WO2021006243A1 - アンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラム - Google Patents

アンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラム Download PDF

Info

Publication number
WO2021006243A1
WO2021006243A1 PCT/JP2020/026406 JP2020026406W WO2021006243A1 WO 2021006243 A1 WO2021006243 A1 WO 2021006243A1 JP 2020026406 W JP2020026406 W JP 2020026406W WO 2021006243 A1 WO2021006243 A1 WO 2021006243A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
relative position
antenna
difference
speed difference
Prior art date
Application number
PCT/JP2020/026406
Other languages
English (en)
French (fr)
Inventor
和也 下岡
鈴木 徳祥
朗 宮島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021006243A1 publication Critical patent/WO2021006243A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/51Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude

Definitions

  • the present disclosure relates to an antenna-to-antenna relative position estimation method, an antenna-to-antenna relative position estimation device, and an antenna-to-antenna relative position estimation program in GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • GNSS which estimates the position by using radio waves transmitted from a positioning satellite (hereinafter abbreviated as "satellite") as positioning information
  • a plurality of moving objects such as vehicles to be positioned are used. May be equipped with an antenna.
  • a moving body is equipped with a plurality of antennas, it is necessary to accurately grasp the relative positions between the antennas. If the relative position between the antennas is inaccurate, the consistency between the positioning result when using one antenna and the positioning result when using another antenna cannot be guaranteed, and as a result, the positioning of the moving body becomes difficult. It will be inaccurate.
  • GNSS equipment may be mounted at a dealer or a maintenance shop after the mobile body is manufactured, but when installing multiple antennas, it is necessary to manually measure the relative position between the antennas at the dealer and. There was a problem that it was difficult at maintenance shops.
  • Patent Document 1 discloses a measuring device and a measuring method for calculating the relative positions of two antennas based on carrier phase positioning that estimates the position based on the phase of the carrier wave.
  • Patent Document 2 the vector of the difference between the two antenna velocities that occurs when the moving body turns is calculated, and the tangential contact point that coincides with the above-mentioned vector direction on the circumference of the radius L from the reference antenna is the other antenna position.
  • a skid measuring device for a moving body that calculates the relative positions of the two antennas is disclosed.
  • the carrier phase positioning adopted by the measuring device and measuring method described in Patent Document 1 is complicated in processing, and a corresponding receiver is required. Therefore, there is a problem that it cannot be realized by an existing receiver that supports only general code positioning, which is a positioning method based on pseudo distances observed from four or more satellites.
  • the skid measuring device described in Patent Document 2 is based on a general code positioning-based method rather than carrier phase positioning.
  • the two antennas are not aligned in the vehicle traveling direction, there is a problem that the deviation angle between the antennas needs to be measured in advance.
  • the present disclosure has been made in view of the above problems, and realizes an antenna-to-antenna relative position estimation method, an antenna-to-antenna relative position estimation device, and an antenna-to-antenna relative position estimation program that can easily estimate the relative position between antennas.
  • the purpose is to realize an antenna-to-antenna relative position estimation method, an antenna-to-antenna relative position estimation device, and an antenna-to-antenna relative position estimation program that can easily estimate the relative position between antennas.
  • One disclosure relating to an inter-antenna relative position estimation method for achieving the above object is based on the Doppler effect of each of a plurality of receiving antennas provided on a moving body and receiving positioning information from a plurality of positioning satellites and the positioning satellite.
  • a frequency deviation detection step that detects the frequency deviation from the positioning information received by each of the plurality of receiving antennas, and a speed difference calculation that calculates the first speed difference between the plurality of receiving antennas in the ENU coordinate system based on the frequency deviation.
  • one disclosure relating to an inter-antenna relative position estimation device for achieving the above object is provided in a moving body and is a Doppler of each of a plurality of receiving antennas for receiving positioning information from a plurality of positioning satellites and the positioning satellite.
  • a difference calculation unit an attitude angle calculation unit that calculates the attitude angle of the moving body, an angular velocity calculation unit that calculates the angular velocity of the moving body, and a plurality of receiving antennas in the ENU coordinate system that are calculated based on the attitude angle and the angular velocity.
  • It is an inter-antenna relative position estimation device including an inter-antenna relative position estimation unit that estimates a relative position between a plurality of receiving antennas based on a difference between the second velocity difference and the first velocity difference.
  • One disclosure relating to an inter-antenna relative position estimation program for achieving the above object is that a computer is provided on a moving body, and each of a plurality of receiving antennas that receive positioning information from a plurality of positioning satellites and the positioning satellite. Frequency deviation detector that detects the frequency deviation due to the Doppler effect from the positioning information received by each of the multiple receiving antennas, and the speed at which the first speed difference between the multiple receiving antennas in the ENU coordinate system is calculated based on the frequency deviation.
  • Difference calculation unit attitude angle calculation unit that calculates the attitude angle of the moving body, angular velocity calculation unit that calculates the angular velocity of the moving body, and between a plurality of receiving antennas in the ENU coordinate system that are calculated based on the attitude angle and the angular velocity.
  • This is a program that functions as a relative position estimation unit between antennas that estimates the relative position between a plurality of receiving antennas based on the difference between the second speed difference and the first speed difference.
  • FIG. 1 is a block diagram showing an example of a moving body 20 provided with a position estimation system 100 according to the present embodiment.
  • the mobile body 20 includes a first antenna 12A and a first receiver 14A, a second antenna 12B and a second receiver 14B, respectively, which receive radio waves which are positioning information from satellites, and further, a first receiver 14A and a second receiver 14A.
  • the relative positions of the first antenna 12A and the second antenna 12B antennas are estimated based on the information obtained from each of the receivers 14B, and the positions of the moving bodies 20 are estimated.
  • the estimation device 10 is provided.
  • the first antenna 12A and the second antenna 12B are receiving antennas, and in the present embodiment, detailed description of the position estimation by GNSS is omitted, and the estimation of the relative position between the first antenna 12A and the second antenna 12B antenna is performed. explain.
  • the first antenna 12A and the second antenna 12B antenna are separated by a distance L1 in the front-rear direction of the moving body 20 and a distance L2 in the width direction of the moving body 20.
  • the distances L1 and L2 are relative positions of the first antenna 12A and the second antenna 12B antenna on a plane about the traveling direction and the width direction of the moving body 20.
  • the plane is a plane including a line segment indicating the distance L1 and a line segment indicating the distance L2.
  • the line segment indicating the distance L1 and the line segment indicating the distance L2 are orthogonal to each other on the same plane.
  • Each of the first receiver 14A and the second receiver 14B is a frequency deviation detection unit, and each of the first antenna 12A and the second antenna 12B is a circuit that detects the Doppler frequency of the radio wave received from the satellite.
  • the Doppler frequency is the difference between the frequency of the carrier wave of the radio wave transmitted by the satellite and the frequency of the carrier wave of the radio wave received from the satellite by each of the first antenna 12A and the second antenna 12B. Since the GNSS satellite is constantly moving, the frequency of the radio waves received by each of the first antenna 12A and the second antenna 12B fluctuates due to the Doppler effect.
  • Each of the first receiver 14A and the second receiver 14B detects the Doppler frequency, which is the deviation of the frequency caused by the Doppler effect.
  • the position estimation device 10 is a kind of computer, and estimates the relative position between the antennas and estimates the position of the moving body 20 based on the program stored in the storage device or the like. Since the position estimation device 10 estimates the relative position between the antennas, it corresponds to the relative position estimation device between the antennas.
  • the position estimation device 10 has a speed difference between the first antenna 12A and the second antenna 12B from the Doppler frequencies detected by each of the first receiver 14A and the second receiver 14B while the moving body 20 is traveling.
  • velocity difference A the attitude angle (orientation angle) of the moving body 20 and the angular velocity (yaw rate) of the moving body 20 detected by the IMU (Inertial Measurement Unit) or the like are calculated.
  • the distances L1 and L2 that minimize the difference between the speed difference between the first antenna 12A and the second antenna 12B (hereinafter referred to as “speed difference B”) and the speed difference A, which are calculated based on the above, are estimated.
  • speed difference A corresponds to the first speed difference
  • speed difference B corresponds to the second speed difference.
  • the velocity difference A is basically calculated with high accuracy. ..
  • the speed difference B obtained based on the azimuth angle and the yaw rate is not always obtained with higher accuracy than the speed difference A described above because the azimuth estimation error and the yaw rate estimation error are not necessarily small.
  • the velocity difference B is obtained as a variable including unknown numbers (L1, L2) as described later.
  • L1 and L2 can be estimated with high accuracy by comparing the speed difference A and the speed difference B and estimating L1 and L2 that minimize the difference between the two.
  • processing such as reliability determination to improve the accuracy of the estimation results of L1 and L2.
  • FIG. 2 is an example of a functional block diagram of the position estimation system 100 according to the present embodiment.
  • the Doppler frequency detected by the first receiver 14A from the radio waves received by the first antenna 12A and the second receiver 14B from the radio waves received by the second antenna 12B The antenna speed difference calculation unit 30 for calculating the speed difference A by the method described in the following documents and the like using the detected Doppler frequency is provided.
  • Y. Kojima "Proposal for a new localization method using tightly coupled integration based on a precise estimation of trajectory from GPS Doppler", Proceedings of AVEC2010, Loughborough UK, 2010
  • the position estimation device 10 includes a posture angle calculation device 32 for calculating the azimuth angle ⁇ which is the posture angle of the moving body 20, and an angular velocity calculation device 34 for calculating the yaw rate ⁇ of the moving body 20.
  • the attitude angle calculation device 32 calculates the azimuth angle ⁇ based on the detection value of the magnetic sensor or the velocity vector of each of the first antenna 12A or the second antenna 12B described later.
  • the angular velocity calculation device 34 calculates the yaw rate ⁇ from the detection value of the gyro sensor. Further, the angular velocity calculation device 34 may be the above-mentioned IMU or the like.
  • the position estimation device 10 has a speed difference B calculated based on the azimuth angle ⁇ calculated by the attitude angle calculation device 32 and the yaw rate ⁇ calculated by the angular velocity calculation device 34, and a speed difference calculated by the antenna speed difference calculation unit 30.
  • the antenna-to-antenna relative position estimation unit 36 that estimates the relative position between the first antenna 12A and the second antenna 12B based on the difference from A is provided.
  • FIG. 3 is an explanatory diagram of relative position estimation between antennas according to the present embodiment.
  • the arrow E shown in FIG. 3 indicates the east, that is, the longitude direction in the ENU coordinate system, and the arrow N indicates the north, that is, the latitude direction in the ENU coordinate system.
  • the velocity vector of the first antenna 12A and the velocity vector of the second antenna 12B are defined as velocity vectors in the ENU coordinate system.
  • the speed difference between the first antenna 12A and the second antenna 12B in the traveling direction of the moving body 20 is given by the product of the distance L2 and the yaw rate ⁇ . Further, the speed difference in the lateral direction of the moving body 20 between the first antenna 12A and the second antenna 12B is given by the product of the distance L1 and the yaw rate ⁇ .
  • the reason for this is as follows.
  • the moving body 20 can be regarded as a rigid body, and the velocity of each point in the rigid body can be expressed by the velocity of an arbitrary reference point in the rigid body and the rotational motion around the reference point.
  • the velocity difference at the reference point is canceled out, and only the difference in the rotational speeds at the two points remains.
  • the difference in rotational speed between the two points can be expressed by the difference between the rotational speed of the rigid body and the distance between the two points. Therefore, the speed difference, that is, the speed difference B is given by the product of the distance L1 or the distance L2 and the yaw rate ⁇ .
  • D EY L1 x ⁇ x cos ⁇ + L2 x ⁇ x sin ⁇ ... (1)
  • the velocity vector difference D NY in the N direction based on the yaw rate ⁇ and the azimuth angle ⁇ is calculated by the following equation (2).
  • D NY -1 x L1 x ⁇ x sin ⁇ + L2 x ⁇ x cos ⁇ ...
  • the velocity vector difference in the E direction based on the GNSS Doppler is D Edp
  • the velocity vector difference in the N direction based on the GNSS Doppler is D Ndp .
  • the speed vector difference D Edp is obtained from the speed vector in the E direction of the first antenna 12A calculated from the Doppler frequency detected by the first receiver 14A from the radio wave received by the first antenna 12A and the radio wave received by the second antenna 12B. This is the difference from the speed vector in the E direction of the second antenna 12B calculated from the Doppler frequency detected by the second receiver 14B.
  • the speed vector difference D Ndp is received by the N-direction speed vector of the first antenna 12A calculated from the Doppler frequency detected by the first receiver 14A from the radio wave received by the first antenna 12A and by the second antenna 12B. This is the difference from the N-direction velocity vector of the second antenna 12B calculated from the Doppler frequency detected by the second receiver 14B from the radio wave.
  • the method of calculating the velocity vector in the N direction from the Doppler frequency is as follows.
  • the Doppler frequency changes depending on the relative speed between the satellite and the mobile body 20.
  • the relative velocity between the satellite and the mobile 20 can be calculated from the Doppler frequency.
  • the position of the moving body 20 is sequentially estimated based on the positioning information from the satellite, and the position of the satellite can be estimated when the position of the moving body 20 is estimated. From the position of the moving body 20 and the position of the satellite, the relative orientation of the satellite as seen from the moving body 20 can be obtained. If the relative orientation of the satellite as seen from the moving body 20 and the relative speed between the satellite and the moving body 20 are known, the velocities of various directional components of the relative velocities, that is, the direction vectors can be obtained.
  • the angular velocity calculation device 34 has described above that the azimuth angle ⁇ is calculated based on the respective velocity vectors of the first antenna 12A or the second antenna 12B, but the azimuth angle ⁇ is the velocity vector in the E direction of the first antenna 12A. (Or the velocity vector in the E direction of the second antenna 12B) and the velocity vector in the N direction of the first antenna 12A (or the velocity vector in the N direction of the second antenna 12B) can be calculated.
  • Equation (3) can be defined as the square of the difference between the velocity difference A and the velocity difference B by the above-mentioned velocity vector differences D EY , D NY , D Edp , and D Ndp .
  • F (L1, L2) (D Edp- D EY ) 2 + (D Ndp- D NY ) 2 ...
  • F (L1, L2) which is the square of the difference between the speed difference A and the speed difference B, represented by the formula (3), is calculated. Since the velocity vector differences D EY and D NY in the E direction and N direction include the distances L1 and L2 between the first antenna 12A and the second antenna 12B, the calculated F (L1, L2) also has the second The distances L1 and L2 between the 1st antenna 12A and the 2nd antenna 12B are included.
  • the calculation of F (L1, L2) is performed a plurality of times in a time series, and the calculated F (L1, L2) is stored in a storage device such as a memory. Then, the distances L1 and L2 that minimize F (L1, L2) are estimated from the accumulated F (L1, L2).
  • Various methods can be considered for extracting the minimum value of F (L1, L2), but in the present embodiment, the least squares method is used as an example. At this time, if the approximate distance between the first antenna 12A and the second antenna 12B is known, it may be used as a tentative value of the distances L1 and L2.
  • FIG. 4 is a flowchart showing an example of processing for estimating the relative distance between antennas in the present embodiment.
  • Step 400 is a frequency deviation detection step executed by the first receiver 14A and the second receiver 14B, which are frequency deviation detection units.
  • each of the first receiver 14A and the second receiver 14B detects the Doppler frequency from the radio waves received from the satellite.
  • Step 402 and step 404 are speed difference calculation steps executed by the antenna speed difference calculation unit 30 which is the speed difference calculation unit.
  • the velocity vector in the ENU coordinate system at each position of the first antenna 12A and the second antenna 12B is calculated. Specifically, the velocity vector in the E direction of the first antenna 12A calculated from the Doppler frequency detected by the first receiver 14A and the E direction of the second antenna 12B calculated from the Doppler frequency detected by the second receiver 14B. The velocity vector in the N direction of the first antenna 12A calculated from the Doppler frequency detected by the first receiver 14A, and the N direction of the second antenna 12B calculated from the Doppler frequency detected by the second receiver 14B. And the velocity vector of, respectively.
  • step 404 the speed difference between the antennas is calculated. Specifically, the above-mentioned velocity vector differences DEdp and DNdp are calculated.
  • Step 406 is a posture angle calculation step executed by the posture angle calculation device 32, which is a posture angle calculation unit.
  • the azimuth angle ⁇ which is the posture angle of the moving body 20, is calculated.
  • the azimuth angle ⁇ may be calculated based on the velocity vector calculated in step 402, or may be calculated based on the azimuth detected by the magnetic sensor.
  • Step 408 is an angular velocity calculation step executed by the angular velocity calculation device 34, which is an angular velocity calculation unit.
  • the yaw rate ⁇ which is the angular velocity, is calculated.
  • the yaw rate ⁇ is calculated using a gyro sensor or an IMU.
  • Step 410 and step 412 are antenna-to-antenna relative position estimation steps executed by the antenna-to-antenna relative position estimation unit 36, which is the antenna-to-antenna relative position estimation unit.
  • equations (1), (2), and (3) are used to calculate F (L1, L2), which is the square of the difference between the speed difference A and the speed difference B.
  • step 412 the calculated F (L1, L2) is accumulated. Then, in step 414, the distances L1 and L2, which are relative positions between the antennas, are estimated from the minimum values of F (L1, L2), and the process ends.
  • the velocity calculated based on the velocity difference A between the antennas calculated from the Doppler frequency, the attitude angle (azimuth angle ⁇ ) and the angular velocity (yaw rate ⁇ ) of the moving body 20 is estimated, and the distances L1 and L2 are adopted as the relative positions between the antennas that improve the accuracy of code positioning.
  • the speed difference at each position of the first antenna 12A and the second antenna 12B is calculated by using the reception information of GNSS, the azimuth angle ⁇ of the moving body 20, and the yaw rate ⁇ are used.
  • the relative positional relationship between the antennas is estimated by comparing with the calculated value.
  • Such estimation can be handled by an existing general-purpose receiver, and when the antenna-to-antenna relative position estimation method and the antenna-to-antenna relative position estimation program according to the present embodiment are performed, the GNSS device mounted on the moving body 20 is used. No need to change hardware.
  • inter-antenna relative position estimation method and the inter-antenna relative position estimation program according to the present embodiment do not require any manual measurement in advance and can grasp the relative positional relationship between the antennas.
  • the relative positions between the two antennas of the first antenna 12A and the second antenna 12B have been estimated, but the relative positions between the three or more GNSS antennas are estimated by the same method as in the present embodiment. It is also possible to estimate.
  • the present embodiment is different from the first embodiment in that the reliability of the relative position between the antennas is determined, but the other configurations are the same as those of the first embodiment, so that is the first embodiment.
  • the same components as those in the above are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 5 is an example of a functional block diagram of the position estimation system 200 according to the present embodiment. As shown in FIG. 5, the position estimation system 200 according to the present embodiment is different from the first embodiment in that the position estimation device 40 includes the reliability determination unit 38.
  • the reliability determination unit 38 estimates that the absolute value of the residual between the velocity difference A and the velocity difference B, which are the square roots of F (L1, L2) calculated using the equation (3), is equal to or less than a predetermined threshold value.
  • a predetermined threshold value When the variances of the distances L1 and L2 in each time series are equal to or less than the predetermined variance threshold, it is determined that the distances L1 and L2, which are the estimated relative positions between the antennas, have high reliability.
  • the predetermined threshold value and the predetermined variance threshold value are specifically determined as an example through an experiment using an actual machine or the like.
  • FIG. 6 is a flowchart showing an example of processing for estimating the relative distance between antennas in the present embodiment.
  • steps 400 to 412 is the same as that of the first embodiment, detailed description thereof will be omitted.
  • step 414 the distances L1 and L2, which are the relative positions between the antennas, were estimated from the minimum values of F (L1, L2), but in the present embodiment, the speed difference A and the speed are estimated. All the samples in which the square root of F (L1, L2) which is the residual with the difference B is equal to or less than a predetermined threshold are extracted, and a plurality of distances L1 and L2 are used as measurement results using the extracted F (L1, L2). ..
  • Step 416 is a reliability determination step executed by the reliability determination unit 38.
  • the square root of F (L1, L2) which is the residual between the speed difference A and the speed difference B, is equal to or less than a predetermined threshold value, and the variance of the estimated distances L1 and L2 in each time series is predetermined. It is determined whether or not it is equal to or less than the variance threshold value of. If the square root of F (L1, L2) is below the predetermined threshold in step 414, the variance of the estimated distances L1 and L2 in each time series is below the predetermined variance threshold in step 416. It suffices to determine whether or not it is.
  • step 416 If the determination in step 416 is that the square root of F (L1, L2) is less than or equal to the predetermined threshold value and the variance of the estimated distances L1 and L2 in each time series is less than or equal to the predetermined variance threshold value, F.
  • the distances L1 and L2 estimated from the minimum values of (L1, L2) are adopted as relative positions between the antennas to improve the accuracy of code positioning, and the process is completed.
  • the determination in step 416 is that the square root of F (L1, L2) is not less than or equal to the predetermined threshold value, or the variance of the estimated distances L1 and L2 in each time series is not less than or equal to the predetermined variance threshold value, the procedure is performed. The process proceeds to step 400, and the process of estimating the relative position between the antennas is performed again.
  • the square root of F (L1, L2) which is the residual between the speed difference A and the speed difference B, is equal to or less than a predetermined threshold value, and the estimated distances L1 and L2.
  • the first embodiment is performed by extracting the minimum value of F (L1, L2) from the sample whose reliability is guaranteed and estimating the distances L1 and L2 which are the relative positions between the antennas from the minimum value.
  • the relative position between the antennas can be estimated with even higher accuracy.
  • a plurality of F (L1, L2) are calculated in time series, and L1 and L2 that minimize the F (L1, L2) are calculated to estimate the relative position between the antennas.
  • L1 and L2 may be calculated a plurality of times, and the average value and the minimum value may be used as the distance between the antennas, but L1 and L2 may be calculated only once and used as the distance between the antennas.
  • the position estimation device 10 is a control unit, and the control unit and its method described in the present disclosure are dedicated computers constituting a processor programmed to execute one or a plurality of functions embodied by a computer program. May be realized by.
  • the control unit and its method described in the present disclosure may be realized by a dedicated hardware logic circuit.
  • the control unit and its method described in the present disclosure may be realized by one or more dedicated computers configured by a combination of a processor that executes a computer program and one or more hardware logic circuits.
  • the hardware logic circuit is, for example, ASIC or FPGA.
  • the storage medium for storing the computer program is not limited to the ROM, and may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by the computer.
  • the above program may be stored in the flash memory.

Abstract

第1アンテナ(12A)及び第2アンテナ(12B)の各々と測位衛星とのドップラー効果による周波数の偏差を第1アンテナ(12A)及び第2アンテナ(12B)の各々が受信した測位情報から検出し、周波数の偏差に基づいてENU座標系における第1アンテナ(12A)と第2アンテナ(12B)との間の速度差(A)を算出し、移動体(20)の方位角(θ)を算出し、移動体(20)のヨーレート(ω)を算出し、方位角(θ)及びヨーレート(ω)に基づいて算出されるENU座標系における第1アンテナ(12A)と第2アンテナ(12B)との間の速度差(B)と、速度差(A)との差分に基づいて第1アンテナ(12A)及び第2アンテナ(12B)の相対位置を推定する。

Description

アンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラム 関連出願の相互参照
 本出願は、2019年7月10日に日本に出願された特許出願第2019-128392号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本開示は、GNSS(Global Navigation Satellite System)におけるアンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラムに関する。
 測位衛星(以下、「衛星」と略記)から発信される電波を測位情報として用いて位置推定を行うGNSSでは、高精度な測位を実現すべく、測位対象である車両等の移動体に複数のアンテナを備える場合がある。移動体に複数のアンテナを装備した場合、アンテナ間の相対位置を正確に把握することを要する。アンテナ間の相対位置が不正確であると、あるアンテナを用いた場合の測位結果と、他のアンテナを用いた場合の測位結果との整合性を担保できず、結果として、移動体の測位が不正確となる。
 移動体に複数のアンテナを装備する場合、移動体の製造時に当該移動体にアンテナを実装する際にアンテナ間の距離を含むアンテナ間の相対位置を予め測定することが考えられる。しかしながら、事前に人手でアンテナ間の相対位置を測定しておくことは、移動体の製造コストが嵩む原因となる。
 GNSS機器は、移動体の製造後に、販売店又は整備工場等で実装する場合があるが、複数のアンテナを装備する場合、人手でアンテナ間の相対位置を測定しておくことは、販売店及び整備工場等では困難であるという問題があった。
 特許文献1には、搬送波の位相に基づいて位置を推定する搬送波位相測位に基づき、2つのアンテナの相対位置を算出する計測装置及び計測方法が開示されている。
 特許文献2には、移動体の旋回時に生じる2つのアンテナ速度の差のベクトルを算出し、基準アンテナから半径Lの円周上で、前述のベクトル方向と一致する接線の接点が他方のアンテナ位置であるとして、2つのアンテナの相対位置を算出する移動体の横滑り計測装置が開示されている。
特開2013-170903号公報 特開2007-225408号公報
 特許文献1に記載の計測装置及び計測方法が採用する搬送波位相測位は処理が複雑であり、対応する受信機が必要となる。従って、4つ以上の衛星から観測された疑似距離に基づく測位方式である一般的なコード測位のみにしか対応していない既存の受信機では実現できないという問題があった。
 特許文献2に記載の横滑り計測装置は、搬送波位相測位ではなく、一般的なコード測位ベースの手法に基づいている。しかしながら、2つのアンテナが車両進行方向に一直線に並んでいない場合は、アンテナ同士のズレ角が事前に測定されていることを要するという問題があった。
 本開示は、上記問題に鑑みてなされたものであり、アンテナ間の相対位置を容易に推定できるアンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラムを実現することを目的とする。
 上記目的を達成するためのアンテナ間相対位置推定方法に係る1つの開示は、移動体に設けられ、複数の測位衛星から測位情報を受信する複数の受信アンテナの各々と測位衛星とのドップラー効果による周波数の偏差を複数の受信アンテナの各々が受信した測位情報から検出する周波数偏差検出工程と、周波数の偏差に基づいてENU座標系における複数の受信アンテナ間の第1速度差を算出する速度差算出工程と、移動体の姿勢角を算出する姿勢角算出工程と、移動体の角速度を算出する角速度算出工程と、姿勢角及び角速度に基づいて算出される、ENU座標系における複数の受信アンテナ間の第2速度差と、第1速度差との差分に基づいて複数の受信アンテナ間の相対位置を推定するアンテナ間相対位置推定工程と、を備えるアンテナ間相対位置推定方法である。
 また、上記目的を達成するためのアンテナ間相対位置推定装置に係る1つの開示は、移動体に設けられ、複数の測位衛星から測位情報を受信する複数の受信アンテナの各々と測位衛星とのドップラー効果による周波数の偏差を複数の受信アンテナの各々が受信した測位情報から検出する周波数偏差検出部と、周波数の偏差に基づいてENU座標系における複数の受信アンテナ間の第1速度差を算出する速度差算出部と、移動体の姿勢角を算出する姿勢角算出部と、移動体の角速度を算出する角速度算出部と、姿勢角及び角速度に基づいて算出される、ENU座標系における複数の受信アンテナ間の第2速度差と、第1速度差との差分に基づいて複数の受信アンテナ間の相対位置を推定するアンテナ間相対位置推定部と、を備えるアンテナ間相対位置推定装置である。
 上記目的を達成するためのアンテナ間相対位置推定プログラムに係る1つの開示は、コンピュータを、移動体に設けられ、複数の測位衛星から測位情報を受信する複数の受信アンテナの各々と測位衛星とのドップラー効果による周波数の偏差を複数の受信アンテナの各々が受信した測位情報から検出する周波数偏差検出部、周波数の偏差に基づいてENU座標系における複数の受信アンテナ間の第1速度差を算出する速度差算出部、移動体の姿勢角を算出する姿勢角算出部、移動体の角速度を算出する角速度算出部、及び姿勢角及び角速度に基づいて算出される、ENU座標系における複数の受信アンテナ間の第2速度差と、第1速度差との差分に基づいて複数の受信アンテナ間の相対位置を推定するアンテナ間相対位置推定部として機能させるプログラムである。
 本開示によれば、アンテナ間の相対位置を容易に推定できるアンテナ間相対位置推定方法及びアンテナ間相対位置推定プログラムを実現することができるという効果を奏する。
第1の実施の形態に係る位置推定システムを備えた移動体の一例を示したブロック図である。 第1の実施の形態に係る位置推定システムの機能ブロック図の一例である。 第1の実施の形態に係るアンテナ間相対位置推定の説明図である。 第1の実施の形態におけるアンテナ間相対距離推定の処理の一例を示したフローチャートである。 第2の実施の形態に係る位置推定システムの機能ブロック図の一例である。 第2の実施の形態におけるアンテナ間相対距離推定の処理の一例を示したフローチャートである。
 [第1の実施の形態]
 以下、図面を参照して実施の形態に係るアンテナ間相対位置推定方法及びアンテナ間相対位置推定プログラムを用いた位置推定システム100を詳細に説明する。図1は、本実施の形態に係る位置推定システム100を備えた移動体20の一例を示したブロック図である。
 移動体20は、衛星からの測位情報である電波を各々受信する第1アンテナ12A及び第1受信機14A並びに第2アンテナ12B及び第2受信機14Bを備え、さらに第1受信機14Aと第2受信機14Bとの各々から得た情報に基づいて第1アンテナ12Aと第2アンテナ12Bアンテナとの相対位置を推定すると共に、移動体20の位置推定を行う移動体の20の位置を推定する位置推定装置10を備えている。第1アンテナ12Aと第2アンテナ12Bは受信アンテナであり、本実施の形態では、GNSSによる位置推定の詳細な説明は省略し、第1アンテナ12Aと第2アンテナ12Bアンテナとの相対位置の推定について説明する。
 図1に示したように、第1アンテナ12A及び第2アンテナ12Bアンテナは、移動体20の前後方向の距離L1と、移動体20の幅方向の距離L2とで隔てられている。本実施の形態では、かかる距離L1、L2を、移動体20の進行方向及び幅方向を軸とする平面上での第1アンテナ12Aと第2アンテナ12Bアンテナとの相対位置とする。上記平面は、換言すれば、距離L1を示す線分および距離L2を示す線分を含む平面である。また、距離L1を示す線分および距離L2を示す線分は、同一平面上において互いに直交する。
 第1受信機14A及び第2受信機14Bの各々は、周波数偏差検出部であり、第1アンテナ12A及び第2アンテナ12Bの各々が衛星から受信した電波のドップラー周波数を検出する回路である。ドップラー周波数は、衛星が送信した電波の搬送波の周波数と、第1アンテナ12A及び第2アンテナ12Bの各々が衛星から受信した電波の搬送波の周波数の差である。GNSSの衛星は絶えず動いているため、第1アンテナ12A及び第2アンテナ12Bの各々が受信した電波はドップラー効果により周波数が変動する。第1受信機14A及び第2受信機14Bの各々は、ドップラー効果によって生じた周波数の偏差であるドップラー周波数を検出する。
 位置推定装置10は、一種のコンピュータであり、記憶装置等に記憶されたプログラムに基づいて、アンテナ間の相対位置を推定すると共に、移動体20の位置推定を行う。位置推定装置10は、アンテナ間の相対位置を推定するので、アンテナ間相対位置推定装置に相当する。
 位置推定装置10は、後述するように、移動体20が走行中に、第1受信機14A及び第2受信機14Bの各々が検出したドップラー周波数から第1アンテナ12A及び第2アンテナ12Bの速度差(以下、「速度差A」と呼称)を算出すると共に、IMU(Inertial Measurement Unit:慣性計測装置)等で検出した移動体20の姿勢角(方位角)及び移動体20の角速度(ヨーレート)に基づいて算出される、第1アンテナ12A及び第2アンテナ12Bの速度差(以下、「速度差B」と呼称)と、速度差Aとの差分が最小となる距離L1、L2を推定する。なお、速度差Aは第1速度差に相当し、速度差Bは第2速度差に相当する。
 ドップラー周波数に基づいた速度ベクトルの算出は、疑似距離に基づいた位置の算出に比べてマルチパスの影響を受けにくいので、基本的には、速度差Aは高精度で算出されると期待される。一方、方位角及びヨーレートに基づいて得られる速度差Bは、方位推定誤差及びヨーレート推定誤差等が必ずしも小さくないので、上記の速度差Aほど毎回高精度に得られるとは限らない。また、速度差Bは、後述するように、未知数(L1、L2)を含んだ変数として得られる。一方で速度差Aは、上記未知数を含まず、数値を算出することができる。そして、速度差Aと速度差Bは同じはずである。したがって、速度差A=速度差Bと考えることで、未知数(L1、L2)を求めることができる。
 加えて、速度差Aは、上述のように高精度が期待される値が得られる。本実施の形態では、速度差Aと速度差Bとを比較し、両者の差分を最小にするL1、L2を推定することにより、L1、L2を高精度で推定することが可能となる。しかしながら、上述のように速度差Bには誤差が含まれる可能性が高いので、信頼判定等の処理を行って、L1、L2の推定結果の精度を高めることが好ましい。
 図2は、本実施の形態に係る位置推定システム100の機能ブロック図の一例である。図2に示したように、位置推定装置10は、第1アンテナ12Aが受信した電波から第1受信機14Aが検出したドップラー周波数と、第2アンテナ12Bが受信した電波から第2受信機14Bが検出したドップラー周波数とを用い、下記の文献等に記載された方法により、速度差Aを算出するアンテナ速度差算出部30を備えている。
 Y. Kojima, "Proposal for a new localization method using tightly coupled integration based on a precise estimation of trajectory from GPS Doppler" , Proceedings of AVEC2010, Loughborough UK, 2010
 また、位置推定装置10は、移動体20の姿勢角である方位角θを算出する姿勢角算出装置32と、移動体20のヨーレートωを算出する角速度算出装置34とを備えている。姿勢角算出装置32は、一例として、磁気センサの検出値又は後述する第1アンテナ12A又は第2アンテナ12Bの各々の速度ベクトルに基づいて方位角θを算出する。角速度算出装置34は、一例として、ジャイロセンサの検出値からヨーレートωを算出する。また、角速度算出装置34は、前述のIMU等であってもよい。
 位置推定装置10は、姿勢角算出装置32が算出した方位角θと、角速度算出装置34が算出したヨーレートωに基づいて算出される速度差Bと、アンテナ速度差算出部30が算出した速度差Aとの差分に基づいて第1アンテナ12Aと第2アンテナ12Bとの相対位置を推定するアンテナ間相対位置推定部36を備えている。
 図3は、本実施の形態に係るアンテナ間相対位置推定の説明図である。図3に示した矢印Eは東、すなわちENU座標系での経度方向を、矢印Nは北、すなわちENU座標系で緯度方向を各々示している。本実施の形態では、第1アンテナ12Aの速度ベクトル及び第2アンテナ12Bの速度ベクトルは、ENU座標系での速度ベクトルとして定義する。
 図3に示したように、第1アンテナ12Aと第2アンテナ12Bとの移動体20の進行方向における速度差は、距離L2とヨーレートωとの積で与えられる。また、第1アンテナ12Aと第2アンテナ12Bとの移動体20の横方向における速度差は、距離L1とヨーレートωとの積で与えられる。この理由は次の通りである。移動体20は、剛体であるとみなすことができ、剛体内の各点の速度は、剛体内の任意の基準点の速度と、その基準点を中心とした回転運動で表現できる。したがって、剛体内の任意の2点の速度差を算出する場合、基準点の速度差は相殺され、2点の回転速度の差のみが残る。そして、2点の回転速度の差は、剛体の回転速度と2点の距離の差により表現できる。したがって、上記速度差すなわち速度差Bは、距離L1あるいは距離L2とヨーレートωの積で与えられるのである。
 また、ヨーレートω及び方位角θに基づくE方向の速度ベクトル差DEYは、下記の式(1)で算出される。
 DEY=L1×ω×cosθ+L2×ω×sinθ    …(1)
 ヨーレートω及び方位角θに基づくN方向の速度ベクトル差DNYは、下記の式(2)で算出される。
 DNY=-1×L1×ω×sinθ+L2×ω×cosθ …(2)
 ここで、GNSSドップラーに基づくE方向の速度ベクトル差をDEdp、GNSSドップラーに基づくN方向の速度ベクトル差をDNdpとする。
 速度ベクトル差DEdpは、第1アンテナ12Aで受信した電波から第1受信機14Aが検出したドップラー周波数から算出した第1アンテナ12AのE方向の速度ベクトルと、第2アンテナ12Bで受信した電波から第2受信機14Bが検出したドップラー周波数から算出した第2アンテナ12BのE方向の速度ベクトルとの差である。
 また、速度ベクトル差DNdpは、第1アンテナ12Aで受信した電波から第1受信機14Aが検出したドップラー周波数から算出した第1アンテナ12AのN方向の速度ベクトルと、第2アンテナ12Bで受信した電波から第2受信機14Bが検出したドップラー周波数から算出した第2アンテナ12BのN方向の速度ベクトルとの差である。
  ドップラー周波数からN方向の速度ベクトルを算出する方法は、以下の通りである。ドップラー周波数は、衛星と移動体20の相対速度により変化する。換言すれば、ドップラー周波数から、衛星と移動体20の相対速度を算出できる。また、衛星からの測位情報をもとに、逐次、移動体20の位置を推定しており、移動体20の位置を推定する際に、衛星の位置も推定できる。移動体20の位置と衛星の位置から、移動体20から見た衛星の相対方位が得られる。移動体20から見た衛星の相対方位と、衛星と移動体20の相対速度が分かれば、相対速度の種々の方向成分の速度、すなわち、方向ベクトルを求めることができる。
 また、角速度算出装置34は、第1アンテナ12A又は第2アンテナ12Bの各々の速度ベクトルに基づいて方位角θを算出すると前述したが、方位角θは、第1アンテナ12AのE方向の速度ベクトル(又は第2アンテナ12BのE方向の速度ベクトル)と、第1アンテナ12AのN方向の速度ベクトル(又は第2アンテナ12BのN方向の速度ベクトル)との合成ベクトルから算出できる。
 上述の速度ベクトル差DEY、DNY、DEdp、DNdpにより、速度差Aと速度差Bとの差分の二乗として下記の式(3)が定義できる。
 F(L1,L2)=(DEdp-DEY2+(DNdp-DNY2  …(3)
 本実施の形態では、式(3)で表される、速度差Aと速度差Bとの差分の二乗であるF(L1,L2)を算出する。E方向、N方向の速度ベクトル差DEY、DNYには、第1アンテナ12Aと第2アンテナ12Bとの距離L1、L2が含まれるため、算出されたF(L1,L2)にも、第1アンテナ12Aと第2アンテナ12Bとの距離L1、L2が含まれる。
 F(L1,L2)の算出は、時系列で複数回行い、算出したF(L1,L2)はメモリ等の記憶装置に蓄積する。そして、蓄積した複数のF(L1,L2)からF(L1,L2)を最小にする距離L1、L2を推定する。F(L1,L2)の最小値の抽出には種々の手法が考えられるが、本実施の形態では、一例として、最小二乗法を用いる。このとき、第1アンテナ12Aと第2アンテナ12Bとのおおよその距離が分かる場合には、距離L1,L2の仮の値として用いてもよい。
 図4は、本実施の形態におけるアンテナ間相対距離推定の処理の一例を示したフローチャートである。ステップ400は周波数偏差検出部である第1受信機14A、第2受信機14Bが実行する周波数偏差検出工程である。ステップ400では、第1受信機14A及び第2受信機14Bの各々で、衛星から受信した電波からドップラー周波数を検出する。
 ステップ402とステップ404は速度差算出部であるアンテナ速度差算出部30が実行する速度差算出工程である。ステップ402では、第1アンテナ12A及び第2アンテナ12Bの各々の位置でのENU座標系における速度ベクトルを算出する。具体的には、第1受信機14Aが検出したドップラー周波数から算出した第1アンテナ12AのE方向の速度ベクトルと、第2受信機14Bが検出したドップラー周波数から算出した第2アンテナ12BのE方向の速度ベクトルと、第1受信機14Aが検出したドップラー周波数から算出した第1アンテナ12AのN方向の速度ベクトルと、第2受信機14Bが検出したドップラー周波数から算出した第2アンテナ12BのN方向の速度ベクトルと、を各々算出する。
 ステップ404では、アンテナ間の速度差を算出する。具体的には、前述の速度ベクトル差DEdp、DNdpを算出する。
 ステップ406は姿勢角算出部である姿勢角算出装置32が実行する姿勢角算出工程である。ステップ406では、移動体20の姿勢角である方位角θを算出する。方位角θは、ステップ402で算出した速度ベクトルに基づいて算出してもよいし、磁気センサで検出した方位に基づいて算出してもよい。
 ステップ408は角速度算出部である角速度算出装置34が実行する角速度算出工程である。ステップ408では、角速度であるヨーレートωを算出する。ヨーレートωはジャイロセンサ又はIMUを用いて算出する。
 ステップ410とステップ412はアンテナ間相対位置推定部であるアンテナ間相対位置推定部36が実行するアンテナ間相対位置推定工程である。ステップ410では、式(1)、(2)、(3)を用いて、速度差Aと速度差Bとの差分の二乗であるF(L1,L2)を算出する。
 ステップ412では、算出したF(L1,L2)を蓄積する。そして、ステップ414では、F(L1,L2)の最小値から、アンテナ間の相対位置である距離L1、L2を推定して処理を終了する。
 以上説明したように、本実施の形態によれば、ドップラー周波数から算出したアンテナ間の速度差Aと、移動体20の姿勢角(方位角θ)及び角速度(ヨーレートω)に基づいて算出した速度差Bとの差分が最小となる距離L1、L2を推定し、当該距離L1、L2をコード測位の精度が良好になるアンテナ間の相対位置として採用する。
 本実施の形態では、第1アンテナ12A及び第2アンテナ12Bの各々の位置での速度差を、GNSSの受信情報を用いて算出した値と、移動体20の方位角θ、ヨーレートωを用いて算出した値とを比較することで、アンテナ間の相対位置関係を推定する。かかる推定においては、既存の汎用の受信機で対応可能であり、本実施の形態に係るアンテナ間相対位置推定方法及びアンテナ間相対位置推定プログラムを行うに際し、移動体20に装備されたGNSS機器のハードウェアを変更することを要しない。
 また、本実施の形態に係るアンテナ間相対位置推定方法及びアンテナ間相対位置推定プログラムは、事前に人手による測定が全く不要で、アンテナ間の相対位置関係を把握することができる。
 本実施の形態では、第1アンテナ12A及び第2アンテナ12Bの2つのアンテナ間の相対位置を推定したが、本実施の形態と同様の手法により、3つ以上の複数のGNSSアンテナ間の相対位置を推定することも可能である。
 [第2の実施の形態]
 続いて第2の実施の形態について説明する。本実施の形態は、アンテナ間の相対位置の信頼度を判定する点で第1の実施の形態と異なるが、その他の構成については第1の実施の形態と同一なので、第1の実施の形態と同一の構成については同一の符号を付して詳細な説明は省略する。
 図5は、本実施の形態に係る位置推定システム200の機能ブロック図の一例である。図5に示したように、本実施の形態に係る位置推定システム200は、位置推定装置40が信頼度判定部38を備える点で、第1の実施の形態と相違する。
 信頼度判定部38は、式(3)を用いて算出したF(L1,L2)の平方根である速度差Aと速度差Bとの残差の絶対値が所定の閾値以下であり、かつ推定した距離L1、L2の各々の時系列での分散が所定の分散閾値以下の場合に、推定したアンテナ間の相対位置である距離L1、L2は信頼度が高いと判定する。
 所定の閾値及び所定の分散閾値は、一例として、実機を用いた実験等を通じて具体的に決定する。
 図6は、本実施の形態におけるアンテナ間相対距離推定の処理の一例を示したフローチャートである。図6に示した処理は、ステップ400~412の手順は、第1の実施の形態と同一なので、詳細な説明は省略する。
 第1の実施の形態では、ステップ414で、F(L1,L2)の最小値から、アンテナ間の相対位置である距離L1、L2を推定したが、本実施の形態では、速度差Aと速度差Bとの残差であるF(L1,L2)の平方根が所定の閾値以下のサンプルを全て抽出し、抽出したF(L1,L2)を用いて複数の距離L1、L2を測定結果とする。
 ステップ416は信頼度判定部38が実行する信頼度判定工程である。ステップ416では、速度差Aと速度差Bとの残差であるF(L1,L2)の平方根が所定の閾値以下であり、かつ推定した距離L1、L2の各々の時系列での分散が所定の分散閾値以下であるか否かを判定する。ステップ414でF(L1,L2)の平方根が所定の閾値以下のサンプルを抽出しているのであれば、ステップ416では推定した距離L1、L2の各々の時系列での分散が所定の分散閾値以下であるか否かを判定すれば足りる。ステップ416での判定が、F(L1,L2)の平方根が所定の閾値以下であり、かつ推定した距離L1、L2の各々の時系列での分散が所定の分散閾値以下である場合は、F(L1,L2)の最小値から推定した距離L1、L2をコード測位の精度が良好になるアンテナ間の相対位置として採用して処理を終了する。ステップ416での判定が、F(L1,L2)の平方根が所定の閾値以下でない、又は推定した距離L1、L2の各々の時系列での分散が所定の分散閾値以下ではない場合は、手順をステップ400に移行して、アンテナ間の相対位置の推定処理を再度行う。
 以上説明したように、本実施の形態によれば、速度差Aと速度差Bとの残差であるF(L1,L2)の平方根が所定の閾値以下であり、かつ推定した距離L1、L2の各々の時系列での分散が所定の分散閾値以下であることを判定することにより、推定したアンテナ間の相対位置の複数の値が、所定の範囲に収束していることを担保でき、測定値の精度を向上できる。
 また、信頼度が担保されたサンプルからF(L1,L2)の最小値を抽出し、当該最小値からアンテナ間の相対位置である距離L1、L2を推定することにより、第1の実施の形態よりもさらに高精度でアンテナ間の相対位置を推定できる。
 [第3の実施の形態]
 第1の実施形態では、F(L1,L2)を時系列で複数算出して、そのF(L1,L2)を最小にするL1、L2を算出することで、アンテナ間の相対位置を推定していた。しかし、DEY=DEdpと、DNY=DNdpの連立方程式を解いて、距離L1、L2を算出してもよい。この場合、複数回、L1、L2を算出し、平均値や最小値を、アンテナ間の距離としてもよいが、1回のみL1、L2を算出し、それをアンテナ間の距離としてもよい。
 [その他の実施の形態]
 位置推定装置10は制御部であり、本開示に記載の制御部およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部およびその手法は、専用ハードウエア論理回路により、実現されてもよい。もしくは、本開示に記載の制御部およびその手法は、コンピュータプログラムを実行するプロセッサと一つ以上のハードウエア論理回路との組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。ハードウエア論理回路は、たとえば、ASIC、FPGAである。
 また、コンピュータプログラムを記憶する記憶媒体はROMに限られず、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていればよい。たとえば、フラッシュメモリに上記プログラムが記憶されていてもよい。

Claims (6)

  1.  移動体(20)に設けられ、複数の測位衛星から測位情報を受信する複数の受信アンテナ(12A、12B)の各々と測位衛星とのドップラー効果による周波数の偏差を複数の前記受信アンテナの各々が受信した前記測位情報から検出する周波数偏差検出工程(400)と、
     前記周波数の偏差に基づいてENU座標系における複数の前記受信アンテナ間の第1速度差を算出する速度差算出工程(402、404)と、
     前記移動体の姿勢角(θ)を算出する姿勢角算出工程(406)と、
     前記移動体の角速度(ω)を算出する角速度算出工程(408)と、
     前記姿勢角及び前記角速度に基づいて算出される、前記ENU座標系における複数の前記受信アンテナ間の第2速度差と、前記第1速度差との差分に基づいて複数の前記受信アンテナ間の相対位置を推定するアンテナ間相対位置推定工程(410、412)と、
     を備えるアンテナ間相対位置推定方法。
  2.  前記アンテナ間相対位置推定工程は、前記周波数偏差検出工程と前記速度差算出工程と前記姿勢角算出工程と前記角速度算出工程とを備える一連の工程を時系列で複数回実行して得た複数の前記第1速度差と前記第2速度差との各々の差分の最小値に基づいて複数の前記受信アンテナ間の相対位置を推定する請求項1に記載のアンテナ間相対位置推定方法。
  3.  前記アンテナ間相対位置推定工程は、最小二乗法を用いて前記第1速度差と前記第2速度差との各々の差分の最小値を抽出する請求項2に記載のアンテナ間相対位置推定方法。
  4.  前記第1速度差と前記第2速度差との各々の差分の絶対値が所定の閾値以下であり、かつ前記アンテナ間相対位置推定工程において時系列で推定したアンテナ間の相対位置を示す各々の値の分散値が所定の分散閾値以下の場合に前記アンテナ間相対位置推定工程で推定された複数の前記受信アンテナ間の相対位置を示す値の信頼度が高いと判定する信頼度判定工程(416)を含む請求項2に記載のアンテナ間相対位置推定方法。
  5.  移動体(20)に設けられ、複数の測位衛星から測位情報を受信する複数の受信アンテナ(12A、12B)の各々と測位衛星とのドップラー効果による周波数の偏差を複数の前記受信アンテナの各々が受信した前記測位情報から検出する周波数偏差検出部(14A、14B)と、
     前記周波数の偏差に基づいてENU座標系における複数の前記受信アンテナ間の第1速度差を算出する速度差算出部(30)と、
     前記移動体の姿勢角(θ)を算出する姿勢角算出部(32)と、
     前記移動体の角速度(ω)を算出する角速度算出部(34)と、
     前記姿勢角及び前記角速度に基づいて算出される、前記ENU座標系における複数の前記受信アンテナ間の第2速度差と、前記第1速度差との差分に基づいて複数の前記受信アンテナ間の相対位置を推定するアンテナ間相対位置推定部(36)と、
     を備えるアンテナ間相対位置推定装置。
  6.  コンピュータを、
     移動体に設けられ、複数の測位衛星から測位情報を受信する複数の受信アンテナの各々と測位衛星とのドップラー効果による周波数の偏差を複数の前記受信アンテナの各々が受信した前記測位情報から検出する周波数偏差検出部、前記周波数の偏差に基づいてENU座標系における複数の前記受信アンテナ間の第1速度差を算出する速度差算出部、前記移動体の姿勢角を算出する姿勢角算出部、前記移動体の角速度を算出する角速度算出部、及び前記姿勢角及び前記角速度に基づいて算出される、前記ENU座標系における複数の前記受信アンテナ間の第2速度差と、前記第1速度差との差分に基づいて複数の前記受信アンテナ間の相対位置を推定するアンテナ間相対位置推定部として機能させるアンテナ間相対位置推定プログラム。
PCT/JP2020/026406 2019-07-10 2020-07-06 アンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラム WO2021006243A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-128392 2019-07-10
JP2019128392A JP7140443B2 (ja) 2019-07-10 2019-07-10 アンテナ間相対位置推定方法及びアンテナ間相対位置推定プログラム

Publications (1)

Publication Number Publication Date
WO2021006243A1 true WO2021006243A1 (ja) 2021-01-14

Family

ID=74114185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026406 WO2021006243A1 (ja) 2019-07-10 2020-07-06 アンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラム

Country Status (2)

Country Link
JP (1) JP7140443B2 (ja)
WO (1) WO2021006243A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250646B (zh) * 2023-11-17 2024-02-02 毫厘智能科技(江苏)有限公司 基于芯片的测向方法及装置、芯片模组及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149512A1 (en) * 2002-02-05 2003-08-07 Ford Motor Company Vehicle dynamics measuring apparatus and method using multiple GPS antennas
JP2004045385A (ja) * 2002-05-16 2004-02-12 Furuno Electric Co Ltd 移動体の姿勢検出装置
JP2007225408A (ja) * 2006-02-23 2007-09-06 Vios System:Kk 移動体の横滑り計測装置
JP2013170903A (ja) * 2012-02-20 2013-09-02 Ono Sokki Co Ltd 計測装置及び計測方法
JP2013228318A (ja) * 2012-04-26 2013-11-07 Ono Sokki Co Ltd キャリブレーション良否判定装置及び方法
JP2020085650A (ja) * 2018-11-26 2020-06-04 株式会社豊田中央研究所 測位装置、速度測定装置、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149512A1 (en) * 2002-02-05 2003-08-07 Ford Motor Company Vehicle dynamics measuring apparatus and method using multiple GPS antennas
JP2004045385A (ja) * 2002-05-16 2004-02-12 Furuno Electric Co Ltd 移動体の姿勢検出装置
JP2007225408A (ja) * 2006-02-23 2007-09-06 Vios System:Kk 移動体の横滑り計測装置
JP2013170903A (ja) * 2012-02-20 2013-09-02 Ono Sokki Co Ltd 計測装置及び計測方法
JP2013228318A (ja) * 2012-04-26 2013-11-07 Ono Sokki Co Ltd キャリブレーション良否判定装置及び方法
JP2020085650A (ja) * 2018-11-26 2020-06-04 株式会社豊田中央研究所 測位装置、速度測定装置、及びプログラム

Also Published As

Publication number Publication date
JP2021015002A (ja) 2021-02-12
JP7140443B2 (ja) 2022-09-21

Similar Documents

Publication Publication Date Title
JP5301762B2 (ja) キャリア位相相対測位装置
KR101535873B1 (ko) 위성측위시스템과 추측 항법을 융합한 차량 위치 추정 시스템 및 방법
JP4037131B2 (ja) 挙動計測装置
US7355549B2 (en) Apparatus and method for carrier phase-based relative positioning
US10514469B2 (en) Attitude angle calculating device, method of calculating attitude angle, and attitude angle calculating program
US20170350988A1 (en) State calculating device, method of calculating state, and state calculating program
JP6201762B2 (ja) 速度推定装置
US10809390B2 (en) Positioning apparatus
CA2806124C (en) A system and method of determining an unambiguous heading direction of a vehicle
JP5022747B2 (ja) 移動体の姿勢及び方位検出装置
JP2010256301A (ja) マルチパス判定装置及びプログラム
WO2021006243A1 (ja) アンテナ間相対位置推定方法、アンテナ間相対位置推定装置及びアンテナ間相対位置推定プログラム
US8890747B2 (en) Longitudinal and lateral velocity estimation using single antenna GPS and magnetic compass
JP2012098185A (ja) 方位角推定装置及びプログラム
WO2020149014A1 (ja) 衛星選択装置、及びプログラム
JP5180447B2 (ja) キャリア位相相対測位装置及び方法
US9086482B2 (en) Method for determining the navigation speed of a carrier and hybridization device
WO2018135187A1 (ja) 方位角算出装置、方位角算出方法、および方位角算出プログラム
WO2020110996A1 (ja) 測位装置、速度測定装置、及びプログラム
CN108351420B (zh) 用于在惯性测量单元的静态对准期间检测寄生移动的方法、以及相关的检测设备
JP6732926B2 (ja) 方位算出装置、方位算出方法、および方位算出プログラム
CN110869808B (zh) 方位推定装置
EP4336145A1 (en) Method and system for determining initial heading angle
KR20000014357A (ko) 다중 안테나를 이용한 도시형 차량 항법 시스템
JP2015135305A (ja) ナビゲーション装置、測位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837006

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837006

Country of ref document: EP

Kind code of ref document: A1