WO2018133372A1 - 显示面板及其制备方法和显示装置 - Google Patents

显示面板及其制备方法和显示装置 Download PDF

Info

Publication number
WO2018133372A1
WO2018133372A1 PCT/CN2017/095407 CN2017095407W WO2018133372A1 WO 2018133372 A1 WO2018133372 A1 WO 2018133372A1 CN 2017095407 W CN2017095407 W CN 2017095407W WO 2018133372 A1 WO2018133372 A1 WO 2018133372A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel region
display panel
insulating layer
disposed
Prior art date
Application number
PCT/CN2017/095407
Other languages
English (en)
French (fr)
Inventor
朱锦明
王辉
刘佳
郭远辉
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/761,792 priority Critical patent/US10705388B2/en
Publication of WO2018133372A1 publication Critical patent/WO2018133372A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • G02F1/136236Active matrix addressed cells for reducing the number of lithographic steps using a grey or half tone lithographic process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display panel, a method of fabricating the same, and a display device.
  • TFT-LCD The thin film transistor liquid crystal display device
  • TFT-LCD has the advantages of small size, low power consumption, no radiation, etc., and has been rapidly developed in recent years and has occupied a mainstream position in the market.
  • TFT-LCD is a sophisticated and complex device composed of many components, mainly composed of a color filter substrate (CF substrate), an array substrate (TFT glass, abbreviated as TFT substrate), and a liquid crystal layer between the two substrates.
  • CF substrate color filter substrate
  • TFT glass TFT glass
  • TFT substrate a liquid crystal layer between the two substrates.
  • the three-part composition the liquid crystal is dropped on one of the substrates when the box is formed, and the sealant (the silicon ball mixed with a certain proportion of the calculated size) is coated on the other substrate, and finally the vacuum is combined and sealed.
  • the curing of the glue forms a liquid crystal display panel.
  • Embodiments of the present disclosure provide a display panel, a method of fabricating the same, and a display device.
  • a display panel comprising:
  • An insulating layer having a thickness in the first sub-pixel region smaller than a thickness thereof in the second sub-pixel region, such that a cell gap of the display panel in the first sub-pixel region is greater than a cell gap of the second sub-pixel region, thereby at least partially compensating for an aperture ratio difference between the first sub-pixel region and the second sub-pixel region.
  • the display panel further includes a spacer disposed in the first sub-pixel region.
  • the display panel further includes:
  • main spacer disposed in the first sub-pixel region
  • auxiliary spacer correspondingly disposed in the second sub-pixel region
  • the occupied area of the main spacer in the first sub-pixel area is larger than the occupied area of the auxiliary spacer in the second sub-pixel area.
  • the display panel further includes a third sub-pixel region, and an aperture ratio of the second sub-pixel region is smaller than an aperture ratio of the third sub-pixel region;
  • the thickness of the insulating layer in the second sub-pixel region is smaller than the thickness thereof in the third sub-pixel region, so that the cell gap of the display panel in the second sub-pixel region is greater than a cell gap of the three sub-pixel regions to at least partially compensate for an aperture ratio difference between the second sub-pixel region and the third sub-pixel region.
  • the spacer is disposed on a color filter substrate, and the insulating layer is disposed on the array substrate.
  • the spacer is disposed on the array substrate, and the insulating layer is disposed on the color filter substrate.
  • the spacer and the insulating layer are both disposed on the array substrate; or the spacer and the insulating layer are both disposed on the color filter substrate.
  • the primary spacer and the secondary spacer are disposed on a color filter substrate, and the insulating layer is disposed on the array substrate.
  • the main spacer and the auxiliary spacer are disposed on the array substrate, and the insulating layer is disposed on the color filter substrate.
  • the main spacer, the auxiliary spacer, and the insulating layer are both disposed on the array substrate or both are disposed on the color filter substrate.
  • an aperture ratio of the first sub-pixel region is made coincident with an aperture ratio of the second sub-pixel region by configuring a cell gap of the first sub-pixel region and a cell gap of the second sub-pixel region.
  • the aperture ratio of the second sub-pixel region is made coincident with the aperture ratio of the third sub-pixel region by configuring the cell gap of the second sub-pixel region and the cell gap of the third sub-pixel region.
  • the insulating layer is one or more layers.
  • the insulating layer is a passivation layer disposed on the array substrate.
  • the insulating layer is a passivation layer disposed on the array substrate substrate near the color filter substrate.
  • the insulating layer is an organic insulating layer and a passivation layer disposed on the array substrate.
  • the insulating layer is a passivation layer and an organic insulating layer disposed on the array substrate substrate near the color filter substrate.
  • the insulating layer is a planarization layer disposed on the color filter substrate.
  • a display device comprising the display panel according to the aspects or examples described above.
  • a method of preparing the above display panel comprising:
  • the thickness of the insulating layer in the first sub-pixel region being smaller than a thickness thereof in the second sub-pixel region, such that the display panel is in the first sub-pixel
  • the cell gap of the region is greater than its cell gap in the second sub-pixel region, thereby at least partially compensating for an aperture ratio difference between the first sub-pixel region and the second sub-pixel region.
  • FIG. 1 is a top plan view showing a distribution of a main spacer and a secondary spacer on a liquid crystal display panel
  • FIG. 2 is a cross-sectional view showing the structure of a display panel in an embodiment of the present invention
  • FIG. 3 is a top plan view showing the distribution of the spacers in the sub-pixel region of FIG. 2;
  • FIG. 4 is a cross-sectional view showing the structure of a display panel in another embodiment of the present invention.
  • Figure 5 is a top plan view showing the distribution of the main spacer and the auxiliary spacer in the sub-pixel region of Figure 4;
  • FIG. 6 is a cross-sectional view showing the structure of a display panel in still another embodiment of the present invention.
  • FIG. 7 is a top plan view showing the distribution of the main spacer and the auxiliary spacer in the sub-pixel region of FIG. 6.
  • Photo Spacer this PS is divided into two main spacers (Main PS) and auxiliary spacers (Sub PS).
  • Main PS main spacers
  • Sub PS auxiliary spacers
  • the cross-sectional area of the main spacer is larger, and the cross-sectional area of the auxiliary spacer is smaller, which makes the aperture ratio of the pixel area where the main spacer is located smaller than the aperture ratio of the pixel area where the peripheral auxiliary spacer is located, and finally reflected on the display panel.
  • the display brightness of the pixel area where the main spacer is located is smaller than the display brightness of the pixel area where the auxiliary spacer is located.
  • the main spacer 6 is generally evenly distributed inside the display panel, which is a typical design of the main spacer 6 with a density of 1/18, and all the main spacers are observed under the entire field of view.
  • the pixel area 10 in which the object 6 is located may cause a matte shadow (Mura) (shown by a broken line in the figure) due to the brightness lower than the brightness of the pixel area 10 in which all the auxiliary spacers 7 are located, thereby affecting the screen display effect.
  • Mura matte shadow
  • the inventors of the present disclosure have noted the need to at least partially improve or eliminate the stray shading that occurs when the liquid crystal display panel is displayed, thereby improving the uniformity of its display brightness.
  • the display panel includes a first sub-pixel area 1 and a second sub-pixel area 2, and the aperture ratio of the first sub-pixel area 1 is smaller than the second The aperture ratio of the sub-pixel region 2.
  • the display panel further includes an insulating layer 3 having a thickness H1 at the first sub-pixel region 1 that is smaller than a thickness H2 of the second sub-pixel region 2 such that the display panel is in the cell gap L1 of the first sub-pixel region 1. It is larger than the cell gap L2 of the second sub-pixel region 2, so that the aperture ratios of the first sub-pixel region 1 and the second sub-pixel region 2 are uniform.
  • the display panel refers to a liquid crystal display panel. Since the cell thickness of the display panel is positively proportional to the liquid crystal effect at the time of display, it is proportional, so that the thickness H1 of the insulating layer 3 in the first sub-pixel region 1 is smaller than the thickness thereof in the second sub-pixel region 2 H2, the cell gap L1 of the display panel in the first sub-pixel region 1 can be made larger than the cell gap L2 in the second sub-pixel region 2, and then the liquid crystal efficacy of the display panel in the first sub-pixel region 1 can be greater than The liquid crystal efficacy of the second sub-pixel region 2, the liquid crystal light effect difference of the display panel in the first sub-pixel region 1 and the second sub-pixel region 2 can compensate the aperture ratio of the first sub-pixel region 1 and the second sub-pixel region 2 The difference is to improve the light transmittance difference of the display panel in the first sub-pixel area 1 and the second sub-pixel area 2, thereby further making the light transmittance of the display panel more uniform, and improving the twill Mura phenomenon
  • the display panel further includes a spacer 8 disposed in the first sub-pixel region 1; and the spacer 8 is not disposed in the second sub-pixel region 2.
  • the spacers 8 are disposed on the color filter substrate substrate 5, and the spacers 8 extend in the direction of the array substrate 4.
  • the insulating layer 3 is disposed on the substrate 4 of the array substrate.
  • the spacer 8 is located in a corresponding region of the region where the black matrix in the first sub-pixel region 1 is located; since the spacer 8 occupies a partial area of the first sub-pixel region 1, the opening of the first sub-pixel region 1 is made
  • the rate is smaller than the aperture ratio of the second sub-pixel region 2; by making the thickness H1 of the insulating layer 3 in the first sub-pixel region 1 smaller than the thickness H2 of the second sub-pixel region 2, the first sub-pixel region of the display panel can be made
  • the cell gap L1 of 1 is larger than the cell gap L2 of the second sub-pixel region 2, and then the liquid crystal efficacy of the first sub-pixel region 1 of the display panel is greater than the liquid crystal efficacy of the second sub-pixel region 2, and the display panel is
  • the difference in liquid crystal light efficiency of one sub-pixel region 1 and second sub-pixel region 2 can compensate for the difference in aperture ratio between the first sub-pixel region 1 and the second sub-pixel region 2, thereby improving the display panel in the first sub-pixel
  • film layers such as a black matrix, a color film layer, and a planarization layer are further disposed on the color filter substrate substrate 5, and details are not described herein.
  • the cell gaps of the first sub-pixel region 1 and the second sub-pixel region 2 of the display panel are different, so that the aperture ratio of the second sub-pixel region 2 and the first sub-pixel region 1 are identical.
  • the aperture ratio of the second sub-pixel region 2 and the first sub-pixel region 1 can be made to pass through the cell gap of the first sub-pixel region 1 and the second sub-pixel region 2 due to the difference in whether or not the spacer is provided.
  • the difference is compensated, so that the light transmittance of the second sub-pixel region 2 and the first sub-pixel region 1 is the same, thereby further making the light transmittance of the display panel more uniform, completely eliminating the phenomenon of the twill Mura when the display panel is displayed.
  • Improve the display of the screen improve the display of the screen.
  • the insulating layer 3 includes one layer.
  • the display panel further includes a gate, a gate insulating layer, an active layer, a source and drain (not shown in FIGS. 2 and 3), a passivation layer, and a pixel electrode, which are sequentially disposed on the array substrate 4, that is, a display panel Display panel for TN (Twisted Nematic) display mode.
  • the insulating layer 3 includes a passivation layer which is provided on the array substrate 4 .
  • the insulating layer 3 is a passivation layer disposed on the array substrate 4 near the color filter substrate substrate 5, and the insulating layer 3 can be in the first sub-pixel region 1 and the second sub-pixel region 2 It is easier to form portions of the respective regions having different thicknesses, that is, to form a gap in the insulating layer 3; since no more insulating film layer is disposed on the passivation layer on the side away from the substrate of the array substrate 4, the formation is performed.
  • the gap on the passivation layer is not easily covered by other insulating film layers located thereon, thereby avoiding the elimination of the gap formed by other insulating film layers on the passivation layer.
  • the insulating layer may also include multiple layers.
  • the display panel may further include a gate, a gate insulating layer, an active layer, a source drain, a common electrode, an organic insulating layer, and a passivation layer and a pixel electrode, which are sequentially disposed on the array substrate, that is, the display panel It is a display panel for ADS (ADvanced Super Dimension Switch) display mode.
  • the insulating layer is an organic insulating layer and a passivation layer disposed on the array substrate.
  • the insulating layer is a passivation layer and an organic insulating layer disposed on the array substrate substrate close to the color filter substrate, so that not only the insulating layer is more easily formed in the first sub-pixel region and the second sub-pixel region.
  • Each of the region portions, that is, a gap is formed in the insulating layer, and the gap formed on the passivation layer and the organic insulating layer is not easily covered by other insulating film layers located thereon, thereby preventing other insulating film layers from being formed.
  • the array substrate is further provided with other film layers, such as a thin film transistor, a pixel electrode, and a common electrode, which are disposed on the array substrate, and details are not described herein.
  • the embodiment further provides a method for fabricating the display panel, the method comprising: forming a first sub-pixel region and a second sub-pixel region, and an aperture ratio of the first sub-pixel region An aperture ratio smaller than the second sub-pixel region; forming a pattern of the insulating layer by one patterning process, the thickness of the insulating layer in the first sub-pixel region being smaller than the thickness thereof in the second sub-pixel region, so that the first sub-pixel of the display panel The cell gap of the region is larger than the cell gap of the second sub-pixel region, so that the aperture ratios of the first sub-pixel region and the second sub-pixel region are uniform.
  • the pattern of the insulating layer is formed by a halftone mask process.
  • the method for preparing the display panel further comprises the step of forming a passivation layer pattern on the array substrate by using a patterning process, wherein: forming the passivation layer pattern adopts a halftone mask process.
  • the thickness of the passivation layer in the first sub-pixel region is less than its thickness in the second sub-pixel region.
  • the method for preparing the display panel further comprises the steps of sequentially forming an organic insulating layer pattern and a passivation layer pattern on the array substrate by using a patterning process, wherein: forming an organic insulating layer pattern And forming a passivation layer pattern using a halftone mask process.
  • the thickness of the organic insulating layer and the passivation layer in the first sub-pixel region is smaller than the thickness thereof in the second sub-pixel region.
  • the preparation of the insulating layer does not increase the complexity of the process and the manufacturing cost, and the implementation is strong, so that the preparation of the display panel does not increase the process difficulty and the manufacturing cost.
  • the display panel includes a first sub-pixel area 1 and a second sub-pixel area 2.
  • the aperture ratio of the first sub-pixel area 1 is smaller than that of the first sub-pixel area 1.
  • the aperture ratio of the two sub-pixel regions 2; the display panel further includes an insulating layer 3, the thickness H1 of the insulating layer 3 in the first sub-pixel region 1 being smaller than the thickness H2 of the second sub-pixel region 2, so that the display panel is at the first
  • the cell gap L1 of the sub-pixel region 1 is larger than the cell gap L2 of the second sub-pixel region 2, thereby making the aperture ratios of the first sub-pixel region 1 and the second sub-pixel region 2 uniform.
  • the display panel refers to a liquid crystal display panel. Since the cell thickness of the display panel is positively proportional to the liquid crystal effect at the time of display, it is proportional, so that the thickness H1 of the insulating layer 3 in the first sub-pixel region 1 is smaller than the thickness thereof in the second sub-pixel region 2 H2, the cell gap L1 of the display panel in the first sub-pixel region 1 can be made larger than the cell gap L2 of the second sub-pixel region 2, and then the liquid crystal efficacy of the display panel in the first sub-pixel region 1 can be made larger than The liquid crystal light effect in the second sub-pixel region 2, the liquid crystal light effect difference of the display panel in the first sub-pixel region 1 and the second sub-pixel region 2 can compensate the first sub-pixel region 1 and the second sub-pixel region 2 The difference in aperture ratio, thereby improving the difference in light transmittance between the first sub-pixel region 1 and the second sub-pixel region 2 of the display panel, thereby further making the light transmittance of the display panel more uniform, and improving the twill of
  • the display panel further includes a main spacer 6 and a secondary spacer 7, the main spacer 6 is disposed in the first sub-pixel area 1, and the auxiliary spacer 7 is disposed in the second sub-pixel area 2;
  • the occupied area of the spacer 6 in the first sub-pixel area 1 is larger than the occupied area of the auxiliary spacer 7 in the second sub-pixel area 2.
  • the main spacer 6 and the auxiliary spacer 7 are disposed on the color filter substrate substrate 5, and the main spacer 6 and the auxiliary spacer 7 extend in the direction of the array substrate 4.
  • the insulating layer 3 is disposed on the array substrate 4 .
  • the main spacer 6 is located in a corresponding area of the area where the black matrix in the first sub-pixel area 1 is located, and the auxiliary spacer 7 is located in the corresponding area of the area where the black matrix in the second sub-pixel area 2 is located;
  • the occupied area of the object 6 is larger than the occupied area of the auxiliary spacer 7, so that the aperture ratio of the first sub-pixel region 1 is made smaller than the aperture ratio of the second sub-pixel region 2; by making the insulating layer 3 in the first sub-pixel region 1
  • the thickness H1 is smaller than the thickness H2 of the second sub-pixel region 2, so that the cell gap L1 of the display panel in the first sub-pixel region 1 is larger than the cell gap L2 of the second sub-pixel region 2, and then the display panel is
  • the liquid crystal efficacy of the first sub-pixel region 1 is greater than the liquid crystal efficacy of the second sub-pixel region 2, and the difference in liquid crystal efficacy of the display panel in the first sub-pixel region 1 and the second sub-pixel
  • the difference in aperture ratio between the pixel region 1 and the second sub-pixel region 2 is improved, thereby further making the light transmittance of the display panel more uniform, thereby improving the display effect of the screen.
  • the color film substrate substrate 5 is further provided with other film layers (not shown in FIG. 4 and FIG. 5) disposed on the color film substrate, such as a black matrix, a color film layer, and a planarization layer. No longer.
  • the display panel has different cell gaps between the first sub-pixel region 1 and the second sub-pixel region 2 such that the aperture ratio of the second sub-pixel region 2 and the first sub-pixel region 1 coincide.
  • the difference in aperture ratio between the second sub-pixel region 2 and the first sub-pixel region 1 can be compensated by the difference in the cell gap between the first sub-pixel region 1 and the second sub-pixel region 2, thereby making the second sub-portion
  • the light transmittance of the pixel region 2 and the first sub-pixel region 1 is the same, and the light transmittance of the display panel is more uniform, thereby completely eliminating the Mura phenomenon when the display panel is displayed, thereby improving the display effect of the screen.
  • the insulating layer 3 includes one layer.
  • the display panel further includes a gate, a gate insulating layer, an active layer, source and drain electrodes (not shown in FIGS. 4 and 5), and a passivation layer and a pixel electrode, which are sequentially disposed on the array substrate 4, that is, display
  • the panel is a TN (Twisted Nematic) display mode display panel.
  • the insulating layer 3 is a passivation layer provided on the array substrate 4 .
  • the insulating layer 3 is a passivation layer disposed on the array substrate 4 close to the color filter substrate substrate 5, so that the insulating layer 3 can be more easily formed in the first sub-pixel region 1 and the second sub-pixel region 2 with different thicknesses.
  • Each of the region portions that is, a gap is formed in the insulating layer 3; since no more insulating film layer is disposed on the passivation layer on the side away from the substrate of the array substrate 4, the formation on the passivation layer is performed.
  • the gap is not easily covered by other insulating film layers located thereon, thereby avoiding the elimination of the gap formed by other insulating film layers on the passivation layer.
  • the insulating layer may also include multiple layers.
  • the display panel may further include a gate, a gate insulating layer, an active layer, a source drain, a common electrode, an organic insulating layer, and a passivation layer and a pixel electrode, which are sequentially disposed on the array substrate, that is, the display panel It is a display panel for ADS (ADvanced Super Dimension Switch) display mode.
  • the insulating layer includes an organic insulating layer and a passivation layer which are disposed on the array substrate.
  • the insulating layer is a passivation layer and an organic insulating layer disposed on the array substrate substrate close to the color filter substrate, so that not only the insulating layer is more easily formed in the first sub-pixel region and the second sub-pixel region.
  • Each of the region portions, that is, a gap is formed in the insulating layer, and the gap formed on the passivation layer and the organic insulating layer is not easily covered by other insulating film layers located thereon, thereby preventing other insulating film layers from being formed.
  • the gap on the passivation layer and the organic insulating layer is eliminated, and the difference in the cell gap between the corresponding first sub-pixel region and the corresponding second sub-pixel region of the display panel can be adjusted by simultaneously forming a gap in the two insulating layers.
  • the range is enlarged, so that the second sub-pixel region can be better compensated by adjusting the difference of the cell gap between the first sub-pixel region and the second sub-pixel region
  • the array substrate is further provided with other film layers, such as a thin film transistor, a pixel electrode, and a common electrode, which are disposed on the array substrate, and details are not described herein.
  • this embodiment of the present disclosure further provides a method for fabricating the display panel, the method comprising forming a first sub-pixel region and a second sub-pixel region, the first sub-pixel region
  • the aperture ratio is smaller than the aperture ratio of the second sub-pixel region
  • the pattern of the insulating layer is formed by one patterning process, the thickness of the insulating layer in the first sub-pixel region is smaller than the thickness of the second sub-pixel region, so that the display panel is in the
  • the cell gap of one sub-pixel region is larger than the cell gap of the second sub-pixel region, thereby making the aperture ratio of the first sub-pixel region and the second sub-pixel region uniform.
  • the pattern of the insulating layer is formed by a halftone mask process.
  • the method for preparing the display panel further comprises the step of forming a passivation layer pattern on the array substrate by using a patterning process, wherein: forming the passivation layer pattern adopts a halftone mask process.
  • the thickness of the passivation layer in the first sub-pixel region is less than its thickness in the second sub-pixel region.
  • the method for preparing the display panel further comprises the steps of sequentially forming an organic insulating layer pattern and a passivation layer pattern on the array substrate by using a patterning process, wherein: forming an organic insulating layer pattern And forming a passivation layer pattern using a halftone mask process.
  • the thickness of the organic insulating layer and the passivation layer in the first sub-pixel region is smaller than the thickness thereof in the second sub-pixel region.
  • the preparation of the insulating layer does not increase the complexity of the process and the manufacturing cost, and the implementation is strong, so that the preparation of the display panel does not increase the process difficulty and the manufacturing cost.
  • Still another embodiment of the present disclosure provides a display panel, which is different from the above-described embodiment, as shown in FIG. 6 and FIG. 7, the display panel provided in the embodiment shown in FIG. 4-5.
  • the third sub-pixel region 9 is further included, and the aperture ratio of the second sub-pixel region 2 is smaller than the aperture ratio of the third sub-pixel region 9; as in the third sub-pixel region 9, no spacer is disposed; the insulating layer 3 is The thickness H2 of the second sub-pixel region 2 is smaller than the thickness H3 thereof in the third sub-pixel region 9 such that the cell gap L2 of the display panel in the second sub-pixel region 2 is larger than the cell gap L3 thereof in the third sub-pixel region 9. Thereby, the aperture ratios of the second sub-pixel region 2 and the third sub-pixel region 9 are made uniform.
  • the foregoing embodiment of the present disclosure is described by taking one pixel unit including a first sub-pixel region, a second sub-pixel region, and a third sub-pixel region as an example, and those skilled in the art may It is necessary to make appropriate adjustments and modifications based on the above-described concept of the present disclosure, for example, the first sub-pixel region and/or the second sub-pixel region and/or the third sub-pixel region and the other pixel unit in one pixel unit may be adjusted.
  • the aperture ratio of a sub-pixel region and/or the second sub-pixel region and/or the third sub-pixel region is matched The disclosure is not described here one by one.
  • the main spacer 6 occupies a part of the area in the first sub-pixel area 1
  • the auxiliary spacer 7 occupies a part of the area in the second sub-pixel area 2, and no gap is set in the third sub-pixel area 9.
  • a spacer so that the aperture ratio of the first sub-pixel region 1 is smaller than the aperture ratio of the second sub-pixel region 2, and the aperture ratio of the second sub-pixel region 2 is smaller than the aperture ratio of the third sub-pixel region 9;
  • the thickness H1 in the first sub-pixel region 1 is smaller than the thickness H2 thereof in the second sub-pixel region 2, and the thickness H2 of the insulating layer 3 in the second sub-pixel region 2 is smaller than the thickness H3 thereof in the third sub-pixel region 9.
  • the cell gap L1 of the display panel in the first sub-pixel region 1 can be made larger than the cell gap L2 of the second sub-pixel region 2, and the cell gap L2 of the display panel in the second sub-pixel region 2 is greater than that in the third a cell gap L3 of the sub-pixel region 9; then, the liquid crystal efficacy of the display panel in the first sub-pixel region 1 is greater than that of the liquid crystal in the second sub-pixel region 2, and the display panel is in the second sub-pixel region 2
  • the liquid crystal light effect is greater than the liquid crystal light in the third sub-pixel region 9
  • the liquid crystal light effect difference of the display panel in the first sub-pixel area 1 and the second sub-pixel area 2 can compensate for the aperture ratio difference of the first sub-pixel area 1 and the second sub-pixel area 2, and the display panel is in the second sub-pixel area
  • the liquid crystal efficacy difference between the second sub-pixel region 2 and the third sub-pixel region 9 can compensate for the difference in aperture ratio of the second sub-pixel region 2 and the third sub-
  • the display panel is different in the cell gap between the second sub-pixel region 2 and the third sub-pixel region 9 such that the aperture ratios of the third sub-pixel region 9 and the second sub-pixel region 2 coincide.
  • the difference in aperture ratio between the second sub-pixel region 2 and the third sub-pixel region 9 can be compensated by the difference in the cell gap between the second sub-pixel region 2 and the third sub-pixel region 9 so as to be on the display panel.
  • the first sub-pixel region 1, the second sub-pixel region 2, and the third sub-pixel region 9 have the same light transmittance, thereby further making the light transmittance of the display panel more uniform, completely eliminating the twill Mura phenomenon when the display panel is displayed. , improved the display of the picture.
  • the present embodiment further provides a method for preparing a display panel, which is different from the method for preparing the display panel in the embodiment shown in FIG. 2-3.
  • the method for preparing the display panel of the embodiment further includes forming a third sub-pixel region.
  • the aperture ratio of the second sub-pixel region is smaller than the aperture ratio of the third sub-pixel region; the thickness of the insulating layer in the second sub-pixel region is smaller than the thickness thereof in the third sub-pixel region, so that the display panel is in the second sub-pixel
  • the cell gap of the region is larger than its cell gap in the third sub-pixel region.
  • Another embodiment of the present disclosure provides a display panel, which is different from the embodiment shown in FIGS. 2-5 in that a main spacer and a secondary spacer are disposed on an array substrate, and an insulating layer is disposed on the color film. On the substrate substrate.
  • the insulating layer is a planarization layer disposed on the color filter substrate.
  • the main spacer, the auxiliary spacer, and the insulating layer may be disposed on the array substrate.
  • the main spacer, the auxiliary spacer, and the insulating layer may be disposed on the color filter substrate.
  • the insulating layer is a planarization layer disposed on the color filter substrate.
  • Another embodiment of the present disclosure provides a display panel, which is different from the above-described embodiment shown in FIGS. 2-3 in that a spacer is disposed on an array substrate, and an insulating layer is disposed on the color filter substrate. .
  • the insulating layer is a planarization layer disposed on the color filter substrate.
  • the spacer and the insulating layer may be disposed on the array substrate.
  • the spacer and the insulating layer may be disposed on the color filter substrate.
  • the insulating layer is a planarization layer disposed on the color filter substrate.
  • the thickness of the insulating layer in the first sub-pixel region is smaller than the thickness in the second sub-pixel region, so that the cell gap of the display panel in the first sub-pixel region is greater than that in the second
  • the cell gap of the sub-pixel region in turn, enables the liquid crystal efficacy of the display panel in the first sub-pixel region to be greater than the liquid crystal efficacy in the second sub-pixel region, and the display panel is in the first sub-pixel region and the second sub-pixel region.
  • the difference in liquid crystal light efficiency can compensate for the difference in aperture ratio between the first sub-pixel region and the second sub-pixel region, thereby improving the difference in light transmittance of the display panel in the first sub-pixel region and the second sub-pixel region, thereby making the display panel
  • the light transmittance is more uniform, which improves the twill Mura phenomenon when the display panel is displayed, and improves the display effect of the screen.
  • the difference in aperture ratio between the first sub-pixel region, the second sub-pixel region, and the third sub-pixel region may be compensated by adjusting the cell gap between them as needed. It is not limited to the above case where the difference in aperture ratio is compensated for.
  • Another embodiment of the present disclosure further provides a display device comprising the display panel of any of the above embodiments.
  • the unevenness of the light transmittance of the display device during display is improved.
  • Sexuality enhances the display effect of the display device.
  • the display device provided by the present invention may be any product or component having a display function such as a liquid crystal panel, a liquid crystal television, a display, a mobile phone, a navigator or the like.

Abstract

提供一种显示面板及其制备方法和显示装置。显示面板包括:第一子像素区域(1);第二子像素区域(2),其中第一子像素区域(1)的开口率小于第二子像素区域(2)的开口率;和绝缘层(3),绝缘层(3)在第一子像素区域(1)的厚度小于其在第二子像素区域(2)的厚度,以使显示面板在第一子像素区域(1)的盒间隙大于其在第二子像素区域(2)的盒间隙,从而至少部分地补偿第一子像素区域(1)和第二子像素区域(2)之间的开口率差异。

Description

显示面板及其制备方法和显示装置
本申请要求于2017年1月20日递交的、申请号为201710042413.X、发明名称为“一种显示面板及其制备方法和显示装置”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本公开涉及显示技术领域,具体地,涉及一种显示面板及其制备方法和显示装置。
背景技术
薄膜晶体管液晶显示装置(TFT-LCD)具有体积小、功耗低、无辐射等优点,近年来得到迅速发展并已占据着市场上的主流地位。TFT-LCD是由很多构件组成的一个精密而复杂的器件,主要由彩膜基板(Color Filter Glass,简称CF基板)、阵列基板(TFT Glass,简称TFT基板)以及前述两基板之间的液晶层三部分组成,成盒时液晶滴注在其中的一个基板上,封框胶(其中混有一定比例的计算尺寸的硅球)涂覆在另一个基板之上,最终通过真空对合和封框胶的固化形成液晶显示面板。
发明内容
本公开的实施例提供了一种显示面板及其制备方法和显示装置。
根据本公开的一个方面,提供了一种显示面板,所述显示面板包括:
第一子像素区域;
第二子像素区域,其中所述第一子像素区域的开口率小于所述第二子像素区域的开口率;和
绝缘层,所述绝缘层在所述第一子像素区域的厚度小于其在所述第二子像素区域的厚度,以使所述显示面板在所述第一子像素区域的盒间隙大于其在所述第二子像素区域的盒间隙,从而至少部分地补偿所述第一子像素区域和所述第二子像素区域之间的开口率差异。
在一个示例中,所述显示面板还包括隔垫物,所述隔垫物设置在所述第一子像素区域中。
在一个示例中,所述显示面板还包括:
主隔垫物,所述主隔垫物设置在所述第一子像素区域;和
辅隔垫物,所述辅隔垫物对应设置在所述第二子像素区域;
其中所述主隔垫物在所述第一子像素区域的占用面积大于所述辅隔垫物在所述第二子像素区域的占用面积。
在一个示例中,所述显示面板还包括第三子像素区域,所述第二子像素区域的开口率小于所述第三子像素区域的开口率;
所述绝缘层在所述第二子像素区域的厚度小于其在所述第三子像素区域的厚度,以使所述显示面板在所述第二子像素区域的盒间隙大于其在所述第三子像素区域的盒间隙,从而至少部分地补偿所述第二子像素区域和所述第三子像素区域之间的开口率差异。
在一个示例中,所述隔垫物设置在彩膜基板衬底上,所述绝缘层设置在阵列基板衬底上。
在一个示例中,所述隔垫物设置在所述阵列基板衬底上,所述绝缘层设置在所述彩膜基板衬底上。
在一个示例中,所述隔垫物和所述绝缘层均设置在所述阵列基板衬底上;或所述隔垫物和所述绝缘层均设置在所述彩膜基板衬底上。
在一个示例中,所述主隔垫物和所述辅隔垫物设置在彩膜基板衬底上,所述绝缘层设置在阵列基板衬底上。
在一个示例中,所述主隔垫物和所述辅隔垫物设置在所述阵列基板衬底上,所述绝缘层设置在所述彩膜基板衬底上。
在一个示例中,所述主隔垫物、所述辅隔垫物和所述绝缘层均设置在所述阵列基板衬底上或均设置在所述彩膜基板衬底上。
在一个示例中,通过配置所述第一子像素区域的盒间隙和第二子像素区域的盒间隙使得所述第一子像素区域的开口率与第二子像素区域的开口率一致。
在一个示例中,通过配置所述第二子像素区域的盒间隙和第三子像素区域的盒间隙使得所述第二子像素区域的开口率与第三子像素区域的开口率一致。
在一个示例中,所述绝缘层为一层或多层。
在一个示例中,所述绝缘层为设置在所述阵列基板衬底上的钝化层。
在一个示例中,所述绝缘层为设置在所述阵列基板衬底上靠近彩膜基板衬底的钝化层。
在一个示例中,所述绝缘层为设置在所述阵列基板衬底上的有机绝缘层和钝化层。
在一个示例中,所述绝缘层为设置在阵列基板衬底上的靠近彩膜基板衬底的钝化层和有机绝缘层。
在一个示例中,所述绝缘层为设置在所述彩膜基板衬底上的平坦化层。
在本公开的另一方面中,提供了一种显示装置,包括根据上述的方面或示例所述的显示面板。
在本公开的还一方面中,提供了一种制备上述的显示面板的方法,所述方法包括:
形成第一子像素区域和第二子像素区域,所述第一子像素区域的开口率小于所述第二子像素区域的开口率;
通过一次构图工艺形成绝缘层的图形,所述绝缘层在所述第一子像素区域的厚度小于其在所述第二子像素区域的厚度,以使所述显示面板在所述第一子像素区域的盒间隙大于其在所述第二子像素区域的盒间隙,从而至少部分补偿所述第一子像素区域和所述第二子像素区域之间的开口率差异。
附图说明
图1为一种液晶显示面板上主隔垫物和辅隔垫物的分布俯视图;
图2为本发明的一个实施例中显示面板的结构剖视示意图;
图3为图2中隔垫物在子像素区域的分布俯视示意图;
图4为本发明的另一实施例中显示面板的结构剖视示意图;
图5为图4中主隔垫物和辅隔垫物在子像素区域的分布俯视示意图;
图6为本发明的还一实施例中显示面板的结构剖视示意图;
图7为图6中主隔垫物和辅隔垫物在子像素区域的分布俯视示意图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明所提供的一种显示面板及其制备方法和显示装置作进一步详细描述。
为保证液晶显示面板盒厚的均一性,需要在液晶显示面板盒内设计很多隔垫物,通常在面板主显示区域(Active Area,简称AA区)的CF基板上通过曝光形成一些分散的隔垫物(Photo Spacer,简称PS),这种PS又分为主隔垫物(Main PS)和辅隔垫物(Sub PS)两种。主隔垫物截面积较大,辅隔垫物截面积较小,这使得主隔垫物所在像素区域的开口率要比周边辅隔垫物所在像素区域的开口率小,最终反映在显示面板显示性能方面上就是主隔垫物所在像素区域的显示亮度要小于辅隔垫物所在像素区域的显示亮度。
如图1所示,主隔垫物6在显示面板内部通常均匀分布,是一种典型的主隔垫物6密度为1/18的设计占位示意图,在整个视野下观察,所有主隔垫物6所在像素区域10会因亮度低于所有辅隔垫物7所在像素区域10亮度而导致形成一道道斜纹阴影(Mura)(由图中的虚线示出),从而影响画面显示效果。
因此,本公开的发明人注意到需要至少部分地改善或消除液晶显示面板在显示时出现的斜纹阴影,从而提高其显示亮度的均匀性。
本公开的一个实施例提供一种显示面板,如图2和图3所示,显示面板包括第一子像素区域1和第二子像素区域2,第一子像素区域1的开口率小于第二子像素区域2的开口率。显示面板还包括绝缘层3,该绝缘层3在第一子像素区域1的厚度H1小于其在第二子像素区域2的厚度H2,以使显示面板在第一子像素区域1的盒间隙L1大于其在第二子像素区域2的盒间隙L2,从而使第一子像素区域1和第二子像素区域2的开口率一致。
显示面板是指液晶显示面板。由于显示面板的盒厚与其在显示时的液晶光效成正相关性,即成正比,因此,通过使绝缘层3在第一子像素区域1的厚度H1小于其在第二子像素区域2的厚度H2,能使显示面板在第一子像素区域1的盒间隙L1大于其在第二子像素区域2的盒间隙L2,继而能使显示面板在第一子像素区域1的液晶光效大于其在第二子像素区域2的液晶光效,显示面板在第一子像素区域1和第二子像素区域2的液晶光效差异能够补偿第一子像素区域1和第二子像素区域2的开口率差异,从而改善显示面板在第一子像素区域1和第二子像素区域2的光线透过率差异,进而使显示面板的光线透过率更加均匀,改善了显示面板显示时的斜纹Mura现象,提升了画面的显示效果。
需要说明的是,本公开的上述实施例是以包含一个第一子像素区域和一个第二子像素区域的一个像素单元为例进行说明,当然本领域技术人员可以根据需要基于本 公开的构思进行适当的调整和修改,例如可以调整一个像素单元中的第一子像素区域和/或第二子像素区域与另一个像素单元的第一子像素区域和/或第二子像素区域的开口率相匹配,本公开在此不再一一说明。
本实施例中,显示面板还包括隔垫物8,该隔垫物8设置在第一子像素区域1中;而在第二子像素区域2未设置隔垫物8。
本实施例中,隔垫物8设置在彩膜基板衬底5上,且隔垫物8向阵列基板衬底4方向延伸。绝缘层3设置在阵列基板的衬底4上。
其中,隔垫物8位于第一子像素区域1内的黑矩阵所在区域的对应区域;由于隔垫物8占用了第一子像素区域1的部分面积,所以使第一子像素区域1的开口率小于第二子像素区域2的开口率;通过使绝缘层3在第一子像素区域1的厚度H1小于其在第二子像素区域2的厚度H2,能使显示面板的第一子像素区域1的盒间隙L1大于其第二子像素区域2的盒间隙L2,继而使显示面板的第一子像素区域1的液晶光效大于其第二子像素区域2的液晶光效,显示面板的第一子像素区域1和第二子像素区域2的液晶光效差异能够补偿第一子像素区域1和第二子像素区域2的开口率差异,从而改善显示面板在第一子像素区域1和第二子像素区域2的光线透过率差异,进而使显示面板的光线透过率更加均匀,改善了显示面板显示时的斜纹Mura现象,提升了画面的显示效果。
需要说明的是,彩膜基板衬底5上还设置有黑矩阵、彩膜层和平坦化层等其他膜层(图2和图3中未示出),具体不再赘述。
本实施例中,显示面板的第一子像素区域1与第二子像素区域2的盒间隙不同,以使第二子像素区域2与第一子像素区域1的开口率一致。如此设置,能使第二子像素区域2与第一子像素区域1的开口率由于是否设置隔垫物所造成的差异恰好能通过第一子像素区域1与第二子像素区域2的盒间隙差异来补偿,从而使第二子像素区域2与第一子像素区域1的光线透过率相同,进而使显示面板的光线透过率更加均匀,彻底消除了显示面板显示时的斜纹Mura现象,提升了画面的显示效果。
本实施例中,绝缘层3包括一层。显示面板还包括依次设置在阵列基板衬底4上的栅极、栅绝缘层、有源层、源漏极(图2和图3中未示出)、钝化层和像素电极,即显示面板为TN(Twisted Nematic,扭曲向列)显示模式的显示面板。绝缘层3包括为设置在阵列基板衬底4上的钝化层。绝缘层3为设置在阵列基板衬底4上的靠近彩膜基板衬底5的钝化层,能使绝缘层3在第一子像素区域1和第二子像素区域2 更加容易地形成厚度不同的各区域部分,即在绝缘层3中形成断差;由于位于远离阵列基板衬底4一侧的钝化层上不会再设置更多的绝缘膜层,所以使形成在钝化层上的断差不容易被位于其上的其它绝缘膜层覆盖,从而避免其它绝缘膜层将形成在钝化层上的断差消除。
需要说明的是,绝缘层也可以包括多层。如:显示面板也可以还包括依次设置在阵列基板衬底上的栅极、栅绝缘层、有源层、源漏极、公共电极、有机绝缘层、和钝化层和像素电极,即显示面板为ADS(ADvanced Super Dimension Switch,高级超维场转换技术)显示模式的显示面板。绝缘层为设置在阵列基板衬底上的有机绝缘层和钝化层。即绝缘层为设置在阵列基板衬底上的靠近彩膜基板衬底的钝化层和有机绝缘层,如此不仅使绝缘层在第一子像素区域和第二子像素区域更加容易地形成厚度不同的各区域部分,即在绝缘层中形成断差,并使形成在钝化层和有机绝缘层上的断差不容易被位于其上的其它绝缘膜层覆盖,从而避免其它绝缘膜层将形成在钝化层和有机绝缘层上的断差消除,而且通过在两个绝缘层中同时形成断差,能够使显示面板的第一子像素区域与第二子像素区域的盒间隙差异调整范围扩大,从而能通过调整第一子像素区域与第二子像素区域的盒间隙差异来更好地补偿第二子像素区域与第一子像素区域的较大的开口率差异。其中,在该示例中,阵列基板衬底上还设置有薄膜晶体管、像素电极和公共电极等其他设置于阵列基板上的其他膜层,具体不再赘述。
基于本实施例中显示面板的上述结构,本实施例还提供一种该显示面板的制备方法,该方法包括:形成第一子像素区域和第二子像素区域,第一子像素区域的开口率小于第二子像素区域的开口率;通过一次构图工艺形成绝缘层的图形,绝缘层在第一子像素区域的厚度小于其在第二子像素区域的厚度,以使显示面板的第一子像素区域的盒间隙大于第二子像素区域的盒间隙,从而使第一子像素区域和第二子像素区域的开口率一致。其中,绝缘层的图形采用半色调掩膜工艺形成。
其中,当绝缘层为一层时,显示面板的制备方法还包括采用构图工艺在阵列基板衬底上形成钝化层图形的步骤,其中:形成钝化层图形采用半色调掩膜工艺。钝化层在第一子像素区域的厚度小于其在第二子像素区域的厚度。
需要说明的是,当绝缘层为多层时,显示面板的制备方法还包括采用构图工艺先后在阵列基板衬底上形成有机绝缘层图形和钝化层图形的步骤,其中:形成有机绝缘层图形和形成钝化层图形均采用半色调掩膜工艺。有机绝缘层和钝化层的在第一子像素区域的厚度小于其在第二子像素区域的厚度。
显示面板的制备方法中,绝缘层的制备不会增加工艺的复杂性和制作成本,可实施性强,从而使显示面板的制备也不会增加工艺难度和制作成本。
本公开的另一实施例提供一种显示面板,如图4和图5所示,显示面板包括第一子像素区域1和第二子像素区域2,第一子像素区域1的开口率小于第二子像素区域2的开口率;显示面板还包括绝缘层3,绝缘层3在第一子像素区域1的厚度H1小于其在第二子像素区域2的厚度H2,以使显示面板在第一子像素区域1的盒间隙L1大于其在第二子像素区域2的盒间隙L2,从而使第一子像素区域1和第二子像素区域2的开口率均匀。
其中,显示面板是指液晶显示面板。由于显示面板的盒厚与其在显示时的液晶光效成正相关性,即成正比,因此,通过使绝缘层3在第一子像素区域1的厚度H1小于其在第二子像素区域2的厚度H2,能使显示面板的在第一子像素区域1的盒间隙L1大于其在第二子像素区域2的盒间隙L2,继而能使显示面板的在第一子像素区域1的液晶光效大于其在第二子像素区域2的液晶光效,显示面板在第一子像素区域1和在第二子像素区域2的液晶光效差异能够补偿第一子像素区域1和第二子像素区域2的开口率差异,从而改善显示面板在第一子像素区域1和第二子像素区域2的光线透过率差异,进而使显示面板的光线透过率更加均匀,改善了显示面板显示时的斜纹Mura现象,提升了画面的显示效果。
本实施例中,显示面板还包括主隔垫物6和辅隔垫物7,主隔垫物6设置在第一子像素区域1,辅隔垫物7设置在第二子像素区域2;主隔垫物6在第一子像素区域1的占用面积大于辅隔垫物7在第二子像素区域2的占用面积。
本实施例中,主隔垫物6和辅隔垫物7设置在彩膜基板衬底5上,且主隔垫物6和辅隔垫物7向阵列基板衬底4方向延伸。绝缘层3设置在阵列基板衬底4上。
其中,主隔垫物6位于第一子像素区域1内的黑矩阵所在区域的对应区域,辅隔垫物7位于第二子像素区域2内的黑矩阵所在区域的对应区域;由于主隔垫物6的占用面积大于辅隔垫物7的占用面积,所以使第一子像素区域1的开口率将小于第二子像素区域2的开口率;通过使绝缘层3在第一子像素区域1的厚度H1小于其在第二子像素区域2的厚度H2,能使显示面板在第一子像素区域1的盒间隙L1大于其在第二子像素区域2的盒间隙L2,继而使显示面板在第一子像素区域1的液晶光效大于其在第二子像素区域2的液晶光效,显示面板在第一子像素区域1和第二子像素区域2的液晶光效差异能够补偿第一子像素区域1和第二子像素区域2的开口率差异, 从而改善显示面板在第一子像素区域1和第二子像素区域2的光线透过率差异,进而使显示面板的光线透过率更加均匀,提升了画面的显示效果。
需要说明的是,彩膜基板衬底5上还设置有黑矩阵、彩膜层和平坦化层等其他设置于彩膜基板上的其他膜层(图4和图5中未示出),具体不再赘述。
本实施例中,显示面板在第一子像素区域1与第二子像素区域2的盒间隙不同,以使第二子像素区域2与第一子像素区域1的开口率一致。如此设置,能使第二子像素区域2与第一子像素区域1的开口率差异恰好能通过第一子像素区域1与第二子像素区域2的盒间隙差异来补偿,从而使第二子像素区域2与第一子像素区域1的光线透过率相同,进而使显示面板的光线透过率更加均匀,彻底消除了显示面板显示时的斜纹Mura现象,提升了画面的显示效果。
本实施例中,绝缘层3包括一层。显示面板还包括依次设置在阵列基板衬底4上的栅极、栅绝缘层、有源层、源漏极(图4和图5中未示出)、和钝化层和像素电极,即显示面板为TN(Twisted Nematic,扭曲向列)显示模式的显示面板。绝缘层3为设置在阵列基板衬底4上的钝化层。绝缘层3为设置在阵列基板衬底4上的靠近彩膜基板衬底5的钝化层,能使绝缘层3在第一子像素区域1和第二子像素区域2更加容易地形成厚度不同的各区域部分,即在绝缘层3中形成断差;由于位于远离阵列基板衬底4一侧的钝化层上不会再设置更多的绝缘膜层,所以使形成在钝化层上的断差不容易被位于其上的其它绝缘膜层覆盖,从而避免其它绝缘膜层将形成在钝化层上的断差消除。
需要说明的是,绝缘层也可以包括多层。如:显示面板也可以还包括依次设置在阵列基板衬底上的栅极、栅绝缘层、有源层、源漏极、公共电极、有机绝缘层、和钝化层和像素电极,即显示面板为ADS(ADvanced Super Dimension Switch,高级超维场转换技术)显示模式的显示面板。绝缘层包括为设置在阵列基板衬底上的有机绝缘层和钝化层。即绝缘层为设置在阵列基板衬底上的靠近彩膜基板衬底的钝化层和有机绝缘层,如此不仅使绝缘层在第一子像素区域和第二子像素区域更加容易地形成厚度不同的各区域部分,即在绝缘层中形成断差,并使形成在钝化层和有机绝缘层上的断差不容易被位于其上的其它绝缘膜层覆盖,从而避免其它绝缘膜层将形成在钝化层和有机绝缘层上的断差消除,而且通过在两个绝缘层中同时形成断差,能够使显示面板的对应第一子像素区域与对应第二子像素区域的盒间隙差异调整范围扩大,从而能通过调整第一子像素区域与第二子像素区域的盒间隙差异来更好地补偿第二子像素区 域与第一子像素区域的较大的开口率差异。其中,在该举例中,阵列基板衬底上还设置有薄膜晶体管、像素电极和公共电极等其他设置于阵列基板上的其他膜层,具体不再赘述。
基于本实施例中显示面板的上述结构,本公开的这一实施例还提供一种该显示面板的制备方法,该方法包括形成第一子像素区域和第二子像素区域,第一子像素区域的开口率小于第二子像素区域的开口率;通过一次构图工艺形成绝缘层的图形,绝缘层在第一子像素区域的厚度小于其在第二子像素区域的厚度,以使显示面板在第一子像素区域的盒间隙大于其在第二子像素区域的盒间隙,从而使第一子像素区域和第二子像素区域的开口率均匀。其中,绝缘层的图形采用半色调掩膜工艺形成。
其中,当绝缘层为一层时,显示面板的制备方法还包括采用构图工艺在阵列基板衬底上形成钝化层图形的步骤,其中:形成钝化层图形采用半色调掩膜工艺。钝化层在第一子像素区域的厚度小于其在第二子像素区域的厚度。
需要说明的是,当绝缘层为多层时,显示面板的制备方法还包括采用构图工艺先后在阵列基板衬底上形成有机绝缘层图形和钝化层图形的步骤,其中:形成有机绝缘层图形和形成钝化层图形均采用半色调掩膜工艺。有机绝缘层和钝化层在第一子像素区域的厚度小于其在第二子像素区域的厚度。
显示面板的制备方法中,绝缘层的制备不会增加工艺的复杂性和制作成本,可实施性强,从而使显示面板的制备也不会增加工艺难度和制作成本。
本公开的还一实施例提供一种显示面板,与上述的实施例不同的是,如图6和图7所示,该显示面板在图4-5所显示的实施例中提供的显示面板基础上,还包括第三子像素区域9,第二子像素区域2的开口率小于第三子像素区域9的开口率;如在第三子像素区域9未设置任何隔垫物;绝缘层3在第二子像素区域2的厚度H2小于其在第三子像素区域9的厚度H3,以使显示面板在第二子像素区域2的盒间隙L2大于其在第三子像素区域9的盒间隙L3,从而使第二子像素区域2和第三子像素区域9的开口率均匀。
需要说明的是,本公开的上述实施例是以包含一个第一子像素区域、一个第二子像素区域以及一个第三子像素区域的一个像素单元为例进行说明,当然本领域技术人员可以根据需要基于本公开的上述构思进行适当的调整和修改,例如可以调整一个像素单元中的第一子像素区域和/或第二子像素区域和/或第三子像素区域与另一个像素单元的第一子像素区域和/或第二子像素区域和/或第三子像素区域的开口率相匹 配,本公开在此不再一一说明。
由于主隔垫物6对应占用了第一子像素区域1内的部分面积,辅隔垫物7对应占用了第二子像素区域2内的部分面积,第三子像素区域9内未设置任何隔垫物,所以使第一子像素区域1的开口率小于第二子像素区域2的开口率,第二子像素区域2的开口率小于第三子像素区域9的开口率;通过使绝缘层3在第一子像素区域1的厚度H1小于其在第二子像素区域2的厚度H2,并使绝缘层3在第二子像素区域2的厚度H2小于其在第三子像素区域9的厚度H3;能使显示面板在第一子像素区域1的盒间隙L1大于其在第二子像素区域2的盒间隙L2,并使显示面板在第二子像素区域2的盒间隙L2大于其在第三子像素区域9的盒间隙L3;继而使显示面板在第一子像素区域1的液晶光效大于其在第二子像素区域2的液晶光效,并使显示面板在第二子像素区域2的液晶光效大于其在第三子像素区域9的液晶光效;显示面板在第一子像素区域1和第二子像素区域2的液晶光效差异能够补偿第一子像素区域1和第二子像素区域2的开口率差异,显示面板在第二子像素区域2和第三子像素区域9的液晶光效差异能够补偿第二子像素区域2和第三子像素区域9的开口率差异;从而改善显示面板在第一子像素区域1、第二子像素区域2和第三子像素区域9的光线透过率差异,进而使显示面板的光线透过率更加均匀,改善了显示面板显示时的斜纹Mura现象,提升了画面的显示效果。
显示面板在第二子像素区域2与第三子像素区域9的盒间隙不同,以使第三子像素区域9与第二子像素区域2的开口率一致。如此设置,能使第二子像素区域2与第三子像素区域9的开口率差异恰好能通过第二子像素区域2与第三子像素区域9的盒间隙差异来补偿,从而使显示面板上第一子像素区域1、第二子像素区域2和第三子像素区域9的光线透过率相同,进而使显示面板的光线透过率更加均匀,彻底消除了显示面板显示时的斜纹Mura现象,提升了画面的显示效果。
基于本实施例中显示面板的上述结构,本实施例还提供一种显示面板的制备方法,与图2-3中所显示的实施例中显示面板的制备方法不同的是,在图2-3所显示的实施例的显示面板的制备方法的基础上,本实施例中显示面板的制备方法还包括形成第三子像素区域。第二子像素区域的开口率小于第三子像素区域的开口率;绝缘层在第二子像素区域的厚度小于其在第三子像素区域的厚度,以使显示面板在所述第二子像素区域的盒间隙大于其在第三子像素区域的盒间隙。
本实施例中显示面板的其他结构以及制备方法与图2-3中所显示的实施例中相 同,此处不再赘述。
本公开的另一实施例提供一种显示面板,与图2-5所显示的实施例不同的是,主隔垫物和辅隔垫物设置在阵列基板衬底上,绝缘层设置在彩膜基板衬底上。
相应地,绝缘层为设置在彩膜基板衬底上的平坦化层。
或者也可以是,主隔垫物、辅隔垫物和绝缘层均设置在阵列基板衬底上。
或者也可以是,主隔垫物、辅隔垫物和绝缘层均设置在彩膜基板衬底上。相应地,绝缘层为设置在彩膜基板衬底上的平坦化层。
本实施例中显示面板的其他结构以及制备方法与上述的实施例相同,此处不再赘述。
本公开的另一实施例提供一种显示面板,与图2-3中所显示的上述实施例不同的是,隔垫物设置在阵列基板衬底上,绝缘层设置在彩膜基板衬底上。
相应地,绝缘层为设置在彩膜基板衬底上的平坦化层。
或者也可以是,隔垫物和绝缘层均设置在阵列基板衬底上。
或者也可以是,隔垫物和绝缘层均设置在彩膜基板衬底上。相应地,绝缘层为设置在彩膜基板衬底上的平坦化层。
本实施例中显示面板的其他结构以及制备方法与图2-3中所显示的实施例中相同,此处不再赘述。
上述实施例所提供的显示面板,通过使绝缘层在第一子像素区域的厚度小于其在第二子像素区域的厚度,能使显示面板在第一子像素区域的盒间隙大于其在第二子像素区域的盒间隙,继而能使显示面板在第一子像素区域的液晶光效大于其在第二子像素区域的液晶光效,显示面板在第一子像素区域和第二子像素区域的液晶光效差异能够弥补第一子像素区域和第二子像素区域的开口率差异,从而改善显示面板在第一子像素区域和第二子像素区域的光线透过率差异,进而使显示面板的光线透过率更加均匀,改善了显示面板显示时的斜纹Mura现象,提升了画面的显示效果。
需要说明的是,在上述的各实施例中第一子像素区域、第二子像素区域以及第三子像素区域之间的开口率差异可以根据需要通过调整它们之间的盒间隙来进行补偿,而并不仅限于上述的正好补偿它们的开口率差异的情形。
本公开的另一实施例还提供一种显示装置,包括上述实施例中任一个所述的显示面板。
通过上述实施例的显示面板,改善了该显示装置在显示时光线透过率的不均匀 性,提升了该显示装置的显示效果。
本发明所提供的显示装置可以为,液晶面板、液晶电视、显示器、手机、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (20)

  1. 一种显示面板,所述显示面板包括:
    第一子像素区域;
    第二子像素区域,其中所述第一子像素区域的开口率小于所述第二子像素区域的开口率;和
    绝缘层,所述绝缘层在所述第一子像素区域的厚度小于其在所述第二子像素区域的厚度,以使所述显示面板在所述第一子像素区域的盒间隙大于其在所述第二子像素区域的盒间隙,从而至少部分地补偿所述第一子像素区域和所述第二子像素区域之间的开口率差异。
  2. 根据权利要求1所述的显示面板,还包括隔垫物,所述隔垫物设置在所述第一子像素区域中。
  3. 根据权利要求1所述的显示面板,还包括:
    主隔垫物,所述主隔垫物设置在所述第一子像素区域;和
    辅隔垫物,所述辅隔垫物对应设置在所述第二子像素区域;
    其中所述主隔垫物在所述第一子像素区域的占用面积大于所述辅隔垫物在所述第二子像素区域的占用面积。
  4. 根据权利要求3所述的显示面板,还包括第三子像素区域,所述第二子像素区域的开口率小于所述第三子像素区域的开口率;
    所述绝缘层在所述第二子像素区域的厚度小于其在所述第三子像素区域的厚度,以使所述显示面板在所述第二子像素区域的盒间隙大于其在所述第三子像素区域的盒间隙,从而至少部分地补偿所述第二子像素区域和所述第三子像素区域之间的开口率差异。
  5. 根据权利要求2所述的显示面板,其中,所述隔垫物设置在彩膜基板衬底上,所述绝缘层设置在阵列基板衬底上。
  6. 根据权利要求2所述的显示面板,其中,所述隔垫物设置在所述阵列基板衬底上,所述绝缘层设置在所述彩膜基板衬底上。
  7. 根据权利要求2所述的显示面板,其中,所述隔垫物和所述绝缘层均设置在所述阵列基板衬底上;或所述隔垫物和所述绝缘层均设置在所述彩膜基板衬底上。
  8. 根据权利要求3所述的显示面板,其中,所述主隔垫物和所述辅隔垫物设置在彩膜基板衬底上,所述绝缘层设置在阵列基板衬底上。
  9. 根据权利要求3所述的显示面板,其中,所述主隔垫物和所述辅隔垫物设置在所述阵列基板衬底上,所述绝缘层设置在所述彩膜基板衬底上。
  10. 根据权利要求3所述的显示面板,其中,所述主隔垫物、所述辅隔垫物和所述绝缘层均设置在所述阵列基板衬底上或均设置在所述彩膜基板衬底上。
  11. 根据权利要求1-10中任一项所述的显示面板,其中,通过配置所述第一子像素区域的盒间隙和第二子像素区域的盒间隙使得所述第一子像素区域的开口率与第二子像素区域的开口率一致。
  12. 根据权利要求4-11中任一项所述的显示面板,其中,通过配置所述第二子像素区域的盒间隙和第三子像素区域的盒间隙使得所述第二子像素区域的开口率与第三子像素区域的开口率一致。
  13. 根据权利要求1所述的显示面板,其中,所述绝缘层为一层或多层。
  14. 根据权利要求1-5、7、8、10和13中任一项所述的显示面板,其中,所述绝缘层为设置在所述阵列基板衬底上的钝化层。
  15. 根据权利要求14所述的显示面板,其中,所述绝缘层为设置在所述阵列基板衬底上靠近彩膜基板衬底的钝化层。
  16. 根据权利要求1-5、7、8、10和13中任一项所述的显示面板,其中,所述绝缘层为设置在所述阵列基板衬底上的有机绝缘层和钝化层。
  17. 根据权利要求17所述的显示面板,其中,所述绝缘层为设置在阵列基板衬底上的靠近彩膜基板衬底的钝化层和有机绝缘层。
  18. 根据权利要求1-4、6、7、9、10和13中任一项所述的显示面板,其中,所述绝缘层为设置在所述彩膜基板衬底上的平坦化层。
  19. 一种显示装置,包括权利要求1-18中任一项所述的显示面板。
  20. 一种制备如权利要求1-18任一项所述的显示面板的方法,所述方法包括:
    形成第一子像素区域和第二子像素区域,所述第一子像素区域的开口率小于所述第二子像素区域的开口率;
    通过一次构图工艺形成绝缘层的图形,所述绝缘层在所述第一子像素区域的厚度小于其在所述第二子像素区域的厚度,以使所述显示面板在所述第一子像素区域的盒间隙大于其在所述第二子像素区域的盒间隙,从而至少部分补偿所述第一子像素区域和所述第二子像素区域之间的开口率差异。
PCT/CN2017/095407 2017-01-20 2017-08-01 显示面板及其制备方法和显示装置 WO2018133372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/761,792 US10705388B2 (en) 2017-01-20 2017-08-01 Display panel and method for producing the same and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710042413.X 2017-01-20
CN201710042413.XA CN106773356A (zh) 2017-01-20 2017-01-20 一种显示面板及其制备方法和显示装置

Publications (1)

Publication Number Publication Date
WO2018133372A1 true WO2018133372A1 (zh) 2018-07-26

Family

ID=58944887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095407 WO2018133372A1 (zh) 2017-01-20 2017-08-01 显示面板及其制备方法和显示装置

Country Status (3)

Country Link
US (1) US10705388B2 (zh)
CN (1) CN106773356A (zh)
WO (1) WO2018133372A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773356A (zh) 2017-01-20 2017-05-31 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置
KR102571288B1 (ko) * 2018-04-27 2023-08-28 삼성디스플레이 주식회사 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216847A1 (en) * 2006-03-15 2007-09-20 Tsung-Chien Chang Liquid crystal display panel
CN103728788A (zh) * 2013-12-27 2014-04-16 深圳市华星光电技术有限公司 显示面板及显示装置
CN103869560A (zh) * 2012-12-14 2014-06-18 瀚宇彩晶股份有限公司 液晶显示面板的像素结构及像素形成方法
CN104049418A (zh) * 2014-05-19 2014-09-17 友达光电股份有限公司 显示面板
CN105676547A (zh) * 2016-04-19 2016-06-15 深圳市华星光电技术有限公司 一种液晶显示面板、显示装置
CN106773356A (zh) * 2017-01-20 2017-05-31 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI274946B (en) * 2003-01-10 2007-03-01 Toshiba Matsushita Display Tec Liquid crystal display apparatus and method of manufacturing the same
US7554644B2 (en) * 2006-01-27 2009-06-30 Tpo Displays Corp. LCD panel having capacitor disposed over or below photo spacer with active device also disposed between the photo spacer and a substrate, all disposed over opaque region of display
KR100997979B1 (ko) * 2008-04-30 2010-12-02 삼성전자주식회사 액정 표시 장치 및 그 제조 방법
JP5200795B2 (ja) * 2008-09-12 2013-06-05 セイコーエプソン株式会社 液晶装置及び電子機器
TWI536083B (zh) * 2013-09-11 2016-06-01 友達光電股份有限公司 液晶面板及液晶顯示裝置
JP6401923B2 (ja) 2014-03-20 2018-10-10 株式会社ジャパンディスプレイ 液晶表示装置
KR20160025126A (ko) * 2014-08-26 2016-03-08 삼성디스플레이 주식회사 액정표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216847A1 (en) * 2006-03-15 2007-09-20 Tsung-Chien Chang Liquid crystal display panel
CN103869560A (zh) * 2012-12-14 2014-06-18 瀚宇彩晶股份有限公司 液晶显示面板的像素结构及像素形成方法
CN103728788A (zh) * 2013-12-27 2014-04-16 深圳市华星光电技术有限公司 显示面板及显示装置
CN104049418A (zh) * 2014-05-19 2014-09-17 友达光电股份有限公司 显示面板
CN105676547A (zh) * 2016-04-19 2016-06-15 深圳市华星光电技术有限公司 一种液晶显示面板、显示装置
CN106773356A (zh) * 2017-01-20 2017-05-31 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置

Also Published As

Publication number Publication date
US20190064571A1 (en) 2019-02-28
US10705388B2 (en) 2020-07-07
CN106773356A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
WO2016106842A1 (zh) 薄膜晶体管阵列基板、液晶面板以及液晶显示器
US10466547B2 (en) Display panel, array substrate and manufacturing method for the same
WO2017024744A1 (zh) 显示基板及其制作方法和显示装置
WO2014190713A1 (zh) 阵列基板及其制造方法、显示装置
US9791755B2 (en) Color filter-on-array substrate, display device, and method for manufacturing the color filter-on-array substrate
CN101825814A (zh) Tft-lcd阵列基板及其制造方法
US10254581B2 (en) Fabricating method of color filter substrate, color filter substrate and display device
WO2016029601A1 (zh) 阵列基板及其制备方法、显示装置
WO2014169525A1 (zh) 阵列基板及其制备方法、显示装置
JP2005266011A (ja) カラーフィルタ基板及びそれを用いた表示装置
US20150294986A1 (en) Array substrate, manufacturing method thereof, and display device
WO2018228109A1 (zh) 一种coa基板及其制作方法、显示面板、显示装置
WO2014131238A1 (zh) 阵列基板及其制作方法、显示面板及其制作方法
WO2015188394A1 (zh) 薄膜晶体管阵列基板及其制作方法
US10782575B2 (en) Array substrate and display panel, and fabrication methods thereof
US8304768B2 (en) Thin film transistor array substrate and method for manufacturing the same
US9690146B2 (en) Array substrate, its manufacturing method, and display device
WO2018133372A1 (zh) 显示面板及其制备方法和显示装置
WO2016058330A1 (zh) 阵列基板及其制造方法、显示装置
WO2018196193A1 (zh) 阵列基板及其制造方法、显示面板
US20190049803A1 (en) Active switch array substrate, manufacturing method therefor same, and display device using same
WO2019061751A1 (zh) Tft基板的制作方法及其结构
WO2016101356A1 (zh) Boa阵列基板的制作方法及boa阵列基板
US9897866B2 (en) Liquid crystal display and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892153

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17892153

Country of ref document: EP

Kind code of ref document: A1