、およびインコネルなど)、およびSUSなどが挙げられるが、これらの中でもコストの観点からSUSが好ましい。
 <1-2.支持体12>
 支持体12は、抵抗体11を保持できる構成であれば特に限定されない。例えば、図1のように、抵抗体11の上面13と接触して保持するような構成であってもよく、抵抗体11を貫通することによって保持するような構成であってもよく、またはそれらが組み合わされていてもよい。
 支持体12の形状は、抵抗体11を支持できる構成であれば特に限定されない。図1のように板状体から構成されてもよいし、角柱、または円柱などから構成されてもよい。また、支持体12は、上述した様々な形状の部材が組み合わされて構成されてもよい。また、角柱、または丸柱などが使用される場合、それらの内部は空洞であってもよい。支持体12の形状は、装置内の流動層の流れをスムースな流れとする観点から、水平方向の断面積が小さいことが好ましく、従って、板状体が用いられ、かつ、板状の面が鉛直方向と平行になるように構成されることが好ましい。
 支持体12の材質は、特に限定されるわけではないが、装置内で行われる反応の各種条件(例えば温度および圧力など)、化学反応、および粉体による摩耗などに耐えられる材質であることが好ましい。抵抗体11の材質としては、例えば、ニッケル、ニッケル基合金(インコロイ、およびインコネルなど)、およびSUSなどが挙げられるが、これらの中でもコストの観点からSUSが好ましい。
 〔2.流動床式反応装置〕
 図4は本発明の一実施形態に係る流動床式反応装置100を水平方向からみた際の断面図である。「本発明の一実施形態にかかる流動床式反応装置」を、単に「本装置」と称する場合もある。
 流動床式反応装置100は、反応炉20と、当該反応炉20に固体(粉体)を供給する粉体供給部30と、当該粉体と反応させるための気体を導入する気体導入部40と、当該反応によって生成された反応生成ガスを採集するガス採集部50と、を備えている。
 反応炉20は、その内部に、インターナル10、隔壁60、噴出孔70および噴出孔キャップ71を、さらに備える。
 反応炉20は、大部分がストレートの円筒状をなす鉛直方向に沿う胴体部21と、胴体部の下部に連結された底部22と、胴体部の上端に連結された天面部23とが設けられている。胴体部21の内部空間と底部22の内部空間とは、水平な隔壁60によって仕切られている。一方、胴体部21の内部空間と天面部23の内部空間とは相互に連通可能な状態に構成されている。また、流動床式反応装置100の内径とは、反応炉20の内径であり、Yで表される。
 底部22と天面部23との形状は、図4に記載された形状、言い換えれば、胴体部21と略同径に形成された形状に限定されず、胴体部21と天面部23の径が異なる形を有するように構成されてもよい。反応生成ガスを粉体から効率よく分離して採集するためには、胴体部21よりも天面部23の方が大きな径を有するように構成されていることが好ましい。胴体部21よりも天面部23の方が大きな径を有する場合には、胴体部21から天面部23に向かう途中に、鉛直上方に向かって拡径するテーパ部が形成されてもよい。天面部23の内径は、胴体部21の内径の1.3~1.6倍であることが好ましい。
 粉体供給部30は、天面部23に形成されており、天面部23を鉛直方向に貫通するように構成されることにより、反応炉20の外部から反応炉20の内部に固体(粉体)を供給することを可能にする。
 反応炉20の底部22には、気体導入部40が形成されている。気体導入部40は、底部22の壁を貫通するように構成されており、それにより、反応炉20の外部から、反応炉20の底部22の内部に反応に用いる気体を導入することを可能にする。
 隔壁60は、胴体部21と底部22との境界面に設置されている。隔壁60によって、胴体部21と底部22とは区切られている。粉体供給部30から反応炉20の内部に供給された粉体は、隔壁60により、底部22への進入を防がれている。
 噴出孔70は、隔壁60に形成されており、当該隔壁60を鉛直方向に貫通するように構成されることにより、気体導入部40によって底部22に導入された気体を、胴体部21へ導入することを可能にする。
 噴出孔キャップ71は、噴出孔70の上部に形成されており、胴体部21側の噴出孔70の孔を覆うように構成される。これにより、噴出孔キャップ71は、粉体の噴出孔70の内部への侵入を、言い換えれば、粉体が噴出孔70を通ることによる、粉体の胴体部21から底部22への侵入を、防ぐことを可能にしている。
 ガス採集部50は、天面部23に形成されており、反応生成ガスを採集することが可能である。
 流動床式反応装置100では、以下の様な反応が行われ得る。(i)粉体供給部30から、反応炉20の内底部(言い換えれば、隔壁60上)へ、粉体が供給される。(ii)気体導入部40を通り、外部から流動床式反応装置100の底部22内腔へ、反応に用いる気体が導入される。底部22内腔へ導入された気体は、さらに噴出孔70を通り、胴体部21の内部へ、上記粉体の下方から導入される。(iii)粉体が上昇する気体によって流動され、胴体部21に流動層が形成される。(iv)流動層中において、粉体と気体とが接触することにより、反応が生じる。(v)上記反応によって生じた反応生成ガスが、ガス採集部50から採集される。流動層が形成される領域を、「流動層形成領域80」と称する場合もある。
 流動床式反応装置100は、当該装置で所望の反応が行われ、当該反応によって生成される反応生成ガスを得ることを目的に行われることを意図しており、上述したガス採集部50を備えている。しかしながら、流動床式反応装置100で行われる反応によって生成される反応生成物はガスに限らず、液体および固体、またはガス、液体および固体の混合物であってもよい。従って、流動床式反応装置100は、当該装置で行われる反応によって生成される反応生成物の形態に合わせて、様々な反応生成物のための採集部を備えてもよい。当該反応生成物のための採集部は、当業者が通常知り得る技術範囲において、適宜選択され得る。
 図4において、流動床式反応装置100は、インターナル10を流動層形成領域80に設けている。インターナル10は、〔1.インターナル〕に記載されたインターナルであることが好ましい。また、インターナル10は、水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11aを複数(具体的には5つ)備えており、それらの抵抗体群11aのうちの一つの抵抗体群11aが含んでいる抵抗体11は、灰色で、かつ点線で囲って、図示されている。上述したように、反応は、流動層中において生じるため、インターナル10が流動層形成領域80に設けられることにより、インターナル10の利点を享受することが可能となる。インターナル10は、そのすべてが流動層形成領域80に収まっている必要は必ずしもない。インターナル10の一部、特に、一つ以上の抵抗体11を含む部分が流動層形成領域80に収まっていれば、インターナル10の利点を享受することが可能となる。インターナル10の利点をより多く享受することが可能となることから、インターナル10が備える抵抗体11のうち、流動層形成領域80に収まっている抵抗体11が多いほど好ましい。故に、インターナル10が備える全ての抵抗体11が流動層形成領域80に収まっていることが特に好ましい。
 流動床式反応装置100は、インターナル10を流動層形成領域80に設けていることにより、インターナル10が有する利点と同様の利点を有する。
 流動床式反応装置100では、インターナル10は、水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11a、を備え、抵抗体群11aでは、上記流動床式反応装置100の水平方向の断面積に対する抵抗体11の占有面積が、上記抵抗体11の1つあたり0.1%~10%であることが好ましい。
 水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11aを備えるインターナル10が設置されていることから、流動床式反応装置100は所望の反応をより効率よく生じる反応装置となる利点を有する。また、当該装置の水平方向の断面積に対して特定の占有面積を有する抵抗体11を含む抵抗体群11a、を備えるインターナル10が設置されているため、流動床式反応装置100内では流動層のスラッギングの発生も抑えられ、故に所望の反応がさらに促進され得る利点を有する。
 流動床式反応装置100では、インターナル10は、水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11a、を備え、抵抗体群11aでは、上記流動床式反応装置100の水平方向の断面積に対する抵抗体11の占有面積の和が0.2%~30%であることが好ましい。
 水平方向の同一断面上に複数の抵抗体11を含む抵抗体群11aを備えるインターナル10が設置されていることから、流動床式反応装置100は所望の反応をより効率よく生じる反応装置となる利点を有する。また、当該装置の水平方向の断面積に対して、抵抗体11の占有面積の和が0.2%~30%となるように抵抗体11を含む抵抗体群11a、を備えるインターナル10が設置されているため、流動床式反応装置100内では流動層のスラッギングの発生も抑えられる。故に所望の反応がさらに促進され得る利点を有する。
 流動床式反応装置100では、インターナル10は、上記流動層形成領域80の高さHに対して、5%~80%の範囲内に抵抗体11を備えていることが好ましい。「5%~80%の範囲内」とは、上記流動層形成領域80の高さHに対して、流動層形成領域80の下端より鉛直上方へ5%の位置H1から、流動層形成領域80の下端より鉛直上方へ80%の位置H2までの範囲内を意図する。従って、上記範囲内に抵抗体11を備えるとは、鉛直最下方の抵抗体11の下端h1から、鉛直最上方の抵抗体11の上端h2までが、H1からH2の範囲内に含まれているように、抵抗体11を備えることを意図する。
 上記構成によれば、所望の反応をより効率よく生じる流動床式反応装置100を提供できるという利点を有する。これは、流動床式反応装置100の反応炉20内部で反応中に形成される流動層の鉛直上方においても、気泡が小さくなる(言い換えれば、気泡が細分化する)ことにより、気体-固体の接触面積が増加することに起因する。
 図4のように、インターナル10が複数の抵抗体11を備えている場合には、インターナル10が備える抵抗体11のうち、1つ以上の抵抗体11が、流動層形成領域80の高さHに対して、5%~80%の範囲内に備えられていればよい。インターナル10が備える抵抗体11のうち、流動層形成領域80の高さHに対して、5%~80%の範囲内に備えられる抵抗体11が多いほど好ましい。インターナル10が備える抵抗体11の全てが、流動層形成領域80の高さHに対して、5%~80%の範囲内に備えられることが特に好ましい。
 図4に図示された流動床式反応装置100では、インターナル10は、流動層形成領域80の高さHに対して、20%~70%の範囲に複数の抵抗体11を備えている。
 〔3.トリクロロシランの製造方法〕
 本発明の一実施形態に係るトリクロロシランの製造方法は、流動床式反応装置に、金属シリコン粉末とガス状のテトラクロロシランと水素とを供給し、上記ガス状のテトラクロロシランおよび水素により金属シリコン粉末を流動化してテトラクロロシランの還元反応を行うことを特徴とするトリクロロシランの製造方法、であることが好ましい。
 本明細書では、「本発明の一実施形態にかかるトリクロロシランの製造方法」を、単に「本製造方法」と称する場合もある。
 上記流動床式反応装置は、〔2.流動床反応装置〕に記載された流動床式反応装置であることが好ましい。
 上記構成によれば、粉体と反応するための気体の気泡を小さくすることが可能であるインターナル10を流動床式反応装置に設けているため、気体-固体の接触面積が増加する。故に、本製造方法は、流動床式反応装置100内において、テトラクロロシラン還元反応が促進され、テトラクロロシランからトリクロロシランへの転化率が向上する、という利点を有する。
 流動床式反応装置100を用いて行う本製造方法について、詳しく説明する。
 反応炉20の内部に、気流移送により、粉体供給部30を通じて、金属シリコン粉末を供給する。金属シリコンはバッチ供給である。計量済の金属シリコンは、反応炉20の上部に設置された粉体供給部30に含まれるドラムなどに投入される。その後、上記ドラムのガス相を水素置換、および水素昇圧(反応炉圧力より高い圧力)し、粉体供給部30に含まれる、反応炉20までの供給管に設置された自動弁を開とすることにより、金属シリコンは、自圧および自重により、反応炉20の内部に投入される。金属シリコンの投入量は反応炉20の負荷に依存するため、当該負荷に応じて計量値を変更する。このとき、水素ガスを気流移送のキャリアガスとして用いており、このキャリアガスの流量を制御することにより金属シリコン粉末の供給量を調整する。
 また、気体導入部40により、反応炉20の底部22にガス状のテトラクロロシランと水素とを供給する。気体導入部40から供給されるガス状のテトラクロロシランと水素とを、反応ガスとも称する。上記反応ガスは、隔壁60に設けられた噴出孔70を介して、反応炉20の底部22から胴体部21内に供給される。供給された反応ガスにより、供給された金属シリコン粉末は流動化され、反応ガスの上昇流に乗って上昇させられることになる。
 金属シリコン粉末の流動化によって、流動層が形成される。このとき、流動層内では、反応ガスと金属シリコン粉末との間に、テトラクロロシランの還元反応、具体的には下記反応式(1)に示される反応が、生じる。
Si+2H+3SiCl→4SiHCl・・・(1)
上記反応によってガス状のトリクロロシランが得られる。
 上記流動層において、流動状態の金属シリコン粉末と反応ガスとの混合物(流動混合物とも称する)は、反応炉20の胴体部21におけるインターナル10の中を経由して上昇する。このとき、反応ガスは気泡状になって流動混合物内に存在することになり、上昇するにつれて反応ガスの気泡が徐々に成長して大きくなってくる。ここで、大きくなった気泡は、インターナル10内を通過するときに、インターナル10が備える抵抗体11と接触して細分化する。このとき、上記抵抗体11に孔が形成されている場合には、気泡は当該孔を通過することによって、より細分化される。
 従って、この反応炉20においては、抵抗体11を備えるインターナル10を設置したことにより、反応ガスは、反応炉20の上部まで気泡の径が比較的小さい状態に維持されたまま上昇する。その間に、反応ガスが金属シリコン粉末と接触することによって、テトラクロロシランの還元反応が生じる。そして、反応ガスの気泡径が小さいため、金属シリコン粉末と反応ガスとの接触面積が増え、テトラクロロシランの還元反応の反応効率が高められるものである。従って、ガス状のテトラクロロシランは、効率的にガス状のトリクロロシランへ転化され得る。
 そして、このようにして反応炉20の天面部23まで上昇したガス状のトリクロロシランは、天面部23に備えられたガス採集部50によって採集され、反応炉20の外部へ取り出される。
 本製造方法では、上述したテトラクロロシランの還元反応が生じることにより、トリクロロシランが製造されることが好ましい。しかしながら、本製造方法で生じる反応は、上記テトラクロロシランの還元反応に限定されない。例えば、気体導入部40から、水素とともに塩化水素ガスが導入される場合には、下記反応式(2)で表される塩素化反応が生じ、トリクロロシランが製造され得る。
Si+3HCl→SiHCl+H・・・(2)
本製造方法では、反応式(1)で表されるテトラクロロシランの還元反応が生じる限り、反応式(2)で表される塩素化反応が同時に生じてもよい。
 本発明の一実施形態は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。従って、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 [1]流動床式反応装置内に設置するための、インターナルであり、上記インターナルは、上面が錐状を成す形状を有する抵抗体を備えることを特徴とするインターナル。
 [2]上記抵抗体は、下面と上記上面とを貫通する孔が形成されていることを特徴とする[1]に記載のインターナル。
 [3]上記抵抗体は、上記上面の錐状側壁の傾斜角θが、鉛直線に対して45°以下であることを特徴とする[1]または[2]に記載のインターナル。
 [4]上記抵抗体の水平方向の外径Xと上記流動床式反応装置の水平方向の内径Yとが、0.05≦X/Y≦0.25を満たすことを特徴とする[1]~[3]のいずれか1つに記載のインターナル。
 [5]上記抵抗体の高さXと上記抵抗体の水平方向の外径Xとの比が、0.5≦X/X≦5を満たすことを特徴とする[1]~[4]のいずれか1つに記載のインターナル。
 [6][1]~[5]のいずれか1つに記載のインターナルを流動層形成領域に設けたことを特徴とする流動床式反応装置。
 [7]上記インターナルは、水平方向の同一断面上に複数の上記抵抗体を含む抵抗体群、を備え、上記抵抗体群では、上記流動床式反応装置の水平方向の断面積に対する上記抵抗体の占有面積が上記抵抗体1つあたり0.1%~10%であることを特徴とする[6]に記載の流動床式反応装置。
 [8]上記インターナルは、水平方向の同一断面上に複数の上記抵抗体を含む抵抗体群、を備え、上記抵抗体群では、上記流動床式反応装置の水平方向の断面積に対する上記抵抗体の占有面積の和が0.2%~30%であることを特徴とする[6]または[7]に記載の流動床式反応装置。
 [9]上記インターナルは、上記抵抗体群を複数、備えることを特徴とする、[7]または[8]に記載の流動床式反応装置。
 [10]上記インターナルは、上記流動層形成領域の高さに対して、5%~80%の範囲内に上記抵抗体を備えていることを特徴とする、[6]~[9]のいずれか1つに記載の流動床式反応装置。
 [11][6]~[10]のいずれか1つに記載の流動床式反応装置に、金属シリコン粉末とガス状のテトラクロロシランと水素とを供給し、上記ガス状のテトラクロロシランおよび水素により金属シリコン粉末を流動化してテトラクロロシランの還元反応を行うことを特徴とするトリクロロシランの製造方法。
 〔実施例1〕
 本発明の一実施例について説明する。
 小スケールの流動床装置を作製した。種々のインターナルを流動床装置に設置した場合の、流動床装置内で生じる流動層の特性、および、流動床装置から粉体を取り出すときの金属シリコンの残存量、を評価した。なお、これらを評価する観点からは、実施例1における流動床装置では、流動層が生じればよく(換言すれば、テトラクロロシランの還元反応は必要でなく)、流動床装置に導入する気体としては空気を用いた。検討に用いた流動床装置の内径(Y)は600mmである。
 流動床装置に、インターナルとして、(A)抵抗体、(B)ダミーチューブ、または(C)多孔板、をそれぞれ設置した。
 (A)抵抗体は、最大外径(X)160mm、高さ(X)80mmの円錐型とした。抵抗体はまた、上面の鉛直略中央に、幅20mm高さ5mmである四角形の孔を、等間隔に6つ形成した。抵抗体の傾斜角θは、45°であった。抵抗体は、直径10mmの円柱状の支持体によって、支持体が抵抗体の中心線を貫通することによって保持し、一つの支持体につき一つの抵抗体を保持させた。合計7個の抵抗体を、抵抗体の下端が隔壁から鉛直上方へ1mの位置となるように設けた。
 (B)ダミーチューブは、直径(外径)(X)60.5mm、高さ(X)1000mmの円柱型とした。合計4個のダミーチューブを、その下端が隔壁から鉛直上方へ1mの位置となるように設けた。
 (C)多孔板は、その直径(外径)(X)が装置の内径と一致し、厚さ(高さ)(X)9mmの円盤型とした。多孔板には、直径25mmの孔を等間隔に187個形成した。多孔板は1枚、その下端が隔壁から鉛直上方へ1mの位置となるように設けた。
 また、検討には、気体として空気を用い、粉体として金属シリコンを用いた。
 流動条件は、以下のとおりである。
・供給した金属シリコンの充填層高:約2000mm
・流動床装置内の温度:常温
・流動床装置内の圧力:約20kPaG
・流動床装置内へ供給する空気の温度:常温
・流動床装置内へ供給する空気の圧力:約30kPaG
 結果、インターナルなし、または(A)抵抗体、(B)ダミーチューブ、もしくは(C)多孔板を設置した装置内における、流動層形成領域の高さ(H)(換言すれば流動層高)は、それぞれ、隔壁から鉛直上方へ2143.6mm、2178.6mm、2123.1mm、または2152.9mmであった。
 各インターナルを、気泡率、圧力トレンド、金属シリコン分散性、および金属シリコン残存量、の各項目について、評価した。以下に、各項目の評価方法および評価基準について説明する。
 (気泡率)
 気泡率を以下の式により定義した。
 気泡率(%)=(1-(充填層高/流動層高))×100
 上記充填層高は、粉体供給部から供給した金属シリコンの、隔壁からの鉛直方向の高さであり、メジャーを用いて計測した。
 上記流動層高は、上述した条件によって流動させた際、流動層内で発生した流動層の高さであり、メジャーを用いて計測した。
 気泡径が小さいほど上昇速度が小さく、流動層滞在時間が長くなる。従って、気泡径が小さいほど、流動層高が高くなり、その結果上記気泡率が大きくなる。気泡率が大きいことは、気泡径が小さいことを表し、従って、所望の反応効率を促進し得るため、気泡率は大きいことが好ましい。
 気泡率は、以下の基準に従って評価し、その結果を表1に示した。
◎:8%以上
○:7.5%以上8%未満
△:7%以上7.5%未満
×:7%未満
 (圧力トレンド)
 圧力トレンドとは、流動層における、時間ごとの流動層最下部と流動層上部のガス相の圧力の差分の変動である。圧力トレンドは、以下のように測定した。
 第一の圧力伝送器を流動層底板(隔壁)から300mmの高さ、第二の圧力伝送器を流動層の粉面より1000mm以上高い位置、の流動床装置の側面に設置し、それぞれの圧力測定を1秒毎に行った。圧力トレンドは、第一の圧力伝送器および第二の圧力伝送器の圧力測定値の差分を取り、流動層の流動状態の指標とした。
 圧力トレンドが小さいほど、言い換えれば、流動層における圧力変動が小さいほど、所望の反応が効率よく進行し得るため、好ましい。
 圧力トレンドは、以下の基準に従って評価し、その結果を表1に示した。
◎:平均値±0.1kPa未満
○:平均値±0.2kPa未満
△:平均値±0.4未満
×:平均値±0.6未満
 (金属シリコン分散性)
 金属シリコン分散性とは、流動層における金属シリコン粉末の分散の程度である。
 金属シリコン分散性が大きいほど、所望の反応が効率よく進行し得るため、好ましい。
 金属シリコン分散性は、インターナルの形状を考慮の上、反応中の金属シリコンの振るまいを目視し、目視の結果を以下の基準に従って評価し、その結果を表1に示した。
◎:インターナルを有しないか、またはインターナルが、金属シリコンの上下の移動を妨げていない。
○:インターナルが、金属シリコンの上下の移動を少し妨げている。
△:インターナルが、金属シリコンの上下の移動を妨げている。
×:インターナルが、金属シリコンの上下の移動を著しく妨げている。
 (金属シリコン残存量)
 金属シリコン残存量とは、流動層から未反応の金属シリコン粉末を取り出す際に、反応炉内に残存した金属シリコン粉末の量である。
 金属シリコン残存量が小さいことは、反応炉から未反応の金属シリコン粉末を容易にかつ十分に取り出せることを示しており、金属シリコン残存量は小さいほど好ましい。
 金属シリコン残存量は、反応後に、インターナル上の金属シリコン粉末の有無を目視によって観察し、以下の基準に従って評価し、その結果を表1に示した。
○:インターナル上に、金属シリコン粉末が殆ど存在しない
×:インターナル上に、金属シリコン粉末が多く存在する。
 (総合評価)
 上述した各評価結果に基づき、各インターナルの総合評価を以下の基準に従って評価し、表1に示した。
○:各評価結果に×が含まれない
×:各評価結果に×が含まれる
Figure JPOXMLDOC01-appb-T000001
 抵抗体を備えるインターナルは、特に、気泡率および圧力トレンドの観点から優れている。抵抗体を備えるインターナルは、金属シリコン分散性および金属シリコン残存量の観点からも、十分に優れた効果を有する。従って、表1の結果より、インターナルの総合評価として、抵抗体を備えるインターナルが最も優れていることがわかる。
 〔実施例2〕
 実施例1で高評価であった抵抗体を備えるインターナルを設置した流動床式反応装置と、インターナルを設置していない流動床式反応装置とを用いて、トリクロロシランの製造を下記のように行った。
 検討に用いた流動床式反応装置の内径(Y)は2300mmである。
 上記流動床式反応装置を4つ用意し、うち一つに、抵抗体を備えるインターナルを設置した。
 抵抗体は、最大内径(X)160mm、高さ(X)80mmの円錐型とした。抵抗体はまた、上面の鉛直略中央に、幅20mmである円形の孔を、等間隔に8つ形成した。抵抗体の傾斜角θは、45°であった。抵抗体は、幅50mmの板からなる格子状の支持体によって保持した。インターナルは、抵抗体を水平方向の同一断面上に25~32個備えるセットを、鉛直方向に4セット備えるよう、構成した。
 反応条件は、以下のとおりである。
・供給した金属シリコンの充填層高:約5000mm。
・反応炉内の温度:540℃
・反応炉内の圧力:2.8MPaG
・胴体部内へ供給する水素の温度:550℃
・胴体部内へ供給する水素の圧力:2.9MPaG
・胴体部内へ供給するテトラクロロシランの温度:550℃
・胴体部内へ供給するテトラクロロシランの圧力:2.9MPaG
 なお、金属シリコンは、流動層を形成させながら、約5000mmの高さまで供給した。従って、流動床式反応装置内における、流動層形成領域は、金属シリコンの充填層高と同じ、約5000mmであった。
 上記反応条件でトリクロロシランの製造を行った際の、テトラクロロシランからトリクロロシランへの転化率を下記のように算出し、結果を図5に示した。
転化率=(F-R)/F。
 ここで、Fは供給したテトラクロロシラン量(換言すればフィードテトラクロロシラン量)であり、Rは反応生成ガス中のテトラクロロシラン量である。
 図5において、(A)~(C)はすべてインターナルを設置していない流動床式反応装置を用いており、(A)~(C)はそれぞれ異なる日に運転を開始したことを表している。インターナルあり、およびインターナルなし(A)~(C)、全てにおいて、1日毎に、転化率を算出した。
 図5より、インターナルあり、またはインターナルなし(A)~(C)の各装置における転化率は、運転(反応)の開始から上昇し、数日後に安定した値(装置転化率と称する)となることが分かる。インターナルなし(A)~(C)において、全ての装置転化率の平均値は24.5%であった。一方、インターナルありでは、装置転化率は25.7%であった。すなわち、インターナルを設置した流動床式反応装置は、インターナルを設置しない流動床式反応装置と比べて、約1.05倍転化率が向上した。
 上述したように、トリクロロシランの製造方法において、抵抗体を備えるインターナルを設置した流動床式反応装置を用いることによって、気泡率を大きくする、言い換えれば気泡径を小さくすることが可能となる。その結果、テトラクロロシランからトリクロロシランへの転化率を高めることが可能となる。
 本発明の一実施形態によれば、気体と固体との反応を促進し得る新規のインターナル、当該インターナルを備える流動床式反応装置、および、当該流動床式反応装置を用いたトリクロロシランの製造方法を提供することが可能である。
 10 インターナル
 11 抵抗体
 11a 抵抗体群
 12 支持体
 13 上面
 14 下面
 20 反応炉
 21 胴体部
 22 底部
 23 天面部
 30 粉体供給部
 40 気体導入部
 50 ガス採集部
 60 隔壁
 70 噴出孔
 71 噴出孔キャップ
 80 流動層形成領域
 100 流動床式反応装置

Claims (11)

  1.  流動床式反応装置内に設置するための、インターナルであり、
     上記インターナルは、上面が錐状を成す形状を有する抵抗体を備えることを特徴とするインターナル。
  2.  上記抵抗体は、下面と上記上面とを貫通する孔が形成されていることを特徴とする請求項1に記載のインターナル。
  3.  上記抵抗体は、上記上面の錐状側壁の傾斜角θが、鉛直線に対して45°以下であることを特徴とする請求項1または2に記載のインターナル。
  4.  上記抵抗体の水平方向の外径Xと上記流動床式反応装置の水平方向の内径Yとが、0.05≦X/Y≦0.25を満たすことを特徴とする請求項1~3のいずれか1項に記載のインターナル。
  5.  上記抵抗体の高さXと上記抵抗体の水平方向の外径Xとの比が、0.5≦X/X≦5を満たすことを特徴とする請求項1~4のいずれか1項に記載のインターナル。
  6.  請求項1~5のいずれか1項に記載のインターナルを流動層形成領域に設けたことを特徴とする流動床式反応装置。
  7.  上記インターナルは、水平方向の同一断面上に複数の上記抵抗体を含む抵抗体群、を備え、
     上記抵抗体群では、上記流動床式反応装置の水平方向の断面積に対する上記抵抗体の占有面積が上記抵抗体1つあたり0.1%~10%であることを特徴とする請求項6に記載の流動床式反応装置。
  8.  上記インターナルは、水平方向の同一断面上に複数の上記抵抗体を含む抵抗体群、を備え、
     上記抵抗体群では、上記流動床式反応装置の水平方向の断面積に対する上記抵抗体の占有面積の和が0.2%~30%であることを特徴とする請求項6または7に記載の流動床式反応装置。
  9.  上記インターナルは、上記抵抗体群を複数、備えることを特徴とする、請求項7または8に記載の流動床式反応装置。
  10.  上記インターナルは、上記流動層形成領域の高さに対して、5%~80%の範囲内に上記抵抗体を備えていることを特徴とする、請求項6~9のいずれか1項に記載の流動床式反応装置。
  11.  請求項6~10のいずれか1項に記載の流動床式反応装置に、金属シリコン粉末とガス状のテトラクロロシランと水素とを供給し、上記ガス状のテトラクロロシランおよび水素により金属シリコン粉末を流動化してテトラクロロシランの還元反応を行うことを特徴とするトリクロロシランの製造方法。
PCT/JP2018/000967 2017-01-19 2018-01-16 インターナル、流動床式反応装置およびトリクロロシランの製造方法 WO2018135473A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112018000045.1T DE112018000045T5 (de) 2017-01-19 2018-01-16 Innenbauteil, Fließbettreaktor und Verfahren zum Herstellen von Trichlorsilan
JP2018563330A JP7102351B2 (ja) 2017-01-19 2018-01-16 インターナル、流動床式反応装置およびトリクロロシランの製造方法
CN201880002605.0A CN109414670A (zh) 2017-01-19 2018-01-16 内部构件、流化床型反应装置以及三氯硅烷的制造方法
KR1020197000109A KR20190103133A (ko) 2017-01-19 2018-01-16 인터널, 유동상식 반응 장치 및 트리클로로실란의 제조 방법
US16/305,297 US20200330946A1 (en) 2017-01-19 2018-01-16 Internal member, fluidized-bed-type reactor and trichlorosilane production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-007974 2017-01-19
JP2017007974 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018135473A1 true WO2018135473A1 (ja) 2018-07-26

Family

ID=62908373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000967 WO2018135473A1 (ja) 2017-01-19 2018-01-16 インターナル、流動床式反応装置およびトリクロロシランの製造方法

Country Status (7)

Country Link
US (1) US20200330946A1 (ja)
JP (1) JP7102351B2 (ja)
KR (1) KR20190103133A (ja)
CN (1) CN109414670A (ja)
DE (1) DE112018000045T5 (ja)
TW (1) TWI750300B (ja)
WO (1) WO2018135473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022512755A (ja) * 2018-10-17 2022-02-07 中国石油化工股▲ふん▼有限公司 二重台形構造部材、流動装置およびニトロ化合物の水素化反応プロセス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716179B (zh) * 2019-11-04 2021-01-11 實聯精密化學股份有限公司 三氯矽烷生成設備
CN110639435B (zh) * 2019-11-11 2020-10-23 清华大学 内构件和多级流化床反应器
CN110624483B (zh) * 2019-11-11 2020-12-11 清华大学 合成气一步法制芳烃的多级流化床反应器及反应循环系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS41882B1 (ja) * 1964-05-26 1966-01-27
JPS52129679A (en) * 1976-04-26 1977-10-31 Hitachi Ltd Fluidized bed reactor with inserted baffle plate
JPS55134637A (en) * 1979-03-30 1980-10-20 Huettlin Herbert Current plate for fluid layer device
JPS62237939A (ja) * 1986-04-08 1987-10-17 Nittetsu Mining Co Ltd 多段噴流層装置
JP2008545870A (ja) * 2005-06-07 2008-12-18 チャイナ ペトロレアム アンド ケミカル コーポレーション 乱流流動床リアクタにおける脱硫
JP2009120467A (ja) * 2007-10-23 2009-06-04 Mitsubishi Materials Corp トリクロロシラン製造装置及びトリクロロシラン製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1321715A (en) * 1970-05-14 1973-06-27 Nat Res Dev Gas bubble redistribution in fluidised beds
CN1153138A (zh) * 1995-09-21 1997-07-02 瓦克化学有限公司 制备三氯硅烷的方法
US7829030B2 (en) * 2004-12-30 2010-11-09 Exxonmobil Chemical Patents Inc. Fluidizing a population of catalyst particles having a low catalyst fines content
JP5343493B2 (ja) 2007-10-25 2013-11-13 三菱マテリアル株式会社 トリクロロシラン製造用反応装置及びトリクロロシラン製造方法
KR101687833B1 (ko) 2009-01-20 2016-12-19 미쓰비시 마테리알 가부시키가이샤 트리클로로실란 제조 장치 및 트리클로로실란 제조 방법
JP5444745B2 (ja) 2009-02-13 2014-03-19 三菱マテリアル株式会社 トリクロロシラン製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS41882B1 (ja) * 1964-05-26 1966-01-27
JPS52129679A (en) * 1976-04-26 1977-10-31 Hitachi Ltd Fluidized bed reactor with inserted baffle plate
JPS55134637A (en) * 1979-03-30 1980-10-20 Huettlin Herbert Current plate for fluid layer device
JPS62237939A (ja) * 1986-04-08 1987-10-17 Nittetsu Mining Co Ltd 多段噴流層装置
JP2008545870A (ja) * 2005-06-07 2008-12-18 チャイナ ペトロレアム アンド ケミカル コーポレーション 乱流流動床リアクタにおける脱硫
JP2009120467A (ja) * 2007-10-23 2009-06-04 Mitsubishi Materials Corp トリクロロシラン製造装置及びトリクロロシラン製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022512755A (ja) * 2018-10-17 2022-02-07 中国石油化工股▲ふん▼有限公司 二重台形構造部材、流動装置およびニトロ化合物の水素化反応プロセス
JP7330269B2 (ja) 2018-10-17 2023-08-21 中国石油化工股▲ふん▼有限公司 二重台形構造部材、流動装置およびニトロ化合物の水素化反応プロセス

Also Published As

Publication number Publication date
US20200330946A1 (en) 2020-10-22
JPWO2018135473A1 (ja) 2019-11-07
TWI750300B (zh) 2021-12-21
DE112018000045T5 (de) 2019-02-28
CN109414670A (zh) 2019-03-01
JP7102351B2 (ja) 2022-07-19
TW201840359A (zh) 2018-11-16
KR20190103133A (ko) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2018135473A1 (ja) インターナル、流動床式反応装置およびトリクロロシランの製造方法
US10265671B2 (en) Tapered fluidized bed reactor and process for its use
EP2055674B1 (en) Apparatus for producing trichlorosilane and method for producing thrichlorosilane
US9988277B2 (en) Fluidized bed reactor and method for producing granular polysilicon
CN107281981B (zh) 一种内构件、流化床反应器及应用方法
JP5359082B2 (ja) トリクロロシラン製造装置及びトリクロロシラン製造方法
EP2210661B1 (en) Apparatus and method for producing trichlorosilane
US10518237B2 (en) Gas distribution unit for fluidized bed reactor system, fluidized bed reactor system having the gas distribution unit, and method for preparing granular polycrystalline silicon using the fluidized bed reactor system
JP2015502245A (ja) 水平性の欠如に対して低い感受性を有する分配要素を備えた、気体−液体混合物のための分配器板
US20210371371A1 (en) Double-trapezoid structural member, fluidized apparatus and nitro compound hydrogenation reaction process
JP6104243B2 (ja) 尿素反応器トレイ、反応器、および生成方法
JP4932718B2 (ja) 金属粉末の製造方法
CN202621143U (zh) 一种上行式气液分布器
JP2010230202A (ja) 単相流もしくは混相流の分配装置
CN106237938B (zh) 物流混合分配器和固体颗粒床层反应器
KR20140146730A (ko) 유동층 반응기 및 이를 이용한 탄소나노구조물의 제조방법
JP2023503117A (ja) ガス分配板、流動化装置及び反応方法
JPH0683783B2 (ja) 気固系流動層内の気泡制御方法および気固系流動層装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563330

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000109

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18742147

Country of ref document: EP

Kind code of ref document: A1