WO2018135212A1 - 蒸気タービン - Google Patents

蒸気タービン Download PDF

Info

Publication number
WO2018135212A1
WO2018135212A1 PCT/JP2017/045430 JP2017045430W WO2018135212A1 WO 2018135212 A1 WO2018135212 A1 WO 2018135212A1 JP 2017045430 W JP2017045430 W JP 2017045430W WO 2018135212 A1 WO2018135212 A1 WO 2018135212A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
stationary blade
hole
steam turbine
rotor
Prior art date
Application number
PCT/JP2017/045430
Other languages
English (en)
French (fr)
Inventor
亮 ▲高▼田
創一朗 田畑
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to DE112017006877.0T priority Critical patent/DE112017006877B4/de
Priority to US16/462,651 priority patent/US11028695B2/en
Priority to KR1020197016822A priority patent/KR102243462B1/ko
Priority to CN201780078077.2A priority patent/CN110114555B/zh
Publication of WO2018135212A1 publication Critical patent/WO2018135212A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/10Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines having two or more stages subjected to working-fluid flow without essential intermediate pressure change, i.e. with velocity stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the present disclosure relates to a steam turbine, and more particularly, to a technique for preventing moisture loss and erosion in a steam turbine driven under wet conditions.
  • a stationary vane having a hollow section having a hollow portion is employed in the stationary blade in the final stage, and a slit communicating with the hollow portion is formed in the stationary blade. By forming on the surface, droplets flowing on the surface of the stationary blade are removed.
  • the present inventor has produced a coarse droplet having a particle size of several tens to several hundreds of ⁇ m, which causes wet loss and erosion, as the droplet condenses on the surface of the stationary blade.
  • a large amount of fine droplets having a particle size of 1 ⁇ m or less are generated in the steam, and the droplets are condensed in a portion of the surface of the stationary blade that is lower than the main steam.
  • the condensed droplet grows in the process of flowing on the surface of the stationary blade, becomes a coarse droplet having a particle size of several tens to several hundreds ⁇ m, scatters from the trailing edge, and collides with the leading edge of the moving blade.
  • the present invention has been invented under the background art as described above, and an object of the present invention is to provide a steam turbine capable of preventing moisture loss and erosion with a simple structure. .
  • a steam turbine includes: A rotor that rotates around an axis; A casing for rotatably housing the rotor; A first stage including a first stage stationary blade fixed to the inner wall portion of the casing, and a first stage moving blade fixed to the rotor on the downstream side of the first stage stationary blade, and The rotor is a concave first cavity formed in a portion facing the first stage stationary blade, and is an inner space defined between the inner wall portion and the rotor on the upstream side of the first stage stationary blade.
  • a first cavity in communication with the The first stage stationary blade has a first stage through hole that communicates with the first cavity and penetrates the first stage stationary blade in a radial direction,
  • the steam introduced from the first cavity through the inlet opening of the first stage through hole is configured to flow through the first stage through hole.
  • the first stage stationary blade is configured such that steam introduced from the first cavity through the inlet opening flows through the first stage through hole. Since the first cavity communicates with the inner space on the upstream side of the first stage stationary blade, steam having a temperature higher than the temperature of the main steam expanded through the first stage stationary blade is introduced into the first stage through hole.
  • the temperature of the steam introduced into the first stage through hole is about 10 to 30 ° C. higher than the temperature of the main steam expanded through the first stage stationary blade. The temperature of this vapor is insufficient to evaporate the droplets adhering to the surface of the first stage stationary blade, but is sufficient to prevent the droplets from condensing on the surface of the first stage stationary blade. .
  • a liquid that heats the first stage stationary blade with a simple structure that only forms the first stage through hole that penetrates the first stage stationary blade in the radial direction and condenses on the surface of the first stage stationary blade.
  • the first paragraph is based on a change position where the main steam flowing in the inner space changes from dry steam to wet steam. Is located in the wet area which is the downstream area, and when there are a plurality of paragraphs in the wet area, it is the paragraph located at the most upstream side in the wet area.
  • the dry region means a region where the wetness of the main steam flowing therethrough is less than a predetermined value (for example, 3 to 4%), and the wet region means the wetness of the main steam flowing therethrough Means an area having a predetermined value (for example, 3 to 4%) or more.
  • the first stage stationary blade in the steam turbine according to any one of (1) to (3), includes a stationary blade main body portion that extends from the inner wall portion toward the rotor. And an annular partition plate provided at the tip of the stationary blade body. The inlet opening is formed in the partition plate.
  • the partition plate in the steam turbine according to (4), includes a first seal portion that seals between the partition plate and the rotor. And the said inlet opening is formed in the position which overlaps with the area
  • the steam turbine may be formed with a seal portion (first seal portion) that seals between the partition plate and the rotor in order to prevent main steam flowing in the inner space from leaking into the cavity. Therefore, according to the embodiment described in (5) above, a large amount of leaked steam is generated by introducing the leaked steam that has passed through at least part of the first seal portion into the first stage through hole.
  • the first stage stationary blade can be heated while preventing it from flowing into the first stage through hole.
  • the partition plate is a second seal portion that seals between the partition plate and the rotor on the downstream side of the first seal portion.
  • the said inlet opening is formed in the position which overlaps with the area
  • the casing defines an outer space formed on an outer peripheral side of the inner space as an inner wall portion. It further includes an outer wall defined therebetween.
  • the outer space is formed at a position overlapping the region where the first stage stationary blade is formed in the axial direction of the rotor, and communicates with the inner space on the downstream side of the first stage stationary blade. And it is comprised so that the vapor
  • an outer space may be formed on the outer peripheral side of the inner space. Therefore, according to the embodiment described in the above (7), the steam flowing through the first stage through hole is discharged from the outlet opening of the first stage through hole to the outer space, so that the first cavity Steam can be continuously introduced into the first through-hole.
  • the steam turbine in the steam turbine according to any one of (1) to (6), includes a second stage stationary blade fixed to an inner wall portion, and a second stage stationary blade.
  • the second stage includes a second stage moving blade fixed to the rotor on the downstream side, and further includes a second stage located downstream of the first stage.
  • the rotor has a concave second cavity formed in a portion facing the second stage stationary blade, and has a second cavity communicating with the inner space on the upstream side of the second stage stationary blade.
  • the second stage stationary blade has a second stage through hole that communicates with the second cavity and penetrates the second stage stationary blade in the radial direction.
  • the steam turbine further includes a connection passage that connects the first stage through hole and the second stage through hole, and the steam that flows through the first stage through hole flows through the connection passage and the second stage through hole.
  • the second stage through-hole is configured to be discharged from the outlet opening to the second cavity.
  • the temperature of the steam after heating the first stage stationary blade is higher than the temperature of the main steam that has worked on the first stage stationary blade and expanded through the second stage stationary blade, and is on the surface of the second stage stationary blade.
  • the temperature is sufficient to prevent the droplets from condensing. Therefore, according to the embodiment described in (8) above, by introducing the steam after heating the first stage stationary blade into the second stage through hole, the second stage stationary blade is heated and condensed on the surface of the second stage stationary blade. The amount of droplets to be reduced can be reduced.
  • the first paragraph and the second paragraph are continuous paragraphs.
  • the first stage stationary blade and the second stage stationary blade provided continuously downstream of the first stage are heated by one steam path. can do.
  • the area of the inlet opening of the first stage through hole is A1
  • the flow area of the connection passage is A2
  • the second When the area of the outlet opening of the step through hole is A3, A3> A1 and A2.
  • the amount of steam discharged from the outlet opening of the second stage through hole is mainly defined by the area A1 of the inlet opening of the first stage through hole and the flow path area A2 of the connection passage.
  • the area A3 of the outlet opening of the second stage through hole is larger than the area A1 of the inlet opening of the first stage through hole and the flow path area A2 of the connection passage. Therefore, according to the embodiment described in the above (10), it is possible to avoid an excessive increase in the flow velocity of the steam discharged from the outlet opening of the second stage through hole to the second cavity. It is possible to prevent erosion from occurring on the wall surface of the second cavity (the outer peripheral surface of the rotor) due to the steam discharged from the outlet opening.
  • the outlet opening of the second stage through hole is in a cross-sectional view along the axial direction of the rotor. It opens toward the deepest part in the bottom face part of the second cavity.
  • the steam discharged from the outlet opening of the second stage through hole is discharged from the outlet opening by increasing the distance until the vapor collides with the bottom surface of the second cavity. It is possible to prevent erosion from occurring on the bottom surface portion (the outer peripheral surface of the rotor) of the second cavity due to the steam.
  • the outlet opening of the second stage through hole is opened toward the downstream side in the rotation direction of the rotor. is doing.
  • the first stage is located upstream of the final stage of the steam turbine.
  • the final paragraph includes a final stage stationary blade fixed to the inner wall portion, and a final stage moving blade fixed to the rotor on the downstream side of the final stage stationary blade.
  • the rotor has a concave final stage cavity formed in a portion facing the final stage stationary blade, and has a final stage cavity communicating with the inner space on the upstream side of the final stage stationary blade.
  • the final stage stationary blade communicates with the final stage cavity and has a final stage through hole that penetrates the final stage stationary blade in the radial direction. And it is comprised so that the vapor
  • the final stage By heating the final stage stationary blade with steam introduced from the cavity into the final stage through-hole, the amount of droplets condensing on the surface of the final stage stationary blade is reduced, thereby preventing the occurrence of wet loss and erosion in the final stage stationary blade. Can do.
  • the final stage stationary blade in the steam turbine according to (13), includes a plate-shaped abdominal surface portion and a plate-shaped back surface portion defining a cavity portion between the abdominal surface portion and It is formed in a hollow cross section.
  • a slit communicating with the cavity is formed in the abdominal surface portion of the final stage stationary blade.
  • the final stage stationary blade includes a partition plate that divides the cavity into a moisture removal passage communicating with the slit and a final stage through hole.
  • the final stage stationary blade described above is a so-called sheet metal stationary blade including a plate-shaped abdominal surface portion and a plate-shaped back surface portion defining a cavity portion between the abdominal surface portion. It is configured as. Since such a sheet metal stator blade has a smaller heat capacity than a conventional cast stator blade, a high heating effect can be obtained for the final stage stator blade by flowing steam through the final stage through hole.
  • the slit communicating with the cavity is formed in the abdominal surface portion of the final stage stationary blade, the liquid droplets flowing on the surface of the abdominal surface portion of the final stage stationary blade are removed by the slit. can do.
  • the cavity of the final stage stationary blade is divided into a moisture removal flow path communicating with the slit by the dividing plate and the final stage through hole, the droplet is removed by the slit and the final stage stationary blade is heated. Both can be realized at the same time.
  • the main steam passing between the last stage stationary blades adjacent in the circumferential direction expands downstream from the throat position, and thereby the temperature decreases. That is, in the final stage stationary blade, the portion where the liquid enemy condenses most is a portion on the downstream side of the throat position in the back surface portion of the final stage stationary blade. Therefore, according to the embodiment described in the above (15), the final stage through hole is formed so as to face the supercooling back surface part where the liquid enemy condenses most, thereby condensing on the surface of the final stage stationary blade. The amount of droplets can be effectively suppressed.
  • the inner wall portion supporting the first stage stationary blade is in communication with the first stage through hole.
  • An annular first-stage annular space is formed.
  • Droplet condensation may occur not only on the surface of the first stage stationary blade but also on the surface of the inner wall of the casing.
  • the droplets may scatter to the downstream side and cause the above-described wet loss or erosion. Therefore, according to the embodiment described in (15) above, the steam that has flowed through the first-stage through hole flows into the first-stage annular space and heats the inner wall portion, thereby condensing on the surface of the inner wall portion. The amount of droplets can be suppressed.
  • the first stage stationary blade has a hollow portion between the plate-shaped ventral surface portion and the ventral surface portion. It is formed in a hollow cross section composed of a plate-like back surface portion to be defined.
  • the first stage stationary blade described above is a so-called sheet metal stationary blade comprising a plate-shaped abdominal surface portion and a plate-shaped back surface portion defining a cavity portion between the abdominal surface portion. It is configured as a wing. Since such a sheet metal stator blade has a smaller heat capacity than a conventional cast stator blade, a high heating effect can be obtained for the first stage stator blade by flowing steam through the first stage through hole.
  • the first stage stationary blade is divided into a first stage through hole and a space other than the first stage through hole. Includes a board. And when the downstream side from the throat position is defined as the supercooled back surface portion in the back surface portion of the first stage stationary blade, the first stage through hole faces the supercooled back surface portion inside the first stage stationary blade. It is formed as follows.
  • the main steam passing between the first-stage stationary blades adjacent in the circumferential direction expands downstream from the throat position, and the temperature is thereby lowered. That is, in the first stage stationary blade, the portion where the liquid enemy condenses most is a portion on the downstream side of the throat position in the back surface portion of the first stage stationary blade. Therefore, according to the embodiment described in the above (18), the first stage through hole is formed on the surface of the first stage stationary blade so as to face the supercooling back surface part which is the part where the liquid enemy condenses most. The amount of droplets that condense can be effectively suppressed.
  • a steam turbine capable of preventing wetting loss and erosion with a simple structure that merely forms a first stage through hole that radially penetrates a first stage stationary blade. can do.
  • the generator 4 is driven by the steam turbine device 3 described above.
  • the paragraph 30B positioned upstream by one paragraph from the last paragraph 30A constitutes the first paragraph 40 according to the embodiment of the present invention.
  • the stationary blade 32b of the paragraph 30B constitutes the first stage stationary blade 42 according to the embodiment of the present invention.
  • the paragraph 30 ⁇ / b> C positioned upstream by two paragraphs from the final paragraph 30 ⁇ / b> A constitutes the first paragraph 40 according to the embodiment of the present invention.
  • the stationary blade 32c of the paragraph 30C constitutes the first stage stationary blade 42 according to the embodiment of the present invention.
  • the final paragraph 30A constitutes the first paragraph 40 according to an embodiment of the present invention.
  • the stationary blade 32a of the paragraph 30A constitutes the first stage stationary blade 42 according to the embodiment of the present invention.
  • the rotor 12 has a concave first cavity 46 formed in a portion facing the first stage stationary blade 42 described above.
  • the first cavity 46 has an annular shape extending over the entire circumference of the rotor 12.
  • the first cavity 46 communicates with the inner space 70 on the upstream side of the first stage stationary blade 42. Accordingly, the first cavity 46 has a structure in which a part of the steam flowing through the inner space 70 leaks.
  • the 1st stage stationary blade 42 mentioned above is connected to the 1st cavity 46, and the 1st stage stationary blade 42 is radial direction (direction substantially orthogonal to the axis line RA). ) Through the first stage through hole 50.
  • the steam introduced from the first cavity 46 through the inlet opening 50 a of the first stage through hole 50 is configured to flow through the first stage through hole 50.
  • the first stage stationary blade 42 is heated by a simple structure that only forms the first stage through hole 50 that radially penetrates the first stage stationary blade 42, and the surface of the first stage stationary blade 42 is By reducing the amount of droplets that condense, the loss of moisture and erosion in the region downstream of the first stage stationary blade 42 can be prevented.
  • the first stage 40 described above is located upstream of the final stage 30A of the steam turbine 10.
  • the dry region Rd means a region where the wetness of the main steam flowing therethrough is less than a predetermined value (eg, 3 to 4%), and the wet region Rw means the main steam flowing therethrough It means an area where the wetness is a predetermined value (for example, 3 to 4%) or more.
  • a stationary blade has an annular partition plate that partitions an inner space 70 through which main steam flows and a cavity that is a concave space formed in the rotor 12 at the tip of the stationary blade body. Therefore, according to such an embodiment, by forming the inlet opening 50a in the partition plate 45 of the first stage stationary blade 42, the steam is transferred from the first cavity 46 to the first stage through hole 50 via the inlet opening 50a. Can be introduced.
  • the partition plate 45 described above includes a first seal portion 47 that seals between the partition plate 45 and the rotor 12.
  • the inlet opening 50a mentioned above is formed in the downstream rather than the 1st seal part 47, or is formed in the position which overlaps with the field in which the 1st seal part 47 is formed in the direction of an axis of rotor 12. Has been.
  • the steam turbine 10 may be formed with a seal portion that seals between the partition plate 45 and the rotor 12 in order to prevent main steam flowing in the inner space 70 from leaking into the cavity. Therefore, according to such an embodiment, it is configured such that the leaked steam that has passed through at least a part of the first seal portion 47 is introduced into the first-stage through hole 50, so that a large amount of leaked steam is generated in the first stage.
  • the first stage stationary blade 42 can be heated while preventing it from flowing into the through hole 50.
  • the second seal portion 48 is configured as a downstream seal portion 48 ⁇ / b> A formed at the downstream end portion of the outer peripheral surface 45 a of the partition plate 45, and the inlet opening 50 a is the second seal portion. It is formed upstream of the portion 48 (downstream seal portion 48A).
  • the downstream-side seal portion 48A seals between the rotor 12 and the sealing surface 15b formed on the rotor disk portion 14B that supports the rotor blade 34b.
  • the second seal portion 48 is formed on the outer peripheral surface 45 a of the partition plate 45 at a position facing the bottom surface portion 16 of the first cavity 46, and You may comprise as a bottom face side 2nd seal
  • the inlet opening 50a may be formed at a position overlapping with a region where the bottom surface side second seal portion (not shown) is formed in the axial direction of the rotor 12.
  • the main steam flowing in the inner space 70 passes through the first cavity 46 to the first stage stationary blade 42. It is possible to reduce the amount of steam leaking to the downstream side.
  • the casing 20 described above has an outer wall that defines an outer space 80 formed on the outer peripheral side of the inner space 70 with the inner wall portion 22.
  • a part 24 is further included.
  • the outer space 80 described above is formed at a position overlapping the region where the first stage stationary blade 42 is formed in the axial direction of the rotor 12, and communicates with the inner space 70 on the downstream side of the first stage stationary blade 42. .
  • the steam that has flowed through the first-stage through hole 50 described above is configured to be discharged from the outlet opening 50 b of the first-stage through hole 50 to the outer space 80.
  • a wall portion side through hole 52 communicating with the outlet opening 50b of the first step through hole 50 is formed in the inner wall portion 22 that supports the first step stationary blade 42.
  • the steam that has flowed through the first-stage through hole 50 is configured to be discharged from the outlet opening 50 b of the first-stage through hole 50 to the outer space 80 through the wall-side through hole 52.
  • the outer space 80 may be formed on the outer peripheral side of the inner space 70 in the steam turbine 10. Therefore, according to such an embodiment, the vapor flowing through the first stage through hole 50 is discharged from the outlet opening 50b of the first stage through hole 50 to the outer space 80, so that the first cavity 46 Steam can be continuously introduced into the first stage through-hole 50.
  • the steam turbine 10 described above includes the second stage stationary blade 62 fixed to the inner wall portion 22, and the rotor 12 on the downstream side of the second stage stationary blade 62.
  • the second stage 60 includes a second stage moving blade 64 that is fixed, and further includes a second stage 60 that is located downstream of the first stage 40.
  • the rotor 12 described above has a concave second cavity 66 formed at a portion facing the second stage stationary blade 62, and has a second cavity 66 communicating with the inner space 70 on the upstream side of the second stage stationary blade 62.
  • the second cavity 66 is formed in an annular shape over the entire circumference of the rotor 12.
  • the second stage stationary blade 62 described above has a second stage through hole 54 that communicates with the second cavity 66 and penetrates the second stage stationary blade 62 in the radial direction.
  • the steam turbine 10 described above further includes a connection passage 56 that connects the first stage through hole 50 and the second stage through hole 54, and the steam that has flowed through the first stage through hole 50 is connected to the connection passage 56 and It flows through the second stage through hole 54 and is discharged from the outlet opening 54 b of the second stage through hole 54 to the second cavity 66.
  • the final paragraph 30A constitutes the second paragraph 60 according to an embodiment of the present invention.
  • the paragraph 30B positioned upstream by one paragraph from the last paragraph 30A constitutes the second paragraph 60 according to the embodiment of the present invention. Yes.
  • the wall portion side through hole 52 communicating with the outlet opening 50 b of the first step through hole 50 is formed in the inner wall portion 22 that supports the second step stationary blade 62.
  • a second wall portion side through hole 58 communicating with the second step through hole 54 is formed in the inner wall portion 22 that supports the second step stationary blade 62.
  • the connection passage 56 includes a connection pipe 56 ⁇ / b> A disposed in the outer space 80 that communicates the wall portion side through hole 52 and the second wall portion side through hole 58.
  • the connection passage 56 is constituted by a through hole 56B formed in the inner wall portion 22.
  • the temperature of the steam after heating the first stage stationary blade 42 is higher than the temperature of the main steam that has worked on the first stage moving blade 44 and expanded through the second stage stationary blade 62. It has a temperature sufficient to prevent the droplets from condensing on the surface of 62. Therefore, according to such an embodiment, by introducing the steam after heating the first stage stationary blade 42 into the second stage through hole 54, the second stage stationary blade 62 is heated and condensed on the surface of the second stage stationary blade 62. The amount of droplets to be reduced can be reduced.
  • FIG. 11 is a diagram for explaining the amount of leaked steam flowing through the second cavity in the steam turbine according to the embodiment of the present invention.
  • the leak flow rate Q1 flowing into the second cavity 66 from the upstream side of the second stage stationary blade 62 in the inner space 70 is correspondingly increased. Can be reduced. Further, for example, by providing a seal portion between the partition plate 65 of the second stage stationary blade 62 and the rotor 12, the above-described Q2 can be appropriately managed.
  • the first paragraph 40 and the second paragraph 60 described above are continuous paragraphs. That is, the first paragraph 40 is positioned upstream of the second paragraph 60 by one paragraph.
  • the stationary blade 42 of the first stage 40 and the stationary blade 62 of the second stage 60 provided continuously downstream of the first stage 40 are connected by one steam path. Can be heated.
  • the first paragraph 40 may be located upstream of the second paragraph 60 by two or more paragraphs.
  • the area of the inlet opening 50a of the first-stage through hole 50 described above is A1
  • the flow area of the connection passage 56 is A2
  • the outlet of the second-stage through hole 54 When the area of the opening 54b is A3, A3> A1 and A2. That is, the area A3 of the outlet opening 54b of the second stage through hole 54 is larger than the area A1 of the inlet opening 50a of the first stage through hole 50 and the flow path area A2 of the connection passage 56.
  • the first-stage through hole 50 may have the same area from the inlet opening 50a to the outlet opening 50b.
  • path 56 may have the same flow-path area over the full length.
  • the second stage through hole 54 may have the same area from the inlet opening 54a to the outlet opening 54b.
  • the wall part side through-hole 52 may have the same area as the 1st step through-hole 50 over the full length.
  • the second wall side through hole 58 may have the same area as the flow path area of the connection passage 56 over the entire length thereof.
  • the amount of steam discharged from the outlet opening 54b of the second stage through hole 54 is mainly defined by the area A1 of the inlet opening 50a of the first stage through hole 50 and the flow path area A2 of the connection passage 56.
  • the area A3 of the outlet opening 54b of the second stage through hole 54 is larger than the area A1 of the inlet opening 50a of the first stage through hole 50 and the flow path area A2 of the connection passage 56. Therefore, according to such an embodiment, it is possible to prevent the flow velocity of the steam discharged from the outlet opening 54b of the second stage through hole 54 to the second cavity 66 from being excessively increased. It is possible to prevent erosion from occurring on the wall surface of the second cavity 66 (the outer peripheral surface of the rotor 12) due to the steam discharged from the outlet opening 54b.
  • the second stage stationary blade 62 includes a stationary blade main body portion 63 that extends from the inner wall portion 22 toward the rotor 12, and an annular partition plate 65 provided at the distal end portion of the stationary blade main body portion 63. , Including.
  • the outlet opening 54b described above is formed in the outer peripheral surface 65a of the partition plate 65.
  • the outlet opening 54b passes through the center position of the outlet opening 54b, and the extension line L1 extending along the extension line of the center line of the second through hole 54 has the second cavity.
  • 66 is configured to pass through the vicinity of the deepest portion 18P where the distance from the center line of the rotor 12 at the bottom surface portion 18 is the shortest (in the illustrated embodiment, the center of the deepest portion 18P).
  • the outlet opening 54 b of the second-stage through hole 54 described above opens toward the downstream side in the rotation direction R of the rotor 12.
  • FIG. 12B is a view in which the partition plate 65 of the rotor 12 and the second stage stationary blade 62 is viewed along the axial direction of the rotor 12, and the rotor 12 rotates counterclockwise (counterclockwise). Indicates the state. And the exit opening 54b of the 2nd step through-hole 54 is opened toward the paper surface left side with respect to the radial direction line L2 which passes the rotation center (not shown) of the rotor 12.
  • FIG. 12B is a view in which the partition plate 65 of the rotor 12 and the second stage stationary blade 62 is viewed along the axial direction of the rotor 12, and the rotor 12 rotates counterclockwise (counterclockwise). Indicates the state. And the exit opening 54b of the 2nd step through-hole 54 is opened toward the paper surface left side with respect to the radial direction line L2 which passes the rotation center (not shown) of the rotor 12.
  • an annular final-stage annular space 97 that communicates with the final-stage through hole 90 is formed inside the inner wall portion 22 that supports the final-stage stationary blade 32a (the stationary blade body 93). .
  • the surface of the inner wall portion 22 is heated, and it is possible to prevent the droplets from condensing on the surface of the inner wall portion 22.
  • the steam flowing through the final stage through hole 90 and flowing into the final stage annular space 97 is discharged to the exhaust chamber 100 through the outer through hole 99.
  • the final stage cavity 86 is also provided.
  • the last stage stationary blade 32a is heated by the steam introduced from the last stage through-hole 90 to reduce the amount of droplets condensed on the surface of the last stage stationary blade 32a, thereby preventing the generation of moisture loss and erosion in the last stage rotor blade 34a. Can be prevented.
  • FIG. 13 is a cross-sectional view showing a final stage stationary blade of a steam turbine according to an embodiment of the present invention.
  • the final stage stationary blade 32a (the stationary blade main body portion 93 in FIG. 8 or the stationary blade main body portion 43 in FIG. 9) has a plate-like abdominal surface portion 93a, It is formed in a hollow cross section including a plate-like back surface portion 93b that defines a cavity portion 96 with the abdominal surface portion 93a.
  • a slit 93s (see FIGS. 8 and 9) communicating with the cavity 96 is formed in the abdominal surface portion 93a of the final stage stationary blade 32a.
  • the final stage stationary blade 32 a includes a moisture removing flow path 94 communicating with the slit 93 s and a dividing plate 98 that divides the cavity 96 into the final stage through hole 90.
  • the final stage stationary blade 32a described above is a so-called sheet metal static plate composed of a plate-shaped abdominal surface portion 93a and a plate-shaped back surface portion 93b that defines a cavity 96 between the abdominal surface portion 93a. It is configured as a wing.
  • a sheet metal stator blade has a smaller heat capacity than a conventional cast stator blade, and therefore a high heating effect can be obtained for the final stage stator blade 32a by flowing steam through the final stage through hole 90.
  • the slit 93s communicating with the cavity 96 is formed in the abdominal surface portion 93a of the final stage stationary blade 32a, the liquid droplets flowing on the surface of the abdominal surface portion 93a of the final stage stationary blade 32a are slit. It can be removed by 93s.
  • the cavity 96 of the final stage stationary blade 32a is divided by the dividing plate 98 into the moisture removal passage 94 communicating with the slit 93s and the final stage through hole 90, the droplets are removed by the slit 93s. And heating the final stage stationary blade 32a can be realized at the same time.
  • the final stage when the downstream side from the position of the throat S is defined as the supercooled back surface portion 93b1 in the back surface portion 93b of the above-described final stage stationary blade 32a, the final stage is penetrated.
  • the hole 90 is formed in the final stage stationary blade 32a so as to face the supercooling back surface portion 93b1.
  • the throat S means a portion that forms a minimum distance between a pair of the last stage stationary blades 32a and 32a adjacent in the circumferential direction, and the rear surface 93c of the one last stage stationary blade 32a to the back surface of the other last stage stationary blade 32a. This is a position where a perpendicular is drawn with respect to the portion 93b.
  • the last stage through-hole 90 may face over the full length of the supercooling back surface part 93b1, and may face at least one part of the full length of the supercooling back surface part 93b1.
  • the main steam passing between the last stage stationary blades 32a, 32a adjacent in the circumferential direction expands downstream from the position of the throat S, and thereby the temperature decreases. That is, in the final stage stationary blade 32a, the portion where the liquid enemy condenses most is a portion on the downstream side of the position of the throat S in the back surface portion 93b of the final stage stationary blade 32a. Therefore, according to such an embodiment, the liquid that condenses on the surface of the final stage stationary blade 32a by forming the final stage through-hole 90 so as to face the supercooled back surface portion 93b1 that is the part where the liquid enemy condenses most. Drop volume can be effectively suppressed.
  • annular first-stage annular space 57 that communicates with the first-stage through hole 50 is provided in the inner wall portion 22 that supports the first-stage stationary blade 42 described above. Is formed.
  • the first-stage annular space 57 is formed at a position overlapping the region where the first-stage stationary blade 42 is formed in the axial direction of the rotor 12. Then, the steam flowing through the first stage through hole 50 and flowing into the first stage annular space 57 is discharged to the exhaust chamber 100 through the outer through hole 59.
  • FIG. 14 is a cross-sectional view showing a first stage stationary blade of a steam turbine according to an embodiment of the present invention.
  • the first-stage stationary blade 42 described above has a plate-like back surface portion 43b that defines a cavity portion 106 between the plate-like abdominal surface portion 43a and the abdominal surface portion 43a. Are formed in a hollow cross section.
  • the above-described first stage stationary blade 42 (the stationary blade main body 43 in FIGS. 2 to 9) is a plate that defines a hollow portion between the plate-shaped abdominal surface portion 43b and the abdominal surface portion. It is comprised as what is called a sheet metal stationary blade which consists of a back surface part 43b of a shape. Since such a sheet metal stator blade has a smaller heat capacity than a conventional cast stator blade, a high heating effect can be obtained for the first stage stator blade 42 by allowing steam to flow through the first stage through hole 50. .
  • the first stage stationary blade 42 described above includes a dividing plate 108 that is divided into a first stage through hole 50 and a space 51 other than the first stage through hole 50. It is out.
  • the downstream side of the back surface portion 43b of the first stage stationary blade 42 is defined as the supercooled back surface portion 43b1 with respect to the position of the throat S, the first stage through-hole 50 is excessive in the interior of the first stage stationary blade 42. It is formed so as to face the cooling back surface portion 43b1.
  • the throat S means a portion that forms a minimum distance between a pair of first stage stationary blades 42 and 42 adjacent to each other in the circumferential direction, and from the trailing edge 43c of one first stage stationary blade 42 to the other first stage stationary blade 42. This is a position where a perpendicular line is drawn with respect to the back surface portion 43 b of 42.
  • paragraph through-hole 50 may face over the full length of the supercooling back surface part 43b1, and may face at least one part of the full length of the supercooling back surface part 43b1.
  • the main steam passing between the first-stage bullet vanes 42 adjacent in the circumferential direction expands downstream from the position of the throat S, and thereby the temperature decreases. That is, in the first stage stationary blade 42, the portion where the liquid enemy condenses most is a portion on the downstream side of the position of the throat S in the back surface portion 43 b of the first stage stationary blade 42. Therefore, according to such an embodiment, the first stage through-hole 50 is formed so as to face the supercooling back surface portion 43b1, which is the portion where the liquid enemy condenses most, thereby condensing on the surface of the first stage stationary blade 42. The amount of droplets to be suppressed can be effectively suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

本発明の蒸気タービン(10)は、ロータ(12)と、ロータ(12)を回転可能に収容するケーシング(20)と、ケーシング(20)の内側壁部(22)に固定される第1段静翼(42)及び前記第1段静翼(42)の下流側において前記ロータ(12)に固定される第1段動翼(44)を含む第1段落(40)と、を備えている。ロータ(12)は、第1段静翼(42)と対面する部分に、凹状の第1キャビティ(46)であって、第1段静翼(42)の上流側において、内側壁部(22)と前記ロータ(12)との間に画定される内側空間(70)と連通する第1キャビティ(46)を有している。第1段静翼(42)は、第1キャビティ(46)と連通し、且つ、第1段静翼(42)を径方向に貫通する第1段貫通孔(50)を有している。そして、第1段貫通孔(50)の入口開口(50a)を介して第1キャビティ(46)から導入された蒸気が、第1段貫通孔(50)を流れる。

Description

蒸気タービン
 本開示は、蒸気タービンに関し、詳しくは、湿り域の条件下において駆動される蒸気タービンにおける湿り損失やエロージョンを防止する技術に関する。
 例えば、火力発電プラントなどに用いられる蒸気タービンにおいては、導入された高温、高圧の主蒸気の熱エネルギがロータの回転エネルギに変換されることで主蒸気の温度および圧力が低下し、低圧タービンの最終段落の近傍において湿り域に突入することが知られている。湿り域の条件下では、過冷却状態(過飽和状態)となって液滴が発生し、この液滴が成長することで、湿り損失やエロージョンが生ずる虞がある。
 この液滴の発生による湿り損失やエロージョンを防止するために、従来は、最終段落の静翼に空洞部を有する断面中空状の静翼を採用し、この空洞部に連通するスリットを静翼の表面に形成することで、静翼の表面を流れる液滴を除去することが行われている。
 また、上述した方法の他に、最終段の静翼を加熱することで、静翼の表面に凝縮した液滴を除去する技術がある。例えば、特許文献1には、蒸気タービンの高圧段前の軸封パッキンから抽出した高温、低圧のリーク蒸気を最終段落の静翼の内部に導入することで、最終段落の静翼の表面を流れる液滴を蒸発させる発明が開示されている。
特開平10-103008号公報
 ところが、上述した特許文献1に記載されている発明のように、高圧段前の軸封パッキンから抽出したリーク蒸気によって最終段落の静翼を加熱しようとすると、リーク蒸気を供給する供給ラインやリーク蒸気の流量を制御する制御弁が必要となり、蒸気タービンの構造が複雑になるとの問題があった。また、液滴を蒸発させるには大きな熱量が必要となるため、高圧段前の高温の蒸気を導入する必要があった。また、軸封パッキンからリーク蒸気を抽出すると、高圧段前からリークする蒸気量が増えるため、蒸気タービン全体の効率が低下するとの問題があった。
 また、本発明者は、鋭意検討の結果、湿り損失やエロージョンの原因となる粒径が数十~数百μmの粗大な液滴は、液滴が静翼の表面に凝縮することで生成されることを見出した。すなわち、湿り域に突入すると、粒径が1μm以下の微細な液滴が蒸気中に大量に発生するとともに、静翼の表面の内、主蒸気よりも低温な部分にも液滴が凝縮する。凝縮した液滴は、静翼の表面を流れる過程で成長し、粒径が数十~数百μmの粗大な液滴となって後縁から飛散し、動翼の前縁に衝突する。また、湿り域に突入する段落が最終段落よりも上流側であれば、最終段落よりも上流側の段落で発生した粗大な液滴は、それよりも下流側にある段落において、静翼への付着および動翼への衝突を繰り返す。一方、蒸気中に大量に発生した粒径が1μm以下の微細な液滴の大半は、静翼に付着することなく、蒸気の流れに乗って流れていく。
 つまり、湿り域の上流側に位置する段落において、その静翼の表面に凝縮する液滴量を抑制することで、上述した特許文献1に記載されている発明のように最終段落の静翼の表面を流れる液滴を蒸発させなくとも、それよりも下流側に位置する動翼に粗大な液滴が衝突することを効果的に防止することができるのである。
 本発明は、上述したような背景技術の下において発明されたものであって、その目的とするところは、簡単な構造で湿り損失やエロージョンを防止することができる蒸気タービンを提供することにある。
(1)本発明の一実施形態にかかる蒸気タービンは、
 軸線周りに回転するロータと、
 前記ロータを回転可能に収容するケーシングと、
 前記ケーシングの内側壁部に固定される第1段静翼、及び、前記第1段静翼の下流側において前記ロータに固定される第1段動翼、を含む第1段落と、を備え、
 前記ロータは、前記第1段静翼と対面する部分に形成された凹状の第1キャビティであって、前記第1段静翼の上流側において、前記内側壁部と前記ロータとの間に画定される内側空間と連通する第1キャビティを有し、
 前記第1段静翼は、前記第1キャビティと連通し、且つ、前記第1段静翼を径方向に貫通する第1段貫通孔を有し、
 前記第1段貫通孔の入口開口を介して前記第1キャビティから導入された蒸気が、前記第1段貫通孔を流れるように構成される。
 上記(1)に記載の実施形態にかかる蒸気タービンでは、その第1段静翼は、入口開口を介して第1キャビティから導入された蒸気が、第1段貫通孔を流れるように構成されている。第1キャビティは、第1段静翼の上流側において内側空間と連通するため、第1段貫通孔には、第1段静翼を通過して膨張した主蒸気の温度よりも高温の蒸気が導入される。第1段貫通孔に導入される蒸気の温度は、第1段静翼を通過して膨張した主蒸気の温度に対して10~30℃程高温になっている。この蒸気の温度は、第1段静翼の表面に付着している液滴を蒸発させるには不十分であるが、第1段静翼の表面に液滴が凝縮するのを防ぐには十分な温度である。
 したがって、このような実施形態によれば、第1段静翼を径方向に貫通する第1段貫通孔を形成するだけの簡単な構造によって第1段静翼を加熱し、第1段静翼の表面に凝縮する液滴量を低減することで、第1段静翼よりも下流側の領域における湿り損失やエロージョンの発生を防止することができる。
(2)幾つかの実施形態では、上記(1)に記載の蒸気タービンにおいて、上記第1段落は、蒸気タービンの最終段落よりも上流側に位置する。
 上記(2)に記載の実施形態によれば、第1段静翼の表面に凝縮する液滴量を低減することで、第1段静翼よりも下流側の領域にある最終段落における湿り損失やエロージョンを効果的に防止することができる。
(3)幾つかの実施形態では、上記(1)又は(2)に記載の蒸気タービンにおいて、上記第1段落は、内側空間を流れる主蒸気が乾き蒸気から湿り蒸気へと変化する変化位置よりも下流側の領域である湿り域に位置し、且つ、湿り域に複数の段落がある場合には、湿り域における最も上流側に位置する段落である。
 上記(3)に記載の実施形態によれば、第1段静翼の表面に凝縮する液滴量を低減することで、第1段静翼よりも下流側の領域における湿り損失やエロージョンを効果的に防止することができる。
 なお、本実施形態において、乾き域とは、そこを流れる主蒸気の湿り度が所定値(例えば3~4%)未満の領域を意味し、湿り域とは、そこを流れる主蒸気の湿り度が所定値(例えば3~4%)以上の領域を意味するものとする。
(4)幾つかの実施形態では、上記(1)から(3)の何れかに記載の蒸気タービンにおいて、上記第1段静翼は、内側壁部からロータに向かって延在する静翼本体部と、静翼本体部の先端部に設けられた環状の仕切板と、を含んでいる。そして、上記入口開口は、仕切板に形成されている。
 一般に静翼は、その静翼本体部の先端部に、主蒸気が流れる内側空間と、ロータに形成される凹状の空間であるキャビティとを仕切る環状の仕切板を有している。したがって、上記(4)に記載の実施形態によれば、第1段静翼の仕切板に入口開口を形成することで、この入口開口を介して、第1キャビティから第1段貫通孔に蒸気を導入することができる。
(5)幾つかの実施形態では、上記(4)に記載の蒸気タービンにおいて、上記仕切板は、仕切板とロータとの間をシールする第1シール部を含んでいる。そして、上記入口開口は、第1シール部よりも下流側に形成されているか、又は、ロータの軸線方向において、第1シール部が形成されている領域と重複する位置に形成されている。
 蒸気タービンには、内側空間を流れる主蒸気がキャビティにリークするのを防止するために、仕切板とロータとの間をシールするシール部(第1シール部)が形成される場合がある。したがって、上記(5)に記載の実施形態によれば、第1シール部の少なくとも一部を通過したリーク蒸気を第1段貫通孔に導入するように構成することで、大量のリーク蒸気が第1段貫通孔に流入するのを防止しつつ、第1段静翼を加熱することができる。
(6)幾つかの実施形態では、上記(5)に記載の蒸気タービンにおいて、上記仕切板は、第1シール部よりも下流側において、仕切板とロータとの間をシールする第2シール部をさらに含んでいる。そして、上記入口開口は、第2シール部よりも上流側に形成されているか、又は、ロータの軸線方向において、第2シール部が形成されている領域と重複する位置に形成されている。
 上記(6)に記載の実施形態によれば、上述した第1シール部に加えて、第2シール部を形成することにより、内側空間を流れる主蒸気が第1キャビティを介して第1段静翼の下流側にリークする蒸気量を低減することができる。
(7)幾つかの実施形態では、上記(1)から(6)の何れかに記載の蒸気タービンにおいて、上記ケーシングは、内側空間の外周側に形成される外側空間を、内側壁部との間で画定する外側壁部をさらに含んでいる。上記外側空間は、ロータの軸線方向において、第1段静翼が形成されている領域と重複する位置に形成されるとともに、第1段静翼の下流側において内側空間と連通している。そして、上記第1段貫通孔を流れた蒸気が、第1段貫通孔の出口開口から外側空間に排出されるように構成されている。
 蒸気タービンには、内側空間の外周側に外側空間が形成される場合がある。したがって、上記(7)に記載の実施形態によれば、第1段貫通孔を流れた蒸気を第1段貫通孔の出口開口から外側空間に排出する構成とすることで、第1キャビティから第1段貫通孔に継続的に蒸気を導入することができる。
 (8)幾つかの実施形態では、上記(1)から(6)の何れかに記載の蒸気タービンにおいて、上記蒸気タービンは、内側壁部に固定される第2段静翼、及び、第2段静翼の下流側においてロータに固定される第2段動翼、を含む第2段落であって、第1段落よりも下流側に位置する第2段落をさらに備える。上記ロータは、第2段静翼と対面する部分に形成された凹状の第2キャビティであって、第2段静翼の上流側において内側空間と連通する第2キャビティを有する。上記第2段静翼は、第2キャビティと連通し、且つ、第2段静翼を径方向に貫通する第2段貫通孔とを有する。そして、上記蒸気タービンは、第1段貫通孔と第2段貫通孔とを接続する接続通路をさらに備えるとともに、第1段貫通孔を流れた蒸気が、接続通路および第2段貫通孔を流れて、第2段貫通孔の出口開口から第2キャビティに排出されるように構成される。
 第1段静翼を加熱した後の蒸気の温度は、第1段動翼に対して仕事をし、且つ、第2段静翼を通過して膨張した主蒸気の温度よりも高く、第2段静翼の表面に液滴が凝縮するのを防ぐには十分な温度を有している。したがって、上記(8)に記載の実施形態によれば、第1段静翼を加熱した後の蒸気を第2段貫通孔に導入することにより、第2段静翼を加熱し、第2段静翼の表面に凝縮する液滴量を低減することができる。
(9)幾つかの実施形態では、上記(8)に記載の蒸気タービンにおいて、上記第1段落と第2段落とは連続する段落である。
 上記(9)に記載の実施形態によれば、第1段落の静翼と、第1段落の下流側に連続して設けられている第2段落の静翼とを、一つの蒸気経路によって加熱することができる。
(10)幾つかの実施形態では、上記(8)又は(9)に記載の蒸気タービンにおいて、上記第1段貫通孔の入口開口の面積をA1、接続通路の流路面積をA2、第2段貫通孔の出口開口の面積をA3、とした場合に、A3>A1、A2である。
 第2段貫通孔の出口開口から排出される蒸気量は、主として第1段貫通孔の入口開口の面積A1や接続通路の流路面積A2によって規定されるところ、上記(10)に記載の実施形態では、第2段貫通孔の出口開口の面積A3は、第1段貫通孔の入口開口の面積A1、及び接続通路の流路面積A2よりも大きくなっている。したがって、上記(10)に記載の実施形態によれば、第2段貫通孔の出口開口から第2キャビティに排出される蒸気の流速が過大になることを回避できるため、第2段貫通孔の出口開口から排出される蒸気によって第2キャビティの壁面(ロータの外周面)にエロージョンが生ずることを防止することができる。
(11)幾つかの実施形態では、上記(8)から(10)の何れかに記載の蒸気タービンにおいて、上記第2段貫通孔の出口開口は、ロータの軸線方向に沿った断面視において、第2キャビティの底面部における最深部に向かって開口している。
 上記(11)に記載の実施形態によれば、第2段貫通孔の出口開口から排出される蒸気が第2キャビティの底面部に衝突するまでの距離を長くすることで、出口開口から排出される蒸気によって第2キャビティの底面部(ロータの外周面)にエロージョンが生ずることを防止することができる。
(12)幾つかの実施形態では、上記(8)から(11)の何れかに記載の蒸気タービンにおいて、上記第2段貫通孔の出口開口は、ロータの回転方向の下流側に向かって開口している。
 上記(12)に記載の実施形態によれば、第2段貫通孔の出口開口から排出される蒸気が第2キャビティの底面部に衝突するまでの相対距離(時間)を長くすることで、出口開口から排出される蒸気によって第2キャビティの底面部(ロータの外周面)にエロージョンが生ずることを防止することができる。
(13)幾つかの実施形態では、上記(1)から(12)の何れかに記載の蒸気タービンにおいて、上記第1段落は、蒸気タービンの最終段落よりも上流側に位置している。上記最終段落は、内側壁部に固定される最終段静翼、及び、最終段静翼の下流側においてロータに固定される最終段動翼を含んでいる。上記ロータは、最終段静翼と対面する部分に形成された凹状の最終段キャビティであって、最終段静翼の上流側において内側空間と連通する最終段キャビティを有している。上記最終段静翼は、最終段キャビティと連通し、且つ、最終段静翼を径方向に貫通する最終段貫通孔を有している。そして、上記最終段キャビティの入口開口から導入された蒸気が最終段貫通孔を流れるように構成されている。
 上記(13)に記載の実施形態によれば、上述した第1段静翼を加熱することによる第1段静翼よりも下流側の領域における湿り損失やエロージョンを防止することができる効果に加えて、最終段キャビティから最終段貫通孔に導入した蒸気によって最終段静翼を加熱することで、最終段静翼の表面に凝縮する液滴量を低減することで、最終段動翼における湿り損失やエロージョンの発生を防止することができる。
(14)幾つかの実施形態では、上記(13)に記載の蒸気タービンにおいて、上記最終段静翼は、板状の腹面部と、腹面部との間で空洞部を画定する板状の背面部とからなる断面中空状に形成されている。上記最終段静翼の腹面部には、空洞部と連通するスリットが形成されている。そして、上記最終段静翼は、スリットと連通する湿分除去流路と、最終段貫通孔とに空洞部を分割する分割板を含んでいる。
 上記(14)に記載の実施形態によれば、上述した最終段静翼は、板状の腹面部と、腹面部との間で空洞部を画定する板状の背面部とからなる、いわゆる板金静翼として構成されている。このような板金静翼は、従来の鋳造製の静翼よりも熱容量が小さいため、最終段貫通孔に蒸気を流すことにより、最終段静翼に対して高い加熱効果を得ることができる。
 また、上記(14)に記載の実施形態によれば、最終段静翼の腹面部に、空洞部と連通するスリットが形成されているため、最終段静翼の腹面部の表面を流れる液滴をスリットによって除去することができる。しかも、最終段静翼の空洞部は、分割板によってスリットと連通する湿分除去流路と、最終段貫通孔とに分割されているため、スリットによって液滴を除去することと、最終段静翼を加熱することの両方を同時に実現することができる。
(15)幾つかの実施形態では、上記(14)に記載の蒸気タービンにおいて、上記最終段静翼の背面部の内、スロート位置よりも下流側を過冷却背面部と定義した場合に、最終段貫通孔は、最終段静翼の内部において、過冷却背面部に面するように形成される。
 本発明者が鋭意検討したところによれば、周方向に隣接する最終段静翼間を通過する主蒸気は、スロート位置から下流側において膨張し、これにより温度が低下する。すなわち、最終段静翼において、最も液敵が凝縮する部分は、最終段静翼の背面部の内、スロート位置よりも下流側の部分である。したがって、上記(15)に記載の実施形態によれば、最も液敵が凝縮する部分である過冷却背面部に面するように最終段貫通孔を形成することで、最終段静翼の表面に凝縮する液滴量を効果的に抑制することができる。
(16)幾つかの実施形態では、上記(1)から(15)の何れかに記載の蒸気タービンにおいて、上記第1段静翼を支持する内側壁部の内部には、第1段貫通孔と連通する環状の第1段環状空間が形成されている。
 液滴の凝縮は、第1段静翼の表面だけでなく、ケーシングの内側壁部の表面でも生ずる場合がある。ケーシングの内側壁部の表面で液滴が凝縮すると、その液滴が下流側に飛散して、上述した湿り損失やエロージョンを生じさせる虞がある。したがって、上記(15)に記載の実施形態によれば、第1段貫通孔を流れた蒸気を第1段環状空間に流して内側壁部を加熱することで、内側壁部の表面に凝縮する液滴量を抑制することができる。
(17)幾つかの実施形態では、上記(1)から(16)の何れかに記載の蒸気タービンにおいて、上記第1段静翼は、板状の腹面部と、腹面部との間で空洞部を画定する板状の背面部と、からなる断面中空状に形成されている。
 上記(17)に記載の実施形態によれば、上述した第1段静翼は、板状の腹面部と、腹面部との間で空洞部を画定する板状の背面部とからなる、いわゆる板金静翼として構成されている。このような板金静翼は、従来の鋳造製の静翼よりも熱容量が小さいため、第1段貫通孔に蒸気を流すことにより、第1段静翼に対して高い加熱効果を得ることができる。
(18)幾つかの実施形態では、上記(17)に記載の蒸気タービンにおいて、上記第1段静翼は、第1段貫通孔と、第1段貫通孔以外の空間とに空洞部を分割する分割板を含んでいる。そして、上記第1段静翼の背面部の内、スロート位置よりも下流側を過冷却背面部と定義した場合に、第1段貫通孔は、第1段静翼の内部において、過冷却背面部に面するように形成されている。
 本発明者が鋭意検討したところによれば、周方向に隣接する第1段静翼間を通過する主蒸気は、スロート位置から下流側において膨張し、これにより温度が低下する。すなわち、第1段静翼において、最も液敵が凝縮する部分は、第1段静翼の背面部の内、スロート位置よりも下流側の部分である。したがって、上記(18)に記載の実施形態によれば、最も液敵が凝縮する部分である過冷却背面部に面するように第1段貫通孔を形成することで、第1段静翼の表面に凝縮する液滴量を効果的に抑制することができる。
 本発明の少なくとも一つの実施形態によれば、第1段静翼を径方向に貫通する第1段貫通孔を形成するだけの簡単な構造で、湿り損失やエロージョンを防止することができる蒸気タービンを提供することができる。
本発明の一実施形態にかかる蒸気タービンを備える蒸気タービンプラントを示した全体構成図である。 本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。 本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。 本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。 本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。 本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。 本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。 本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。 本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。 本発明の一実施形態にかかる蒸気タービンにおける湿り域について説明するための図である。 本発明の一実施形態にかかる蒸気タービンにおいて、第2キャビティを流れるリーク蒸気量について説明するための図である。 本発明の一実施形態にかかる蒸気タービンにおける第2段貫通孔の出口開口について説明するための図である。 本発明の一実施形態にかかる蒸気タービンの最終段静翼を示した断面図である。 本発明の一実施形態にかかる蒸気タービンの第1段静翼を示した断面図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 また、以下の説明において、同じ構成には同じ符号を付してその詳細な説明を省略する場合がある。
 図1は、本発明の一実施形態にかかる蒸気タービンを備える蒸気タービンプラントを示した全体構成図である。図1において、蒸気タービンプラント1は、ボイラ2と、蒸気タービン装置3と、発電機4と、復水器5と、給水ポンプ6と、を備えている。
 図1に示した蒸気タービンプラント1において、ボイラ2で生成された蒸気S1は、蒸気供給管7aを介して、蒸気タービン装置3へ供給される。蒸気タービン装置3に供給された蒸気Sは、蒸気タービン装置3を駆動させた後、復水供給管7bを介して、復水器5へ供給される。そして、復水器5において凝縮された凝縮水は、給水ポンプ6によって加圧されることで、ボイラ水供給管7cを介して、ボイラ水としてボイラ2に供給される。
 また、上述した蒸気タービン装置3によって発電機4が駆動されるようになっている。
 図2~9は、本発明の一実施形態にかかる蒸気タービンを示した概略断面図である。図2~9において、(a)は蒸気タービンの全体を示した概略断面図、(b)は第1段静翼を拡大して示した概略断面図である。
 なお、図2~9においては、作図の便宜上、軸線RAに対して一方側(上方側)のみ図示しているが、軸線RAに対して他方側(下方側)についても、同様に構成されている。
 本発明の一実施形態にかかる蒸気タービン10は、例えば、上述した蒸気タービンプラント1における蒸気タービン装置3に相当するものである。
 本発明の一実施形態にかかる蒸気タービン10は、図2~9に示したように、軸線RA周りに回転するロータ12と、ロータ12を回転可能に収容するケーシング20と、ケーシング20の内側壁部22に固定される第1段静翼42、及び、第1段静翼42の下流側においてロータ12に固定される第1段動翼44、を含む第1段落40とを備えている。
 ケーシング20は、ロータ12との間に内側空間70を画定する内側壁部22と、内側壁部22との間に後述する外側空間80を画定する外側壁部24を含んでいる。この内側空間70は、蒸気タービン10に導入された蒸気が高速で流れる空間である。上述した第1段静翼42は、内側壁部22からロータ12に向かって内側空間70を横断するように、ロータ12の径方向に沿って延在している。また、上述した第1段動翼44は、ロータ12から内側壁部22に向かって内側空間70を横断するように、ロータ12の径方向に沿って延在している。
 また、図2~9に示した実施形態では、蒸気タービン10は、その下流側より順に30A、30B、30C、30D、及び30Eの5つの段落を有している。各々の段落30A~30Eは、内側壁部22に固定される静翼32a~32eと、ロータ12に固定される動翼34a~34eを有している。静翼32a~32eの各々は、ロータ12の周方向に沿って所定の間隔をおいて複数設けられている。また、動翼34a~34eの各々は、ロータ12の周方向に沿って所定の間隔をおいて複数設けられている。そして、図2~6に示した実施形態では、最終段落30Aよりも段落一つ分だけ上流側に位置している段落30Bが、本発明の一実施形態にかかる第1段落40を構成している。また、段落30Bの静翼32bが、本発明の一実施形態にかかる第1段静翼42を構成している。図7、8に示した実施形態では、最終段落30Aよりも段落二つ分だけ上流側に位置している段落30Cが、本発明の一実施形態にかかる第1段落40を構成している。また、段落30Cの静翼32cが、本発明の一実施形態にかかる第1段静翼42を構成している。図9に示した実施形態では、最終段落30Aが本発明の一実施形態にかかる第1段落40を構成している。また、段落30Aの静翼32aが、本発明の一実施形態にかかる第1段静翼42を構成している。
 また、図2~9に示した実施形態において、ロータ12は、上述した第1段静翼42と対面する部分に形成された凹状の第1キャビティ46を有している。第1キャビティ46は、ロータ12の全周に亘って延在する環形状を有している。また、この第1キャビティ46は、第1段静翼42の上流側において内側空間70と連通している。したがって、第1キャビティ46には、内側空間70を流れる蒸気の一部がリークする構造になっている。
 そして、本発明の一実施形態にかかる蒸気タービン10では、上述した第1段静翼42は、第1キャビティ46と連通し、且つ、第1段静翼42を径方向(軸線RAに対して略直交する方向)に貫通する第1段貫通孔50を有している。そして、第1段貫通孔50の入口開口50aを介して第1キャビティ46から導入された蒸気が、第1段貫通孔50を流れるように構成されている。
 このように構成される本発明の一実施形態にかかる蒸気タービン10では、その第1段静翼42は、入口開口50aを介して第1キャビティ46から導入された蒸気が、第1段貫通孔50を径方向外側に向かって流れるように構成されている。第1キャビティ46は、第1段静翼42の上流側において内側空間70と連通するため、第1段貫通孔50には、第1段静翼42を通過して膨張した主蒸気の温度よりも高温の蒸気が導入される。第1段貫通孔50に導入される蒸気の温度は、第1段静翼42を通過して膨張した主蒸気の温度に対して10~30℃程高温になっている。この蒸気の温度は、第1段静翼42の表面に付着している液滴を蒸発させるには不十分であるが、第1段静翼42の表面に液滴が凝縮するのを防ぐには十分な温度である。
 したがって、このような実施形態によれば、第1段静翼42を径方向に貫通する第1段貫通孔50を形成するだけの簡単な構造によって第1段静翼42を加熱し、第1段静翼42の表面に凝縮する液滴量を低減することで、第1段静翼42よりも下流側の領域における湿り損失やエロージョンの発生を防止することができるようになっている。
 幾つかの実施形態では、図2~8に示したように、上述した第1段落40は、蒸気タービン10の最終段落30Aよりも上流側に位置している。
 このような実施形態によれば、第1段静翼42の表面に凝縮する液滴量を低減することで、第1段静翼42よりも下流側の領域にある最終段落30Aにおける湿り損失やエロージョンを効果的に防止することができる。
 図10は、本発明の一実施形態にかかる蒸気タービンにおける湿り域について説明するための図である。
 幾つかの実施形態では、図10に示したように、蒸気タービン10において、上述した第1段落40は、内側空間70を流れる主蒸気が乾き蒸気から湿り蒸気へと変化する変化位置よりも下流側の領域である湿り域Rwに位置し、且つ、湿り域Rwに複数の段落30A、30Bがある場合には、湿り域Rwにおける最も上流側に位置する段落30Bである。
 図示した実施形態では、段落30Bと段落30Cとの間の位置より乾き域Rdから湿り域Rwに突入している。また、蒸気タービン10によっては、乾き域Rdから湿り域Rwに突入する位置は、段落30Cと段落30Dの間の位置より乾き域Rdから湿り域Rwに突入してもよく、段落30Dと段落30Eの間の位置より乾き域Rdから湿り域Rwに突入してもよく、特に限定されない。なお、本実施形態において、乾き域Rdとは、そこを流れる主蒸気の湿り度が所定値(例えば3~4%)未満の領域を意味し、湿り域Rwとは、そこを流れる主蒸気の湿り度が所定値(例えば3~4%)以上の領域を意味するものとする。
 このような実施形態によれば、第1段静翼42の表面に凝縮する液滴量を低減することで、第1段静翼42よりも下流側の領域における湿り損失やエロージョンを効果的に防止することができる。
 幾つかの実施形態では、図2~9に示したように、上述した第1段静翼42は、内側壁部22からロータ12に向かって延在する静翼本体部43と、静翼本体部43の先端部に設けられた環状の仕切板45と、を含んでいる。そして、上述した入口開口50aは、仕切板45に形成されている。
 一般に静翼は、その静翼本体部の先端部に、主蒸気が流れる内側空間70と、ロータ12に形成される凹状の空間であるキャビティとを仕切る環状の仕切板を有している。したがって、このような実施形態によれば、第1段静翼42の仕切板45に入口開口50aを形成することで、この入口開口50aを介して、第1キャビティ46から第1段貫通孔50に蒸気を導入することができる。
 幾つかの実施形態では、図2~9に示したように、上述した仕切板45は、仕切板45とロータ12との間をシールする第1シール部47を含んでいる。そして、上述した入口開口50aは、第1シール部47よりも下流側に形成されているか、又は、ロータ12の軸線方向において、第1シール部47が形成されている領域と重複する位置に形成されている。
 図2、4~6、9に示した実施形態では、仕切板45は、ロータ12の軸線方向に沿って幅広に形成されている。そして、第1シール部47は、仕切板45の外周面45aにおける上流端部に形成される上流側シール部47Aとして構成されており、入口開口50aは、第1シール部47(上流側シール部47A)よりも下流側に形成されている。そして、上流側シール部47Aは、ロータ12の内、動翼34cを支持するロータディスク部14に形成されている封止面14aとの間をシールしている。
 また、図3、7、8に示した実施形態では、仕切板45は、ロータ12の径方向に沿って長手方向を有している。そして、第1シール部47は、仕切板45の外周面45aにおいて、第1キャビティ46の底面部16と対向する位置に形成される底面側シール部47Bとして構成されている。そして、入口開口50aは、ロータ12の軸線方向において、第1シール部47(底面側シール部47B)が形成されている領域と重複する位置に形成されている。そして、底面側シール部47Bは、第1キャビティ46の底面部16との間をシールしている。
 蒸気タービン10には、内側空間70を流れる主蒸気がキャビティにリークするのを防止するために、仕切板45とロータ12との間をシールするシール部が形成される場合がある。したがって、このような実施形態によれば、第1シール部47の少なくとも一部を通過したリーク蒸気を第1段貫通孔50に導入するように構成することで、大量のリーク蒸気が第1段貫通孔50に流入するのを防止しつつ、第1段静翼42を加熱することができる。
 幾つかの実施形態では、図4に示したように、上述した仕切板45は、第1シール部47よりも下流側において、仕切板45とロータ12との間をシールする第2シール部48をさらに含んでいる。そして、上述した入口開口50aは、第2シール部48よりも上流側に形成されているか、又は、ロータ12の軸線方向において、第2シール部48が形成されている領域と重複する位置に形成されている。
 図4に示した実施形態では、第2シール部48は、仕切板45の外周面45aにおける下流端部に形成される下流側シール部48Aとして構成されており、入口開口50aは、第2シール部48(下流側シール部48A)よりも上流側に形成されている。そして、下流側シール部48Aは、ロータ12の内、動翼34bを支持するロータディスク部14Bに形成されている封止面15bとの間をシールしている。
 また、幾つかの実施形態では、図示しないが、第2シール部48は、仕切板45の外周面45aにおいて、第1キャビティ46の底面部16と対向する位置に形成され、第1キャビティ46の底面部16との間をシールする底面側第2シール部(不図示)として構成されてもよい。そして、入口開口50aは、ロータ12の軸線方向において、この底面側第2シール部(不図示)が形成されている領域と重複する位置に形成されていてもよい。
 このような実施形態によれば、上述した第1シール部47に加えて、第2シール部48を形成することにより、内側空間70を流れる主蒸気が第1キャビティ46を介して第1段静翼42の下流側にリークする蒸気量を低減することができる。
 幾つかの実施形態では、図2~4に示したように、上述したケーシング20は、内側空間70の外周側に形成される外側空間80を、内側壁部22との間で画定する外側壁部24をさらに含んでいる。上述した外側空間80は、ロータ12の軸線方向において、第1段静翼42が形成されている領域と重複する位置に形成されるとともに、第1段静翼42の下流側において内側空間70と連通している。そして、上述した第1段貫通孔50を流れた蒸気が、第1段貫通孔50の出口開口50bから外側空間80に排出されるように構成されている。
 図示した実施形態では、第1段静翼42を支持する内側壁部22には、第1段貫通孔50の出口開口50bと連通する壁部側貫通孔52が形成されている。そして、第1段貫通孔50を流れた蒸気は、第1段貫通孔50の出口開口50bから、壁部側貫通孔52を介して、外側空間80に排出されるように構成されている。
 蒸気タービン10には、内側空間70の外周側に外側空間80が形成される場合がある。したがって、このような実施形態によれば、第1段貫通孔50を流れた蒸気を第1段貫通孔50の出口開口50bから外側空間80に排出する構成とすることで、第1キャビティ46から第1段貫通孔50に継続的に蒸気を導入することができる。
 幾つかの実施形態では、図5~8に示したように、上述した蒸気タービン10は、内側壁部22に固定される第2段静翼62、及び、第2段静翼62の下流側においてロータ12に固定される第2段動翼64、を含む第2段落60であって、第1段落40よりも下流側に位置する第2段落60をさらに備える。上述したロータ12は、第2段静翼62と対面する部分に形成された凹状の第2キャビティ66であって、第2段静翼62の上流側において内側空間70と連通する第2キャビティ66を有する。この第2キャビティ66は、ロータ12の全周に亘って環状に形成されている。上述した第2段静翼62は、第2キャビティ66と連通し、且つ、第2段静翼62を径方向に貫通する第2段貫通孔54とを有する。そして、上述した蒸気タービン10は、第1段貫通孔50と第2段貫通孔54とを接続する接続通路56をさらに備えるとともに、第1段貫通孔50を流れた蒸気が、接続通路56および第2段貫通孔54を流れて、第2段貫通孔54の出口開口54bから第2キャビティ66に排出されるように構成されている。
 図5、6に示した実施形態では、最終段落30Aが、本発明の一実施形態にかかる第2段落60を構成している。一方、図7、8に示した実施形態では、最終段落30Aよりも段落一つ分だけ上流側に位置している段落30Bが、本発明の一実施形態にかかる第2段落60を構成している。
 また、図5に示した実施形態では、第2段静翼62を支持する内側壁部22には、第1段貫通孔50の出口開口50bと連通する壁部側貫通孔52が形成されている。また、第2段静翼62を支持する内側壁部22には、第2段貫通孔54と連通する第2壁部側貫通孔58が形成されている。そして、接続通路56は、壁部側貫通孔52と第2壁部側貫通孔58とを連通する、外側空間80に配置された、接続管路56Aから構成されている。
 一方、図6~8に示した実施形態では、接続通路56は、内側壁部22の内部に形成された貫通孔56Bによって構成される。
 第1段静翼42を加熱した後の蒸気の温度は、第1段動翼44に対して仕事をし、且つ、第2段静翼62を通過して膨張した主蒸気の温度よりも高く、第2段静翼62の表面に液滴が凝縮するのを防ぐには十分な温度を有している。したがって、このような実施形態によれば、第1段静翼42を加熱した後の蒸気を第2段貫通孔54に導入することにより、第2段静翼62を加熱し、第2段静翼62の表面に凝縮する液滴量を低減することができる。
 また、このような実施形態によれば、以下に説明するように、内側空間70における第2段静翼62の上流側から第2キャビティ66に流入するリーク流量を低減することもできる。
 図11は、本発明の一実施形態にかかる蒸気タービンにおいて、第2キャビティを流れるリーク蒸気量について説明するための図である。
 図11に示したように、第2キャビティ66から内側空間70における第2段静翼62の下流側に流出する蒸気流量Q2は、内側空間70における第2段静翼62の上流側から第2キャビティ66に流入するリーク流量Q1と、第2段貫通孔54を流れて第2キャビティ66に排出される蒸気流量Q3とを合計した流量となる(Q2=Q1+Q3)。ここでQ2は、第2キャビティ66内の圧力P3と、内側空間70における第2段静翼62の下流側の圧力P2との差圧(ΔP=P3-P2)によって決定されるが、この圧力差ΔPは、第2段貫通孔54から第2キャビティ66に蒸気が流入しても大きくは変化しない。したがって、第2段貫通孔54を流れた蒸気を第2キャビティ66に排出することで、その分だけ、内側空間70における第2段静翼62の上流側から第2キャビティ66に流入するリーク流量Q1を低減することができる。また、例えば、第2段静翼62の仕切板65とロータ12との間にシール部を設けることで、上述したQ2を適切に管理することもできる。
 幾つかの実施形態では、図5~8に示したように、上述した第1段落40と第2段落60とは連続する段落である。つまり、第1段落40は、第2段落60よりも段落一つ分だけ上流側に位置している。
 このような実施形態によれば、第1段落40の静翼42と、第1段落40の下流側に連続して設けられている第2段落60の静翼62とを、一つの蒸気経路によって加熱することができる。
 また、幾つかの実施形態では、図示しないが、第1段落40は、第2段落60よりも段落二つ分以上、上流側に位置していてもよい。
 幾つかの実施形態では、図11に示したように、上述した第1段貫通孔50の入口開口50aの面積をA1、接続通路56の流路面積をA2、第2段貫通孔54の出口開口54bの面積をA3、とした場合に、A3>A1、A2である。つまり、第2段貫通孔54の出口開口54bの面積A3は、第1段貫通孔50の入口開口50aの面積A1、および接続通路56の流路面積A2よりも大きくなっている。
 幾つかの実施形態では、第1段貫通孔50は、その入口開口50aから出口開口50bに亘って同一の面積を有していてもよい。また、接続通路56は、その全長に亘って同一の流路面積を有していてもよい。また、第2段貫通孔54は、その入口開口54aから出口開口54bに亘って同一の面積を有していてもよい。また、壁部側貫通孔52は、その全長に亘って第1段貫通孔50と同一の面積を有していてもよい。第2壁部側貫通孔58は、その全長に亘って接続通路56の流路面積と同一の面積を有していてもよい。
 第2段貫通孔54の出口開口54bから排出される蒸気量は、主として第1段貫通孔50の入口開口50aの面積A1や接続通路56の流路面積A2によって規定されるところ、上述した実施形態では、第2段貫通孔54の出口開口54bの面積A3は、第1段貫通孔50の入口開口50aの面積A1、及び接続通路56の流路面積A2よりも大きくなっている。したがって、このような実施形態によれば、第2段貫通孔54の出口開口54bから第2キャビティ66に排出される蒸気の流速が過大になることを防止できるため、第2段貫通孔54の出口開口54bから排出される蒸気によって第2キャビティ66の壁面(ロータ12の外周面)にエロージョンが生ずることを防止することができる。
 図12は、本発明の一実施形態にかかる蒸気タービンにおける第2段貫通孔の出口開口について説明するための図である。
 幾つかの実施形態では、図12の(a)に示したように、上述した第2段貫通孔54の出口開口54bは、ロータ12の軸線方向に沿った断面視において、第2キャビティ66の底面部18における最深部18Pに向かって開口している。
 図示した実施形態では、第2段静翼62は、内側壁部22からロータ12に向かって延在する静翼本体部63と、静翼本体部63の先端部に設けられた環状の仕切板65と、を含んでいる。そして、上述した出口開口54bは、仕切板65の外周面65aに形成されている。
 また、幾つかの実施形態では、出口開口54bは、出口開口54bの中心位置を通過し、且つ、第2段貫通孔54の中心線の延長線上に沿って延びる延長ラインL1が、第2キャビティ66の底面部18におけるロータ12の中心線との距離が最も短くなる最深部18Pの近傍(図示した実施形態では、最深部18Pの中心)を通過するように構成されている。
 このような実施形態によれば、第2段貫通孔54の出口開口54bから排出される蒸気が第2キャビティ66の底面部18に衝突するまでの距離を長くすることで、出口開口54bから排出される蒸気によって第2キャビティ66の底面部18(ロータ12の外周面)にエロージョンが生ずることを防止することができる。
 幾つかの実施形態では、図12の(b)に示したように、上述した第2段貫通孔54の出口開口54bは、ロータ12の回転方向Rの下流側に向かって開口している。
 図12の(b)は、ロータ12及び第2段静翼62の仕切板65を、ロータ12の軸線方向に沿って視認した図であり、ロータ12が左回り(反時計回り)に回転している状態を示している。そして、第2段貫通孔54の出口開口54bは、ロータ12の回転中心(不図示)を通過する半径方向線L2に対して紙面左側に向かって開口している。
 このような実施形態によれば、第2段貫通孔54の出口開口54bから排出される蒸気が第2キャビティ66の底面部18に衝突するまでの相対距離(時間)を長くすることで、出口開口54bから排出される蒸気によって第2キャビティ66の底面部18(ロータ12の外周面)にエロージョンが生ずることを防止することができる。
 幾つかの実施形態では、図8に示したように、上述した第1段落40は、蒸気タービン10の最終段落30Aよりも上流側に位置している。最終段落30Aは、内側壁部22に固定される最終段静翼32a、及び、最終段静翼32aの下流側においてロータ12に固定される最終段動翼34aを含んでいる。ロータ12は、最終段静翼32aと対面する部分に形成された凹状の最終段キャビティ86であって、最終段静翼32aの上流側において内側空間70と連通する最終段キャビティ86を有している。最終段静翼32aは、最終段キャビティ86と連通し、且つ、最終段静翼32aを径方向に貫通する最終段貫通孔90を有している。そして、最終段キャビティ86の入口開口90aから導入された蒸気が最終段貫通孔90を流れるように構成されている。
 図示した実施形態では、最終段静翼32aは、内側壁部22からロータ12に向かって延在する静翼本体部93と、静翼本体部93の先端部に設けられた環状の仕切板95と、を含んでいる。そして、上述した出口開口90aは、仕切板95の外周面95aに形成されている。
 また、図示した実施形態では、最終段静翼32a(静翼本体部93)を支持する内側壁部22の内部には、最終段貫通孔90と連通する環状の最終段環状空間97が形成されている。この最終段環状空間97に蒸気を導入することよって、内側壁部22の表面が加熱され、内側壁部22の表面において液滴が凝縮するのを防止できる。そして、最終段貫通孔90を流れて最終段環状空間97に流入した蒸気は、外側貫通孔99を介して排気室100へと排出される。
 このような実施形態によれば、上述した第1段静翼42を加熱することによる第1段静翼42よりも下流側の領域における湿り損失やエロージョンを防止することができる効果に加えて、最終段キャビティ86から最終段貫通孔90に導入した蒸気によって最終段静翼32aを加熱することで、最終段静翼32aの表面に凝縮する液滴量を低減することで、最終段動翼34aにおける湿り損失やエロージョンの発生を防止することができる。
 図13は本発明の一実施形態にかかる蒸気タービンの最終段静翼を示した断面図である。
 幾つかの実施形態では、図13に示したように、上述した最終段静翼32a(図8の静翼本体部93、又は図9の静翼本体部43)は、板状の腹面部93aと、腹面部93aとの間で空洞部96を画定する板状の背面部93bとからなる断面中空状に形成されている。最終段静翼32aの腹面部93aには、空洞部96と連通するスリット93s(図8及び図9を参照)が形成されている。そして、最終段静翼32aは、スリット93sと連通する湿分除去流路94と、最終段貫通孔90とに空洞部96を分割する分割板98を含んでいる。
 このような実施形態によれば、上述した最終段静翼32aは、板状の腹面部93aと、腹面部93aとの間で空洞部96を画定する板状の背面部93bとからなる、いわゆる板金静翼として構成されている。このような板金静翼は、従来の鋳造製の静翼よりも熱容量が小さいため、最終段貫通孔90に蒸気を流すことにより、最終段静翼32aに対して高い加熱効果を得ることができる。
 また、このような実施形態によれば、最終段静翼32aの腹面部93aに、空洞部96と連通するスリット93sが形成されているため、最終段静翼32aの腹面部93aの表面を流れる液滴をスリット93sによって除去することができる。しかも、最終段静翼32aの空洞部96は、分割板98によってスリット93sと連通する湿分除去流路94と、最終段貫通孔90とに分割されているため、スリット93sによって液滴を除去することと、最終段静翼32aを加熱することの両方を同時に実現することができる。
 幾つかの実施形態では、図13に示したように、上述した最終段静翼32aの背面部93bの内、スロートSの位置よりも下流側を過冷却背面部93b1と定義した場合に、最終段貫通孔90は、最終段静翼32aの内部において、過冷却背面部93b1に面するように形成される。
 ここでスロートSとは、周方向に隣接する一対の最終段静翼32a、32a間における最小距離を形成する部分を意味しており、一方の最終段静翼32aの後縁93cから他方の最終段静翼32aの背面部93bに対して垂線を引いた位置である。
 また、最終段貫通孔90は、過冷却背面部93b1の全長に亘って面していてもよく、過冷却背面部93b1の全長の少なくとも一部に対して面していてもよい。
 本発明者が鋭意検討したところによれば、周方向に隣接する最終段静翼32a、32a間を通過する主蒸気は、スロートSの位置から下流側において膨張し、これにより温度が低下する。すなわち、最終段静翼32aにおいて、最も液敵が凝縮する部分は、最終段静翼32aの背面部93bの内、スロートSの位置よりも下流側の部分である。したがって、このような実施形態によれば、最も液敵が凝縮する部分である過冷却背面部93b1に面するように最終段貫通孔90を形成することで、最終段静翼32aの表面に凝縮する液滴量を効果的に抑制することができる。
 幾つかの実施形態では、図9に示したように、上述した第1段静翼42を支持する内側壁部22の内部には、第1段貫通孔50と連通する環状の第1段環状空間57が形成されている。
 図示した実施形態では、第1段環状空間57は、ロータ12の軸線方向において、第1段静翼42が形成されている領域と重複する位置に形成されている。そして、第1段貫通孔50を流れて第1段環状空間57に流入した蒸気は、外側貫通孔59を介して排気室100へと排出される。
 液滴の凝縮は、第1段静翼42の表面だけでなく、ケーシング20の内側壁部22の表面でも生ずる場合がある。ケーシング20の内側壁部22の表面で液滴が凝縮すると、その液滴が下流側に飛散して、上述した湿り損失やエロージョンを生じさせる虞がある。したがって、このような実施形態によれば、第1段貫通孔50を流れた蒸気を第1段環状空間57に流して内側壁部22を加熱することで、内側壁部22の表面に凝縮する液滴量を抑制することができる。
 図14は本発明の一実施形態にかかる蒸気タービンの第1段静翼を示した断面図である。
 幾つかの実施形態では、図14に示したように、上述した第1段静翼42は、板状の腹面部43aと、腹面部43aとの間で空洞部106を画定する板状の背面部43bと、からなる断面中空状に形成されている。
 このような実施形態によれば、上述した第1段静翼42(図2~図9の静翼本体部43)は、板状の腹面部43bと、腹面部との間で空洞部を画定する板状の背面部43bとからなる、いわゆる板金静翼として構成されている。このような板金静翼は、従来の鋳造製の静翼よりも熱容量が小さいため、第1段貫通孔50に蒸気を流すことにより、第1段静翼42に対して高い加熱効果を得ることができる。
 幾つかの実施形態では、図14に示したように、上述した第1段静翼42は、第1段貫通孔50と、第1段貫通孔50以外の空間51とに分割する分割板108を含んでいる。そして、第1段静翼42の背面部43bの内、スロートSの位置よりも下流側を過冷却背面部43b1と定義した場合に、第1段貫通孔50は、第1段静翼42の内部において、過冷却背面部43b1に面するように形成されている。
 ここでスロートSとは、周方向に隣接する一対の第1段静翼42、42間における最小距離を形成する部分を意味しており、一方の第1段静翼42の後縁43cから他方の第1段静翼42の背面部43bに対して垂線を引いた位置である。
 また、第1段貫通孔50は、過冷却背面部43b1の全長に亘って面していてもよく、過冷却背面部43b1の全長の少なくとも一部に対して面していてもよい。
 本発明者が鋭意検討したところによれば、周方向に隣接する第1段弾静翼42間を通過する主蒸気は、スロートSの位置から下流側において膨張し、これにより温度が低下する。すなわち、第1段静翼42において、最も液敵が凝縮する部分は、第1段静翼42の背面部43bの内、スロートSの位置よりも下流側の部分である。したがって、このような実施形態によれば、最も液敵が凝縮する部分である過冷却背面部43b1に面するように第1段貫通孔50を形成することで、第1段静翼42の表面に凝縮する液滴量を効果的に抑制することができる。
 以上、本発明の好ましい形態について説明したが、本発明は上記の形態に限定されるものではなく、本発明の目的を逸脱しない範囲での種々の変更が可能である。
1         蒸気タービンプラント
2          ボイラ
3          蒸気タービン装置
4          発電機
5          復水器
6          給水ポンプ
7a         蒸気供給管
7b        復水供給管
7c        ボイラ水供給管
10        蒸気タービン
12         ロータ
14A、14B     ロータディスク部
14a、15b     封止面
16、18       底面部
18P          最深部
20         ケーシング
22          内側壁部
24          外側壁部
30A~30E    段落
32a~32e     静翼
34a~34e     動翼
40         第1段落
42          第1段静翼
43、63、93    静翼本体部
44          第1段動翼
45、65、95    仕切板
45a、65a、95a 外周面
46          第1キャビティ
47          第1シール部
47A          上流側シール部
47B          底面側シール部
48          第2シール部
48A          下流側シール部
50          第1段貫通孔
50a          入口開口
50b          出口開口
51          第1段貫通孔以外の空間
52          壁部側貫通孔
54          第2段貫通孔
54a          入口開口
54b          出口開口
56          接続通路
56A          接続管路
56B          貫通孔
57          第1段環状空間
58          第2壁部側貫通孔
59、99       外側貫通孔
60         第2段落
62          第2段静翼  
64          第2段動翼
66          第2キャビティ
70         内側空間
80         外側空間
86          最終段キャビティ
90          最終段貫通孔
93s         スリット
94          湿分除去流路
96、106      空洞部
97          最終段環状空間
98、108      分割板
100         排気室

Claims (18)

  1.  軸線周りに回転するロータと、
     前記ロータを回転可能に収容するケーシングと、
     前記ケーシングの内側壁部に固定される第1段静翼、及び、前記第1段静翼の下流側において前記ロータに固定される第1段動翼、を含む第1段落と、を備え、
     前記ロータは、前記第1段静翼と対面する部分に形成された凹状の第1キャビティであって、前記第1段静翼の上流側において、前記内側壁部と前記ロータとの間に画定される内側空間と連通する第1キャビティを有し、
     前記第1段静翼は、前記第1キャビティと連通し、且つ、前記第1段静翼を径方向に貫通する第1段貫通孔を有し、
     前記第1段貫通孔の入口開口を介して前記第1キャビティから導入された蒸気が、前記第1段貫通孔を流れるように構成される
    蒸気タービン。
  2.  前記第1段落は、前記蒸気タービンの最終段落よりも上流側に位置する請求項1に記載の蒸気タービン。
  3.  前記第1段落は、前記内側空間を流れる主蒸気が乾き蒸気から湿り蒸気へと変化する変化位置よりも下流側の領域である湿り域に位置し、且つ、前記湿り域に複数の段落がある場合には、前記湿り域における最も上流側に位置する段落である請求項1又は2に記載の蒸気タービン。
  4.  前記第1段静翼は、前記内側壁部から前記ロータに向かって延在する静翼本体部と、前記静翼本体部の先端部に設けられた環状の仕切板と、を含み、
     前記入口開口は、前記仕切板に形成されている
    請求項1から3の何れか一項に記載の蒸気タービン。
  5.  前記仕切板は、前記仕切板と前記ロータとの間をシールする第1シール部を含み、
     前記入口開口は、前記第1シール部よりも下流側に形成されているか、又は、前記ロータの軸線方向において、前記第1シール部が形成されている領域と重複する位置に形成されている請求項4に記載の蒸気タービン。
  6.  前記仕切板は、前記第1シール部よりも下流側において、前記仕切板と前記ロータとの間をシールする第2シール部をさらに含み、
     前記入口開口は、前記第2シール部よりも上流側に形成されているか、又は、前記ロータの軸線方向において、前記第2シール部が形成されている領域と重複する位置に形成されている請求項5に記載の蒸気タービン。
  7.  前記ケーシングは、前記内側空間の外周側に形成される外側空間を、前記内側壁部との間で画定する外側壁部をさらに含み、
     前記外側空間は、前記ロータの軸線方向において、前記第1段静翼が形成されている領域と重複する位置に形成されるとともに、前記第1段静翼の下流側において前記内側空間と連通し、
     前記第1段貫通孔を流れた蒸気が、前記第1段貫通孔の出口開口から前記外側空間に排出されるように構成される請求項1から6の何れか一項に記載の蒸気タービン。
  8.  前記蒸気タービンは、前記内側壁部に固定される第2段静翼、及び、前記第2段静翼の下流側において前記ロータに固定される第2段動翼、を含む第2段落であって、前記第1段落よりも下流側に位置する第2段落をさらに備え、
     前記ロータは、前記第2段静翼と対面する部分に形成された凹状の第2キャビティであって、前記第2段静翼の上流側において前記内側空間と連通する第2キャビティを有し、
     前記第2段静翼は、前記第2キャビティと連通し、且つ、前記第2段静翼を径方向に貫通する第2段貫通孔と、を有し、
     前記蒸気タービンは、前記第1段貫通孔と前記第2段貫通孔とを接続する接続通路をさらに備え、
     前記第1段貫通孔を流れた前記蒸気が、前記接続通路および前記第2段貫通孔を流れて、前記第2段貫通孔の出口開口から前記第2キャビティに排出されるように構成される請求項1から6の何れか一項に記載の蒸気タービン。
  9.  前記第1段落と前記第2段落とは連続する段落である請求項8に記載の蒸気タービン。
  10.  前記第1段貫通孔の入口開口の面積をA1、前記接続通路の流路面積をA2、前記第2段貫通孔の出口開口の面積をA3、とした場合に、A3>A1、A2である請求項8又は9に記載の蒸気タービン。
  11.  前記第2段貫通孔の出口開口は、前記ロータの軸線方向に沿った断面視において、前記第2キャビティの底面部における最深部に向かって開口している請求項8から10の何れか一項に記載の蒸気タービン。
  12.  前記第2段貫通孔の出口開口は、前記ロータの回転方向の下流側に向かって開口している請求項8から11の何れか一項に記載の蒸気タービン。
  13.  前記第1段落は、前記蒸気タービンの最終段落よりも上流側に位置し、
     前記最終段落は、前記内側壁部に固定される最終段静翼、及び、前記最終段静翼の下流側において前記ロータに固定される最終段動翼、を含み、
     前記ロータは、前記最終段静翼と対面する部分に形成された凹状の最終段キャビティであって、前記最終段静翼の上流側において前記内側空間と連通する最終段キャビティを有し、
     前記最終段静翼は、前記最終段キャビティと連通し、且つ、前記最終段静翼を径方向に貫通する最終段貫通孔を有し、
     前記最終段キャビティの入口開口から導入された蒸気が前記最終段貫通孔を流れるように構成される請求項1から12の何れか一項に記載の蒸気タービン。
  14.  前記最終段静翼は、板状の腹面部と、前記腹面部との間で空洞部を画定する板状の背面部と、からなる断面中空状に形成され、
     前記最終段静翼の腹面部には、前記空洞部と連通するスリットが形成され、
     前記最終段静翼は、前記スリットと連通する湿分除去流路と、前記最終段貫通孔とに前記空洞部を分割する分割板を含む請求項13に記載の蒸気タービン。
  15.  前記最終段静翼の背面部の内、スロート位置よりも下流側を過冷却背面部と定義した場合に、
     前記最終段貫通孔は、前記最終段静翼の内部において、前記過冷却背面部に面するように形成される請求項14に記載の蒸気タービン。
  16.  前記第1段静翼を支持する前記内側壁部の内部には、前記第1段貫通孔と連通する環状の第1段環状空間が形成されている請求項1から15の何れか一項に記載の蒸気タービン。
  17.  前記第1段静翼は、板状の腹面部と、前記腹面部との間で空洞部を画定する板状の背面部と、からなる断面中空状に形成される請求項1から16の何れか一項に記載の蒸気タービン。
  18.  前記第1段静翼は、前記第1段貫通孔と、前記第1段貫通孔以外の空間とに前記空洞部を分割する分割板を含み、
     前記第1段静翼の背面部の内、スロート位置よりも下流側を過冷却背面部と定義した場合に、
     前記第1段貫通孔は、前記第1段静翼の内部において、前記過冷却背面部に面するように形成される請求項17に記載の蒸気タービン。
PCT/JP2017/045430 2017-01-20 2017-12-19 蒸気タービン WO2018135212A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017006877.0T DE112017006877B4 (de) 2017-01-20 2017-12-19 Dampfturbine
US16/462,651 US11028695B2 (en) 2017-01-20 2017-12-19 Steam turbine
KR1020197016822A KR102243462B1 (ko) 2017-01-20 2017-12-19 증기 터빈
CN201780078077.2A CN110114555B (zh) 2017-01-20 2017-12-19 蒸汽涡轮

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017008446A JP6797701B2 (ja) 2017-01-20 2017-01-20 蒸気タービン
JP2017-008446 2017-01-20

Publications (1)

Publication Number Publication Date
WO2018135212A1 true WO2018135212A1 (ja) 2018-07-26

Family

ID=62908289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045430 WO2018135212A1 (ja) 2017-01-20 2017-12-19 蒸気タービン

Country Status (6)

Country Link
US (1) US11028695B2 (ja)
JP (1) JP6797701B2 (ja)
KR (1) KR102243462B1 (ja)
CN (1) CN110114555B (ja)
DE (1) DE112017006877B4 (ja)
WO (1) WO2018135212A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637455B2 (ja) * 2017-02-10 2020-01-29 三菱日立パワーシステムズ株式会社 蒸気タービン

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501646B1 (ja) * 1970-07-11 1975-01-20
JPS5458105A (en) * 1977-10-18 1979-05-10 Fuji Electric Co Ltd Device for preventing water drops from occurring on steam turbine
JPS5540237A (en) * 1978-09-13 1980-03-21 Toshiba Corp Geothermal turbine
JPS58155204A (ja) * 1982-03-10 1983-09-14 Toshiba Corp 蒸気タ−ビン
JP2008133825A (ja) * 2006-10-31 2008-06-12 Mitsubishi Heavy Ind Ltd 静翼及び蒸気タービン
JP2014040803A (ja) * 2012-08-23 2014-03-06 Hitachi Ltd 蒸気タービンの静翼構造及び蒸気タービン

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2111878A (en) * 1935-07-02 1938-03-22 Hermannus Van Tongeren Means for draining moisture from steam in steam turbines
US2291828A (en) * 1940-05-04 1942-08-04 Westinghouse Electric & Mfg Co Turbine blading
US2332322A (en) * 1940-11-16 1943-10-19 Gen Electric Elastic fluid turbine arrangement
US2399009A (en) * 1944-07-25 1946-04-23 Gen Electric Elastic fluid turbine
GB1099501A (en) * 1964-05-12 1968-01-17 Merz And Mclellan Services Ltd Improvements relating to steam turbines
US3697191A (en) * 1971-03-23 1972-10-10 Westinghouse Electric Corp Erosion control in a steam turbine by moisture diversion
US3724967A (en) * 1971-10-28 1973-04-03 Westinghouse Electric Corp Moisture removal device for a steam turbine
US3923415A (en) * 1974-06-13 1975-12-02 Westinghouse Electric Corp Steam turbine erosion reduction by ultrasonic energy generation
US5112187A (en) * 1990-09-12 1992-05-12 Westinghouse Electric Corp. Erosion control through reduction of moisture transport by secondary flow
JP3617212B2 (ja) 1996-10-01 2005-02-02 富士電機システムズ株式会社 蒸気タービンの静翼ヒーティング方法
WO2009057532A1 (ja) 2007-10-31 2009-05-07 Mitsubishi Heavy Industries, Ltd. 静翼及び蒸気タービン
JP5546876B2 (ja) * 2009-01-16 2014-07-09 株式会社東芝 蒸気タービン
JP5558120B2 (ja) * 2010-01-12 2014-07-23 株式会社東芝 蒸気タービンのロータ冷却装置及びこの冷却装置を備えた蒸気タービン
JP5055451B1 (ja) 2011-03-31 2012-10-24 三菱重工業株式会社 低圧蒸気タービン
JP5205499B2 (ja) * 2011-08-11 2013-06-05 橋田技研工業株式会社 蒸気タービン用静翼の製造法
CN103437831B (zh) * 2013-08-28 2015-06-17 国家电网公司 带有蛇形通道的汽轮机静叶及汽轮机静叶加热除湿装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501646B1 (ja) * 1970-07-11 1975-01-20
JPS5458105A (en) * 1977-10-18 1979-05-10 Fuji Electric Co Ltd Device for preventing water drops from occurring on steam turbine
JPS5540237A (en) * 1978-09-13 1980-03-21 Toshiba Corp Geothermal turbine
JPS58155204A (ja) * 1982-03-10 1983-09-14 Toshiba Corp 蒸気タ−ビン
JP2008133825A (ja) * 2006-10-31 2008-06-12 Mitsubishi Heavy Ind Ltd 静翼及び蒸気タービン
JP2014040803A (ja) * 2012-08-23 2014-03-06 Hitachi Ltd 蒸気タービンの静翼構造及び蒸気タービン

Also Published As

Publication number Publication date
KR20190073578A (ko) 2019-06-26
DE112017006877T5 (de) 2019-10-24
CN110114555B (zh) 2021-12-21
JP2018115633A (ja) 2018-07-26
DE112017006877B4 (de) 2022-12-08
CN110114555A (zh) 2019-08-09
US11028695B2 (en) 2021-06-08
JP6797701B2 (ja) 2020-12-09
US20200063561A1 (en) 2020-02-27
KR102243462B1 (ko) 2021-04-22

Similar Documents

Publication Publication Date Title
US9574452B2 (en) Noise-reduced turbomachine
KR20160037093A (ko) 가스 터빈의 터빈 블레이드를 위한 냉각 기구
EP2221453B1 (en) Airfoil insert and corresponding airfoil and assembly
JP2015508860A (ja) 排ガスディフューザと補強リブを有するガスタービン
JP6479386B2 (ja) 蒸気タービン
RU2670650C2 (ru) Лопатка турбины
JP5023125B2 (ja) 軸流タービン
JP6328847B2 (ja) タービンブレード
WO2018135212A1 (ja) 蒸気タービン
US7147431B2 (en) Cooled turbine assembly
JP6884665B2 (ja) 蒸気タービン
US9228495B2 (en) Vortex reducer
WO2015198853A1 (ja) 静翼ユニット及び蒸気タービン
JP2016160938A (ja) 翼形部及び翼形部の先端における圧力を管理する方法
RU2756941C1 (ru) Ввод пара в байпасе
JP2015048716A (ja) 蒸気タービン
WO2018147013A1 (ja) 蒸気タービン
JP6878046B2 (ja) 蒸気タービンシステム
JP2005299680A (ja) 軸流タービン翼
JP6100626B2 (ja) ガスタービン
WO2019035178A1 (ja) タービン静翼列及びタービン
EP3653839A1 (en) Turbine aerofoil
US20220154589A1 (en) Technique for cooling inner shroud of a gas turbine vane
JP2012167641A (ja) 回転機械の抽気構造
JP2018115633A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016822

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17893108

Country of ref document: EP

Kind code of ref document: A1