WO2018135187A1 - 方位角算出装置、方位角算出方法、および方位角算出プログラム - Google Patents

方位角算出装置、方位角算出方法、および方位角算出プログラム Download PDF

Info

Publication number
WO2018135187A1
WO2018135187A1 PCT/JP2017/044543 JP2017044543W WO2018135187A1 WO 2018135187 A1 WO2018135187 A1 WO 2018135187A1 JP 2017044543 W JP2017044543 W JP 2017044543W WO 2018135187 A1 WO2018135187 A1 WO 2018135187A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseline
azimuth
test
angle
initial value
Prior art date
Application number
PCT/JP2017/044543
Other languages
English (en)
French (fr)
Inventor
中村 拓
戸田 裕行
奈緒美 藤澤
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to US16/478,114 priority Critical patent/US10976447B2/en
Publication of WO2018135187A1 publication Critical patent/WO2018135187A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • G01S19/54Determining attitude using carrier phase measurements; using long or short baseline interferometry
    • G01S19/55Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation

Definitions

  • the present invention relates to an azimuth angle calculation device, an azimuth angle calculation method, and an azimuth angle calculation program for calculating an azimuth angle of a ship or the like using a GNSS signal.
  • the moving body attitude angle measuring device described in Patent Document 1 includes two satellite signal receiving antennas.
  • One satellite signal receiving antenna is a movable antenna.
  • the mobile body attitude angle measurement device measures the attitude angle using the carrier wave phases of the satellite signals received by the two satellite signal receiving antennas.
  • the moving body attitude angle measuring device determines an integer value bias using the acquired carrier wave phase and the position at the time of acquisition of the carrier wave phase.
  • the mobile body posture angle measuring device measures the posture angle using this integer value bias.
  • a float solution (floating ambiguity) is estimated.
  • an estimation calculation using a filter such as a Kalman filter is generally used.
  • the estimation calculation by such a filter takes time, and this causes time to calculate the initial value of the attitude angle and the initial value of the azimuth angle.
  • the apparatus is provided with a magnetic sensor, and the azimuth angle due to geomagnetism detected by the magnetic sensor is set to an initial value.
  • the error in the azimuth angle detected by the magnetic sensor may increase in a place where there are many metal components in the vicinity and a place where a strong magnetic field is involved.
  • the error of the azimuth angle continuously measured thereafter increases, and the azimuth angle cannot be measured with high accuracy.
  • an object of the present invention is to provide an azimuth angle calculation device, an azimuth angle calculation method, and an azimuth angle calculation program capable of quickly and reliably executing an initial calculation of an azimuth angle of a measurement target with a simple configuration and calculation. is there.
  • the azimuth angle calculation apparatus of the present invention includes at least three antennas, an initial value setting unit, an integer value bias determination unit, a baseline vector calculation unit, a test unit, and an azimuth calculation unit. At least three antennas are arranged at positions that are not all in a straight line.
  • the initial value setting unit sets an initial value of the attitude angle or azimuth angle of the device itself.
  • the integer value bias determination unit determines an integer value bias of a carrier phase difference between at least two sets of antennas using an initial value.
  • the baseline vector calculation unit calculates a baseline vector between at least two sets of antennas using each integer value bias corresponding to each set of antennas.
  • the test unit performs a multiple baseline test. The multiple baseline test is to test the validity of the initial value using each baseline vector calculated using each integer value bias.
  • the azimuth calculation unit calculates the azimuth using each integer value bias if the multiple baseline test is acceptable.
  • the integer value bias is tested using multiple baseline tests, and the passed integer value bias is adopted, so that the initial value of the integer value bias can be determined at high speed without performing complex arithmetic processing such as the Kalman filter. Is done.
  • the initial calculation of the azimuth angle of the measurement target can be performed quickly and reliably with a simple configuration and calculation.
  • FIG. 1 is a functional block diagram of an azimuth calculation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a usage example of the azimuth angle calculation apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an antenna arrangement example of the azimuth angle calculation apparatus according to the embodiment of the present invention.
  • the azimuth calculation apparatus 10 includes antennas 201, 202, 203, 204, receiving units 21, 22, 23, 24, and a calculation unit 30.
  • the azimuth calculation device 10 is housed in a housing 200 and is grounded to the hull 100. At this time, the azimuth calculation device 10 is arranged so that the wave receiving surfaces of the antennas 201, 202, 203, and 204 face the zenith side.
  • the hull 100 is shown as an example, but other moving bodies and objects that require calculation of the attitude angle and the azimuth angle may be used.
  • the antennas 201, 202, 203, and 204 are arranged in the casing 200 so that the center of each of the antennas is four corners when viewed in plan.
  • the distance between the center of the antenna 201 and the center of the antenna 202 is D.
  • the distance between the center of the antenna 202 and the center of the antenna 203, the distance between the center of the antenna 203 and the center of the antenna 204, and the distance between the center of the antenna 204 and the center of the antenna 201 are also D.
  • the distance between the center of the antenna 201 and the center of the antenna 203 and the distance between the center of the antenna 202 and the center of the antenna 204 are ⁇ (2) ⁇ D.
  • a plurality of baseline vectors as shown in FIG. 3 can be set.
  • the setting of the baseline vector shown in FIG. 3 is an example, and the setting of the start point and end point of each baseline vector may be reversed.
  • Base line vector VB12 has antenna 201 as a start point and antenna 202 as an end point.
  • the baseline vector VB23 has the antenna 202 as a starting point and the antenna 203 as an end point.
  • Baseline vector VB34 has antenna 203 as a start point and antenna 204 as an end point.
  • Baseline vector VB41 has antenna 204 as a start point and antenna 201 as an end point.
  • Baseline vector VB13 has antenna 201 as a starting point and antenna 203 as an end point.
  • Baseline vector VB42 has antenna 204 as a starting point and antenna 202 as an end point.
  • the baseline vector VB12 and the baseline vector VB34 are parallel and opposite to each other.
  • the base line vector VB12 and the base line vector VB41 are parallel and opposite to each other.
  • the angle formed by the baseline vector VB12 and the baseline vector VB12 is 90 °.
  • the angle formed by the baseline vector VB13 and the baseline vector VB42 is 90 °.
  • the angle formed by the baseline vector VB13 and the baseline vector VB12 is 45 °.
  • the angle formed by the baseline vector VB41 and the baseline vector VB42 is 45 °.
  • the relative positional relationship between the plurality of antennas 201, 202, 203, and 204, the size and direction of the baseline vector VB, and the angle formed by the plurality of baseline vectors VB are known.
  • the magnitude and direction of the baseline vector VB and the angle formed by the plurality of baseline vectors VB are stored as a known baseline length Df and offset angle ⁇ f in a storage unit (not shown) of the calculation unit 30. Has been.
  • the antenna 201 receives positioning signals from a plurality of positioning satellites SAT1, SAT2, ..., SATn, and outputs them to the receiving unit 21.
  • the antenna 202 receives positioning signals from a plurality of positioning satellites SAT1, SAT2,..., SATn, and outputs them to the receiving unit 22.
  • the antenna 203 receives positioning signals from a plurality of positioning satellites SAT1, SAT2,..., SATn, and outputs them to the receiving unit 23.
  • the antenna 204 receives positioning signals from a plurality of positioning satellites SAT1, SAT2,..., SATn and outputs them to the receiving unit 24.
  • Positioning satellites SAT1, SAT2,..., SATn are satellites used in GNSS (Global Navigation Satellite System) such as GPS satellites, and positioning signals are signals used in GNSS such as GPS signals. .
  • the positioning signal is obtained by superimposing a navigation message on a carrier wave signal having a predetermined frequency.
  • the positioning signal is modulated by a code specific to the positioning satellite.
  • the positioning signals received by the antennas 201, 202, 203, and 204 do not need to be completely matched, and it is sufficient that the carrier phase difference can be acquired between the antennas 201, 202, 203, and 204.
  • the number of positioning signals (number of positioning satellites) received in common among the antennas 201, 202, 203, and 204 may be at least four.
  • the receiving unit 21 captures and tracks each positioning signal received by the antenna 201.
  • the receiving unit 21 acquires the carrier phase of each positioning signal at the time of tracking and outputs it to the computing unit 30.
  • the receiving units 22, 23, and 24 capture and track each positioning signal received by the antennas 202, 203, and 204, respectively.
  • Each of the receiving units 22, 23, and 24 acquires the carrier phase of each positioning signal at the time of tracking and outputs it to the calculation unit 30.
  • the receiving units 21, 22, 23, and 24 output the code phase, the code pseudo distance, or the single positioning result to the calculating unit 30 together with the carrier phase. More specifically, the carrier wave phase, the code phase, and the code pseudo distance or the single positioning result are output to at least the integer value bias determination unit 32 of the calculation unit 30.
  • the calculation unit 30 includes an initial value setting unit 31, an integer value bias determination unit 32, a baseline vector calculation unit 33, a test unit 34, and an azimuth calculation unit 35.
  • the calculation unit 30 includes a calculation processing device such as a CPU and a storage unit that stores an azimuth calculation program. The arithmetic processing device reads out and executes this azimuth calculation program. Thereby, each above-mentioned functional part which constitutes operation part 30 is realizable.
  • the initial value setting unit 31 sets the initial value of the azimuth angle or the initial value of the attitude angle for determining the initial value of the integer value bias.
  • an attitude angle acquired from an inclination sensor such as an acceleration sensor may be set.
  • the integer value bias determination unit 32 uses the initial value set by the initial value setting unit 31 to determine the integer value bias of the carrier phase difference between the antennas 201, 202, 203, 204. More specifically, the integer value bias determination unit 32 sets two antennas as a set from the antennas 201, 202, 203, and 204, and determines the integer value bias of the carrier phase difference for this set. The integer value bias determination unit 32 changes the set of antennas to determine an integer value bias of the carrier phase difference for each set.
  • the baseline vector calculation unit 33 calculates a plurality of baseline vectors VB including two or more configured by a combination of the plurality of antennas 201, 202, 203, and 204 using an integer value bias. More specifically, the baseline vector calculation unit 33 calculates a baseline vector for each antenna pair corresponding to each integer value bias, using each integer value bias determined by the integer value bias determination unit 32 described above. .
  • the base line vector for the pair of antennas 201 and 202 (base line vector between the antennas 201 and 202) is calculated using the integer value bias of the carrier phase difference of the pair of antennas 201 and 202, and
  • the baseline vector (baseline vector between the antennas 201 and 203) is calculated using an integer value bias of the carrier phase difference of the set of the antennas 201 and 203.
  • Baseline vectors of other antenna sets are calculated in the same manner.
  • the verification unit 34 verifies the validity of the initial value set by the initial value setting unit 31 using a plurality of baseline vectors VB. In other words, the test unit 34 performs a multiple baseline test.
  • the azimuth calculation unit 35 calculates the azimuth of the hull 100 using an integer value bias corresponding to the initial value that passed this test. At this time, the azimuth angle calculation unit 35 may calculate the attitude angle of the hull 100.
  • FIG. 4 is a flowchart showing a first processing flow of the azimuth calculation method according to the embodiment of the present invention.
  • the calculation unit 30 will be described as the main subject of processing.
  • the calculation unit 30 sets the initial value of the azimuth angle or the initial value of the attitude angle (S101).
  • the initial value of these azimuth angles or the initial value of the attitude angle may be set as appropriate.
  • the calculation unit 30 estimates a setting value to be set as a float solution (floating ambiguity) for each positioning satellite from the initial value of the azimuth angle or the initial value of the attitude angle (S102). More specifically, the calculation unit 30 calculates the positions of the antennas 201, 202, 203, and 204 using the code pseudo distances from the reception units 21, 22, 23, and 24. The calculation unit 30 acquires the positions of the positioning satellites SAT1, SAT2, SAT3, and SAT4 from the navigation message. The calculation unit 30 calculates a direction cosine from the positions of the antennas 201, 202, 203, and 204 and the positions of the positioning satellites SAT1, SAT2, SAT3, and SAT4.
  • the calculation unit 30 sets a set value (hereinafter simply referred to as a float solution) for each positioning satellite from the initial value of the azimuth angle or the initial value of the attitude angle, the position of the antennas 201, 202, 203, 204, and the direction cosine. (Referred to as a float solution).
  • the calculation unit 30 determines an integer value bias for the positioning signal for each of the antennas 201, 202, 203, and 204 from the float solution using the LAMBDA method (S103).
  • the calculation unit 30 calculates the baseline vector VB between the antennas corresponding to each integer value bias from each determined integer value bias (S104). In other words, the baseline vector of each antenna set is calculated using an integer value bias determined for each antenna set.
  • the plurality of calculated baseline vectors VB are, for example, the above-described baseline vectors VB12, VB23, VB34, VB41, VB13, and VB42.
  • the calculation unit 30 performs a plurality of baseline tests using a plurality of baseline vectors VB (S105). Specific processing of the multiple baseline test will be described later.
  • the arithmetic unit 30 calculates the azimuth using the integer value bias determined in step S103 (S107).
  • the arithmetic unit 30 resets the initial value of the azimuth or the initial value of the attitude angle (S110). And the calculating part 30 performs the process after step S102.
  • FIG. 5 is a flowchart showing the flow of the multiple baseline test.
  • the calculation unit 30 selects a set of two baseline vectors for verification (S601).
  • the set of baseline vectors may be a combination that is not parallel to each other, and at least one set may be selected.
  • the calculation unit 30 calculates the angle ⁇ formed by the two baseline vectors for verification (S602).
  • the formed angle ⁇ is calculated by using an inner product definition formula of the baseline vector or an outer product definition formula of the baseline vector.
  • the relative positional relationship between the antennas 201, 202, 203, and 204 is known as described above, and the angle formed by each baseline vector is also known.
  • An angle formed from this arrangement is defined as an offset angle ⁇ f.
  • the calculation unit 30 stores the offset angle ⁇ f in advance.
  • the calculation unit 30 acquires the offset angle ⁇ f with respect to the two baseline vectors for verification (S603).
  • the calculation unit 30 compares the formed angle ⁇ and the offset angle ⁇ f, and determines whether the multiple baseline test is acceptable or not, depending on whether the comparison result is acceptable.
  • the calculation unit 30 calculates an angle difference ⁇ between the formed angle ⁇ and the offset angle ⁇ f (S604).
  • the calculation unit 30 stores an angle difference threshold value TH ⁇ in advance. This threshold value TH ⁇ is determined by an error that is allowable as an initial value of the posture angle and the azimuth angle.
  • the calculation unit 30 determines that the test for the set of two selected baseline vectors is acceptable (S606).
  • the calculation unit 30 changes the set of two baseline vectors to be selected (S612) unless all the baseline vector sets have been tested (S607: NO).
  • the computing unit 30 executes the processes in and after step S602 using the changed set of baseline vectors.
  • the calculation unit 30 has performed the test on all the base line vector sets (S607: YES), and if all the sets pass the test, the multi-baseline test is passed (S608).
  • the calculation unit 30 rejects the test (S611).
  • the arithmetic unit 30 can determine the initial value of the azimuth with high accuracy without using filter processing such as a Kalman filter for the determination of the integer value bias (estimation of the float solution). Thereby, the calculating part 30 can calculate the initial value of an azimuth angle at high speed and with high accuracy. Then, by determining the initial value in this way, it is possible to calculate a highly accurate azimuth angle continuously thereafter.
  • filter processing such as a Kalman filter for the determination of the integer value bias (estimation of the float solution).
  • the accuracy of the test can be improved by performing an integer bias test using a plurality of baseline vectors.
  • the calculating part 30 can calculate the initial value of an attitude angle or the initial value of an azimuth angle with high precision.
  • the azimuth calculation device 10 only needs to include a positioning signal receiver, and does not require a magnetic sensor or the like. Therefore, the initial value of the attitude angle or the initial value of the azimuth is highly accurate with a simple configuration. It can be calculated.
  • the calculation unit 30 may calculate the azimuth angle by the following process.
  • FIG. 6 is a flowchart showing a second processing flow of the azimuth calculation method according to the embodiment of the present invention.
  • Steps S101, S102, S103, and S104 in FIG. 6 are the same as those shown in FIG.
  • the calculation unit 30 After calculating the baseline vector VB in step S104, the calculation unit 30 performs a single baseline test.
  • the single baseline test is a test for each baseline vector VB. Specifically, the calculation unit 30 calculates a baseline length DVB (for example, D shown in FIG. 2B) of the calculated baseline vector VB.
  • the calculation unit 30 stores the baseline length actually measured from the arrangement of the antennas 201, 202, 203, and 204 as a known baseline length Df.
  • the calculation unit 30 compares the calculated baseline length DVB with the known baseline length Df, and determines whether the single baseline test is acceptable or not, depending on whether the comparison result is acceptable.
  • the calculation unit 30 calculates a difference ⁇ D between the baseline length DVB and the known baseline length Df.
  • the calculation unit 30 stores a difference threshold TH ⁇ D in advance. This threshold value TH ⁇ D is determined by an error or the like that is acceptable as an initial value of the posture angle and the azimuth angle.
  • the arithmetic unit 30 determines that the single baseline test is acceptable. On the other hand, if the difference ⁇ D is equal to or greater than the threshold value TH ⁇ D, the arithmetic unit 30 rejects the single baseline test.
  • the calculation unit 30 executes the multiple baseline test using only the baseline vector that has passed the single baseline test (S105). Each process after the multiple baseline test executed by the calculation unit 30 is the same as steps S106, S107, and S110 shown in FIG.
  • the calculation unit 30 can calculate the posture angle or the azimuth angle at higher speed and more accurately.
  • the calculation unit 30 can also perform a single baseline test using the output value of the inertial sensor. For example, the calculation unit 30 calculates a predetermined posture angle (pitch angle, roll angle, or the like) from the baseline vector, and compares it with the IMU posture angle based on the output value of the inertial sensor. The calculation unit 30 passes the single baseline test if the difference between the posture angle based on the baseline vector and the IMU posture angle is less than the threshold value, and rejects the single baseline test if the difference is greater than or equal to the threshold value.
  • a predetermined posture angle pitch angle, roll angle, or the like
  • baseline length distance between antennas
  • time required to determine the integer value bias becomes long.
  • the configuration and processing of the present application it is possible to suppress an increase in the determination time of the integer value bias due to the long baseline length, and to shorten the determination time of the integer value bias. Therefore, by using the configuration and processing of the present application, the initial value of the posture angle and the initial value of the azimuth angle can be calculated at high speed and with high accuracy even when the baseline length is long.
  • FIG. 7 is a graph showing the elapsed time dependence of the initialization success rate.
  • the solid line in FIG. 7 shows the configuration of the present application, and the broken line shows a comparative example.
  • the comparative example is a method that does not perform the test as in the present application.
  • FIG. 7A shows a case where the number of positioning satellites being tracked is four
  • FIG. 7B shows a case where the number of positioning satellites being tracked is five
  • FIG. 7C shows a case where the number of positioning satellites being tracked is six
  • FIG. 7D shows the case where the number of positioning satellites being tracked is seven.
  • the initialization success rate is 80 regardless of the number of positioning satellites. Elapsed time until it becomes% or more is shortened. Further, as shown in FIGS. 7B, 7C, and 7D, the elapsed time until the initialization success rate reaches 100% is shortened by using the configuration and processing of the present application. .
  • initialization can be completed with a smaller number of positioning satellites than in the comparative example. That is, the initial value of the attitude angle and the initial value of the azimuth can be calculated with high accuracy with a smaller number of positioning satellites than in the comparative example.
  • the initial value of the attitude angle and the initial value of the azimuth angle can be calculated with high accuracy as long as the number of positioning satellites necessary for independent positioning is sufficient.
  • the number of antennas is four, but the number of antennas may be three or more. All these antennas should just be arrange
  • At least one set of baseline vectors VB intersecting each other among the multiple baseline vectors VB may be calculated.
  • Azimuth angle calculation device 21 Reception unit 21, 22, 23, 24: Reception unit 30: Calculation unit 31: Initial value setting unit 32: Integer value bias determination unit 33: Baseline vector calculation unit 34: Test unit 35: Direction Angle calculation unit 100: hull 200: housings 201, 202, 203, 204: antennas SAT1, SAT2, SAT3, SATn: positioning satellites VB12, VB13, VB23, VB34, VB41, VB42, VB: baseline vector

Abstract

【課題】簡素な構成および演算によって、計測対象の方位角の初期算出を高速且つ確実に実行する。 【解決手段】複数のアンテナ201-204は、全てが一直線上にない位置に配置されている。初期値設定部31は、自装置の姿勢角または方位角の初期値を設定する。整数値バイアス決定部32は、少なくとも2組のアンテナ間の搬送波位相差の整数値バイアスを、初期値を用いてそれぞれに決定する。基線ベクトル算出部33は、少なくとも2組のアンテナ間の基線ベクトルを、アンテナの組毎に対応した各整数値バイアスを用いてそれぞれに算出する。検定部34は、各整数値バイアスを用いて算出された各基線ベクトルを用いて初期値の妥当性を検定する複数基線検定を実行する。方位角算出部35は、複数基線検定が合格であれば、各整数値バイアスを用いて方位角を算出する。

Description

方位角算出装置、方位角算出方法、および方位角算出プログラム
 本発明は、GNSS信号を用いて、船舶等の方位角を算出する方位角算出装置、方位角算出方法、および方位角算出プログラムに関する。
 従来、GNSS信号等の測位信号を用いて、船舶等の移動体の姿勢角または方位角を算出する方法が各種考案されている。
 例えば、特許文献1に記載の移動体姿勢角計測装置は、衛星信号受信アンテナを2個備える。一方の衛星信号受信アンテナは、移動可能なアンテナである。移動体姿勢角計測装置は、2個の衛星信号受信アンテナで受信した衛星信号の搬送波位相を用いて、姿勢角の計測を行っている。
 移動体姿勢角計測装置は、取得した搬送波位相と、当該搬送波位相の取得時の位置とを用いて整数値バイアスを決定する。移動体姿勢角計測装置は、この整数値バイアスを用いて、姿勢角を計測する。
特開2001-194442号公報
 しかしながら、特許文献1に記載の移動体姿勢角計測装置では、アンテナを移動させなければならず、機構が複雑になってしまう。
 また、従来の整数値バイアスの決定には、まずフロート解(Floating Ambiguity)を推定する。このフロート解の推定には、一般的にカルマンフィルタ等のフィルタによる推定演算が用いられている。このようなカルマンフィルタ等のフィルタによる推定演算には時間が係り、これが原因で、姿勢角の初期値および方位角の初期値の算出に時間が係ってしまう。
 また、装置に磁気センサを備え、磁気センサが検知した地磁気による方位角を初期値に設定する構成もある。
 しかしながら、磁気センサを用いる構成では、周辺に金属成分が多い場所、強い磁場が係っている場所では、磁気センサが検知した方位角は、誤差が大きくなってしまうことがある。そして誤差が大きな初期値を用いた場合、その後に継続的に計測される方位角の誤差も大きくなってしまい、高精度に方位角を計測できない。
 したがって、本発明の目的は、簡素な構成および演算によって、計測対象の方位角の初期算出を高速且つ確実に実行できる方位角算出装置、方位角算出方法、および方位角算出プログラムを提供することにある。
 この発明の方位角算出装置は、少なくとも3個のアンテナ、初期値設定部、整数値バイアス決定部、基線ベクトル算出部、検定部、および、方位角算出部を備える。少なくとも3個のアンテナは、全てが一直線上にない位置に配置されている。初期値設定部は、自装置の姿勢角または方位角の初期値を設定する。整数値バイアス決定部は、少なくとも2組のアンテナ間の搬送波位相差の整数値バイアスを、初期値を用いてそれぞれに決定する。基線ベクトル算出部は、少なくとも2組のアンテナ間の基線ベクトルを、アンテナの組毎に対応した各整数値バイアスを用いてそれぞれに算出する。検定部は、複数基線検定を実行する。複数基線検定とは、各整数値バイアスを用いて算出された各基線ベクトルを用いて初期値の妥当性を検定することである。方位角算出部は、複数基線検定が合格であれば、各整数値バイアスを用いて方位角を算出する。
 この構成では、複数基線検定を用いて整数値バイアスを検定し、合格した整数値バイアスを採用することで、カルマンフィルタ等の複雑な演算処理を行うことなく、整数値バイアスの初期値が高速に決定される。
 この発明によれば、簡素な構成および演算によって、計測対象の方位角の初期算出を高速且つ確実に実行できる。
本発明の実施形態に係る方位角算出装置の機能ブロック図である。 本発明の実施形態に係る方位角算出装置の使用態様例を示す図である。 本発明の実施形態に係る方位角算出装置のアンテナ配置例を示す図である。 本発明の実施形態に係る方位角算出方法の第1処理フローを示すフローチャートである。 複数基線検定のフローを示すフローチャートである。 本発明の実施形態に係る方位角算出方法の第2処理フローを示すフローチャートである。 (A)、(B)、(C)、(D)は、初期化成功率の経過時間依存性を示すグラフである。
 本発明の実施形態に係る方位角算出装置、方位角算出方法、および、方位角算出プログラムについて、図を参照して説明する。図1は、本発明の実施形態に係る方位算出装置の機能ブロック図である。図2は、本発明の実施形態に係る方位角算出装置の使用態様例を示す図である。図3は、本発明の実施形態に係る方位角算出装置のアンテナ配置例を示す図である。
 図1に示すように、方位角算出装置10は、アンテナ201、202、203、204、受信部21、22、23、24、および、演算部30を備える。
 方位角算出装置10は、図2、図3に示すように、筐体200内に収容されており、船体100に接地されている。この際、方位角算出装置10は、アンテナ201、202、203、204の受波面が天頂側を向くように配置されている。なお、ここでは、船体100を例に示すが、姿勢角、方位角の算出を要する他の移動体、物体であってもよい。
 アンテナ201、202、203、204は、筐体200を平面視して、それぞれの中心が正方形の4個の角になるように、筐体200に配置されている。アンテナ201の中心とアンテナ202の中心との距離はDである。同様に、アンテナ202の中心とアンテナ203の中心との距離、アンテナ203の中心とアンテナ204の中心との距離、アンテナ204の中心とアンテナ201の中心との距離もDである。そして、アンテナ201の中心とアンテナ203の中心との距離、および、アンテナ202の中心とアンテナ204の中心との距離は、√(2)×Dである。
 このような構成では、図3に示すような複数の基線ベクトルを設定できる。なお、図3に示す基線ベクトルの設定は一例であり、各基線ベクトルの始点、終点の設定は逆であってもよい。
 基線ベクトルVB12は、アンテナ201を始点としてアンテナ202を終点としている。基線ベクトルVB23は、アンテナ202を始点としてアンテナ203を終点としている。基線ベクトルVB34は、アンテナ203を始点としてアンテナ204を終点としている。基線ベクトルVB41は、アンテナ204を始点としてアンテナ201を終点としている。基線ベクトルVB13は、アンテナ201を始点としてアンテナ203を終点としている。基線ベクトルVB42は、アンテナ204を始点としてアンテナ202を終点としている。
 基線ベクトルVB12と基線ベクトルVB34は、平行であり、互いに逆方向のベクトルである。基線ベクトルVB12と基線ベクトルVB41とは、平行で有り、互いに逆方向のベクトルである。基線ベクトルVB12と基線ベクトルVB12との成す角は90°である。基線ベクトルVB13と基線ベクトルVB42との成す角は、90°である。
 基線ベクトルVB13と基線ベクトルVB12との成す角は、45°である。基線ベクトルVB41と基線ベクトルVB42との成す角は、45°である。
 このように、複数のアンテナ201、202、203、204の相対的な位置関係および基線ベクトルVBの大きさ、方向、および、複数の基線ベクトルVBの成す角は、既知である。これら基線ベクトルVBの大きさ、方向、および、複数の基線ベクトルVBの成す角は、演算部30の記憶部(図示を省略している。)に、既知の基線長Df、オフセット角αfとして記憶されている。
 アンテナ201は、複数の測位衛星SAT1、SAT2、・・・、SATnからの測位信号を受信して、受信部21に出力する。アンテナ202は、複数の測位衛星SAT1、SAT2、・・・、SATnからの測位信号を受信して、受信部22に出力する。アンテナ203は、複数の測位衛星SAT1、SAT2、・・・、SATnからの測位信号を受信して、受信部23に出力する。アンテナ204は、複数の測位衛星SAT1、SAT2、・・・、SATnからの測位信号を受信して、受信部24に出力する。測位衛星SAT1、SAT2、・・・、SATnは、例えば、GPS衛星等のGNSS(Global Navigation Satellite System)で用いられる衛星であり、測位信号は、例えば、GPS信号等のGNSSで用いられる信号である。測位信号は、既定の周波数からなる搬送波信号に航法メッセージが重畳されたものである。測位信号は、測位衛星に固有のコードによって変調されている。
 アンテナ201、202、203、204で受信した測位信号は、完全一致である必要は無く、アンテナ201、202、203、204のそれぞれのアンテナ間で搬送波位相差を取得できればよい。なお、アンテナ201、202、203、204のそれぞれのアンテナ間で共通に受信する測位信号数(測位衛星数)は、少なくとも4個であればよい。
 受信部21は、アンテナ201で受信した各測位信号を捕捉、追尾する。受信部21は、追尾時の各測位信号の搬送波位相を取得し、演算部30に出力する。同様に、受信部22、23、24は、それぞれにアンテナ202、203、204で受信した各測位信号を捕捉、追尾する。受信部22、23、24は、それぞれに追尾時の各測位信号の搬送波位相を取得し、演算部30に出力する。この際、受信部21、22、23、24は、コード位相、コード擬似距離または単独測位結果を搬送波位相とともに、演算部30に出力する。より具体的には、搬送波位相、コード位相、および、コード擬似距離または単独測位結果は、演算部30の少なくとも整数値バイアス決定部32に出力される。
 演算部30は、初期値設定部31、整数値バイアス決定部32、基線ベクトル算出部33、検定部34、および、方位角算出部35を備える。演算部30は、CPU等の演算処理装置と、方位角算出プログラムが記憶された記憶部とを備える。演算処理装置は、この方位角算出プログラムを読み出して実行する。これにより、演算部30を構成する上述の各機能部は実現可能である。
 初期値設定部31は、整数値バイアスの初期値を決定するための方位角の初期値または姿勢角の初期値を設定する。この初期値には、加速度センサ等の傾斜センサから取得した姿勢角を設定してもよい。
 整数値バイアス決定部32は、初期値設定部31で設定された初期値を用いて、複数のアンテナ201、202、203、204のそれぞれのアンテナ間で搬送波位相差の整数値バイアスを決定する。より具体的には、整数値バイアス決定部32は、アンテナ201、202、203、204から2個のアンテナを一組として、この組に対する搬送波位相差の整数値バイアスを決定する。整数値バイアス決定部32は、アンテナの組を変更して、各組に対する搬送波位相差の整数値バイアスを決定する。
 基線ベクトル算出部33は、整数値バイアスを用いて、複数のアンテナ201、202、203、204の組合せによって構成される2個以上からなる複数の基線ベクトルVBを算出する。より具体的には、基線ベクトル算出部33は、上述の整数値バイアス決定部32で決定された各整数値バイアスを用いて、各整数値バイアスに対応するアンテナの組毎に基線ベクトルを算出する。例えば、アンテナ201、202の組に対する基線ベクトル(アンテナ201、202間の基線ベクトル)は、アンテナ201、202の組の搬送波位相差の整数値バイアスを用いて算出され、アンテナ201、203の組に対する基線ベクトル(アンテナ201、203間の基線ベクトル)は、アンテナ201、203の組の搬送波位相差の整数値バイアスを用いて算出される。他のアンテナの組の基線ベクトルも同様の方法で算出される。
 検定部34は、複数の基線ベクトルVBを用いて、初期値設定部31で設定した初期値の妥当性を検定する。すなわち、検定部34は、複数基線検定を実行する。
 方位角算出部35は、複数基線検定が合格であれば、この検定に合格した初期値に対応する整数値バイアスを用いて、船体100の方位角を算出する。なお、この際、方位角算出部35は、船体100の姿勢角を算出してもよい。
 次に、演算部30における方位角の算出方法について、より具体的に説明する。図4は、本発明の実施形態に係る方位角算出方法の第1処理フローを示すフローチャートである。以下では、演算部30を処理の主体として説明を行う。
 演算部30は、方位角の初期値または姿勢角の初期値を設定する(S101)。これらの方位角の初期値または姿勢角の初期値は、適宜設定すればよい。
 演算部30は、方位角の初期値または姿勢角の初期値から、測位衛星毎のフロート解(Floating Ambiguity)として設定する設定値を推定する(S102)。より具体的には、演算部30は、受信部21、22、23、24からのコード擬似距離を用いて、アンテナ201、202、203、204の位置を算出する。演算部30は、航法メッセージから測位衛星SAT1、SAT2、SAT3、SAT4の位置を取得する。演算部30は、アンテナ201、202、203、204の位置と測位衛星SAT1、SAT2、SAT3、SAT4の位置とから方向余弦を算出する。演算部30は、方位角の初期値または姿勢角の初期値と、アンテナ201、202、203、204の位置と、方向余弦とから、測位衛星毎のフロート解として設定する設定値(以下、単にフロート解と称する。)を推定する。
 演算部30は、LAMBDA法を用いて、フロート解から、アンテナ201、202、203、204毎に測位信号に対する整数値バイアスを決定する(S103)。
 演算部30は、決定した各整数値バイアスから、各整数値バイアスに対応するアンテナ間の基線ベクトルVBをそれぞれに算出する(S104)。言い換えれば、各アンテナの組の基線ベクトルは、アンテナの組毎に決定された整数値バイアスを用いて算出される。算出される複数の基線ベクトルVBは、例えば、上述の基線ベクトルVB12、VB23、VB34、VB41、VB13、VB42である。
 演算部30は、複数の基線ベクトルVBを用いて、複数基線検定を実行する(S105)。複数基線検定の具体的な処理は後述する。
 演算部30は、複数基線検定が合格であれば(S106:YES)、ステップS103で決定した整数値バイアスを用いて、方位角を算出する(S107)。
 演算部30は、複数基線検定が不合格であれば(S106:NO)、方位角の初期値または姿勢角の初期値を再設定する(S110)。そして、演算部30は、ステップS102以降の処理を行う。
 図5は、複数基線検定のフローを示すフローチャートである。
 演算部30は、検定用の2本の基線ベクトルの組を選択する(S601)。基線ベクトルの組は、互いに平行でない組合せであればよく、少なくとも1組を選択すればよい。
 演算部30は、検定用の2本の基線ベクトルの成す角αを算出する(S602)。成す角αは、基線ベクトルの内積の定義式、または、基線ベクトルの外積の定義式を用いて算出される。
 アンテナ201、202、203、204の相対位置関係は、上述のように既知であり、各基線ベクトルの成す角も既知である。この配置から得られる成す角をオフセット角αfとする。演算部30は、オフセット角αfを予め記憶している。演算部30は、検定用の2本の基線ベクトルに対するオフセット角αfを取得する(S603)。
 演算部30は、成す角αとオフセット角αfとを比較し、比較結果が合格であるか否かによって、複数基線検定の合格、不合格を決定する。
 具体的には、演算部30は、成す角αとオフセット角αfとの角度差Δαを算出する(S604)。演算部30は、角度差の閾値THΔαを予め記憶している。この閾値THΔαは、姿勢角および方位角の初期値として許容な誤差等によって決定されている。
 演算部30は、角度差Δαが閾値THΔα未満であれば(S605:YES)、選択した2本の基線ベクトルの組に対する検定を合格と判定する(S606)。
 演算部30は、全ての基線ベクトルの組に対して検定を行っていなければ(S607:NO)、選択する2本の基線ベクトルの組を変更する(S612)。演算部30は、変更した基線ベクトルの組を用いて、ステップS602以降の処理を実行する。
 演算部30は、全ての基線ベクトルの組に対して検定を行っており(S607:YES)、全ての組で検定が合格であれば、複数基線検定を合格とする(S608)。
 一方、演算部30は、いずれかの基線ベクトルの組で角度差Δαが閾値THΔα以上であれば(S605:NO)、検定を不合格とする(S611)。
 このような処理を行うことによって、演算部30は、整数値バイアスの決定(フロート解の推定)にカルマンフィルタ等のフィルタ処理を用いなくても、方位角の初期値を、高精度に決定できる。これにより、演算部30は、高速に且つ高精度に、方位角の初期値を算出できる。そして、このように初期値が決定されることによって、この後も継続的に、高精度な方位角を算出できる。
 この際、複数の基線ベクトルを用いて、整数値バイアスの検定を行うことによって、検定の精度を向上できる。これにより、演算部30は、姿勢角の初期値または方位角の初期値を高精度に算出できる。さらに、方位角算出装置10は、測位信号の受信部を備えていればよく、磁気センサ等を必要としないので、簡素な構成で、姿勢角の初期値または方位角の初期値を高精度に算出できる。
 演算部30は、次の処理によって方位角を算出してもよい。図6は、本発明の実施形態に係る方位角算出方法の第2処理フローを示すフローチャートである。
 図6のステップS101、S102、S103、S104は、図4に示したものと同じであり、説明は省略する。
 ステップS104にて基線ベクトルVBを算出した後、演算部30は、単基線検定を行う。単基線検定とは、個々の基線ベクトルVBに対する検定である。具体的には、演算部30は、算出した基線ベクトルVBの基線長DVB(例えば、図2(B)に示すD等)を算出する。演算部30は、上述のアンテナ201、202、203、204の配置から実測した基線長を、既知の基線長Dfとして記憶している。
 演算部30は、算出した基線長DVBと既知の基線長Dfとを比較して、比較結果が合格であるか否かによって、単基線検定の合格、不合格を決定する。
具体的には、演算部30は、基線長DVBと既知の基線長Dfとの差分ΔDを算出する。演算部30は、差分の閾値THΔDを予め記憶している。この閾値THΔDは、姿勢角および方位角の初期値として許容な誤差等によって決定されている。
 演算部30は、差分ΔDが閾値THΔD未満であれば、単基線検定を合格と判定する。一方、演算部30は、差分ΔDが閾値THΔD以上であれば、単基線検定を不合格とする。
 演算部30は、単基線検定に合格した基線ベクトルのみを用いて、複数基線検定を実行する(S105)。演算部30が実行する複数基線検定以降の各処理は、図4に示したステップS106、S107、S110と同じであり、説明は省略する。
 このような処理を行うことによって、演算部30は、より高速、且つ、より正確に、姿勢角または方位角を算出できる。
 なお、船体100もしくは方位角算出装置10に慣性センサを備えている場合には、演算部30は、慣性センサの出力値を用いて単基線検定を実行することも可能である。例えば、演算部30は、基線ベクトルから所定の姿勢角(ピッチ角、または、ロール角等)を算出し、慣性センサの出力値によるIMU姿勢角と比較する。演算部30は、基線ベクトルによる姿勢角とIMU姿勢角との差が閾値未満であれば、単基線検定を合格とし、閾値以上であれば、単基線検定を不合格とする。
 なお、基線長(アンテナ間の距離)が長く設定されているほど、本発明の構成および処理は効果的に作用する。一般的に、基線長が長い場合、整数値バイアスの決定に要する時間は長くなる。
 しかしながら、本願構成および処理を用いることによって、基線長が長いことによる整数値バイアスの決定時間の長時間化を抑制し、整数値バイアスの決定時間を短縮できる。したがって、本願構成および処理を用いることによって、基線長が長くても、姿勢角の初期値および方位角の初期値を高速で且つ高精度に算出できる。
 図7は、初期化成功率の経過時間依存性を示すグラフである。図7における実線は本願の構成を示し、破線は比較例を示す。比較例は、本願のような検定を行わない方法である。図7(A)は追尾中の測位衛星数が4個の場合、図7(B)は追尾中の測位衛星数が5個の場合、図7(C)は追尾中の測位衛星数が6個の場合、図7(D)は追尾中の測位衛星数が7個の場合を示している。
 図7(A)、図7(B)、図7(C)、図7(D)に示すように、本願の構成および処理を用いることによって、測位衛星数に関係なく、初期化成功率が80%以上になるまでの経過時間は、短くなる。また、図7(B)、図7(C)、図7(D)に示すように、本願の構成および処理を用いることによって、初期化成功率が100%になるまでの経過時間は、短くなる。
 さらに、本願の構成および処理を用いることによって、比較例よりも少ない測位衛星数で初期化を完了することができる。すなわち、比較例よりも少ない測位衛星数で、姿勢角の初期値および方位角の初期値を高精度に算出できる。特に、本願の構成および処理では、単独測位に必要な測位衛星数さえあれば、姿勢角の初期値および方位角の初期値を高精度に算出できる。
 なお、上述の説明では、アンテナ数を4個としたが、アンテナ数は3個以上であればよい。これらの全てのアンテナは、一直線上に並ばない位置に配置されていればよい。すなわち、互いに交差する複数の基線ベクトルを少なくとも1組形成できるように、アンテナ数およびアンテナの配置位置を決定すればよい。
 また、複数基線検定では、複数の基線ベクトルVBの内、互いに交差する少なくとも1組の基線ベクトルVBを算出すればよい。しかしながら、算出される基線ベクトルVBの組は多い方が、検定の精度が向上し、好ましい。
10:方位角算出装置
21:受信部
21、22、23、24:受信部
30:演算部
31:初期値設定部
32:整数値バイアス決定部
33:基線ベクトル算出部
34:検定部
35:方位角算出部
100:船体
200:筐体
201、202、203、204:アンテナ
SAT1、SAT2、SAT3、SATn:測位衛星
VB12、VB13、VB23、VB34、VB41、VB42、VB:基線ベクトル

Claims (14)

  1.  全てが一直線上にない位置に配置された少なくとも3個のアンテナと、
     自装置の姿勢角または方位角の初期値を設定する初期値設定部と、
     少なくとも2組のアンテナ間の搬送波位相差の整数値バイアスを、前記初期値を用いてそれぞれに決定する整数値バイアス決定部と、
     前記少なくとも2組のアンテナ間の基線ベクトルを、アンテナの組毎に対応した各整数値バイアスを用いてそれぞれに算出する基線ベクトル算出部と、
     前記各整数値バイアスを用いて算出された各基線ベクトルを用いて前記初期値の妥当性を検定する複数基線検定を実行する検定部と、
     前記複数基線検定が合格であれば、前記各整数値バイアスを用いて方位角を算出する方位角算出部と、
     を備える方位角算出装置。
  2.  請求項1に記載の方位角算出装置であって、
     前記検定部は、
     前記複数基線検定が不合格であれば、前記初期値設定部に対して前記初期値を変更させる、
     方位角算出装置。
  3.  請求項1または請求項2に記載の方位角算出装置であって、
     前記検定部は、
     前記基線ベクトル算出部で算出される複数の基線ベクトルの成す角を用いて、前記複数基線検定を実行する、
     方位角算出装置。
  4.  請求項3に記載の方位算出装置であって、
     前記検定部は、
     前記アンテナの位置関係から予め得られた前記複数の基線ベクトルの成す角に対応するオフセット角と前記成す角との角度差が閾値未満であると、前記複数基線検定が合格であると判定する、
     方位角算出装置。
  5.  請求項4に記載の方位算出装置であって、
     前記検定部は、
     前記角度差が閾値以上であると、前記複数基線検定が不合格であると判定する、
     方位角算出装置。
  6.  請求項3乃至請求項5のいずれかに記載の方位角算出装置であって、
     前記検定部は、前記複数の基線ベクトルの内積または外積を用いて、前記成す角を算出する、
     方位角算出装置。
  7.  請求項1乃至請求項6のいずれかに記載の方位角算出装置であって、
     前記検定部は、
     前記複数の基線ベクトルのそれぞれに対して単基線検定を実行し、
     前記単基線検定に合格した複数の基線ベクトルを用いて、前記複数基線検定を実行する、
     方位角算出装置。
  8.  自装置の姿勢角または方位角の初期値を設定し、
     少なくとも2組のアンテナ間の搬送波位相差の整数値バイアスを、前記初期値を用いてそれぞれに決定し、
     前記少なくとも2組のアンテナ間の基線ベクトルを、アンテナの組毎に対応した各整数値バイアスを用いてそれぞれに算出し、
     前記各整数値バイアスを用いて算出された各基線ベクトルを用いて前記初期値の妥当性を検定する複数基線検定を実行し、
     前記複数基線検定が合格であれば、前記各整数値バイアスを用いて方位角を算出する、
     方位角算出方法。
  9.  請求項8に記載の方位角算出方法であって、
     前記複数基線検定は、
     複数の前記基線ベクトルの成す角を用いて実行される、
     方位角算出方法。
  10.  請求項9に記載の方位算出方法であって、
     前記アンテナの位置関係から予め得られた前記複数の基線ベクトルの成す角に対応するオフセット角と前記成す角との角度差が閾値未満であると、前記複数基線検定が合格であると判定する、
     方位角算出方法。
  11.  請求項10に記載の方位算出方法であって、
     前記角度差が閾値以上であると、前記複数基線検定が不合格であると判定する、
     方位角算出方法。
  12.  請求項9乃至請求項11のいずれかに記載の方位角算出方法であって、
     前記複数基線検定では、前記複数の基線ベクトルの内積または外積を用いて、前記成す角を算出する、
     方位角算出方法。
  13.  請求項9乃至請求項12のいずれかに記載の方位角算出方法であって、
     前記複数基線検定の前に、前記複数の基線ベクトルのそれぞれに対して単基線検定を実行し、
     前記単基線検定に合格した複数の基線ベクトルを用いて、前記複数基線検定を実行する、
     方位角算出方法。
  14.  自装置の姿勢角または方位角の初期値を設定する処理と、
     少なくとも2組のアンテナ間の搬送波位相差の整数値バイアスを、前記初期値を用いてそれぞれに決定する処理と、
     前記少なくとも2組のアンテナ間の基線ベクトルを、アンテナの組毎に対応した各整数値バイアスを用いてそれぞれに算出する処理と、
     前記各整数値バイアスを用いて算出された各基線ベクトルを用いて前記初期値の妥当性を検定する複数基線検定を実行する処理と、
     前記複数基線検定が合格であれば、前記各整数値バイアスを用いて方位角を算出する処理と、
     を演算処理装置に実行させる、方位角算出プログラム。
PCT/JP2017/044543 2017-01-17 2017-12-12 方位角算出装置、方位角算出方法、および方位角算出プログラム WO2018135187A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/478,114 US10976447B2 (en) 2017-01-17 2017-12-12 Azimuth angle calculating device, and method of calculating azimuth angle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017006094 2017-01-17
JP2017-006094 2017-01-17

Publications (1)

Publication Number Publication Date
WO2018135187A1 true WO2018135187A1 (ja) 2018-07-26

Family

ID=62908283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044543 WO2018135187A1 (ja) 2017-01-17 2017-12-12 方位角算出装置、方位角算出方法、および方位角算出プログラム

Country Status (2)

Country Link
US (1) US10976447B2 (ja)
WO (1) WO2018135187A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907970A (zh) * 2018-09-17 2020-03-24 千寻位置网络有限公司 GNSS云端定位的多Rover基线组建方法
CN114447609A (zh) * 2022-04-11 2022-05-06 天津讯联科技有限公司 具有动态补偿的大型天线数字引导装置及其数字引导方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281317A (ja) * 2000-03-30 2001-10-10 Japan Radio Co Ltd 移動体姿勢計測システムおよび複数アンテナ配置構造
JP2002040124A (ja) * 2000-07-24 2002-02-06 Furuno Electric Co Ltd キャリア位相相対測位装置
JP2006126181A (ja) * 2004-10-01 2006-05-18 Mitsubishi Electric Corp 移動体姿勢検出装置
JP2007071868A (ja) * 2005-08-08 2007-03-22 Furuno Electric Co Ltd キャリア位相相対測位装置及び方法
JP2010190806A (ja) * 2009-02-20 2010-09-02 Mitsubishi Electric Corp 方位算出装置、方位算出装置の方位算出方法および方位算出プログラム
US20130069822A1 (en) * 2011-09-19 2013-03-21 Benjamin Wu Method and apparatus for differential global positioning system (dgps)-based real time attitude determination (rtad)
WO2016104032A1 (ja) * 2014-12-26 2016-06-30 古野電気株式会社 姿勢角算出装置、姿勢角算出方法、および姿勢角算出プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506588A (en) * 1993-06-18 1996-04-09 Adroit Systems, Inc. Attitude determining system for use with global positioning system, and laser range finder
JP2001194442A (ja) 2000-01-06 2001-07-19 Japan Radio Co Ltd 移動体姿勢角計測装置
JP4116792B2 (ja) * 2001-12-19 2008-07-09 古野電気株式会社 キャリア位相相対測位装置
US7292185B2 (en) * 2005-10-04 2007-11-06 Csi Wireless Inc. Attitude determination exploiting geometry constraints
WO2008118551A2 (en) * 2007-02-09 2008-10-02 University Of Southern California Path-sharing transceiver architecture for antenna arrays
WO2011123310A2 (en) * 2010-04-01 2011-10-06 Massachusetts Institute Of Technology Iterative clutter calibration with phased array antennas
US20130057432A1 (en) * 2011-09-02 2013-03-07 Samsung Electronics Co., Ltd. Method and apparatus for beam broadening for phased antenna arrays using multi-beam sub-arrays
US9529093B2 (en) * 2012-10-12 2016-12-27 Google Inc. Systems and methods for estimating attitude using double differenced GPS carrier phase measurements
US10877163B2 (en) * 2015-11-27 2020-12-29 Furuno Electric Co., Ltd. Method and device for calculating attitude angle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281317A (ja) * 2000-03-30 2001-10-10 Japan Radio Co Ltd 移動体姿勢計測システムおよび複数アンテナ配置構造
JP2002040124A (ja) * 2000-07-24 2002-02-06 Furuno Electric Co Ltd キャリア位相相対測位装置
JP2006126181A (ja) * 2004-10-01 2006-05-18 Mitsubishi Electric Corp 移動体姿勢検出装置
JP2007071868A (ja) * 2005-08-08 2007-03-22 Furuno Electric Co Ltd キャリア位相相対測位装置及び方法
JP2010190806A (ja) * 2009-02-20 2010-09-02 Mitsubishi Electric Corp 方位算出装置、方位算出装置の方位算出方法および方位算出プログラム
US20130069822A1 (en) * 2011-09-19 2013-03-21 Benjamin Wu Method and apparatus for differential global positioning system (dgps)-based real time attitude determination (rtad)
WO2016104032A1 (ja) * 2014-12-26 2016-06-30 古野電気株式会社 姿勢角算出装置、姿勢角算出方法、および姿勢角算出プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907970A (zh) * 2018-09-17 2020-03-24 千寻位置网络有限公司 GNSS云端定位的多Rover基线组建方法
CN110907970B (zh) * 2018-09-17 2021-12-28 千寻位置网络有限公司 GNSS云端定位的多Rover基线组建方法
CN114447609A (zh) * 2022-04-11 2022-05-06 天津讯联科技有限公司 具有动态补偿的大型天线数字引导装置及其数字引导方法

Also Published As

Publication number Publication date
US20190369267A1 (en) 2019-12-05
US10976447B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
JP6360199B2 (ja) 状態算出装置、状態算出方法、および状態算出プログラム
JP5301762B2 (ja) キャリア位相相対測位装置
US20150032304A1 (en) Apparatus, method and computer readable media for calculating status, and movable body
JP4781313B2 (ja) マルチパス検出装置、測位装置、姿勢方位標定装置、マルチパス検出方法およびマルチパス検出プログラム
CN107110979B (zh) 姿态角计算装置、姿态角计算方法及存储介质
JP2012208033A (ja) 航法計算システム
JP4729197B2 (ja) 物体の姿勢検出装置および整数バイアス再決定方法
US20190011570A1 (en) Gnss device location verification
WO2018135187A1 (ja) 方位角算出装置、方位角算出方法、および方位角算出プログラム
WO2017090360A1 (ja) センサ誤差算出装置、姿勢角算出装置、センサ誤差算出方法、姿勢角算出方法
US10877163B2 (en) Method and device for calculating attitude angle
US6211821B1 (en) Apparatus and method for determining pitch and azimuth from satellite signals
JP5180447B2 (ja) キャリア位相相対測位装置及び方法
JP6750107B2 (ja) 測位装置、測位システム、測位方法、および、測位プログラム
KR101723751B1 (ko) 위성체의 항법 제어 장치 및 방법
KR101957291B1 (ko) 전자전 지원 시스템(Warfare Support System)의 신호도래방위각 측정 장치 및 그 방법
JP2018059856A (ja) 姿勢角算出装置、姿勢角算出方法
WO2021006243A1 (ja) アンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラム
JP6732926B2 (ja) 方位算出装置、方位算出方法、および方位算出プログラム
JP2001281317A (ja) 移動体姿勢計測システムおよび複数アンテナ配置構造
JP7291775B2 (ja) 移動情報算出装置、および、移動情報算出方法
JP6199679B2 (ja) 姿勢検出装置及びこれを備えた移動体、並びに、姿勢検出方法
US10816675B2 (en) Coordinate output method and coordinate output device
JP2021081203A (ja) 航法計算装置、航法計算方法、及び、航法計算プログラム
JPH03142389A (ja) Gps用測位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP