WO2018133558A1 - 减振降噪装置和船舶柴油机推进动力模块系统 - Google Patents

减振降噪装置和船舶柴油机推进动力模块系统 Download PDF

Info

Publication number
WO2018133558A1
WO2018133558A1 PCT/CN2017/113949 CN2017113949W WO2018133558A1 WO 2018133558 A1 WO2018133558 A1 WO 2018133558A1 CN 2017113949 W CN2017113949 W CN 2017113949W WO 2018133558 A1 WO2018133558 A1 WO 2018133558A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
damping
damping element
diesel engine
noise
Prior art date
Application number
PCT/CN2017/113949
Other languages
English (en)
French (fr)
Inventor
孙伟
童宗鹏
朱奎
刘晓良
周晓洁
侯天柱
张子建
赵同宾
曾宪友
Original Assignee
上海船用柴油机研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海船用柴油机研究所 filed Critical 上海船用柴油机研究所
Priority to AU2017394428A priority Critical patent/AU2017394428B2/en
Priority to JP2019540000A priority patent/JP6832439B2/ja
Priority to EP17892480.9A priority patent/EP3572689A4/en
Publication of WO2018133558A1 publication Critical patent/WO2018133558A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H23/06Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from a single propulsion power unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/30Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
    • B63H21/305Mounting of propulsion plant or unit, e.g. for anti-vibration purposes with passive vibration damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/028Gearboxes; Mounting gearing therein characterised by means for reducing vibration or noise

Definitions

  • the invention relates to the field of vibration and noise reduction of a marine propulsion device, in particular to a vibration and noise reduction device and a marine diesel propulsion power module system.
  • the marine diesel engine is the main vibration noise source of the propulsion power module, and the diesel engine is a reciprocating machine, and the vibration noise source generated by the diesel engine has a strong order characteristic.
  • the gearbox is also one of the vibration sources of the diesel propulsion power module.
  • the rigid common base of the diesel engine which accounts for a large proportion, will be weakened or cancelled when solving the urgent weight and space problems, thereby increasing the vibration and noise reduction of the propulsion power module. Design difficulty.
  • a standardized and serialized diesel propulsion power module is provided for the overall design of the ship to meet the fast and accurate design goals of the marine diesel propulsion power module.
  • the present invention discloses a vibration damping and noise reduction device for a marine diesel propulsion power module, the power module comprising: a diesel engine and a transmission connection with the diesel engine a connected gear box; wherein the vibration and noise reduction device can meet the requirements of the four-stage grading system for vibration and noise reduction of the propulsion power module, wherein the vibration reduction
  • the noise reduction device includes: a first vibration reduction noise reduction structure on the diesel engine side, the first vibration reduction noise reduction structure includes: a first vibration damping element, the first vibration damping element is connected to the diesel engine from below; a first body, the first body is connected to the first damping element from below; a second damping element, the second damping element is connected to the first body from below; a first mounting base a first mounting base fixedly coupled to the ground, the second damping element being mounted to the first mounting base: a second vibration damping structure on the gearbox side, the second damping
  • the noise reduction structure includes: a first vibration reduction noise reduction structure on the diesel engine side, the first vibration reduction
  • the vehicle has the capability of conducting a plurality of tests of the marine diesel propulsion power module, including the diesel engine, the transmission equipment, the control strategy, and the reduction in the marine diesel propulsion power module.
  • the experimental research and verification of vibration and noise reduction can improve the versatility, replaceability, installation convenience and reliability of marine diesel propulsion power modules of the same series or the same power level in real ship applications.
  • the first damping element in the first vibration-damping and noise-reducing structure is a vibration isolator, the first body is a pure steel body, and the second damping element is a rigid block;
  • the third damping element in the second vibration damping structure is a hard elastic vibration isolator, the second body is a pure steel body, and the fourth damping element is a rigid block.
  • the first damping element in the first vibration-damping and noise-reducing structure is a vibration isolator
  • the first body is a pure steel body
  • the second damping element is a vibration isolator
  • the third damping element in the second vibration damping structure is a hard elastic vibration isolator
  • the second body is a pure steel body
  • the fourth damping element is a rigid block.
  • the first damping element in the first vibration-damping and noise-reducing structure is a vibration isolator
  • the first body is a body formed by casting a polymer material
  • the second damping element is a vibration isolator
  • the third damping element in the second vibration-damping and noise-reducing structure is a hard elastic isolators
  • the second body is a body partially formed by a polymer material
  • the fourth The damping element is a vibration isolator.
  • the first damping element in the first vibration-damping and noise-reducing structure is a vibration isolator
  • the first body is a body formed by casting a polymer material
  • the second damping element is a vibration isolator, and further comprising an acoustic enclosure, the acoustic enclosure and the first body forming a box body, the box loading
  • the body is configured to arrange the diesel engine and the first vibration-damping structure; wherein the third damping element in the second vibration-damping structure is a hard elastic isolators, and the second body
  • the body is partially formed by the polymer material, and the fourth damping element is a vibration isolator.
  • the diesel engine is a marine high speed diesel engine or a marine medium speed diesel engine.
  • the invention also discloses a marine diesel propulsion power module system.
  • the marine diesel propulsion power module system includes a power module.
  • the power module includes a diesel engine and a gearbox coupled to the diesel engine via a transmission connection.
  • the vibration damping and noise reduction device is any one of the above vibration damping and noise reduction devices.
  • the diesel engine is a marine high speed diesel engine or a marine medium speed diesel engine.
  • Figure 1 is a side elevational view of a first embodiment of a vibration and noise reduction device in accordance with the present invention
  • Figure 2 is a side elevational view of a second embodiment of a vibration and noise reduction device in accordance with the present invention.
  • Figure 3 is a side elevational view of a third embodiment of a vibration and noise reduction device in accordance with the present invention.
  • Figure 4 is a side elevational view of a fourth embodiment of a vibration and noise reduction device in accordance with the present invention.
  • a marine diesel propulsion power module is provided. As shown in Figures 1-4, the marine diesel propulsion power module includes the following components:
  • the first is the diesel engine 1.
  • the diesel engine 1 is connected to the gearbox 2 via a transmission connection, so that power output is achieved through the gearbox 2.
  • the diesel engine 1 is a four-stroke marine high speed diesel engine, and of course a four-stroke marine medium speed diesel engine can also be applied to the present invention.
  • a high-elastic coupling and a clutch are respectively arranged between the diesel engine 1 and the gear box 2.
  • the output of the gearbox 2 is optionally connected to the power consuming device via a high-elastic coupling.
  • the ship diesel engine propulsion power module can be classified by vibration and noise reduction.
  • the vibration damping and noise reduction grading system of the marine diesel propulsion power module is mainly composed of vibration grading and noise grading.
  • the vibration is divided into four levels.
  • the four-level grading system for vibration and noise reduction in the present invention includes:
  • the first level In order to meet the general application requirements of the general ship for vibration and noise reduction requirements, for example, a single-layer vibration isolation method can be used to reduce the structural noise of the diesel propulsion power module, achieving a vibration level drop of 15-25 dB.
  • Second stage In order to meet the regional application requirements with high requirements for vibration and noise reduction, for example, single-layer vibration isolation plus damping treatment or double-layer vibration isolation can be used to reduce the structural noise of the diesel propulsion power module and achieve a vibration level drop of 25- 35dB.
  • the third level In order to meet the regional application requirements with high requirements for vibration and noise reduction, the double-layer vibration isolation method can be used to reduce the structural noise of the diesel propulsion power module, achieving a vibration level drop of 35-45 dB.
  • the fourth stage in order to meet the regional application requirements of extremely high requirements for vibration and noise reduction, for example, a double-layer vibration isolation and damping treatment method can be used to reduce the structural noise of the diesel propulsion power module, and Sound design, the vibration level drop is greater than 45dB, and the sound insulation index is 20-30dB (A).
  • the diesel engine 1 is arranged in a vibration-isolating manner, and the gear box 2 is arranged in a manner of hard elastic vibration isolation.
  • Figures 1-4 four examples in accordance with the present invention are illustrated in Figures 1-4:
  • the power module comprises: a diesel engine 1; and a gearbox 2 connected to the diesel engine 1 via a transmission connection. This will be described in detail below with reference to FIG.
  • the vibration damping and noise reduction device of the power module includes: a first vibration reduction and noise reduction structure on the side of the diesel engine 1 , and the structure includes:
  • the first damping element 1.1, the first damping element 1.1 is connected to the diesel engine 1 from below. Specifically, a preferred first damping element 1.1 of four is placed on the four footings of the lower portion of the diesel engine 1 to support the diesel engine 1 around it to reduce and eliminate the vibrational forces transmitted from the apparatus to the base.
  • the first damping element 1.1 is an upper vibration isolator.
  • the upper vibration isolator is a rubber isolator and has a Y-shaped or conical shape, and has a compression and shear composite bearing mode and good impact resistance.
  • the diesel engine 1 is placed on the first body 1.2 by a plurality of upper vibration isolators.
  • the first body 1.2 is connected from below to the first damping element 1.1.
  • the first body 1.2 is a pure steel body.
  • the second damping element 1.3 is connected to the first body 1.2 from below. Specifically, preferably six rigid blocks as the second damping element 1.3 are mounted below the first body 1.2.
  • the first mounting base 1.4 is fixedly connected to the ground and the second damping element 1.3 is mounted to the first mounting base 1.4. Thereby, a single-layer vibration isolating structure for vibration isolation of the diesel engine 1 is formed.
  • a second vibration damping structure on the side of the gear box 2 comprising:
  • the third damping element 1.5 is connected to the gearbox 2 from below. Specifically, a third damping element 1.5, preferably 12 hard elastic isolators, is attached to the underside of the gearbox 2. The gear case 2 is placed on the second body 1.6 by a plurality of hard elastic vibration isolators.
  • the second body 1.6 is connected to the third damping element from below. Wherein, the second body 1.6 is a pure steel body.
  • a fourth damping element 1.7 is connected to the second body 1.6 from below. Specifically, the fourth damping element 1.7 is six rigid blocks to mount the second body 1.6 to the second mounting base.
  • the second mounting base 1.8 is fixedly coupled to the ground and the fourth damping element 1.7 is mounted to the second mounting base 1.8. Thereby, a single-layer vibration isolating structure for the gear case 2 is formed.
  • the first example has a vibration level drop of 15-25 dB.
  • FIG. 2 A second example in accordance with the present invention is shown in FIG.
  • the power module is the same as the first example, and details are not described herein again. The details will be described below in conjunction with FIG. 2.
  • the vibration damping and noise reduction device of the power module comprises: a first vibration reduction and noise reduction structure on the side of the diesel engine 1, the structure comprising:
  • the first damping element 2.1, the first damping element 2.1 is connected to the diesel engine 1 from below. Specifically, a preferred first damping element 2.1 of four is placed on the four footings of the lower portion of the diesel engine 1 to support the diesel engine 1 around it to reduce and eliminate the vibrational forces transmitted by the device to the base.
  • the first damping element 2.1 is an upper vibration isolator.
  • the upper vibration isolator is a rubber isolator and has a Y-shaped or conical shape, and has a compression and shear composite bearing mode and good impact resistance.
  • the diesel engine 1 is placed on the first body 2.2 by a plurality of upper vibration isolators.
  • the first body 2.2 is connected from below to the first damping element 2.1.
  • the first body 2.2 is a pure steel body.
  • the second damping element 2.3 is connected to the first body 2.2 from below. Specifically, it is preferable to install six lower vibration isolators as the second damping element 2.3 below the first body 2.2.
  • the first mounting base 2.4 is fixedly connected to the ground and the second damping element 2.3 is mounted to the first mounting base 2.4. Thereby, a double-layer vibration isolation structure for vibration isolation of the diesel engine 1 is formed.
  • a second vibration damping structure on the side of the gear box 2 comprising:
  • a third damping element 2.5 which is connected to the gearbox 2 from below. Specifically, a third damping element 2.5, preferably 12 hard elastic isolators, is attached to the underside of the gearbox 2. The gearbox 2 is placed on the second body 2.6 by a plurality of hard elastic isolators.
  • the second body 2.6 is connected to the third damping element 2.5 from below.
  • the second body 2.6 is a pure steel body.
  • the fourth damping element 2.7 is connected to the second body 2.6 from below. Specifically, the fourth damping element 2.7 is six rigid blocks to mount the second body 2.6 to the second mounting base.
  • the second mounting base 2.8 is fixedly coupled to the ground and the fourth damping element 2.7 is mounted to the second mounting base 2.8. Thereby, a double-layer vibration isolation structure for vibration isolation of the gear case 2 is formed.
  • the second example has a vibration level drop of 25-35 dB.
  • FIG. 1 A third example in accordance with the present invention is shown in FIG.
  • the power module is the same as the first example, and details are not described herein again. This will be described in detail below with reference to FIG.
  • the vibration damping and noise reduction device of the power module includes: a first vibration reduction and noise reduction structure on the side of the diesel engine 1, the structure comprising:
  • the first damping element 3.1, the first damping element 3.1 is connected to the diesel engine 1 from below. Specifically, four preferred first damping elements 3.1 are disposed on the four footings of the lower portion of the diesel engine 1 to support the diesel engine 1 around it to reduce and eliminate the vibrational forces transmitted from the apparatus to the base.
  • the first damping element 3.1 is an upper vibration isolator.
  • the upper vibration isolator is a rubber isolator and has a Y-shaped or conical shape, and has a compression and shear composite bearing mode and good impact resistance.
  • the diesel engine 1 is placed on the first body 3.2 by a plurality of upper vibration isolators.
  • the first body 3.2, the first body 3.2 is connected from below to the first damping element 3.1.
  • the first body 3.2 is preferably a large body formed by connecting two beams.
  • the first body 3.2 is a body formed by pouring a polymer material.
  • the second damping element 3.3 is connected to the first body 3.2 from below. Specifically, it is preferable to install six lower vibration isolators as the second damping element 3.3 below the first body 3.2.
  • a first mounting base 3.4 the first mounting base 3.4 is fixedly connected to the ground and the second damping element The piece 3.3 is mounted to the first mounting base 3.4.
  • a double-layer vibration isolation structure for vibration isolation of the diesel engine 1 is formed.
  • a second vibration damping structure on the side of the gear box 2 comprising:
  • a third damping element 3.5 which is connected to the gearbox 2 from below. Specifically, a third damping element 3.5, preferably 12 hard elastic isolators, is attached to the underside of the gearbox 2. The gear case 2 is placed on the second body 3.6 by a plurality of hard elastic vibration isolators.
  • the second body 3.6 is connected to the third damping element 3.5 from below.
  • the second body 3.6 is the same as the first body 3.2, preferably a large body formed by connecting two beams.
  • the second body 3.6 is a body formed by partial strengthening of a polymer material.
  • the fourth damping element 3.7 is connected to the second body 3.6 from below. Specifically, the fourth damping element 3.7 is six lower vibration isolators to mount the second body 3.6 to the second mounting base.
  • the second mounting base 3.8 is fixedly coupled to the ground and the fourth damping element 3.7 is mounted to the second mounting base 3.8. Thereby, a double-layer vibration isolation structure for vibration isolation of the gear case 2 is formed.
  • the damping index of the third example is a vibration level drop of 35-45 dB.
  • the vibration damping device further includes an acoustic enclosure 3, which preferably forms a box body with the first body 4.2 of the vibration reduction and noise reduction device, and simultaneously reduces the noise of the diesel engine 1 and the first vibration reduction device.
  • the structure is arranged in the box body.
  • an exhaust muffler may be installed inside or outside the box body, and the soundproof pit of the test site may also be used.
  • an intake muffler 4 is installed inside or above the casing, and the intake air is silenced during the operation of the diesel engine. This will be described in detail below with reference to FIG.
  • the vibration damping and noise reduction device of the power module includes: a first vibration damping and noise reduction structure on the side of the diesel engine 1, the structure comprising:
  • the first damping element 4.1 is connected to the diesel engine 1 from below.
  • four preferred first damping elements 4.1 are disposed on the four footings of the lower portion of the diesel engine 1 to support the diesel engine 1 around it to reduce and eliminate the vibrational forces transmitted from the apparatus to the base.
  • the first damping element 4.1 is an upper vibration isolator.
  • the upper vibration isolator is a rubber isolator and has a Y-shaped or conical shape, and also has a compression and shear composite. Bearing mode and good impact resistance.
  • the diesel engine 1 is placed on the first body 4.2 by a plurality of upper vibration isolators.
  • the first body 4.2, the first body 4.2 is connected from below to the first damping element 4.1.
  • the first body 4.2 is preferably a large body formed by connecting two beams.
  • the first body 4.2 is a body formed by pouring a polymer material.
  • the first body 4.2 together with the sound insulating cover 3 constitutes a box body.
  • the second damping element 4.3 is connected to the first body 4.2 from below. Specifically, it is preferable to install six lower vibration isolators as the second damping element 4.3 below the first body 4.2.
  • a first mounting base 4.4 is fixedly connected to the ground and a second damping element 4.3 is mounted to the first mounting base 4.4.
  • the box body damping and noise reduction structure for the diesel engine 1 is formed.
  • a second vibration damping structure on the side of the gear box 2 comprising:
  • a third damping element 4.5 which is connected to the gearbox 2 from below. Specifically, a third damping element 4.5, preferably 12 hard elastic isolators, is attached to the underside of the gearbox 2. The gearbox 2 is placed on the second body 4.6 by a plurality of hard elastic isolators.
  • the second body 4.6 is connected to the third damping element 4.5 from below.
  • the second body 4.6 is the same as the first body 4.2, preferably a large body formed by joining two beams.
  • the second body 4.6 is a carcass partially strengthened by a polymer material.
  • the fourth damping element 4.7 is connected to the second body 4.6 from below. Specifically, the fourth damping element 4.7 is six lower vibration isolators to mount the second body 4.6 to the second mounting base.
  • the second mounting base 4.8 is fixedly coupled to the ground and the fourth damping element 4.7 is mounted to the second mounting base 4.8. Thereby, a double-layer vibration isolation structure for vibration isolation of the gear case 2 is formed.
  • the damping index of the fourth example is that the vibration level drop is greater than 45 dB, and the noise reduction index is a noise reduction of 20-30 dB (A).
  • the vibration damping and noise reduction device for a marine diesel propulsion power module can provide a standardized and serialized diesel propulsion power module for marine power design, thereby meeting the fast and accurate design goal of the marine diesel propulsion power module.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • General Details Of Gearings (AREA)

Abstract

一种减振降噪装置和船舶柴油机推进动力模块系统,该动力模块包括:柴油机(1)以及和所述柴油机(1)通过传动连接件连接的齿轮箱(2);其中,该减振降噪装置能够满足船舶柴油机推进动力模块的减振降噪四级分级体系的需求,其中该减振降噪装置包括:位于柴油机(1)侧的第一减振降噪结构和位于齿轮箱(2)侧的第二减振降噪结构。该装置能够为船舶动力设计提供标准化、系列化的柴油机推进动力模块,从而满足船舶柴油机推进动力模块快速、精准的设计目标。

Description

减振降噪装置和船舶柴油机推进动力模块系统 技术领域
本发明涉及船舶推进装置的减振降噪领域,具体地,涉及一种减振降噪装置和船舶柴油机推进动力模块系统。
背景技术
已知的,船舶柴油机是推进动力模块的主要振动噪声源,柴油机为往复机械,其所产生的振动噪声源具有较强的阶次特征。同时,齿轮箱也是柴油机推进动力模块的振动源之一。尤其是,当柴油机推进动力模块大型化后,在解决迫切的重量和空间问题时,占较大比重的柴油机的刚性公共底座将被削弱或者取消,从而增加了对推进动力模块进行减振降噪的设计难度。
进一步,目前针对不同船舶功能和用途的需求,需要明确船舶柴油机推进动力模块的不同等级减振降噪与经济性、空间尺寸、重量的费效比。从而为船舶总体设计提供标准化、系列化的柴油机推进动力模块,以满足船舶柴油机推进动力模块快速、精确的设计目标。
因此,确有必要提出一种用于船舶柴油机推进动力模块的减振降噪装置和具有该减振降噪装置的船舶柴油机推进动力模块系统,从而解决上述现有技术中的不足。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为了解决上述现有技术中的诸多不足中的至少一者,本发明公开了一种用于船舶柴油机推进动力模块的减振降噪装置,该动力模块包括:柴油机以及和所述柴油机通过传动连接件连接的齿轮箱;其中,该减振降噪装置能够满足推进动力模块的减振降噪四级分级体系的需求,其中,该减振 降噪装置包括:位于柴油机侧的第一减振降噪结构,所述第一减振降噪结构包括:第一减振元件,所述第一减振元件自下方连接到所述柴油机;第一筏体,所述第一筏体自下方连接到所述第一减振元件;第二减振元件,所述第二减振元件自下方连接到所述第一筏体;第一安装基座,所述第一安装基座与地面固定连接,所述第二减振元件安装到所述第一安装基座:位于齿轮箱侧的第二减振降噪结构,所述第二减振降噪结构包括:第三减振元件,所述第三减振元件自下方连接到所述齿轮箱;第二筏体,所述第二筏体自下方连接到所述第三减振元件;第四减振元件,所述第四减振元件自下方连接到所述第二筏体;第二安装基座,所述第二安装基座与地面固定连接,所述第四减振元件安装到所述第二安装基座。
根据本发明中的船舶柴油机推进动力模块,与现有技术相比,具备开展船舶柴油机推进动力模块的多项试验的能力,包括进行船舶柴油机推进动力模块中的柴油机、传动设备、控制策略、减振降噪等方面的试验研究和验证,可以提高同系列或同功率级别的船舶柴油机推进动力模块在实船应用中的通用性、可更换性、安装便利性、可靠性等。
优选地,其中所述第一减振降噪结构中的第一减振元件为隔振器,所述第一筏体为纯钢筏体,所述第二减振元件为刚性垫块;所述第二减振降噪结构中的第三减振元件为硬弹性隔振器,所述第二筏体为纯钢筏体,并且所述第四减振元件为刚性垫块。
优选地,其中所述第一减振降噪结构中的第一减振元件为隔振器,所述第一筏体为纯钢筏体,所述第二减振元件为隔振器;所述第二减振降噪结构中的第三减振元件为硬弹性隔振器,所述第二筏体为纯钢筏体,并且所述第四减振元件为刚性垫块。
优选地,其中所述第一减振降噪结构中的第一减振元件为隔振器,所述第一筏体为由高分子材料浇注形成的筏体,所述第二减振元件为隔振器;所述第二减振降噪结构中的第三减振元件为硬弹性隔振器,所述第二筏体为由高分子材料局部加强形成的筏体,并且所述第四减振元件为隔振器。
优选地,其中所述第一减振降噪结构中的第一减振元件为隔振器,所述第一筏体为由高分子材料浇注形成的筏体,所述第二减振元件为隔振器,并且还包括有隔声罩,所述隔声罩与所述第一筏体组成箱装体,所述箱装 体用于将所述柴油机和所述第一减振降噪结构布置在其中;所述第二减振降噪结构中的第三减振元件为硬弹性隔振器,所述第二筏体为由高分子材料局部加强形成的筏体,并且所述第四减振元件为隔振器。
优选地,所述柴油机为船舶高速柴油机或船舶中速柴油机。
本发明还公开了一种船舶柴油机推进动力模块系统。所述船舶柴油机推进动力模块系统包括动力模块。所述动力模块包括:柴油机以及和所述柴油机通过传动连接件连接的齿轮箱。所述减振降噪装置为上述任一种减振降噪装置。
优选地,所述柴油机为船舶高速柴油机或船舶中速柴油机。
附图说明
本发明实施例的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施方式及其描述,用来解释本发明的原理。在附图中,
图1为根据本发明的减振降噪装置的第一实施方式的侧视图;
图2为根据本发明的减振降噪装置的第二实施方式的侧视图;
图3为根据本发明的减振降噪装置的第三实施方式的侧视图;以及
图4为根据本发明的减振降噪装置的第四实施方式的侧视图。
附图标记说明:
1、柴油机   2、齿轮箱
3、隔声罩   4、进气消声器
1.1、2.1、3.1、4.1、第一减振元件
1.2、2.2、3.2、4.2、第一筏体
1.3、2.3、3.3、4.3、第二减振元件
1.4、2.4、3.4、4.4、第一安装基座
1.5、2.5、3.5、4.5、第三减振元件
1.6、2.6、3.6、4.6、第二筏体
1.7、2.7、3.7、4.7、第四减振元件
1.8、2.8、3.8、4.8、第二安装基座
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明实施例可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明实施例发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底了解本发明实施例,将在下列的描述中提出详细的结构。显然,本发明实施例的施行并不限定于本领域的技术人员所熟习的特殊细节。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
根据本发明的一个方面,提供一种船舶柴油机推进动力模块,如附图1-4所示,该船舶柴油机推进动力模块包括以下部分:
首先是柴油机1。该柴油机1经由传动连接件连接到齿轮箱2上,从而通过齿轮箱2实现功率输出。优选地,该柴油机1为四冲程的船舶高速柴油机,当然四冲程的船舶中速柴油机也能够应用于本发明。优选地,柴油机1与齿轮箱2之间分别串有高弹性联轴器和离合器。为了确保齿轮箱2能够连接到外部负载,可选地将该齿轮箱2的输出端通过高弹性联轴器与耗功装置连接。
针对不同船舶功能和用途的需求,可以对船舶柴油机推进动力模块进行减振降噪分级。船舶柴油机推进动力模块减振降噪分级体系主要为振动分级和噪声分级,其中振动分为四级,具体来说,本发明中的减振降噪的四级分级体系包括:
第一级:为满足普通船舶对减振降噪要求一般情形的应用需求,可采用例如单层隔振的方法来降低柴油机推进动力模块的结构噪声,实现振级落差15-25dB。
第二级:为满足减振降噪要求高的区域应用需求,可采用例如单层隔振加阻尼处理或者双层隔振的方法来降低柴油机推进动力模块的结构噪声,实现振级落差25-35dB。
第三级:为满足减振降噪要求较高的区域应用需求,可采用双层隔振方法降低柴油机推进动力模块的结构噪声,实现振级落差35-45dB。
第四级:为满足减振降噪要求极高的区域应用需求,可采用例如双层隔振加阻尼处理的方法来降低柴油机推进动力模块的结构噪声,并采用隔 声设计,实现振级落差大于45dB,隔声指标为20-30dB(A)。
由此可知,为了降低船舶柴油机推进动力模块在运行过程中的振动噪音,需要设置根据本发明的用于船舶柴油机推进动力模块的减振降噪装置,其中,该减振降噪装置能够满足推进动力模块的减振降噪四级分级体系的需求。在本发明中,柴油机1采用隔振的方式布置,同时齿轮箱2采用硬弹性隔振的方式布置。作为优选的实施示例,在附图1-4中示出了根据本发明的四种示例:
第一示例
在附图1中示出了根据本发明的第一示例。其中该动力模块包括:柴油机1;和柴油机1通过传动连接件连接的齿轮箱2。以下将结合附图1进行详细地描述。
如图1所示,该动力模块的减振降噪装置包括:位于柴油机1侧的第一减振降噪结构,该结构包括:
第一减振元件1.1,第一减振元件1.1自下方连接到柴油机1。具体来说,将优选为4个的第一减振元件1.1布置在柴油机1下部的四个基脚上以其四周对柴油机1进行支撑,以减少和消除由设备传递到基座的振动力。在第一示例中,该第一减振元件1.1为上层隔振器。优选地,该上层隔振器为橡胶隔振器,并具有Y形或圆锥形等形式,还具有压缩和剪切复合的承载方式和良好的抗冲击能力。通过多个上层隔振器将柴油机1设置在第一筏体1.2上。
第一筏体1.2,第一筏体1.2自下方连接到第一减振元件1.1。具体来说,在第一示例中,该第一筏体1.2为纯钢筏体。
第二减振元件1.3,该第二减振元件1.3自下方连接到第一筏体1.2。具体来说,将优选为6个作为第二减振元件1.3的刚性垫块安装在第一筏体1.2的下方。
第一安装基座1.4,该第一安装基座1.4与地面固定连接且第二减振元件1.3安装到该第一安装基座1.4。由此,形成了用于柴油机1隔振的单层隔振结构。
位于齿轮箱2侧的第二减振降噪结构,该结构包括:
第三减振元件1.5,该第三减振元件自下方连接到齿轮箱2。具体来说,将优选为12只硬弹性隔振器的第三减振元件1.5连接到齿轮箱2的下方。 通过多个硬弹性隔振器将齿轮箱2设置在第二筏体1.6上。
第二筏体1.6,该第二筏体自下方连接到第三减振元件。其中,该第二筏体1.6为纯钢筏体。
第四减振元件1.7,该第四减振元件自下方连接到第二筏体1.6。具体来说,该第四减振元件1.7为6只刚性垫块,以将第二筏体1.6安装到第二安装基座。
第二安装基座1.8,该第二安装基座1.8与地面固定连接,第四减振元件1.7安装到第二安装基座1.8。由此,形成了用于齿轮箱2的单层隔振结构。
经测试,该第一示例的振级落差为15-25dB。
第二示例
在附图2中示出了根据本发明的第二示例。其中该动力模块与第一示例相同,在此不再赘述。以下将结合附图2进行详细地描述。
如图2所示,该动力模块的减振降噪装置包括:位于柴油机1侧的第一减振降噪结构,该结构包括:
第一减振元件2.1,第一减振元件2.1自下方连接到柴油机1。具体来说,将优选为4个的第一减振元件2.1布置在柴油机1下部的四个基脚上以其四周对柴油机1进行支撑,以减少和消除由设备传递到基座的振动力。在第二示例中,该第一减振元件2.1为上层隔振器。优选地,该上层隔振器为橡胶隔振器,并具有Y形或圆锥形等形式,还具有压缩和剪切复合的承载方式和良好的抗冲击能力。通过多个上层隔振器将柴油机1设置在第一筏体2.2上。
第一筏体2.2,第一筏体2.2自下方连接到第一减振元件2.1。具体来说,在第二示例中,该第一筏体2.2为纯钢筏体。
第二减振元件2.3,该第二减振元件2.3自下方连接到第一筏体2.2。具体来说,将优选为6个作为第二减振元件2.3的下层隔振器安装在第一筏体2.2的下方。
第一安装基座2.4,该第一安装基座2.4与地面固定连接且第二减振元件2.3安装到该第一安装基座2.4。由此,形成了用于柴油机1隔振的双层隔振结构。
位于齿轮箱2侧的第二减振降噪结构,该结构包括:
第三减振元件2.5,该第三减振元件2.5自下方连接到齿轮箱2。具体来说,将优选为12只硬弹性隔振器的第三减振元件2.5连接到齿轮箱2的下方。通过多个硬弹性隔振器将齿轮箱2设置在第二筏体2.6上。
第二筏体2.6,该第二筏体2.6自下方连接到第三减振元件2.5。其中,该第二筏体2.6为纯钢筏体。
第四减振元件2.7,该第四减振元件2.7自下方连接到第二筏体2.6。具体来说,该第四减振元件2.7为6只刚性垫块,以将第二筏体2.6安装到第二安装基座。
第二安装基座2.8,该第二安装基座2.8与地面固定连接,第四减振元件2.7安装到第二安装基座2.8。由此,形成了用于齿轮箱2隔振的双层隔振结构。
经测试,该第二示例的振级落差为25-35dB。
第三示例
在附图3中示出了根据本发明的第三示例。其中该动力模块与第一示例相同,在此不再赘述。以下将结合附图3进行详细地描述。
如图3所示,该动力模块的减振降噪装置包括:位于柴油机1侧的第一减振降噪结构,该结构包括:
第一减振元件3.1,第一减振元件3.1自下方连接到柴油机1。具体来说,将优选为4个的第一减振元件3.1布置在柴油机1下部的四个基脚上以其四周对柴油机1进行支撑,以减少和消除由设备传递到基座的振动力。在第三示例中,该第一减振元件3.1为上层隔振器。优选地,该上层隔振器为橡胶隔振器,并具有Y形或圆锥形等形式,还具有压缩和剪切复合的承载方式和良好的抗冲击能力。通过多个上层隔振器将柴油机1设置在第一筏体3.2上。
第一筏体3.2,第一筏体3.2自下方连接到第一减振元件3.1。具体来说,该第一筏体3.2优选为通过两只横梁相连所形成的大筏体。在第三示例中,该第一筏体3.2为由高分子材料浇注形成的筏体。
第二减振元件3.3,该第二减振元件3.3自下方连接到第一筏体3.2。具体来说,将优选为6个作为第二减振元件3.3的下层隔振器安装在第一筏体3.2的下方。
第一安装基座3.4,该第一安装基座3.4与地面固定连接且第二减振元 件3.3安装到该第一安装基座3.4。由此形成了用于柴油机1隔振的双层隔振结构。
位于齿轮箱2侧的第二减振降噪结构,该结构包括:
第三减振元件3.5,该第三减振元件3.5自下方连接到齿轮箱2。具体来说,将优选为12只硬弹性隔振器的第三减振元件3.5连接到齿轮箱2的下方。通过多个硬弹性隔振器将齿轮箱2设置在第二筏体3.6上。
第二筏体3.6,该第二筏体3.6自下方连接到第三减振元件3.5。其中该第二筏体3.6与第一筏体3.2一样,优选地为通过两只横梁相连所形成的大筏体。其中,该第二筏体3.6为由高分子材料局部加强形成的筏体。
第四减振元件3.7,该第四减振元件3.7自下方连接到第二筏体3.6。具体来说,该第四减振元件3.7为6只下隔振器,以将第二筏体3.6安装到第二安装基座。
第二安装基座3.8,该第二安装基座3.8与地面固定连接,第四减振元件3.7安装到第二安装基座3.8。由此,形成了用于齿轮箱2隔振的双层隔振结构。
经测试,该第三示例的减振指标为振级落差35-45dB。
第四示例
在附图4中示出了根据本发明的第四示例。其中该减振降噪装置还包括有隔声罩3,该隔声罩3优选地与减振降噪装置的第一筏体4.2组成箱装体,同时将柴油机1和第一减振降噪结构布置在箱装体中。为了保证柴油机1排气的正常消声,可以在箱装体内部或外部加装排气消声器,也可使用试验场地消声坑。为了柴油机1的进气进行消声,在该箱装体内部或上部安装进气消声器4,对柴油机运行时的进气消声。以下将结合附图4进行详细地描述。
如图4所示,该动力模块的减振降噪装置包括:位于柴油机1侧的第一减振降噪结构,该结构包括:
第一减振元件4.1,第一减振元件4.1自下方连接到柴油机1。具体来说,将优选为4个的第一减振元件4.1布置在柴油机1下部的四个基脚上以其四周对柴油机1进行支撑,以减少和消除由设备传递到基座的振动力。在第四示例中,该第一减振元件4.1为上层隔振器。优选地,该上层隔振器为橡胶隔振器,并具有Y形或圆锥形等形式,还具有压缩和剪切复合的 承载方式和良好的抗冲击能力。通过多个上层隔振器将柴油机1设置在第一筏体4.2上。
第一筏体4.2,第一筏体4.2自下方连接到第一减振元件4.1。具体来说,该第一筏体4.2优选为通过两只横梁相连所形成的大筏体。在第四示例中,该第一筏体4.2为由高分子材料浇注形成的筏体。同时,该第一筏体4.2与隔声罩3一起组成箱装体。
第二减振元件4.3,该第二减振元件4.3自下方连接到第一筏体4.2。具体来说,将优选为6个作为第二减振元件4.3的下层隔振器安装在第一筏体4.2的下方。
第一安装基座4.4,该第一安装基座4.4与地面固定连接且第二减振元件4.3安装到该第一安装基座4.4。由此形成了用于柴油机1的箱装体减振降噪结构。
位于齿轮箱2侧的第二减振降噪结构,该结构包括:
第三减振元件4.5,该第三减振元件4.5自下方连接到齿轮箱2。具体来说,将优选为12只硬弹性隔振器的第三减振元件4.5连接到齿轮箱2的下方。通过多个硬弹性隔振器将齿轮箱2设置在第二筏体4.6上。
第二筏体4.6,该第二筏体4.6自下方连接到第三减振元件4.5。其中该第二筏体4.6与第一筏体4.2一样,优选地为通过两只横梁相连所形成的大筏体。其中,该第二筏体4.6为由高分子材料局部加强的筏体。
第四减振元件4.7,该第四减振元件4.7自下方连接到第二筏体4.6。具体来说,该第四减振元件4.7为6只下隔振器,以将第二筏体4.6安装到第二安装基座。
第二安装基座4.8,该第二安装基座4.8与地面固定连接,第四减振元件4.7安装到第二安装基座4.8。由此,形成了用于齿轮箱2隔振的双层隔振结构。
经测试,该第四示例的减振指标为振级落差大于45dB,并且其降噪指标为噪音降低20-30dB(A)。
根据本发明的用于船舶柴油机推进动力模块的减振降噪装置,能够为船舶动力设计提供标准化、系列化的柴油机推进动力模块,从而满足船舶柴油机推进动力模块快速、精准的设计目标。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施 例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。

Claims (8)

  1. 一种减振降噪装置,用于船舶柴油机推进动力模块,该动力模块包括:柴油机以及和所述柴油机通过传动连接件连接的齿轮箱;其中,该减振降噪装置能够满足船舶柴油机推进动力模块的减振降噪四级分级体系的需求,其特征在于,该减振降噪装置包括:
    位于柴油机侧的第一减振降噪结构,所述第一减振降噪结构包括:
    第一减振元件,所述第一减振元件自下方连接到所述柴油机;
    第一筏体,所述第一筏体自下方连接到所述第一减振元件;
    第二减振元件,所述第二减振元件自下方连接到所述第一筏体;
    第一安装基座,所述第一安装基座与地面固定连接,所述第二减振元件安装到所述第一安装基座:
    位于齿轮箱侧的第二减振降噪结构,所述第二减振降噪结构包括:
    第三减振元件,所述第三减振元件自下方连接到所述齿轮箱;
    第二筏体,所述第二筏体自下方连接到所述第三减振元件;
    第四减振元件,所述第四减振元件自下方连接到所述第二筏体;
    第二安装基座,所述第二安装基座与地面固定连接,所述第四减振元件安装到所述第二安装基座。
  2. 如权利要求1所述的减振降噪装置,其特征在于,所述第一减振降噪结构中的第一减振元件为隔振器,所述第一筏体为纯钢筏体,所述第二减振元件为刚性垫块;所述第二减振降噪结构中的第三减振元件为硬弹性隔振器,所述第二筏体为纯钢筏体,并且所述第四减振元件为刚性垫块。
  3. 如权利要求1所述的减振降噪装置,其特征在于,所述第一减振降噪结构中的第一减振元件为隔振器,所述第一筏体为纯钢筏体,所述第二减振元件为隔振器;所述第二减振降噪结构中的第三减振元件为硬弹性隔振器,所述第二筏体为纯钢筏体,并且所述第四减振元件为刚性垫块。
  4. 如权利要求1所述的减振降噪装置,其特征在于,所述第一减振降噪结构中的第一减振元件为隔振器,所述第一筏体为由高分子材料浇注形成的筏体,所述第二减振元件为隔振器;所述第二减振降噪结构中的第三减振元件为硬弹性隔振器,所述第二筏体为由高分子材料局部加强形成 的筏体,并且所述第四减振元件为隔振器。
  5. 如权利要求1所述的减振降噪装置,其特征在于,所述第一减振降噪结构中的第一减振元件为隔振器,所述第一筏体为由高分子材料浇注形成的筏体,所述第二减振元件为隔振器,并且还包括有隔声罩,所述隔声罩与所述第一筏体组成箱装体,所述箱装体用于将所述柴油机和所述第一减振降噪结构布置在其中;所述第二减振降噪结构中的第三减振元件为硬弹性隔振器,所述第二筏体为由高分子材料局部加强形成的筏体,并且所述第四减振元件为隔振器。
  6. 如权利要求1所述的减振降噪装置,其特征在于,所述柴油机为船舶高速柴油机或船舶中速柴油机。
  7. 一种船舶柴油机推进动力模块系统,其特征在于,所述船舶柴油机推进动力模块系统包括:
    动力模块,所述动力模块包括:柴油机以及和所述柴油机通过传动连接件连接的齿轮箱;以及
    减振降噪装置,所述减振降噪装置为根据权利要求1至6中任一项所述的减振降噪装置。
  8. 如权利要求7所述的船舶柴油机推进动力模块系统,其特征在于,所述柴油机为船舶高速柴油机或船舶中速柴油机。
PCT/CN2017/113949 2017-01-19 2017-11-30 减振降噪装置和船舶柴油机推进动力模块系统 WO2018133558A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017394428A AU2017394428B2 (en) 2017-01-19 2017-11-30 Vibration damping and noise reduction device and marine diesel engine propulsion power module system
JP2019540000A JP6832439B2 (ja) 2017-01-19 2017-11-30 制振制音装置および船舶ディーゼルエンジン推進動力モジュールシステム
EP17892480.9A EP3572689A4 (en) 2017-01-19 2017-11-30 VIBRATION DAMPING AND NOISE REDUCTION DEVICE AND MARINE DIESEL ENGINE PROPULSION POWER BLOCK SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710043972.2 2017-01-19
CN201710043972.2A CN106678269B (zh) 2017-01-19 2017-01-19 一种船舶柴油机推进动力模块的减振降噪装置

Publications (1)

Publication Number Publication Date
WO2018133558A1 true WO2018133558A1 (zh) 2018-07-26

Family

ID=58859755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113949 WO2018133558A1 (zh) 2017-01-19 2017-11-30 减振降噪装置和船舶柴油机推进动力模块系统

Country Status (5)

Country Link
EP (1) EP3572689A4 (zh)
JP (1) JP6832439B2 (zh)
CN (1) CN106678269B (zh)
AU (1) AU2017394428B2 (zh)
WO (1) WO2018133558A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524224A (zh) * 2020-12-21 2021-03-19 浙江工业大学 基于噪声源识别的减振降噪变速齿轮箱

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678269B (zh) * 2017-01-19 2019-01-15 中国船舶重工集团公司第七一一研究所 一种船舶柴油机推进动力模块的减振降噪装置
CN107387653B (zh) * 2017-08-02 2023-04-18 宜昌船舶柴油机有限公司 船用二次力矩消振器及控制方法
CN110219922A (zh) * 2019-07-02 2019-09-10 集美大学 一种船舶柴油机高静低动隔振器
CN112319757B (zh) * 2020-11-20 2021-09-14 浙江海洋大学 一种船舶主机横撑加强结构
CN113107801A (zh) * 2021-04-27 2021-07-13 中国舰船研究设计中心 船用汽电混驱凝给水泵组一体化装置及其控制方法
CN113247225B (zh) * 2021-06-23 2022-10-21 中国舰船研究设计中心 一种水下航行器柔性推进系统及水下航行器
CN114658797B (zh) * 2022-02-24 2023-09-05 中船澄西船舶修造有限公司 一种船舶辅机侧向止推减振结构及止推减振方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252820A (ja) * 1997-03-18 1998-09-22 Sanyo Electric Co Ltd 振動絶縁装置
CN1587734A (zh) * 2004-07-28 2005-03-02 陈清欣 一种发动机悬置软垫总成
JP2008157406A (ja) * 2006-12-26 2008-07-10 Toshiba Corp 防振装置
CN101410649A (zh) * 2006-03-27 2009-04-15 三井造船株式会社 动态阻尼器及设置有动态阻尼器的柴油机
CN201359564Y (zh) * 2008-12-30 2009-12-09 中国船舶重工集团公司第七一一研究所 船舶柴油机动力系统试验装置
CN106678269A (zh) * 2017-01-19 2017-05-17 中国船舶重工集团公司第七研究所 一种船舶柴油机推进动力模块的减振降噪装置
CN206409572U (zh) * 2017-01-19 2017-08-15 中国船舶重工集团公司第七一一研究所 一种船舶柴油机推进动力模块的减振降噪装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0132404B1 (en) * 1983-07-22 1988-09-28 Honda Giken Kogyo Kabushiki Kaisha Fluid-sealed engine mounting
DE19932873A1 (de) * 1999-07-16 2001-01-18 Flender A F & Co Schiffsantrieb mit Zweimotoren-Sammelgetriebe
EP2671791B1 (en) * 2012-06-04 2018-07-18 Caterpillar Motoren GmbH & Co. KG Damped engine support
CN104595418B (zh) * 2015-02-02 2016-08-31 江苏高精机电装备有限公司 一种基于带隙滤波和波形转换的具有周期结构的隔振装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252820A (ja) * 1997-03-18 1998-09-22 Sanyo Electric Co Ltd 振動絶縁装置
CN1587734A (zh) * 2004-07-28 2005-03-02 陈清欣 一种发动机悬置软垫总成
CN101410649A (zh) * 2006-03-27 2009-04-15 三井造船株式会社 动态阻尼器及设置有动态阻尼器的柴油机
JP2008157406A (ja) * 2006-12-26 2008-07-10 Toshiba Corp 防振装置
CN201359564Y (zh) * 2008-12-30 2009-12-09 中国船舶重工集团公司第七一一研究所 船舶柴油机动力系统试验装置
CN106678269A (zh) * 2017-01-19 2017-05-17 中国船舶重工集团公司第七研究所 一种船舶柴油机推进动力模块的减振降噪装置
CN206409572U (zh) * 2017-01-19 2017-08-15 中国船舶重工集团公司第七一一研究所 一种船舶柴油机推进动力模块的减振降噪装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572689A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524224A (zh) * 2020-12-21 2021-03-19 浙江工业大学 基于噪声源识别的减振降噪变速齿轮箱

Also Published As

Publication number Publication date
CN106678269A (zh) 2017-05-17
AU2017394428B2 (en) 2020-10-22
JP2020506840A (ja) 2020-03-05
EP3572689A1 (en) 2019-11-27
CN106678269B (zh) 2019-01-15
JP6832439B2 (ja) 2021-02-24
AU2017394428A1 (en) 2019-08-01
EP3572689A4 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2018133558A1 (zh) 减振降噪装置和船舶柴油机推进动力模块系统
US8240427B2 (en) Sound attenuation systems and methods
US7698870B2 (en) Support frame including longitudinal and transverse beams and method for producing the frame
CN206409572U (zh) 一种船舶柴油机推进动力模块的减振降噪装置
Govindswamy et al. The NVH behavior of internal combustion engines used in range extended electric vehicles
CN103592092A (zh) 一种废气涡轮增压器执行器支架振动试验夹具
CN109018188A (zh) 一种环形波浪状周期浮筏及其制作方法
Ambardekar et al. Performance cascading from vehicle-level NVH to component or sub-system level design
CN109944476B (zh) 高声强声学混响室的隔声隔振结构
CN113978678A (zh) 集成粒子阻尼的浮筏隔振装置及其设计方法
Guo et al. Optimization of electric vacuum pump mount to improve sound quality of electric vehicle
Jenkins et al. Diesel engine noise reduction hardware for vehicle noise control
Kurtze Innovative solutions to reduce the transfer of structure borne noise in couplings
Waters et al. Paper 8: The Diesel Engine as a Source of Commercial Vehicle Noise
Gupta et al. Study of Turbocharger Whistle Noise and Its Reduction Into Passenger Cabin
CN110967172A (zh) 用于动力装置振动噪声试验的消声箱及系统
CN218325283U (zh) 地震荷载级的抗震底座及核安全级空气压缩机组
Tiwari et al. Powertrain Modal Characterization to Reduce Vehicle In-cab Noise
WO2022120823A1 (zh) 压裂设备
Li et al. Feasibility of active vibration isolation of diesel engines in Collins class submarines
CN203974534U (zh) 散热器安装装置及车辆
Kolhe et al. Optimization of an Air Intake System to Reduce Multiple Whoosh Noises from an Engine
CN201570299U (zh) 硫酸钡电缆护套
Gavric New fuel-saving technologies and NVH refinement of powertrains
Yamashita et al. NVH experimental analyses for an engine structure model assembled with ordinary tap bolts and with through bolts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017394428

Country of ref document: AU

Date of ref document: 20171130

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017892480

Country of ref document: EP

Effective date: 20190819