WO2018135461A1 - 緩衝器 - Google Patents

緩衝器 Download PDF

Info

Publication number
WO2018135461A1
WO2018135461A1 PCT/JP2018/000947 JP2018000947W WO2018135461A1 WO 2018135461 A1 WO2018135461 A1 WO 2018135461A1 JP 2018000947 W JP2018000947 W JP 2018000947W WO 2018135461 A1 WO2018135461 A1 WO 2018135461A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
valve
contraction
extension
pressure chamber
Prior art date
Application number
PCT/JP2018/000947
Other languages
English (en)
French (fr)
Inventor
皓介 門倉
孝雄 中楯
森 俊介
治 湯野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to KR1020197016522A priority Critical patent/KR102223705B1/ko
Priority to CN201880005143.8A priority patent/CN110088500B/zh
Priority to US16/478,196 priority patent/US10941830B2/en
Priority to JP2018563322A priority patent/JP6700436B2/ja
Priority to DE112018000417.1T priority patent/DE112018000417T5/de
Publication of WO2018135461A1 publication Critical patent/WO2018135461A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/464Control of valve bias or pre-stress, e.g. electromagnetically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5123Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity responsive to the static or steady-state load on the damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/103Devices with one or more members moving linearly to and fro in chambers, any throttling effect being immaterial, i.e. damping by viscous shear effect only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3221Constructional features of piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5126Piston, or piston-like valve elements

Definitions

  • the present invention relates to a shock absorber that generates a damping force by controlling a flow of a working fluid with respect to a stroke of a piston rod.
  • Patent Document 1 discloses a shock absorber in which a damping force adjusting mechanism is built in a cylinder.
  • This damping force adjusting mechanism of the shock absorber includes pilot type damping valves on both the expansion side and the contraction side.
  • the shock absorber of Patent Document 1 consumes a large amount of power because the control current for the solenoid when the soft-side damping force that is used frequently is high is on the high-current side, and the hardware-side during failure (current value 0 A) There is a problem that the damping force cannot be adjusted because it is fixed by the damping force.
  • An object of the present invention is to provide a shock absorber that consumes less power and can adjust the damping force during failure.
  • a shock absorber includes a cylinder in which a working fluid is sealed; a piston that is slidably inserted into the cylinder; an end connected to the piston, and an outside extending from the cylinder.
  • a piston rod having an other end, an extension side passage and a contraction side passage provided in the piston, an extension side main valve provided in the extension side passage, and adjusting a valve opening pressure of the extension side main valve
  • a common passage that communicates with the pressure chamber; and a pilot valve that controls the flow of the working fluid in the common passage.
  • a side discharge passage is formed.
  • the expansion side discharge passage is connected to the expansion side check valve that allows the flow of working fluid from the common passage to the contraction side passage, and the contraction side that communicates the contraction side passage and the contraction side back pressure chamber.
  • a side discharge passage is formed.
  • the contraction-side discharge passage is connected to a contraction-side check valve that allows a flow of working fluid from the common passage to the extension-side passage, and an extension side that communicates the extension-side passage and the extension-side back pressure chamber.
  • the pilot valve includes a valve body that is slidably inserted into the common passage, and a valve spring that biases the valve body in a valve opening direction.
  • the valve body is fitted into a passage between the upstream back pressure chamber and the downstream common passage when the valve body is stroked in the valve opening direction by the urging force of the valve spring;
  • a notch provided in the fitting portion. The notch forms an orifice that communicates the upstream back pressure chamber and the downstream common passage when the fitting portion is fitted in the passage.
  • FIG. 1 is a sectional view of the principal part of buffer 1 of a 1st embodiment.
  • an upward direction (upper side) and a downward direction (lower side) in FIG. 1 are defined as an upward direction (upper side) and a downward direction (lower side) in the shock absorber 1.
  • the first embodiment is a single cylinder type damping force adjustment type hydraulic shock absorber, but can also be applied to a double cylinder type damping force adjustment type hydraulic shock absorber having a reservoir.
  • a piston 3 is slidably fitted in the cylinder 2.
  • the piston 3 divides the inside of the cylinder 2 into two chambers, a cylinder upper chamber 2A and a cylinder lower chamber 2B.
  • the shaft portion 6 of the piston bolt 5 is inserted into the shaft hole 4 of the piston 3.
  • the lower end portion of a substantially cylindrical case member 8 is connected to the substantially bottomed cylindrical head portion 7 of the piston bolt 5 by a screw coupling portion 10.
  • the piston bolt 5 is formed with a shaft hole 50 (a common passage) whose upper end opens to the bottom surface of the head 7 and extends to the tip side along the axis. As shown in FIG.
  • the shaft hole 50 includes an axial passage 48 formed at the upper portion of the shaft hole 50 and having an upper end opened, an axial passage 30 formed at the lower portion of the shaft hole 50, and an axial direction.
  • An axial passage 49 is formed between the passages 30 and 48 and communicates between the axial passages 30 and 48.
  • the diameter (inner diameter) of the axial hole 50 is the largest in the diameter of the axial passage 30 and decreases in the order of the axial passage 48 and the axial passage 49.
  • the lower end portion of the piston rod 9 is connected to the upper end portion of the case member 8 by a screw coupling portion 11.
  • a nut 12 is screwed to the lower end portion of the piston rod 9, and the nut 12 is brought into contact with the upper end of the case member 8 and tightened to prevent loosening of the screw coupling portion 11.
  • a small-diameter portion 13 is formed at the lower end of the piston rod 9, and an O-ring 14 that seals between the case member 8 and the piston rod 9 is attached to an annular groove formed on the outer peripheral surface of the small-diameter portion 13.
  • the piston 3 is provided with an extension side passage 15 whose one end (upper end) opens to the cylinder upper chamber 2A side and a contraction side passage 16 whose one end (lower end) opens to the cylinder lower chamber 2B side.
  • an extension side damping valve 17 that controls the flow of the working fluid in the extension side passage 15 is provided.
  • a compression side damping valve 18 that controls the flow of the working fluid in the compression side passage 16 is provided at the upper end of the piston 3.
  • the extension side damping valve 17 is fixed to the piston bolt 5 by an extension side main valve 20 seated on an annular seat portion 19 formed on the outer peripheral side of the lower end surface of the piston 3 and a nut 21.
  • the valve member 22 is formed, and an expansion-side back pressure chamber 23 formed between the back surface of the expansion-side main valve 20 and the valve member 22 is provided.
  • the pressure in the extension side back pressure chamber 23 acts on the extension side main valve 20 in the valve closing direction.
  • a washer 24, a spacer 25, and a disc valve 26 are provided between the nut 21 and the valve member 22 in order from the lower side.
  • the inner peripheral edge of the disc valve 26 is sandwiched between the inner peripheral edge of the valve member 22 and the spacer 25.
  • the extension main valve 20 is a packing valve in which an annular seal portion 20 ⁇ / b> A made of an elastic body contacts the inner peripheral surface of the valve member 22 over the entire circumference.
  • the extension-side back pressure chamber 23 communicates with the cylinder lower chamber 2B via a passage 27 formed in the valve member 22 and a disk valve 26.
  • the extension-side back pressure chamber 23 is always communicated with the cylinder lower chamber 2B through an orifice 26A formed in the disc valve 26.
  • the disc valve 26 opens when the pressure in the extension-side back pressure chamber 23 reaches a predetermined pressure, and relieves the pressure in the extension-side back pressure chamber 23 to the cylinder lower chamber 2B.
  • the extension-side back pressure chamber 23 is communicated with a radial passage 29 formed in the piston bolt 5 via an extension-side back pressure introduction valve 28 formed of a disk valve.
  • the radial passage 29 communicates with an axial passage 30 (common passage) formed in the piston bolt 5.
  • the extension-side back pressure introduction valve 28 is a check valve that allows only the flow of working fluid from the radial passage 29 to the extension-side back pressure chamber 23.
  • the extension-side back pressure introduction valve 28 is seated on an annular seat portion 31 formed on the inner peripheral side of the passage 27 on the upper surface of the valve member 22.
  • the extension side back pressure introduction valve 28 has an inner peripheral edge sandwiched between the inner peripheral edge of the valve member 22 and the spacer 32.
  • the extension-side back pressure chamber 23 is communicated with the radial passage 29 through an orifice 28A formed in the extension-side back pressure introduction valve 28 when the extension-side back pressure introduction valve 28 is opened.
  • the axial passage 30 communicates with a radial passage 33 (contraction side discharge passage) formed in the piston bolt 5.
  • the radial passage 33 communicates with the extension side passage 15 via a compression side check valve 34 provided in the piston 3.
  • the radial passage 33 is always in communication with the extension side passage 15 via an orifice 34 ⁇ / b> A formed in the compression side check valve 34.
  • the contraction-side check valve 34 allows only the flow of the working fluid from the extension-side passage 15 to the radial passage 33.
  • the compression side damping valve 18 is fixed between the compression side main valve 36 seated on the annular seat portion 35 formed on the outer peripheral side of the upper end surface of the piston 3, and the head 7 of the piston bolt 5 and the piston 3.
  • a contraction-side back pressure chamber 38 formed between the back surface of the contraction-side main valve 36 and the valve member 37.
  • the pressure in the contraction side back pressure chamber 38 acts on the contraction side main valve 36 in the valve closing direction.
  • a washer 39, a spacer 40, and a disc valve 41 are provided in this order from the upper side.
  • the inner peripheral edge of the disc valve 41 is sandwiched between the inner peripheral edge of the valve member 37 and the spacer 40.
  • the contraction-side main valve 36 is a packing valve in which an annular seal portion 36A made of an elastic body contacts the inner peripheral surface of the valve member 37 over the entire circumference.
  • the contraction-side back pressure chamber 38 is communicated with the cylinder upper chamber 2A via a passage 42 formed in the valve member 37 and a disc valve 41.
  • the contraction-side back pressure chamber 38 is always communicated with the cylinder upper chamber 2 ⁇ / b> A via an orifice 41 ⁇ / b> A formed in the disk valve 41.
  • the disk valve 41 opens when the pressure in the contraction-side back pressure chamber 38 reaches a predetermined pressure, and relieves the pressure in the contraction-side back pressure chamber 38 to the cylinder upper chamber 2A.
  • the contraction side back pressure chamber 38 is communicated with a radial passage 44 formed in the piston bolt 5 via a contraction side back pressure introduction valve 43 formed of a disk valve.
  • the radial passage 44 is communicated with an axial passage 48 (common passage) of the piston bolt 5.
  • the contraction side back pressure introduction valve 43 is a check valve that allows only the flow of the working fluid from the radial passage 44 to the contraction side back pressure chamber 38.
  • the compression-side back pressure introduction valve 43 is seated on an annular seat portion 45 formed on the inner peripheral side of the passage 42 on the lower surface of the valve member 37.
  • the inner peripheral edge of the compression side back pressure introduction valve 43 is sandwiched between the inner peripheral edge of the valve member 37 and the spacer 40.
  • the contraction-side back pressure chamber 38 is communicated with the radial passage 44 through an orifice 43A formed in the contraction-side back pressure introduction valve 43 when the contraction-side back pressure introduction valve 43 is opened.
  • the axial passage 48 communicates with a radial passage 46 (extension side discharge passage) formed in the piston bolt 5.
  • the radial passage 46 is communicated with the contraction side passage 16 via an extension side check valve 47 provided in the piston 3.
  • the radial passage 46 is always in communication with the contraction side passage 16 via an orifice 47A formed in the extension side check valve 47.
  • the extension side check valve 47 allows only the flow of the working fluid from the contraction side passage 16 to the radial passage 46.
  • a needle type pilot pin 51 (valve element) is slidably fitted into the shaft hole 50 of the piston bolt 5.
  • the pilot pin 51 and the piston bolt 5 constitute a pilot valve.
  • the pilot pin 51 is located in the upper portion of the axial passage 48, in other words, a base portion 52 that is slidably fitted to an upper portion of the radial passage 44, and is located in the axial passage 48 through the tapered portion 53.
  • a valve portion 54 continuous to the base portion 52, a tip portion 55 (fitting portion) located in the axial passage 30 in a closed state of the pilot valve (see FIG. 2), the tip portion 55 and the valve portion 54, And a connecting portion 56 for connecting the two.
  • the diameter (outer diameter) of the pilot pin 51 is the largest at the base portion 52, and decreases in the order of the valve portion 54, the distal end portion 55, and the connecting portion 56. Further, the outer diameter of the valve portion 54 is larger than the inner diameter of the axial passage 49.
  • An annular spring receiving portion 57 is formed on the outer peripheral edge on the lower end side of the tip portion 55 of the pilot pin 51.
  • the pilot pin 51 is biased upward by a valve spring 59 interposed between the spring receiving portion 57 and a concave spring receiving portion 58 formed on the bottom surface of the shaft hole 50 of the piston bolt 5. Due to the urging force of the valve spring 59, the end face 52A of the base portion of the pilot pin 51 is brought into contact with (pressed against) an operating pin 72 of a solenoid 71 described later.
  • a frustoconical spring engaging portion 61 is formed inside the spring receiving portion 57 of the tip portion 55 of the pilot pin 51.
  • the front end portion 55 of the pilot pin 51 is formed in a circular shape having a notch 65 having a two-plane width in cross section by a plane perpendicular to the axis.
  • the control current for the solenoid 71 applied as a damping force variable actuator is 0A (during failure)
  • the tip 55 is stroked in the valve opening direction (upward in FIG. 2) and the axial passage 49 is applied.
  • Passage When the tip 55 of the pilot pin 51 is fitted into the axial passage 49, the gap between the tip 55 (fitting portion) and the axial passage 49 is between the axial passages 30 and 48 (on the upstream side).
  • a pair of orifices 62 are formed to communicate between the back pressure chamber and the downstream common passage. Note that the pair of surfaces forming the two-surface width (notch 65) may be formed only on one surface. In this case, there is only one orifice 62.
  • An annular seat portion 63 on which the valve portion 54 of the pilot pin 51 is seated is formed at the opening periphery of the upper end of the axial passage 49 (on the axial passage 48 side).
  • a seating surface 54 ⁇ / b> A formed in a tapered shape is formed on the outer peripheral edge of the lower end (on the connection portion 56 side) of the valve portion 54, and the seating portion 63 formed in the shaft hole 50 of the piston bolt 5. Be seated.
  • the pilot pin 51 In a state where the seating surface 54A is seated on the seat portion 63 formed in the shaft hole 50 of the piston bolt 5, that is, in the closed state of the pilot valve, the pilot pin 51 has a pressure receiving surface A ( 3), the taper 53 receives pressure on the axial passage 48 side through the annular pressure receiving surface B (see FIG. 4).
  • the solenoid 71 includes a case member 8, a coil 74, and an operation pin 72, and a plunger 85 is coupled to the outer peripheral surface of the operation pin 72.
  • the plunger 85 also called a movable iron core, is formed in a substantially cylindrical shape by an iron-based magnetic body. The plunger 85 generates thrust by energizing the coil 74 and generating magnetic force.
  • the operating pin 72 is supported by a bush 90 incorporated in the stator core 76 and a bush 91 incorporated in the core 84 so as to be movable in the vertical direction (axial direction).
  • the solenoid 71 has an inner peripheral surface 71A and a lower end surface 71B, and the diameter (inner diameter) of the inner peripheral surface 71A is smaller than the diameter (outer diameter) of the base 52 of the pilot pin 51.
  • the pilot pin 51 is restricted from moving in the upward direction with respect to the shaft hole 50 of the piston bolt 5 when the base 52 is brought into contact with the lower end surface 71 ⁇ / b> B of the solenoid 71.
  • the front end portion 55 (fitting portion) of the pilot pin 51 is fitted into the axial passage 49 (passage) of the shaft hole 50 (common passage) of the piston bolt 5, and between the axial passages 30 and 48 (upstream).
  • the back pressure chamber on the side and the common passage on the downstream side) are communicated with each other via an orifice 62 having a two-surface width (notch 65) of the tip portion 55.
  • the flow of the working fluid flowing from the axial passage 30 to the axial passage 48 (the downstream common passage) through the orifice 62 is changed to the flow passage area of the orifice 62 (notch 65 shape).
  • the pressure (pilot pressure) corresponding to the flow area of the orifice 62 can be generated in the extension-side back pressure chamber 23 (upstream back-pressure chamber). It is possible to adjust the valve opening pressure.
  • the contraction is achieved by adjusting the flow of the working fluid flowing from the axial passage 48 to the axial passage 30 (the downstream common passage) via the orifice 62 by the flow passage area of the orifice 62.
  • a pressure corresponding to the flow area of the orifice 62 can be generated in the side back pressure chamber 38 (upstream back pressure chamber), and the valve opening pressure of the contraction side main valve 36 can be adjusted. is there.
  • the above-described shock absorber of Patent Document 1 has a problem that the damping force cannot be adjusted because it is fixed by the damping force on the hardware side at the time of failure (current value 0A).
  • the tip portion 55 (fitting portion) of the pilot pin 51 is fitted to the axial passage 49 at the time of failure, and the axial passages 30 and 48 are communicated by the orifice 62.
  • the flow passage area of the orifice 62 is set in the expansion-side back pressure chamber 23 and the contraction-side back pressure chamber 38.
  • a corresponding pressure (pilot pressure) can be generated, and the valve opening pressures of the expansion side main valve 20 and the contraction side main valve 36 can be adjusted.
  • an appropriate damping force can be obtained on both the expansion side and the contraction side even during failure.
  • the first embodiment employs a so-called normally open pilot valve in which the valve portion 54 is separated from the seat portion 63 when the control current for the solenoid 71 is 0 A.
  • the power consumption is small because the control current for the solenoid 71 when the damping force is small is small.
  • the first embodiment includes a cylinder in which a working fluid is sealed; a piston slidably inserted into the cylinder; one end connected to the piston, and the other end extending outward from the cylinder.
  • a piston rod ; an extension side passage and a contraction side passage provided in the piston; an extension side main valve provided in the extension side passage; an extension side back pressure chamber for adjusting a valve opening pressure of the extension side main valve;
  • a contraction-side main valve provided in the passage; a contraction-side back pressure chamber that adjusts the valve opening pressure of the contraction-side main valve; a common passage that communicates the extension-side back pressure chamber and the contraction-side back pressure chamber;
  • a pilot valve for controlling the flow of the working fluid in the passage.
  • An extension-side discharge passage is formed that communicates a portion of the common passage located closer to the contraction side back pressure chamber than the pilot valve and a portion of the common passage located closer to the contraction side passage than the pilot valve.
  • the extension side discharge passage includes an extension side check valve that allows the flow of working fluid from the common passage to the side of the contraction side passage, and a contraction side orifice that communicates the contraction side passage and the contraction side back pressure chamber.
  • a compression-side discharge passage is formed that communicates a portion of the common passage that is located on the side of the backside pressure chamber with respect to the pilot valve and a portion of the common passage that is located on the side of the extension side of the pilot valve.
  • the contraction-side discharge passage includes a contraction-side check valve that allows a working fluid to flow from the common passage to the expansion-side passage, and an expansion-side orifice that communicates the expansion-side passage and the expansion-side back pressure chamber.
  • the pilot valve includes a valve body that is slidably inserted into the common passage, and a valve spring that biases the valve body in the valve opening direction.
  • the valve body includes a fitting portion fitted in a passage between the upstream back pressure chamber and the downstream common passage when the valve body is stroked in the valve opening direction by the biasing force of the valve spring, and the fitting portion And a notch provided in. The notch forms an orifice that communicates the upstream back pressure chamber and the downstream common passage when the fitting portion is fitted in the passage.
  • the fitting portion of the valve body is fitted into the passage, whereby the upstream back pressure chamber and the common passage downstream from the fitting portion are communicated with each other through the orifice. Therefore, by setting the flow area of the orifice and adjusting the flow of the working fluid flowing between the upstream back pressure chamber and the downstream common passage, the expansion back pressure chamber and the contraction back pressure chamber can be adjusted. A pressure (pilot pressure) corresponding to the flow path area of the orifice can be generated, and the valve opening pressures of the expansion side main valve and the contraction side main valve can be adjusted. As a result, an appropriate damping force can be obtained on both the expansion side and the contraction side even during failure.
  • the first embodiment employs a so-called normally open type pilot valve in which the valve element is stroked in the valve opening direction at the time of failure, so that the damping force variable actuator (when the soft damping force is exerted) ( Since the control current for the solenoid is small, power consumption can be suppressed.
  • the axial passage 38 is formed by fitting the tip 55 (fitting portion) of the pilot pin 51 (valve element) into the axial passage 49 (passage) at the time of failure. , 48 (between the upstream back pressure chamber and the downstream common passage) through the orifice 62.
  • the fitting portion is provided on the valve closing direction side (tip side) of the pilot pin 51 with respect to the valve portion 54 of the pilot pin 51, as shown in FIG.
  • the fitting part is provided on the valve opening direction side (base part 52 side) of the pilot pin 51 with respect to the valve part 54 of the pilot pin 51.
  • a large inner diameter portion 101 having an inner diameter larger than the diameter of the axial passage 48 is formed in the axial passage 48 of the shaft hole 50 (common passage) of the piston bolt 5.
  • the large inner diameter portion 101 is disposed closer to the axial passage 49 side (lower side in FIG. 5) than the portion where the radial passage 46 is open.
  • the diameter (inner diameter) of the large inner diameter portion 101 is set larger than the diameter of the axial passage 30.
  • the flange part 102 (fitting part) is formed in the outer peripheral surface of the valve part 54 of the pilot pin 51 (valve body).
  • the flange portion 102 has an axial length shorter than the axial length of the large inner diameter portion 101 formed in the axial passage 48 of the shaft hole 50 (common passage).
  • the flange portion 102 is located in the large inner diameter portion 101 of the shaft hole 50 (common passage) when the pilot valve is closed (see FIG. 5).
  • the portion on the radial passage 46 side (the upper side in FIG. 5) of the axial passage 30 and the large inner diameter portion 101 of the axial passage 48 is defined by the large inner diameter portion 101 and the flange portion 102. They communicate with each other via an annular passage 103 formed therebetween.
  • the flange portion 102 of the pilot pin 51 is formed in a circular shape having a two-plane width (notch) in cross section by a plane perpendicular to the axis.
  • the flange portion 102 is fitted to the lower end portion (the end portion on the axial passage 30 side) of the axial passage 48 (passage) at the time of failure.
  • a notch having a two-surface width formed in the flange portion 102 is formed between the flange portion 102 and the axial passage 48.
  • a pair of orifices 105 (only one is shown in FIG. 5) is formed by 104.
  • the orifice 105 communicates the axial passage 30 side (lower side) and the radial passage 46 side (upper side) of the axial passage 48.
  • the pilot pin 51 (valve element) is pushed up by the urging force of the valve spring 59 and is stroked in the valve opening direction (upward direction in FIG. 5).
  • the pilot pin 51 is positioned in the axial direction when the end surface 51 ⁇ / b> A contacts the lower end surface 71 ⁇ / b> B of the solenoid 71.
  • the flange portion 102 of the pilot pin 51 is fitted to the lower end portion of the axial passage 48 (passage) of the shaft hole 50 (common passage) of the piston bolt 5 so that the axial passage 30 and the axial passage 48 are large.
  • the upper side of the inner diameter portion 101 is communicated with the annular passage 103 and the orifice 105 formed by the notch 104 of the flange portion 102.
  • the flow of the working fluid flowing from the axial passage 30 side to the axial passage 48 side through the annular passage 103 and the orifice 105 in other words, the upstream side extension.
  • the flow area of the orifice 105 in the extension side back pressure chamber 23 is adjusted. Accordingly, it is possible to generate a pressure (pilot pressure) corresponding to the pressure, and thus to adjust the valve opening pressure of the extension main valve 20.
  • the fitting portion of the valve body is fitted into the common passage at the time of failure, and the upstream back pressure chamber and the downstream common passage are communicated by the orifice.
  • the flow path area of the orifice can be adjusted to the expansion back pressure chamber and the contraction back pressure chamber.
  • a corresponding pressure (pilot pressure) can be generated, and the opening pressures of the expansion side main valve and the contraction side main valve can be adjusted as in the first embodiment.
  • an appropriate damping force can be obtained on both the expansion side and the contraction side even during failure.
  • the diameter (outer diameter) of a fitting part can be set larger than the diameter of a valve part.
  • the diameter of a fitting part is set to the diameter smaller than the diameter of the fitting part in 1st Embodiment, ie, a valve part, and it is on the valve closing direction side with respect to a valve part. It can be set larger than the diameter of the fitting portion provided. Therefore, in the second embodiment, the cross-sectional area of the notch formed in the fitting portion, in other words, the orifice channel area can be set larger than that of the first embodiment, and at the time of failure
  • the damping force characteristic can be set on the soft side.
  • 1 shock absorber 2 cylinders, 9 piston rods, 15 extension side passage, 16 contraction side passage, 20 extension side main valve, 23 extension side back pressure chamber, 30, 48, 49 axial passage (common passage), 33 radial direction Passage (contraction side discharge passage), 34 contraction side check valve, 34A extension side orifice, 36 contraction side main valve, 38 contraction side back pressure chamber, 46 radial passage (extension side discharge passage), 47 extension side check valve , 47A shrinkage side orifice, 51 pilot pin (valve element), 55 tip (fitting part), 59 valve spring, 62 orifice

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

消費電力が小さく、かつフェイル時の減衰力を調整可能な緩衝器を提供する。 緩衝器において、伸び側排出通路には、共通通路から縮み側通路側への作動流体の流れを許容する伸び側逆止弁と、縮み側通路と縮み側背圧室とを連通させる縮み側オリフィスと、が設けられる。縮み側排出通路には、共通通路から伸び側通路側への作動流体の流れを許容する縮み側逆止弁と、伸び側通路と伸び側背圧室とを連通させる伸び側オリフィスと、が設けられる。パイロット弁は、共通通路内に摺動可能に挿入される弁体と、弁体を開弁方向へ付勢する弁ばねと、を備える。弁体は、弁ばねの付勢力により開弁方向へストロークされたときに上流側の背圧室と下流側の共通通路との間の通路に嵌合される嵌合部と、嵌合部に設けられる切欠きと、を備える。切欠きは、嵌合部が通路に嵌合されたときに上流側の背圧室と下流側の共通通路とを連通させるオリフィスを形成する。

Description

緩衝器
 本発明は、ピストンロッドのストロークに対する作動流体の流れを制御して減衰力を発生する緩衝器に関する。
 例えば、特許文献1には、減衰力調整機構がシリンダに内蔵された緩衝器が開示されている。この緩衝器の減衰力調整機構は、伸び側および縮み側の両方にパイロット型減衰弁を備えている。
特開2008-89044号公報
 特許文献1の緩衝器は、使用頻度が高いソフト側の減衰力を発揮するときのソレノイドに対する制御電流が高電流側であるため消費電力が大きく、またフェイル時(電流値0A)にハード側の減衰力で固定されてしまうため減衰力を調整することができないという問題がある。
 本発明の目的は、消費電力が小さく、かつフェイル時の減衰力を調整可能な緩衝器を提供することにある。
 本発明の一実施形態による緩衝器は、作動流体が封入されるシリンダと;該シリンダ内に摺動可能に挿入されるピストンと;前記ピストンに連結される一端と、前記シリンダから外部へ延出する他端と、を有するピストンロッドと;前記ピストンに設けられる伸び側通路および縮み側通路と;前記伸び側通路に設けられる伸び側メインバルブと;該伸び側メインバルブの開弁圧力を調整する伸び側背圧室と;前記縮み側通路に設けられる縮み側メインバルブと;該縮み側メインバルブの開弁圧力を調整する縮み側背圧室と;前記伸び側背圧室と前記縮み側背圧室とを連通させる共通通路と;該共通通路の作動流体の流れを制御するパイロット弁とを備える。前記共通通路のうちの前記パイロット弁よりも前記縮み側背圧室側に位置する部分と、前記共通通路のうちの前記パイロット弁よりも前記縮み側通路側に位置する部分と、を連通させる伸び側排出通路が形成される。該伸び側排出通路には、前記共通通路から前記縮み側通路側への作動流体の流れを許容する伸び側逆止弁と、前記縮み側通路と前記縮み側背圧室とを連通させる縮み側オリフィスと、が設けられる。前記共通通路のうちの前記パイロット弁よりも前記伸び側背圧室側に位置する部分と、前記共通通路のうちの前記パイロット弁よりも前記伸び側通路側に位置する部分と、を連通させる縮み側排出通路が形成される。該縮み側排出通路には、前記共通通路から前記伸び側通路側への作動流体の流れを許容する縮み側逆止弁と、前記伸び側通路と前記伸び側背圧室とを連通させる伸び側オリフィスと、が設けられる。前記パイロット弁は、前記共通通路内に摺動可能に挿入される弁体と、該弁体を開弁方向へ付勢する弁ばねと、を備える。前記弁体は、前記弁ばねの付勢力により開弁方向へストロークされたときに上流側の背圧室と下流側の前記共通通路との間の通路に嵌合される嵌合部と、該嵌合部に設けられる切欠きと、を備える。前記切欠きは、前記嵌合部が前記通路に嵌合されたときに前記上流側の背圧室と下流側の前記共通通路とを連通させるオリフィスを形成する。
 本発明の一実施形態によれば、消費電力が小さく、かつフェイル時の減衰力を調整可能な緩衝器を提供することができる。
第1実施形態の緩衝器の主要部の断面図である。 図1の一部を拡大して示す図である。 第1実施形態の作動の説明図であって、ピストンロッドの伸び行程時における作動流体のパイロット流れを示し、特に、中心線の左側はフェイル時のパイロット流れを示す。 第1実施形態の作動の説明図であって、ピストンロッドの縮み行程時における作動流体のパイロット流れを示し、特に、中心線の左側はフェイル時のパイロット流れを示す。 第2実施形態の緩衝器の主要部の一部を拡大して示す図である。 第2実施形態の作動の説明図であって、ピストンロッドの伸び行程時における作動流体のパイロット流れを示し、特に、中心線の左側はフェイル時のパイロット流れを示す。 第2実施形態の作動の説明図であって、ピストンロッドの縮み行程時における作動流体のパイロット流れを示し、特に、中心線の左側はフェイル時のパイロット流れを示す。
(第1実施形態)
 本発明の第1実施形態を添付した図を参照して説明する。
 図1は、第1実施形態の緩衝器1の主要部の断面図である。以下の説明において、図1における上方向(上側)および下方向(下側)を、当該緩衝器1における上方向(上側)および下方向(下側)とする。なお、第1実施形態は、単筒型の減衰力調整式油圧緩衝器であるが、リザーバを備える複筒型の減衰力調整式油圧緩衝器にも適用できる。
 図1に示されるように、シリンダ2内には、ピストン3が摺動可能に嵌装される。ピストン3は、シリンダ2内をシリンダ上室2Aとシリンダ下室2Bとの2室に画分する。ピストン3の軸孔4には、ピストンボルト5の軸部6が挿通される。ピストンボルト5の略有底円筒形の頭部7には、略円筒形のケース部材8の下端部がねじ結合部10で接続される。ピストンボルト5には、上端が頭部7の底面に開口して軸心に沿って先端側へ延びる軸孔50(共通通路)が形成される。図2に示されるように、軸孔50は、当該軸孔50の上部に形成されて上端が開口する軸方向通路48と、軸孔50の下部に形成される軸方向通路30と、軸方向通路30,48間に形成されて軸方向通路30,48間を連通する軸方向通路49とにより構成される。軸孔50の径(内径)は、軸方向通路30の径が最も大きく、軸方向通路48、軸方向通路49の順に小さくなっていく。
 図1に示されるように、ケース部材8の上端部には、ピストンロッド9の下端部がねじ結合部11で接続される。ピストンロッド9の下端部には、ナット12が螺合され、該ナット12をケース部材8の上端に当接させて締め付けることによりねじ結合部11の緩みが抑止される。ピストンロッド9の下端には、小径部13が形成され、該小径部13の外周面に形成された環状溝には、ケース部材8とピストンロッド9との間をシールするOリング14が装着される。
 ピストン3には、一端(上端)がシリンダ上室2A側に開口する伸び側通路15と、一端(下端)がシリンダ下室2B側に開口する縮み側通路16とが設けられる。ピストン3の下端には、伸び側通路15における作動流体の流れを制御する伸び側減衰弁17が設けられる。ピストン3の上端には、縮み側通路16における作動流体の流れを制御する縮み側減衰弁18が設けられる。
 図2に示されるように、伸び側減衰弁17は、ピストン3の下端面の外周側に形成された環状のシート部19に着座する伸び側メインバルブ20と、ナット21によりピストンボルト5に固定されるバルブ部材22と、伸び側メインバルブ20の背面とバルブ部材22との間に形成される伸び側背圧室23とを備える。該伸び側背圧室23内の圧力は、伸び側メインバルブ20に対して閉弁方向へ作用する。ナット21とバルブ部材22との間には、下側から順に、ワッシャ24、スペーサ25、およびディスクバルブ26が設けられる。ディスクバルブ26の内周縁部は、バルブ部材22の内周縁部とスペーサ25との間で挟持される。なお、伸び側メインバルブ20は、弾性体からなる環状のシール部20Aがバルブ部材22の内周面に全周にわたって接触するパッキンバルブである。
 伸び側背圧室23は、バルブ部材22に形成された通路27およびディスクバルブ26を介してシリンダ下室2Bに連通される。伸び側背圧室23は、ディスクバルブ26に形成されたオリフィス26Aを介してシリンダ下室2Bに常時連通される。ディスクバルブ26は、伸び側背圧室23の圧力が所定圧力に達したときに開弁して伸び側背圧室23内の圧力をシリンダ下室2Bへリリーフする。また、伸び側背圧室23は、ディスクバルブからなる伸び側背圧導入弁28を介してピストンボルト5に形成された径方向通路29に連通される。該径方向通路29は、ピストンボルト5に形成された軸方向通路30(共通通路)に連通される。
 伸び側背圧導入弁28は、径方向通路29から伸び側背圧室23への作動流体の流れのみを許容する逆止弁である。伸び側背圧導入弁28は、バルブ部材22の上面における通路27の内周側に形成された環状のシート部31に着座される。伸び側背圧導入弁28は、内周縁部がバルブ部材22の内周縁部とスペーサ32との間で挟持される。伸び側背圧室23は、伸び側背圧導入弁28が開弁すると当該伸び側背圧導入弁28に形成されたオリフィス28Aを介して径方向通路29に連通される。
 軸方向通路30は、ピストンボルト5に形成された径方向通路33(縮み側排出通路)に連通される。該径方向通路33は、ピストン3に設けられた縮み側逆止弁34を介して伸び側通路15に連通される。径方向通路33は、縮み側逆止弁34に形成されたオリフィス34Aを介して伸び側通路15に常時連通される。縮み側逆止弁34は、伸び側通路15から径方向通路33への作動流体の流れのみを許容する。
 縮み側減衰弁18は、ピストン3の上端面の外周側に形成された環状のシート部35に着座する縮み側メインバルブ36と、ピストンボルト5の頭部7とピストン3との間で固定されるバルブ部材37と、縮み側メインバルブ36の背面とバルブ部材37との間に形成される縮み側背圧室38とを備える。該縮み側背圧室38内の圧力は、縮み側メインバルブ36に対して閉弁方向へ作用する。ピストンボルト5の頭部7とバルブ部材37との間には、上側から順に、ワッシャ39、スペーサ40、およびディスクバルブ41が設けられる。ディスクバルブ41の内周縁部は、バルブ部材37の内周縁部とスペーサ40との間で挟持される。なお、縮み側メインバルブ36は、弾性体からなる環状のシール部36Aがバルブ部材37の内周面に全周にわたって接触するパッキンバルブである。
 縮み側背圧室38は、バルブ部材37に形成された通路42およびディスクバルブ41を介してシリンダ上室2Aに連通される。縮み側背圧室38は、ディスクバルブ41に形成されたオリフィス41Aを介してシリンダ上室2Aに常時連通される。ディスクバルブ41は、縮み側背圧室38の圧力が所定圧力に達したときに開弁して縮み側背圧室38内の圧力をシリンダ上室2Aへリリーフする。また、縮み側背圧室38は、ディスクバルブからなる縮み側背圧導入弁43を介してピストンボルト5に形成された径方向通路44に連通される。該径方向通路44は、ピストンボルト5の軸方向通路48(共通通路)に連通される。
 縮み側背圧導入弁43は、径方向通路44から縮み側背圧室38への作動流体の流れのみを許容する逆止弁である。縮み側背圧導入弁43は、バルブ部材37の下面における通路42の内周側に形成された環状のシート部45に着座される。縮み側背圧導入弁43は、内周縁部がバルブ部材37の内周縁部とスペーサ40との間で挟持される。縮み側背圧室38は、縮み側背圧導入弁43が開弁すると当該縮み側背圧導入弁43に形成されたオリフィス43Aを介して径方向通路44に連通される。
 軸方向通路48は、ピストンボルト5に形成された径方向通路46(伸び側排出通路)に連通される。該径方向通路46は、ピストン3に設けられた伸び側逆止弁47を介して縮み側通路16に連通される。径方向通路46は、伸び側逆止弁47に形成されたオリフィス47Aを介して縮み側通路16に常時連通される。伸び側逆止弁47は、縮み側通路16から径方向通路46への作動流体の流れのみを許容する。
 ピストンボルト5の軸孔50には、ニードル型のパイロットピン51(弁体)が摺動可能に嵌装される。パイロットピン51は、ピストンボルト5とともにパイロット弁を構成する。パイロットピン51は、軸方向通路48の上部、換言すると、径方向通路44よりも上側部分に摺動可能に嵌合される基部52と、軸方向通路48内に位置してテーパ部53を介して基部52に連続する弁部54と、パイロット弁の閉弁状態(図2参照)で軸方向通路30内に位置する先端部55(嵌合部)と、該先端部55と弁部54とを接続する接続部56とを有する。なお、パイロットピン51の径(外径)は、基部52が最も大きく、弁部54、先端部55、接続部56の順に小さくなっていく。また、弁部54の外径は、軸方向通路49の内径よりも大きい。
 パイロットピン51の先端部55の下端側外周縁部には、環状のばね受部57が形成される。パイロットピン51は、ばね受部57とピストンボルト5の軸孔50の底面に形成された凹状のばね受部58との間に介装された弁ばね59により上方向へ付勢される。該弁ばね59の付勢力により、パイロットピン51の基部の端面52Aが後述するソレノイド71の作動ピン72に当接される(押し付けられる)。なお、パイロットピン51の先端部55のばね受部57の内側には、円錐台形のばね係合部61が形成される。
 パイロットピン51の先端部55は、軸直角平面による断面が二面幅の切欠き65を有する円形に形成される。当該先端部55は、減衰力可変アクチュエータとして適用されるソレノイド71に対する制御電流が0Aのとき(フェイル時)、パイロットピン51が開弁方向(図2における上方向)へストロークされて軸方向通路49(通路)に嵌合される。パイロットピン51の先端部55が軸方向通路49に嵌合されると、当該先端部55(嵌合部)と軸方向通路49との間には、軸方向通路30,48間(上流側の背圧室と下流側の共通通路との間)を連通する一対のオリフィス62が形成される。なお、二面幅(切欠き65)を形成する一対の面は、一方の面のみ形成してもよい。この場合、オリフィス62は1つのみとなる。
 軸方向通路49の上端(軸方向通路48側)の開口周縁部には、パイロットピン51の弁部54が着座する環状のシート部63が形成される。弁部54の下端(接続部56側)の外周縁部には、テーパ状に形成された着座面54Aが形成され、該着座面54Aがピストンボルト5の軸孔50に形成されたシート部63に着座される。着座面54Aがピストンボルト5の軸孔50に形成されたシート部63に着座された状態、すなわち、パイロット弁の閉弁状態では、パイロットピン51は、先端部55が略円形の受圧面A(図3参照)により軸方向通路30側の圧力を受け、テーパ部53が環状の受圧面B(図4参照)により軸方向通路48側の圧力を受ける。
 図1に示されるように、ソレノイド71は、ケース部材8、コイル74、作動ピン72を有し、作動ピン72の外周面には、プランジャ85が結合される。可動鉄心とも称されるプランジャ85は、鉄系の磁性体により略円筒形に形成される。プランジャ85は、コイル74に通電されて磁力が発生することで推力を発生する。
 作動ピン72は、ステータコア76に組み込まれたブッシュ90とコア84に組み込まれたブッシュ91とにより上下方向(軸方向)へ移動可能に支持される。ソレノイド71は内周面71Aと下端面71Bとを有し、内周面71Aの径(内径)はパイロットピン51の基部52の径(外径)よりも小さい。パイロットピン51は、基部52がソレノイド71の下端面71Bに当接されることにより、ピストンボルト5の軸孔50に対する上方向への移動が規制される。
 次に、図3および図4を参照して、ソレノイド71のコイル74の断線、あるいはコントローラの故障等のフェイル時の作動を説明する。フェイル時にプランジャ85の推力が失われると、弁ばね59の付勢力によりパイロットピン51が押し上げられて開弁方向(図3,図4における上方向)へストロークされる。そして、パイロットピン51は、端面51Aがソレノイド71の下端面71Bに当接することで軸方向に位置決めされる。当該フェイル時には、パイロットピン51の先端部55(嵌合部)がピストンボルト5の軸孔50(共通通路)の軸方向通路49(通路)に嵌合され、軸方向通路30,48間(上流側の背圧室と下流側の共通通路との間)が、先端部55の二面幅(切欠き65)によるオリフィス62を介して連通される。
 そして、フェイル時の伸び行程時には、オリフィス62を介して軸方向通路30から軸方向通路48(下流側の共通通路)へ流れる作動流体の流れを当該オリフィス62の流路面積(切欠き65形状)で調節することにより、伸び側背圧室23(上流側の背圧室)にオリフィス62の流路面積に応じた圧力(パイロット圧)を発生させることができ、延いては伸び側メインバルブ20の開弁圧力を調節することが可能である。また、フェイル時の縮み行程時には、オリフィス62を介して軸方向通路48から軸方向通路30(下流側の共通通路)へ流れる作動流体の流れをオリフィス62の流路面積で調節することにより、縮み側背圧室38(上流側の背圧室)にオリフィス62の流路面積に応じた圧力を発生させることができ、延いては縮み側メインバルブ36の開弁圧力を調節することが可能である。
 ここで、前述した特許文献1の緩衝器では、フェイル時(電流値0A)にハード側の減衰力で固定されてしまうため減衰力を調整することができないという問題があった。
 これに対し、第1実施形態では、フェイル時にパイロットピン51の先端部55(嵌合部)を軸方向通路49に嵌合させて軸方向通路30,48間をオリフィス62で連通させたので、オリフィス62の流路面積を設定して軸方向通路30,48間を流れる作動流体の流れを調節することにより、伸び側背圧室23および縮み側背圧室38にオリフィス62の流路面積に応じた圧力(パイロット圧)を発生させることができ、伸び側メインバルブ20および縮み側メインバルブ36の開弁圧力を調節することが可能である。その結果、フェイル時においても伸び側および縮み側ともに適切な減衰力を得ることができる。
 また、前述した特許文献1の緩衝器では、使用頻度が高いソフト側の減衰力を発揮するときのソレノイドに対する制御電流が高電流であるため消費電力が大きく、またフェイル時にハード側の減衰力で固定されてしまい減衰力を調整することができないという問題があった。
 これに対し、第1実施形態は、ソレノイド71に対する制御電流が0Aであるときに弁部54がシート部63から離座される、いわゆるノーマルオープン型のパイロット弁を適用しているので、ソフト側の減衰力を発揮するときのソレノイド71に対する制御電流が小電流であるため消費電力が小さい。
 以下に、第1実施形態の作用効果を示す。
 第1実施形態は、作動流体が封入されるシリンダと;該シリンダ内に摺動可能に挿入されるピストンと;ピストンに連結される一端と、シリンダから外部へ延出する他端と、を有するピストンロッドと;ピストンに設けられる伸び側通路および縮み側通路と;伸び側通路に設けられる伸び側メインバルブと;該伸び側メインバルブの開弁圧力を調整する伸び側背圧室と;縮み側通路に設けられる縮み側メインバルブと;該縮み側メインバルブの開弁圧力を調整する縮み側背圧室と;伸び側背圧室と縮み側背圧室とを連通させる共通通路と;該共通通路の作動流体の流れを制御するパイロット弁とを備える。共通通路のうちのパイロット弁よりも縮み側背圧室側に位置する部分と、共通通路のうちのパイロット弁よりも縮み側通路側に位置する部分と、を連通させる伸び側排出通路が形成される。該伸び側排出通路には、共通通路から縮み側通路側への作動流体の流れを許容する伸び側逆止弁と、縮み側通路と縮み側背圧室とを連通させる縮み側オリフィスと、が設けられる。共通通路のうちのパイロット弁よりも伸び側背圧室側に位置する部分と、共通通路のうちのパイロット弁よりも伸び側通路側に位置する部分と、を連通させる縮み側排出通路が形成される。該縮み側排出通路には、共通通路から伸び側通路側への作動流体の流れを許容する縮み側逆止弁と、伸び側通路と伸び側背圧室とを連通させる伸び側オリフィスと、が設けられる。パイロット弁は、共通通路内に摺動可能に挿入される弁体と、該弁体を開弁方向へ付勢する弁ばねと、を備える。弁体は、弁ばねの付勢力により開弁方向へストロークされたときに上流側の背圧室と下流側の共通通路との間の通路に嵌合される嵌合部と、該嵌合部に設けられる切欠きと、を備える。切欠きは、嵌合部が通路に嵌合されたときに上流側の背圧室と下流側の共通通路とを連通させるオリフィスを形成する。したがって、フェイル時には、弁体の嵌合部が通路に嵌合されることにより、上流側の背圧室と嵌合部より下流側の共通通路とがオリフィスで連通される。よって、オリフィスの流路面積を設定して上流側の背圧室と下流側の共通通路との間を流れる作動流体の流れを調節することにより、伸び側背圧室および縮み側背圧室にオリフィスの流路面積に応じた圧力(パイロット圧)を発生させることができ、伸び側メインバルブおよび縮み側メインバルブの開弁圧力を調節することが可能である。その結果、フェイル時においても伸び側および縮み側ともに適切な減衰力を得ることができる。
 また、第1実施形態は、フェイル時に弁体が開弁方向へストロークされる、いわゆるノーマルオープン型のパイロット弁を適用しているので、ソフト側の減衰力を発揮するときの減衰力可変アクチュエータ(ソレノイド)に対する制御電流が小電流であるため、消費電力を抑えることができる。
(第2実施形態)
 次に、第2実施形態を添付した図を参照して主に第1実施形態との相違部分を中心に説明する。なお、第1実施形態と共通する部位については、同一称呼、同一の符号で表す。
 図2を参照すると、前述した第1実施形態では、フェイル時にパイロットピン51(弁体)の先端部55(嵌合部)を軸方向通路49(通路)に嵌合させることにより軸方向通路38,48間(上流側の背圧室と下流側の共通通路との間)をオリフィス62で連通させた。換言すると、第1実施形態では、嵌合部をパイロットピン51の弁部54に対して当該パイロットピン51の閉弁方向側(先端側)に設けたのに対し、図5に示されるように、第2実施形態では、嵌合部をパイロットピン51の弁部54に対して当該パイロットピン51の開弁方向側(基部52側)に設けた。
 図5に示されるように、ピストンボルト5の軸孔50(共通通路)の軸方向通路48には、当該軸方向通路48の径よりも内径が大きい大内径部101が形成される。該大内径部101は、径方向通路46が開口している部分よりも軸方向通路49側(図5における下側)に配置される。なお、大内径部101の径(内径)は、軸方向通路30の径より大きく設定される。
 パイロットピン51(弁体)の弁部54の外周面には、フランジ部102(嵌合部)が形成される。該フランジ部102は、軸方向長さが軸孔50(共通通路)の軸方向通路48に形成された大内径部101の軸方向長さより短く形成される。フランジ部102は、パイロット弁の閉弁時(図5参照)に軸孔50(共通通路)の大内径部101内に位置する。そして、パイロット弁の閉弁時には、軸方向通路30と軸方向通路48の大内径部101より径方向通路46側(図5における上側)の部分とは、大内径部101とフランジ部102との間に形成される環状通路103を介して連通される。
 パイロットピン51のフランジ部102は、軸直角平面による断面が二面幅(切欠き)を有する円形に形成される。当該フランジ部102は、フェイル時に軸方向通路48(通路)の下端部(軸方向通路30側端部)に嵌合される。そして、パイロットピン51のフランジ部102が軸方向通路48に嵌合されると、当該フランジ部102と軸方向通路48との間には、フランジ部102に形成された二面幅からなる切欠き104による一対のオリフィス105(図5には1つのみ表示)が形成される。該オリフィス105は、軸方向通路48の軸方向通路30側(下側)と径方向通路46側(上側)とを連通する。なお、切欠き104の二面幅を形成する一対の面は、一方の面のみ形成してもよい。この場合、オリフィス105は1つのみとなる。
 次に、図6,図7を参照して第2実施形態の作動を説明する。
 フェイル時にプランジャ85(図1参照)の推力が失われると、パイロットピン51(弁体)は、弁ばね59の付勢力により押し上げられて開弁方向(図5における上方向)へストロークされる。パイロットピン51は、端面51Aがソレノイド71の下端面71Bに当接することで軸方向に位置決めされる。当該フェイル時には、パイロットピン51のフランジ部102がピストンボルト5の軸孔50(共通通路)の軸方向通路48(通路)の下端部に嵌合され、軸方向通路30と軸方向通路48の大内径部101より上側とが、環状通路103およびフランジ部102の切欠き104によるオリフィス105を介して連通される。
 そして、フェイル時の伸び行程時(図6参照)には、環状通路103およびオリフィス105を介して軸方向通路30側から軸方向通路48側へ流れる作動流体の流れ、換言すると、上流側の伸び側背圧室23から下流側の共通通路へ流れる作動流体の流れを当該オリフィス105の流路面積(切欠き104形状)で調節することにより、伸び側背圧室23にオリフィス105の流路面積に応じた圧力(パイロット圧)を発生させることができ、延いては伸び側メインバルブ20の開弁圧力を調節することが可能である。
 また、フェイル時の縮み行程時(図7参照)には、オリフィス105および環状通路103を介して軸方向通路48側から軸方向通路30側へ流れる作動流体の流れ、換言すると、上流側の縮み側背圧室38から下流側の共通通路へ流れる作動流体の流れを当該オリフィス105の流路面積(切欠き104形状)で調節することにより、縮み側背圧室38にオリフィス105の流路面積に応じた圧力(パイロット圧)を発生させることができ、延いては縮み側メインバルブ36の開弁圧力を調節することが可能である。
 このように第2実施形態では、フェイル時に弁体の嵌合部を共通通路に嵌合させて上流側の背圧室と下流側の共通通路とをオリフィスで連通させたので、オリフィスの流路面積を設定して上流側の背圧室と下流側の共通通路との間を流れる作動流体の流れを調節することにより、伸び側背圧室および縮み側背圧室にオリフィスの流路面積に応じた圧力(パイロット圧)を発生させることが可能であり、前述の第1実施形態同様、伸び側メインバルブおよび縮み側メインバルブの開弁圧力を調節することができる。その結果、フェイル時においても伸び側および縮み側ともに適切な減衰力を得ることができる。
 そして、第2実施形態では、嵌合部を弁体の弁部に対して開弁方向側に設けたので、嵌合部の径(外径)を弁部の径より大きく設定することができる。これにより、第2実施形態では、嵌合部の径を、第1実施形態における嵌合部の径、すなわち、弁部の径より小さい径に設定されて弁部に対して閉弁方向側に設けられた嵌合部の径、よりも大きく設定することができる。よって、第2実施形態では、嵌合部に形成される切欠きの断面積、換言すると、オリフィスの流路面積を第1実施形態に対してより大きく設定することが可能であり、フェイル時の減衰力特性をよりソフト側に設定することができる。
 以上、本発明のいくつかの実施形態について説明してきたが、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、2017年1月18日出願の日本特許出願番号2017-6701号に基づく優先権を主張する。2017年1月18日出願の日本特許出願番号2017-6701号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。
1 緩衝器、2 シリンダ、9 ピストンロッド、15 伸び側通路、16 縮み側通路、20 伸び側メインバルブ、23 伸び側背圧室、30,48,49 軸方向通路(共通通路)、33 径方向通路(縮み側排出通路)、34 縮み側逆止弁、34A 伸び側オリフィス、36 縮み側メインバルブ、38 縮み側背圧室、46 径方向通路(伸び側排出通路)、47 伸び側逆止弁、47A 縮み側オリフィス、51 パイロットピン(弁体)、55 先端部(嵌合部)、59 弁ばね、62 オリフィス

Claims (3)

  1.  緩衝器であって、
     作動流体が封入されるシリンダと、
     該シリンダ内に摺動可能に挿入されるピストンと、
     前記ピストンに連結される一端と、前記シリンダから外部へ延出する他端と、を有するピストンロッドと、
     前記ピストンに設けられる伸び側通路および縮み側通路と、
     前記伸び側通路に設けられる伸び側メインバルブと、
     該伸び側メインバルブの開弁圧力を調整する伸び側背圧室と、
     前記縮み側通路に設けられる縮み側メインバルブと、
     該縮み側メインバルブの開弁圧力を調整する縮み側背圧室と、
     前記伸び側背圧室と前記縮み側背圧室とを連通させる共通通路と、
     該共通通路の作動流体の流れを制御するパイロット弁と
     を備え、
     前記共通通路のうちの前記パイロット弁よりも前記縮み側背圧室側に位置する部分と、前記共通通路のうちの前記パイロット弁よりも前記縮み側通路側に位置する部分と、を連通させる伸び側排出通路が形成され、
     該伸び側排出通路には、前記共通通路から前記縮み側通路側への作動流体の流れを許容する伸び側逆止弁と、前記縮み側通路と前記縮み側背圧室とを連通させる縮み側オリフィスと、が設けられ、
     前記共通通路のうちの前記パイロット弁よりも前記伸び側背圧室側に位置する部分と、前記共通通路のうちの前記パイロット弁よりも前記伸び側通路側に位置する部分と、を連通させる縮み側排出通路が形成され、
     該縮み側排出通路には、前記共通通路から前記伸び側通路側への作動流体の流れを許容する縮み側逆止弁と、前記伸び側通路と前記伸び側背圧室とを連通させる伸び側オリフィスと、が設けられ、
     前記パイロット弁は、前記共通通路内に摺動可能に挿入される弁体と、該弁体を開弁方向へ付勢する弁ばねと、を備え、
     前記弁体は、前記弁ばねの付勢力により開弁方向へストロークされたときに上流側の背圧室と下流側の前記共通通路との間の通路に嵌合される嵌合部と、該嵌合部に設けられる切欠きと、を備え、
     前記切欠きは、前記嵌合部が前記通路に嵌合されたときに前記上流側の背圧室と下流側の前記共通通路とを連通させるオリフィスを形成する
     緩衝器。
  2.  請求項1に記載の緩衝器であって、
     前記弁体は、前記共通通路内に設けられたシート部に着座される弁部を備え、
     前記嵌合部は、前記弁体の前記弁部に対して閉弁方向側に設けられる
     緩衝器。
  3.  請求項1に記載の緩衝器であって、
     前記弁体は、前記共通通路内に設けられたシート部に着座される弁部を備え、
     前記嵌合部は、前記弁体の前記弁部に対して開弁方向側に設けられる
     緩衝器。
PCT/JP2018/000947 2017-01-18 2018-01-16 緩衝器 WO2018135461A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197016522A KR102223705B1 (ko) 2017-01-18 2018-01-16 완충기
CN201880005143.8A CN110088500B (zh) 2017-01-18 2018-01-16 减振器
US16/478,196 US10941830B2 (en) 2017-01-18 2018-01-16 Shock absorber
JP2018563322A JP6700436B2 (ja) 2017-01-18 2018-01-16 緩衝器
DE112018000417.1T DE112018000417T5 (de) 2017-01-18 2018-01-16 Stoßdämpfer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017006701 2017-01-18
JP2017-006701 2017-01-18

Publications (1)

Publication Number Publication Date
WO2018135461A1 true WO2018135461A1 (ja) 2018-07-26

Family

ID=62908214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000947 WO2018135461A1 (ja) 2017-01-18 2018-01-16 緩衝器

Country Status (6)

Country Link
US (1) US10941830B2 (ja)
JP (1) JP6700436B2 (ja)
KR (1) KR102223705B1 (ja)
CN (1) CN110088500B (ja)
DE (1) DE112018000417T5 (ja)
WO (1) WO2018135461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149224A1 (ja) * 2019-01-18 2020-07-23 日立オートモティブシステムズ株式会社 緩衝器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018004751B4 (de) * 2017-09-05 2022-07-21 Hitachi Astemo, Ltd. Stossdämpfer
US20210088100A1 (en) * 2019-09-19 2021-03-25 Fox Factory, Inc. Dual live valve shock having main damper and base valve actively controlled
DE102020200733A1 (de) 2020-01-22 2021-07-22 Zf Friedrichshafen Ag Verstellbare Dämpfventileinrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084818A (ja) * 1994-06-15 1996-01-12 Tokico Ltd 減衰力調整式油圧緩衝器
JP2008089044A (ja) * 2006-09-29 2008-04-17 Hitachi Ltd 減衰力調整式油圧緩衝器
JP2008249107A (ja) * 2007-03-30 2008-10-16 Hitachi Ltd 減衰力調整式流体圧緩衝器
JP2009008150A (ja) * 2007-06-27 2009-01-15 Showa Corp 油圧緩衝器の減衰力調整構造

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198843B2 (ja) * 1994-12-20 2001-08-13 トヨタ自動車株式会社 減衰力可変式ショックアブソーバ
JP3733496B2 (ja) * 1996-11-12 2006-01-11 株式会社日立製作所 減衰力調整式油圧緩衝器
DE19736074A1 (de) * 1997-08-20 1999-03-04 Krupp Bilstein Gmbh Gasfeder
JP3978708B2 (ja) * 2001-11-29 2007-09-19 株式会社日立製作所 減衰力調整式油圧緩衝器
US20080185246A1 (en) * 2007-02-02 2008-08-07 Mando Corporation Damping force variable shock absorber
JP2009014012A (ja) * 2007-06-29 2009-01-22 Hitachi Ltd 緩衝器
JP2009052703A (ja) 2007-08-28 2009-03-12 Showa Corp 減衰力調整式油圧緩衝器
JP5418778B2 (ja) * 2010-02-26 2014-02-19 日立オートモティブシステムズ株式会社 緩衝器
JP5758119B2 (ja) * 2010-03-03 2015-08-05 日立オートモティブシステムズ株式会社 緩衝器
WO2012071764A1 (en) * 2010-11-29 2012-06-07 Beijing West Industries Co., Ltd. Hydraulic damper assembly
KR101288612B1 (ko) * 2011-07-21 2013-07-22 주식회사 만도 쇽업소버의 밸브 구조
KR102323479B1 (ko) * 2015-02-02 2021-11-09 주식회사 만도 내장형 전자 제어 댐퍼
KR20170089637A (ko) * 2016-01-27 2017-08-04 주식회사 만도 감쇠력 가변 밸브 조립체 및 이를 포함하는 감쇠력 가변식 쇽업소버
JP6334625B2 (ja) 2016-09-01 2018-05-30 株式会社スクウェア・エニックス ビデオゲーム処理プログラム、及びビデオゲーム処理システム
DE112018003806B4 (de) * 2017-07-27 2022-06-23 Hitachi Astemo, Ltd. Stoßdämpfer
JP2019044877A (ja) * 2017-09-04 2019-03-22 アイシン精機株式会社 減衰力可変バルブ
DE112018004751B4 (de) * 2017-09-05 2022-07-21 Hitachi Astemo, Ltd. Stossdämpfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084818A (ja) * 1994-06-15 1996-01-12 Tokico Ltd 減衰力調整式油圧緩衝器
JP2008089044A (ja) * 2006-09-29 2008-04-17 Hitachi Ltd 減衰力調整式油圧緩衝器
JP2008249107A (ja) * 2007-03-30 2008-10-16 Hitachi Ltd 減衰力調整式流体圧緩衝器
JP2009008150A (ja) * 2007-06-27 2009-01-15 Showa Corp 油圧緩衝器の減衰力調整構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149224A1 (ja) * 2019-01-18 2020-07-23 日立オートモティブシステムズ株式会社 緩衝器
KR20210094648A (ko) * 2019-01-18 2021-07-29 히다치 아스테모 가부시키가이샤 완충기
JPWO2020149224A1 (ja) * 2019-01-18 2021-10-28 日立Astemo株式会社 緩衝器
JP7069353B2 (ja) 2019-01-18 2022-05-17 日立Astemo株式会社 緩衝器
KR102651283B1 (ko) * 2019-01-18 2024-03-25 히다치 아스테모 가부시키가이샤 완충기

Also Published As

Publication number Publication date
US20200032872A1 (en) 2020-01-30
CN110088500A (zh) 2019-08-02
KR20190082287A (ko) 2019-07-09
US10941830B2 (en) 2021-03-09
JPWO2018135461A1 (ja) 2019-11-07
KR102223705B1 (ko) 2021-03-05
CN110088500B (zh) 2020-12-01
JP6700436B2 (ja) 2020-05-27
DE112018000417T5 (de) 2019-10-02

Similar Documents

Publication Publication Date Title
JP7182592B2 (ja) 緩衝器
JP7182656B2 (ja) 緩衝器に用いられる機構
JP4967091B2 (ja) 流体圧緩衝器
WO2018135461A1 (ja) 緩衝器
JP2003166584A (ja) 減衰力調整式油圧緩衝器
JP6516916B2 (ja) 減衰力調整式緩衝器
WO2019123778A1 (ja) 緩衝器
JP7213161B2 (ja) 減衰力調整式緩衝器
JP7171495B2 (ja) 緩衝器
JP7296268B2 (ja) 減衰力調整式緩衝器
JP2022025539A (ja) 減衰力調整式緩衝器及び減衰力調整弁
WO2022075011A1 (ja) 緩衝器
WO2022168817A1 (ja) 緩衝器
JP7069353B2 (ja) 緩衝器
WO2018180434A1 (ja) 減衰力調整式緩衝器
JP2022036582A (ja) 緩衝器
JP2002257175A (ja) 減衰力調整式油圧緩衝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563322

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197016522

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18741467

Country of ref document: EP

Kind code of ref document: A1