US20070216847A1 - Liquid crystal display panel - Google Patents

Liquid crystal display panel Download PDF

Info

Publication number
US20070216847A1
US20070216847A1 US11/308,277 US30827706A US2007216847A1 US 20070216847 A1 US20070216847 A1 US 20070216847A1 US 30827706 A US30827706 A US 30827706A US 2007216847 A1 US2007216847 A1 US 2007216847A1
Authority
US
United States
Prior art keywords
spacer
compensation
distance
protrusion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/308,277
Inventor
Tsung-Chien Chang
Chien-Kuo He
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chunghwa Picture Tubes Ltd
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Priority to US11/308,277 priority Critical patent/US20070216847A1/en
Assigned to CHUNGHWA PICTURE TUBES, LTD. reassignment CHUNGHWA PICTURE TUBES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, TSUNG-CHIEN, HE, CHIEN-KUO
Publication of US20070216847A1 publication Critical patent/US20070216847A1/en
Priority to US12/869,786 priority patent/US8451416B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line

Definitions

  • the present invention relates to a liquid crystal display (LCD) panel. More particularly, the present invention relates to an LCD panel which allows the spacers to have uniform compressing density by applying biased compensation.
  • LCD liquid crystal display
  • An LCD panel is generally formed by a thin film transistor array substrate (TFT array substrate) and a color filter substrate (CF substrate).
  • TFT array substrate thin film transistor array substrate
  • CF substrate color filter substrate
  • a gap has to be sustained between the TFT array substrate and the CF substrate with spacers to fill in a liquid crystal layer between the two substrates.
  • the spacers are disposed on the CF substrate and are in contact with the TFT array substrate.
  • the spacers of an LCD panel may shift along with the shift of the panel that the area density (i.e. compressing density) of the spacers which is in contact with the TFT array substrate will also be changed.
  • the gap between the two substrates will not be uniform, which affects the display quality of the panel.
  • FIGS. 1A and 1B are cross-sectional views of two conventional LCD panels.
  • the LCD panel 100 includes a TFT array substrate 110 , a CF substrate 120 , and a liquid crystal layer 130 located between the two substrates.
  • the TFT array substrate 110 has a plurality of protrusions 112 , and a groove 114 is located between two protrusions 112 . It is remarkable that the spacer 140 is disposed on the CF substrate 120 and in contact with the groove 114 to prevent the spacer 140 from moving.
  • the LCD panel 200 also has a TFT array substrate 210 , a CF substrate 220 , and a liquid crystal layer 230 located between the two substrates.
  • a drain 212 on the TFT array substrate 210 and a planarized layer 216 covers the drain 212 .
  • the pixel electrode 214 is electrically connected to the drain 212 through the contact window opening 216 a . It is remarkable that the spacer 240 is disposed on the CF substrate 220 and locked in the contact window opening 216 a to prevent the spacer 240 from moving.
  • the spacers 140 and 240 can be prevented from moving and further the panels can be prevented from shifting through the shift stopping methods shown in FIGS. 1A and 1B . However, because the external power shifting the panels is generally stronger, the spacers 140 and 240 may be pushed out of the groove 114 or the contact window opening 216 a , which may affect the supporting performance of the spacers 140 and 240 and the uniformity of the gap d.
  • FIG. 2A is a cross-sectional view of another conventional LCD panel.
  • a plurality of spacers 344 and 342 are respectively fabricated on the TFT array substrate 310 and the CF substrate 320 , the spacers 344 are partially in contact with the spacers 342 to sustain the gap d of the panel, and the liquid crystal layer 330 is disposed between the two substrates.
  • FIG. 2B is a top view of the spacers in FIG. 2A .
  • the contacting area R 1 between the spacers 342 and 344 in the first spacer group A 1 is reduced, while the contacting area R 2 between the spacers 342 and 344 in the second spacer group A 2 is increased, thus the contacting area R 1 of the first spacer group A 1 and the contacting area R 2 of the second spacer group A 2 can compensate each other horizontally.
  • the contacting area R 3 of the third spacer group A 3 and the contacting area R 4 of the fourth spacer group A 4 can compensate each other vertically.
  • the LCD panel 300 as shown in FIGS. 2A and 2B is only applicable when the panel does not shifts too much, that is, the distance the panel shifts is within the range of half the sizes of the spacers 342 and 344 .
  • the panel shift will increase accordingly.
  • the methods described above will become ineffective; the problems of unevenness of the compressing density of the spacers, non-uniformity of the panel gap, and poor panel display performance still remain unsolved.
  • the present invention is directed to provide an LCD panel to solve the problems in a large size panel of uneven compressing density of spacers, non-uniform gap, and unsatisfactory display performance of the panel due to excessive panel shift.
  • the present invention provides an LCD panel including a first substrate, a plurality of horizontal and vertical conductive lines, a second substrate, a main spacer, a compensation spacer, and a liquid crystal layer.
  • the horizontal and vertical conductive lines are disposed on the first substrate and overlapped with each other to form a plurality of first protrusions.
  • the second substrate is disposed above the first substrate.
  • the main spacer and the compensation spacer are disposed on the second substrate.
  • the main spacer is in sliding contact with the first protrusions, and the compensation spacer is disposed around the main spacer.
  • the liquid crystal layer is disposed between the first substrate and the second substrate.
  • the main spacer moves away from the first protrusion; at the same time, the compensation spacer comes into contact with the adjacent first protrusion, and the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the compensation spacer and the first protrusion.
  • the area of the aforementioned first protrusion is greater than the areas of the main spacer and the compensation spacer.
  • the area of the aforementioned first protrusion is smaller than the areas of the main spacer and the compensation spacer.
  • the aforementioned compensation spacer includes a first compensation spacer and a second compensation spacer.
  • the main spacer, the first compensation spacer, and the second compensation spacer are disposed corresponding to the same horizontal conductive line, and the main spacer is disposed between the first compensation spacer and the second compensation spacer; the main spacer protrudes a first distance from the edge of the first protrusion in contact therewith along direction +X and a second distance along direction ⁇ X; the first compensation spacer is at the aforementioned second distance from the adjacent vertical conductive line; and the second compensation spacer is at the aforementioned first distance from the adjacent vertical conductive line.
  • the second compensation spacer when the shifting distance of the aforementioned main spacer along direction ⁇ X is greater than the first distance and smaller than the sum of the first distance and the width of the second compensation spacer itself on axis X, the second compensation spacer will contact the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the second compensation spacer and the first protrusion.
  • the first compensation spacer when the shifting distance of the aforementioned main spacer along direction +X is greater than the second distance and smaller than the sum of the second distance and the width of the first compensation spacer itself on axis X, the first compensation spacer will contact the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the first compensation spacer and the first protrusion.
  • the aforementioned compensation spacer further includes a third compensation spacer and a fourth compensation spacer.
  • the main spacer, the third compensation spacer, and the fourth compensation spacer are disposed corresponding to the same vertical conductive line, and the main spacer is disposed between the third compensation spacer and the fourth compensation spacer; the main spacer protrudes a third distance from the edge of the first protrusion in contact therewith along direction +Y and a fourth distance along direction ⁇ Y; the third compensation spacer is at the aforementioned third distance from the adjacent horizontal conductive line; and the fourth compensation spacer is at the aforementioned fourth distance from the adjacent horizontal conductive line.
  • the third compensation spacer when the shifting distance of the aforementioned main spacer along direction ⁇ Y is greater than the third distance and smaller than the sum of the third distance and the width of the third compensation spacer itself on axis Y, the third compensation spacer will contact the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the third compensation spacer and the first protrusion.
  • the fourth compensation spacer when the shifting distance of the aforementioned main spacer along direction +Y is greater than the fourth distance and smaller than the sum of the fourth distance and the width of the fourth compensation spacer itself on axis Y, the fourth compensation spacer will contact the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the fourth compensation spacer and the first protrusion.
  • At least one of the aforementioned horizontal and vertical conductive lines includes a scan line, a Cs line, or a data line.
  • the aforementioned first substrate includes thin film transistor array substrate (TFT array substrate).
  • TFT array substrate thin film transistor array substrate
  • the aforementioned second substrate includes color filter substrate (CF substrate).
  • the present invention further provides an LCD panel including a first substrate, a plurality of horizontal and vertical conductive lines, a plurality of support pads, a second substrate, a main spacer, a compensation spacer, and a liquid crystal layer.
  • the horizontal and vertical conductive lines are disposed on the first substrate and divide the first substrate into a first area, a second area, and a third area.
  • the support pads are respectively disposed under at least one of the horizontal and vertical conductive lines to form a plurality of first protrusions.
  • the second substrate is disposed over the first substrate.
  • the main spacer and the compensation spacer are disposed on the second substrate.
  • the main spacer is in sliding contact with the first protrusions, and the compensation spacer is disposed around the main spacer.
  • the liquid crystal layer is disposed between the first substrate and the second substrate; when shift occurs between the first substrate and the second substrate, the main spacer moves away from the first protrusion, at the same time, the compensation spacer comes into contact with the adjacent first protrusion, and the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the compensation spacer and the first protrusion.
  • the area of the aforementioned first protrusion is greater than the areas of the main spacer and the compensation spacer.
  • the area of the aforementioned first protrusion is smaller than the areas of the main spacer and the compensation spacer.
  • the aforementioned horizontal conductive lines include a first horizontal conductive line, a second horizontal conductive line, and a third horizontal conductive line, and the second horizontal conductive line is disposed between the first horizontal conductive line and the third horizontal conductive line.
  • the compensation spacer includes a first compensation spacer and a second compensation spacer respectively disposed on the first horizontal conductive line and the third horizontal conductive line in the first area; the main spacer retracts a first distance from the edge of the first protrusion in contact therewith along direction ⁇ X and a second distance along direction +X; the first compensation spacer is at the aforementioned second distance from the first protrusion disposed on the first horizontal conductive line in the first area; and the second compensation spacer is at the aforementioned first distance from the first protrusion disposed on the third horizontal conductive line in the first area.
  • the first compensation spacer when the shifting distance of the aforementioned main spacer along direction ⁇ X is greater than the second distance and smaller than the sum of the second distance and the width of the first compensation spacer itself on axis X, the first compensation spacer will contact the first protrusion on the first horizontal conductive line so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the first compensation spacer and the first protrusion on the first horizontal conductive line.
  • the second compensation spacer when the shifting distance of the aforementioned main spacer along direction +X is greater than the first distance and smaller than the sum of the first distance and the width of the second compensation spacer itself on axis X, the second compensation spacer will contact the first protrusion on the third horizontal conductive line so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the second compensation spacer and the first protrusion on the third horizontal conductive line.
  • the aforementioned compensation spacer further includes a third compensation spacer and a fourth compensation spacer respectively disposed on the second horizontal conductive line in the second area and the second horizontal conductive line in the third area;
  • the main spacer is at a third distance from the upper edge of the second horizontal conductive line along direction +Y and at a fourth distance from the lower edge of the second horizontal conductive line along direction ⁇ Y;
  • the third compensation spacer is at the aforementioned third distance from the first protrusion on the second horizontal conductive line in the second area;
  • the fourth compensation spacer is at the aforementioned fourth distance from the first protrusion on the second horizontal conductive line in the third area.
  • the fourth compensation spacer when the shifting distance of the aforementioned main spacer along direction ⁇ Y is greater than the fourth distance and smaller than the sum of the fourth distance and the width of the fourth compensation spacer itself on axis Y, the fourth compensation spacer will contact the first protrusion on the second horizontal conductive line in the third area so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the fourth compensation spacer and the first protrusion on the second horizontal conductive line in the third area.
  • the third compensation spacer when the shifting distance of the aforementioned main spacer along direction +Y is greater than the third distance and smaller than the sum of the third distance and the width of the third compensation spacer itself on axis Y, the third compensation spacer will contact the first protrusion on the second horizontal conductive line in the second area so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the third compensation spacer and the first protrusion on the second horizontal conductive line in the second area.
  • At least one of the aforementioned horizontal and vertical conductive lines includes a scan line, a Cs line, or a data line.
  • the aforementioned first substrate includes TFT array substrate.
  • the aforementioned second substrate includes CF substrate.
  • a main spacer and a compensation spacer are disposed, and the reduced contacting area between the main spacer and the first protrusion is made equal to the increased contacting area between the compensation spacer and another first protrusion, uniform compressing density of spacers and consistent panel gap can be obtained even when the panel shifts a great distance. Accordingly, the LCD panel of the present invention has better display performance.
  • FIGS. 1A and 1B are cross-sectional views of two conventional LCD panels.
  • FIG. 2A is a cross-sectional view of another conventional LCD panel.
  • FIG. 2B is a top view of the spacers in FIG. 2A .
  • FIG. 3 is a partial top view of an LCD panel according to the first embodiment of the present invention.
  • FIG. 3A is a cross-sectional view of the LCD panel in FIG. 3 along line A-A′.
  • FIG. 4 is a top view of an LCD panel according to the second embodiment of the present invention.
  • FIG. 5 is a top view of an LCD panel according to the third embodiment of the present invention.
  • FIG. 5A is a cross-sectional view of the LCD panel in FIG. 5 along line B-B′.
  • FIG. 6 is a top view of an LCD panel according to the fourth embodiment of the present invention.
  • FIG. 3 is a partial top view of a LCD panel according to the first embodiment of the present invention.
  • FIG. 3A is a cross-sectional view of the LCD panel in FIG. 3 along line A-A′.
  • the LCD panel 400 includes a first substrate 410 , a plurality of horizontal conductive lines 420 and vertical conductive lines 430 , a second substrate 440 , a main spacer 450 , a compensation spacer 460 , and a liquid crystal layer 470 .
  • the horizontal conductive lines 420 and the vertical conductive lines 430 are disposed on the first substrate 410 and overlapped with each other to form a plurality of first protrusions 480 a , 480 b , and 480 c .
  • the second substrate 440 is disposed over the first substrate 410 .
  • the main spacer 450 and the compensation spacer 460 are disposed on the second substrate 440 .
  • the main spacer 450 is in sliding contact with the first protrusion 480 a , and the compensation spacer 460 is disposed around the main spacer 450 .
  • the liquid crystal layer 470 is disposed between the first substrate 410 and the second substrate 440 .
  • the main spacer 450 moves away from the first protrusion 480 a
  • the compensation spacer 460 comes into contact with the adjacent first protrusions 480 b / 480 c
  • the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the compensation spacer 460 and the first protrusions 480 b / 480 c.
  • the horizontal conductive lines 420 may be scan lines, or Cs lines, while the vertical conductive lines 430 may be data lines, or Cs lines.
  • the first substrate 410 may be a thin film transistor array substrate (TFT array substrate), and the second substrate 440 may be a color filter substrate (CF substrate).
  • the areas of the first protrusions 480 a , 480 b , and 480 c are smaller than the areas of the main spacer 450 and the compensation spacer 460 .
  • the areas of the first protrusions 480 a , 480 b , and 480 c may be greater than the areas of the main spacer 450 and the compensation spacer 460 (not shown).
  • the compensation spacer 460 includes a first compensation spacer 460 a and a second compensation spacer 460 b .
  • the main spacer 450 , the first compensation spacer 460 a , and the second compensation spacer 460 b are disposed corresponding to the same horizontal conductive line 420 , and the main spacer 450 is disposed between the first compensation spacer 460 a and the second compensation spacer 460 b.
  • the main spacer 450 protrudes a first distance B from the edge of the first protrusion 480 a in contact therewith along direction +X and a second distance C along direction ⁇ X.
  • the first compensation spacer 460 a is at the aforementioned second distance C from the adjacent vertical conductive line 430 .
  • the second compensation spacer 460 b is at the aforementioned first distance B from the adjacent vertical conductive line 430 .
  • the second compensation spacer 460 b When the shifting distance of the main spacer 450 along direction ⁇ X is greater than the first distance B and smaller than the sum of the first distance B and the width W 2 of the second compensation spacer 460 b itself on axis X, the second compensation spacer 460 b will be in contact with the adjacent first protrusion 480 b so that the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the second compensation spacer 460 b and the first protrusion 480 b.
  • the shifting distance of the main spacer 450 along direction +X is greater than the second distance C and smaller than the sum of the second distance C and the width W 1 of the first compensation spacer 460 a itself on axis X
  • the first compensation spacer 460 a will be in contact with the adjacent first protrusion 480 c so that the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the first compensation spacer 460 a and the first protrusion 480 c.
  • the main spacer 450 has a compensation value of the first distance B in direction ⁇ X and the second distance C in direction +X when the horizontal shifting distance of the LCD panel 400 is relatively small.
  • the LCD panel 400 can compensate the horizontal shift within the range of “W 1 +C” or “W 2 +B” when the horizontal shift of the panel is greater than the first distance B or the second distance C.
  • the LCD panel 400 of the present invention can compensate larger panel shift horizontally. Accordingly, the LCD panel 400 can obtain uniform compressing density of the spacers and even panel gap, and further better display performance, even though the panel shift is large.
  • FIG. 4 is a top view of an LCD panel according to the second embodiment of the present invention.
  • the LCD panel 402 has compensation spacers 460 both horizontally and vertically, wherein the disposition of the first compensation spacer 460 a and the second compensation spacer 460 b in horizontal direction is the same as that shown in FIG. 3 , so the detail will not be described again.
  • the horizontal conductive lines 420 may be scan lines, or Cs lines
  • the vertical conductive lines 430 may be data lines, or Cs lines.
  • the first substrate 410 may be TFT array substrate
  • the second substrate 440 may be CF substrate.
  • the areas of the first protrusions 480 a , 480 b , 480 c , 480 d , and 480 e shown in FIG. 4 may be smaller than the areas of the main spacer 450 and the compensation spacer 460 .
  • the areas of the first protrusions 480 a , 480 b , 480 c , 480 d , and 480 e may also be greater than the areas of the main spacer 450 and the compensation spacer 460 (not shown).
  • the compensation spacer 460 in the LCD panel 402 may further include a third compensation spacer 460 c and a fourth compensation spacer 460 d .
  • the main spacer 450 , the third compensation spacer 460 c , and the fourth compensation spacer 460 d are disposed corresponding to the same vertical conductive line 430 , and the main spacer 450 is disposed between the third compensation spacer 460 c and the fourth compensation spacer 460 d.
  • the main spacer 450 protrudes a third distance D from the edge of the first protrusion 480 a in contact therewith along direction +Y and a fourth distance E along direction ⁇ Y.
  • the third compensation spacer 460 c is at the aforementioned third distance D from the adjacent horizontal conductive line 420
  • the fourth compensation spacer 460 d is at the aforementioned fourth distance E from the adjacent horizontal conductive line 420 .
  • the third compensation spacer 460 c When the shifting distance of the main spacer 450 along direction ⁇ Y is greater than the third distance D and smaller than the sum of the third distance D and the width W 3 of the third compensation spacer 460 c itself on axis Y, the third compensation spacer 460 c will be in contact with the adjacent first protrusion 480 d so that the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the third compensation spacer 460 c and the first protrusion 480 d.
  • the fourth compensation spacer 460 d When the shifting distance of the main spacer 450 along direction +Y is greater than the fourth distance E and smaller than the sum of the fourth distance E and the width W 4 of the fourth compensation spacer 460 d itself on axis Y, the fourth compensation spacer 460 d will be in contact with the adjacent first protrusion 480 e so that the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the fourth compensation spacer 460 d and the first protrusion 480 e.
  • the main spacer 450 itself has the compensation value of the third distance D in direction ⁇ Y and the fourth distance E in direction +Y when the vertical shift of the LCD panel 402 is little.
  • the LCD panel 402 can compensate the vertical shift within the range of “W 3 +D” or “W 4 +E” when the vertical panel shift is greater than the third distance D or the fourth distance E.
  • the first compensation spacer 460 a and the second compensation spacer 460 b are also disposed in the LCD panel 402 , it can compensate the horizontal panel shift within the range of “W 1 +C” or “W 2 +B”.
  • the LCD panel 402 allows large panel shift both horizontally and vertically. Accordingly, the LCD panel 402 can have uniform compressing density of the spacers and even panel gap, and further better display performance, even though the panel shift is large.
  • FIG. 5 is a top view of an LCD panel according to the third embodiment of the present invention.
  • FIG. 5A is a cross-sectional view of the LCD panel in FIG. 5 along line B-B′.
  • the LCD panel 500 includes a first substrate 510 , a plurality of horizontal conductive lines 520 and a plurality of vertical conductive lines 530 , a plurality of support pads 540 , a second substrate 550 , a main spacer 560 , a compensation spacer 570 , and a liquid crystal layer 580 .
  • the horizontal conductive lines 520 and the vertical conductive lines 530 are disposed on the first substrate 510 and divide the first substrate 510 into a first area 510 a , a second area 510 b (as shown in FIG. 6 ) and a third area 510 c (as shown in FIG. 6 ).
  • the support pads 540 are respectively disposed under at least one of the horizontal conductive lines 520 and the vertical conductive lines 530 to form a plurality of first protrusions 590 .
  • the second substrate 550 is disposed above the first substrate 510 .
  • the main spacer 560 and the compensation spacer 570 are disposed on the second substrate 550 .
  • the main spacer 560 is in sliding contact with the first protrusion 590 , and the compensation spacer 570 is disposed around the main spacer 560 .
  • the liquid crystal layer 580 is disposed between the first substrate 510 and the second substrate 550 . Wherein, when shift occurs between the first substrate 510 and the second substrate 550 , the main spacer 560 moves away from the first protrusions 590 , at the same time, the compensation spacer 570 comes into contact with the adjacent first protrusions 590 , and the reduced contacting area between the main spacer 560 and the first protrusions 590 is equal to the increased contacting area between the compensation spacer 570 and the first protrusions 590 .
  • the horizontal conductive lines 520 may be scan lines, or Cs lines, while the vertical conductive lines 530 may be data lines, or Cs lines.
  • the first substrate 510 may be TFT array substrate, and the second substrate 550 may be CF substrate.
  • the area of the first protrusion 590 is greater than the areas of the main spacer 560 and the compensation spacer 570 .
  • the area of the first protrusion 590 may also be smaller than the areas of the main spacer 560 and the compensation spacer 570 (not shown).
  • the horizontal conductive lines 520 include a first horizontal conductive line 520 a , a second horizontal conductive line 520 b , and a third horizontal conductive line 520 c
  • the second horizontal conductive line 520 b is disposed between the first horizontal conductive line 520 a and the third horizontal conductive line 520 c
  • the compensation spacer 570 includes a first compensation spacer 570 a and a second compensation spacer 570 b respectively disposed on the first horizontal conductive line 520 a and on the third horizontal conductive line 520 c in the first area 510 a.
  • the main spacer 560 retracts a first distance B from the edge of the first protrusion 590 in contact therewith along direction ⁇ X and a second distance C along direction +X.
  • the first compensation spacer 570 a is at the aforementioned second distance C from the first protrusion 590 on the first horizontal conductive line 520 a in the first area 510 a .
  • the second compensation spacer 570 b is at the aforementioned first distance B from the first protrusion 590 on the third horizontal conductive line 520 c in the first area 510 a.
  • the first compensation spacer 570 a When the shifting distance of the main spacer 560 along direction ⁇ X is greater than the second distance C and smaller than the sum of the second distance C and the width W 1 of the first compensation spacer 570 a itself on axis X, the first compensation spacer 570 a will be in contact with the first protrusion 590 on the first horizontal conductive line 520 a so that the reduced contacting area between the main spacer 560 and the first protrusion 590 on the second horizontal conductive line 520 b is equal to the increased contacting area between the first compensation spacer 570 a and the first protrusion 590 on the first horizontal conductive line 520 a.
  • the second compensation spacer 570 b When the shifting distance of the main spacer 560 along direction +X is greater than the first distance B and smaller than the sum of the first distance B and the width W 2 of the second compensation spacer 570 b itself on axis X, the second compensation spacer 570 b will be in contact with the first protrusion 590 on the third horizontal conductive line 520 c so that the reduced contacting area between the main spacer 560 and the first protrusion 590 on the second horizontal conductive line 520 b is equal to the increased contacting area between the second compensation spacer 570 b and the first protrusion 590 on the third horizontal conductive line 520 c.
  • the main spacer 560 has the compensation value of the second distance C in direction ⁇ X and the first distance B in direction +X when the horizontal shifting distance of the LCD panel 500 is small.
  • the LCD panel 500 can compensate the horizontal shift within the range of “W 1 +C” or “W 2 +B” when the horizontal panel shift is greater than the first distance B or the second distance C.
  • the LCD panel 500 in the present invention can compensate large panel shift horizontally, and the LCD panel 500 can obtain consistent compressing density of the spacers and uniform panel gap, and further better display performance, even though the panel shift is large.
  • the support pads 540 are disposed under the horizontal conductive lines 520 and the vertical conductive lines 530 to form the first protrusions 590 .
  • the positions of the first protrusions 590 in the present embodiment can be self-determined so as to obtain better biased compensation effect.
  • FIG. 6 is a top view of an LCD panel according to the fourth embodiment of the present invention.
  • the LCD panel 502 has compensation spacers 570 both horizontally and vertically, wherein the disposition of the first compensation spacer 570 a and the second compensation spacer 570 b in horizontal direction is the same as that shown in FIG. 5 , so the detail will not be described again.
  • the horizontal conductive lines 520 may be scan lines, or Cs lines.
  • the vertical conductive lines 530 may be data lines, or Cs lines.
  • the first substrate 510 may be TFT array substrate, and the second substrate 550 may be CF substrate.
  • the area of the first protrusion 590 is greater than the areas of the main spacers 560 and the compensation spacer 570 .
  • the area of the first protrusion 590 may also be smaller than the areas of the main spacers 560 and the compensation spacer 570 (not shown).
  • the compensation spacer 570 in the LCD panel 502 can further includes a third compensation spacer 570 c and a fourth compensation spacer 570 d respectively disposed on the second horizontal conductive line 520 b in the second area 510 b and on the second horizontal conductive line 520 b in the third area 510 c.
  • the main spacer 560 is at the third distance D from the upper edge of the second horizontal conductive line 520 b in direction +Y and at the fourth distance E from the lower edge of the second horizontal conductive line 520 b in direction ⁇ Y.
  • the third compensation spacer 570 c is at the aforementioned third distance D from the first protrusion 590 on the second horizontal conductive line 520 b in the second area 510 b .
  • the fourth compensation spacer 570 d is at the fourth distance E from the first protrusion 590 on the second horizontal conductive line 520 b in the third area 510 c.
  • the fourth compensation spacer 570 d When the shifting distance of the main spacer 560 along direction ⁇ Y is greater than the fourth distance E and smaller than the sum of the fourth distance E and the width W 4 of the fourth compensation spacer itself on axis Y, the fourth compensation spacer 570 d will be in contact with the first protrusion 590 on the second horizontal conductive line 520 b in the third area 510 c so that the reduced contacting area between the main spacer 560 and the first protrusion 590 on the second horizontal conductive line 520 b is equal to the increased contacting area between the fourth compensation spacer 570 d and the first protrusion 590 on the second horizontal conductive line 520 b in the third area 510 c.
  • the third compensation spacer 570 c When the shifting distance of the main spacer 560 along direction +Y is greater than the third distance D and smaller than the sum of the third distance D and the width W 3 of the third compensation spacer itself on axis Y, the third compensation spacer 570 c will be in contact with the first protrusion 590 on the second horizontal conductive line 520 b in the second area 510 b so that the reduced contacting area between the main spacer 560 and the first protrusion 590 on the second horizontal conductive line 520 b is equal to the increased contacting area between the third compensation spacer 570 c and the first protrusion 590 on the second horizontal conductive line 520 b in the second area 510 b.
  • the main spacer 560 has the compensation value of the fourth distance E in direction ⁇ Y and the third distance D in direction +Y when the vertical shifting distance of the LCD panel 502 is small.
  • the LCD panel 502 can also compensate the vertical panel shift within the range of “W 3 +D” or “W 4 +E” when the vertical panel shift is greater than the third distance D or the fourth distance E.
  • the LCD panel 502 allows large panel shift both horizontally and vertically since the first compensation spacer 570 a and the second compensation spacer 570 b are also disposed. Accordingly, the LCD panel 502 can have uniform compressing density of the spacers and consistent panel gap, and further better display performance, even though the panel shift is large.
  • the positions of the first protrusions 590 can be self-determined to obtain better biased compensation effect because the first protrusions 590 are formed by support pads 540 .
  • the support pads 540 in the present embodiment can be the thin film in thin film transistors (not shown), so that the first protrusion 590 can be formed by the protrusions on the thin film transistors.
  • biased compensation in both horizontal and vertical directions can be performed by letting the main spacer 560 be in contact with a first protrusion 590 of a thin film transistor and disposing the compensation spacer 570 around the main spacer 560 .
  • the LCD panel in the present invention has the following advantages:
  • the LCD panel in the present invention With the disposition the main spacer and the compensation spacer in the present invention, large panel shift can be compensated in horizontal and vertical directions, and uniform compressing density of the spacers and consistent panel gap can be obtained. In addition, by using the support pads, the flexibility in disposing the first protrusions is improved, and the biased compensation effect is further improved. Since the LCD panel in the present invention has uniform panel gap and is not affected by panel shift, the LCD panel in the present invention can have outstanding display performance.

Abstract

A liquid crystal display panel having a first substrate, a plurality of horizontal and vertical conductive lines, a second substrate, a main spacer, a compensation spacer and a liquid crystal layer is provided. The horizontal and vertical conductive lines are disposed on the first substrate and overlapped each other to form a plurality of first protrusions. The second substrate is disposed over the first substrate. The main spacer and the compensation spacer are disposed on the second substrate. The main spacer is in sliding contact with the first protrusions, and the compensation spacer is disposed around the main spacer. The liquid crystal layer is disposed between the first substrate and the second substrate. When shift occurs between the first and the second substrates, the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the compensation spacer and another first protrusion.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of Invention
  • The present invention relates to a liquid crystal display (LCD) panel. More particularly, the present invention relates to an LCD panel which allows the spacers to have uniform compressing density by applying biased compensation.
  • 2. Description of Related Art
  • An LCD panel is generally formed by a thin film transistor array substrate (TFT array substrate) and a color filter substrate (CF substrate). A gap has to be sustained between the TFT array substrate and the CF substrate with spacers to fill in a liquid crystal layer between the two substrates. Generally, the spacers are disposed on the CF substrate and are in contact with the TFT array substrate.
  • However, during assembly process, the spacers of an LCD panel may shift along with the shift of the panel that the area density (i.e. compressing density) of the spacers which is in contact with the TFT array substrate will also be changed. Thus, the gap between the two substrates will not be uniform, which affects the display quality of the panel.
  • Accordingly, shift stopping and biased compensation are provided in the conventional technology to resolve the problem of the poor display quality resulted from spacer shift. FIGS. 1A and 1B are cross-sectional views of two conventional LCD panels. First, referring to FIG. 1A, the LCD panel 100 includes a TFT array substrate 110, a CF substrate 120, and a liquid crystal layer 130 located between the two substrates. Moreover, the TFT array substrate 110 has a plurality of protrusions 112, and a groove 114 is located between two protrusions 112. It is remarkable that the spacer 140 is disposed on the CF substrate 120 and in contact with the groove 114 to prevent the spacer 140 from moving.
  • Then, referring to FIG. 1B, the LCD panel 200 also has a TFT array substrate 210, a CF substrate 220, and a liquid crystal layer 230 located between the two substrates. Wherein, there is a drain 212 on the TFT array substrate 210 and a planarized layer 216 covers the drain 212. By fabricating a contact window opening 216 a in the planarized layer 216 above the drain 212, the pixel electrode 214 is electrically connected to the drain 212 through the contact window opening 216 a. It is remarkable that the spacer 240 is disposed on the CF substrate 220 and locked in the contact window opening 216 a to prevent the spacer 240 from moving.
  • The spacers 140 and 240 can be prevented from moving and further the panels can be prevented from shifting through the shift stopping methods shown in FIGS. 1A and 1B. However, because the external power shifting the panels is generally stronger, the spacers 140 and 240 may be pushed out of the groove 114 or the contact window opening 216 a, which may affect the supporting performance of the spacers 140 and 240 and the uniformity of the gap d.
  • In addition, FIG. 2A is a cross-sectional view of another conventional LCD panel. In the LCD panel 300, a plurality of spacers 344 and 342 (only one is shown) are respectively fabricated on the TFT array substrate 310 and the CF substrate 320, the spacers 344 are partially in contact with the spacers 342 to sustain the gap d of the panel, and the liquid crystal layer 330 is disposed between the two substrates.
  • FIG. 2B is a top view of the spacers in FIG. 2A. Referring to both FIG. 2A and FIG. 2B, when the CF substrate 320 shifts rightward, the contacting area R1 between the spacers 342 and 344 in the first spacer group A1 is reduced, while the contacting area R2 between the spacers 342 and 344 in the second spacer group A2 is increased, thus the contacting area R1 of the first spacer group A1 and the contacting area R2 of the second spacer group A2 can compensate each other horizontally. Based on the same principle, the contacting area R3 of the third spacer group A3 and the contacting area R4 of the fourth spacer group A4 can compensate each other vertically.
  • However, the LCD panel 300 as shown in FIGS. 2A and 2B is only applicable when the panel does not shifts too much, that is, the distance the panel shifts is within the range of half the sizes of the spacers 342 and 344. Along with the development of large size panels, the panel shift will increase accordingly. Hence, the methods described above will become ineffective; the problems of unevenness of the compressing density of the spacers, non-uniformity of the panel gap, and poor panel display performance still remain unsolved.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to provide an LCD panel to solve the problems in a large size panel of uneven compressing density of spacers, non-uniform gap, and unsatisfactory display performance of the panel due to excessive panel shift.
  • To achieve the aforementioned and other objectives, the present invention provides an LCD panel including a first substrate, a plurality of horizontal and vertical conductive lines, a second substrate, a main spacer, a compensation spacer, and a liquid crystal layer. The horizontal and vertical conductive lines are disposed on the first substrate and overlapped with each other to form a plurality of first protrusions. The second substrate is disposed above the first substrate. The main spacer and the compensation spacer are disposed on the second substrate. The main spacer is in sliding contact with the first protrusions, and the compensation spacer is disposed around the main spacer. The liquid crystal layer is disposed between the first substrate and the second substrate. Wherein, when shift occurs between the first substrate and the second substrate, the main spacer moves away from the first protrusion; at the same time, the compensation spacer comes into contact with the adjacent first protrusion, and the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the compensation spacer and the first protrusion.
  • According to an embodiment of the present invention, the area of the aforementioned first protrusion is greater than the areas of the main spacer and the compensation spacer.
  • According to an embodiment of the present invention, the area of the aforementioned first protrusion is smaller than the areas of the main spacer and the compensation spacer.
  • According to an embodiment of the present invention, the aforementioned compensation spacer includes a first compensation spacer and a second compensation spacer. The main spacer, the first compensation spacer, and the second compensation spacer are disposed corresponding to the same horizontal conductive line, and the main spacer is disposed between the first compensation spacer and the second compensation spacer; the main spacer protrudes a first distance from the edge of the first protrusion in contact therewith along direction +X and a second distance along direction −X; the first compensation spacer is at the aforementioned second distance from the adjacent vertical conductive line; and the second compensation spacer is at the aforementioned first distance from the adjacent vertical conductive line.
  • According to an embodiment of the present invention, when the shifting distance of the aforementioned main spacer along direction −X is greater than the first distance and smaller than the sum of the first distance and the width of the second compensation spacer itself on axis X, the second compensation spacer will contact the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the second compensation spacer and the first protrusion.
  • According to an embodiment of the present invention, when the shifting distance of the aforementioned main spacer along direction +X is greater than the second distance and smaller than the sum of the second distance and the width of the first compensation spacer itself on axis X, the first compensation spacer will contact the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the first compensation spacer and the first protrusion.
  • According to an embodiment of the present invention, the aforementioned compensation spacer further includes a third compensation spacer and a fourth compensation spacer. The main spacer, the third compensation spacer, and the fourth compensation spacer are disposed corresponding to the same vertical conductive line, and the main spacer is disposed between the third compensation spacer and the fourth compensation spacer; the main spacer protrudes a third distance from the edge of the first protrusion in contact therewith along direction +Y and a fourth distance along direction −Y; the third compensation spacer is at the aforementioned third distance from the adjacent horizontal conductive line; and the fourth compensation spacer is at the aforementioned fourth distance from the adjacent horizontal conductive line.
  • According to an embodiment of the present invention, when the shifting distance of the aforementioned main spacer along direction −Y is greater than the third distance and smaller than the sum of the third distance and the width of the third compensation spacer itself on axis Y, the third compensation spacer will contact the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the third compensation spacer and the first protrusion.
  • According to an embodiment of the present invention, when the shifting distance of the aforementioned main spacer along direction +Y is greater than the fourth distance and smaller than the sum of the fourth distance and the width of the fourth compensation spacer itself on axis Y, the fourth compensation spacer will contact the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the fourth compensation spacer and the first protrusion.
  • According to an embodiment of the present invention, at least one of the aforementioned horizontal and vertical conductive lines includes a scan line, a Cs line, or a data line.
  • According to an embodiment of the present invention, the aforementioned first substrate includes thin film transistor array substrate (TFT array substrate).
  • According to an embodiment of the present invention, the aforementioned second substrate includes color filter substrate (CF substrate).
  • To achieve the aforementioned and other objectives, the present invention further provides an LCD panel including a first substrate, a plurality of horizontal and vertical conductive lines, a plurality of support pads, a second substrate, a main spacer, a compensation spacer, and a liquid crystal layer. The horizontal and vertical conductive lines are disposed on the first substrate and divide the first substrate into a first area, a second area, and a third area. The support pads are respectively disposed under at least one of the horizontal and vertical conductive lines to form a plurality of first protrusions. The second substrate is disposed over the first substrate. The main spacer and the compensation spacer are disposed on the second substrate. The main spacer is in sliding contact with the first protrusions, and the compensation spacer is disposed around the main spacer. The liquid crystal layer is disposed between the first substrate and the second substrate; when shift occurs between the first substrate and the second substrate, the main spacer moves away from the first protrusion, at the same time, the compensation spacer comes into contact with the adjacent first protrusion, and the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the compensation spacer and the first protrusion.
  • According to an embodiment of the present invention, the area of the aforementioned first protrusion is greater than the areas of the main spacer and the compensation spacer.
  • According to an embodiment of the present invention, the area of the aforementioned first protrusion is smaller than the areas of the main spacer and the compensation spacer.
  • According to an embodiment of the present invention, the aforementioned horizontal conductive lines include a first horizontal conductive line, a second horizontal conductive line, and a third horizontal conductive line, and the second horizontal conductive line is disposed between the first horizontal conductive line and the third horizontal conductive line. The compensation spacer includes a first compensation spacer and a second compensation spacer respectively disposed on the first horizontal conductive line and the third horizontal conductive line in the first area; the main spacer retracts a first distance from the edge of the first protrusion in contact therewith along direction −X and a second distance along direction +X; the first compensation spacer is at the aforementioned second distance from the first protrusion disposed on the first horizontal conductive line in the first area; and the second compensation spacer is at the aforementioned first distance from the first protrusion disposed on the third horizontal conductive line in the first area.
  • According to an embodiment of the present invention, when the shifting distance of the aforementioned main spacer along direction −X is greater than the second distance and smaller than the sum of the second distance and the width of the first compensation spacer itself on axis X, the first compensation spacer will contact the first protrusion on the first horizontal conductive line so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the first compensation spacer and the first protrusion on the first horizontal conductive line.
  • According to an embodiment of the present invention, when the shifting distance of the aforementioned main spacer along direction +X is greater than the first distance and smaller than the sum of the first distance and the width of the second compensation spacer itself on axis X, the second compensation spacer will contact the first protrusion on the third horizontal conductive line so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the second compensation spacer and the first protrusion on the third horizontal conductive line.
  • According to an embodiment of the present invention, the aforementioned compensation spacer further includes a third compensation spacer and a fourth compensation spacer respectively disposed on the second horizontal conductive line in the second area and the second horizontal conductive line in the third area; the main spacer is at a third distance from the upper edge of the second horizontal conductive line along direction +Y and at a fourth distance from the lower edge of the second horizontal conductive line along direction −Y; the third compensation spacer is at the aforementioned third distance from the first protrusion on the second horizontal conductive line in the second area; and the fourth compensation spacer is at the aforementioned fourth distance from the first protrusion on the second horizontal conductive line in the third area.
  • According to an embodiment of the present invention, when the shifting distance of the aforementioned main spacer along direction −Y is greater than the fourth distance and smaller than the sum of the fourth distance and the width of the fourth compensation spacer itself on axis Y, the fourth compensation spacer will contact the first protrusion on the second horizontal conductive line in the third area so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the fourth compensation spacer and the first protrusion on the second horizontal conductive line in the third area.
  • According to an embodiment of the present invention, when the shifting distance of the aforementioned main spacer along direction +Y is greater than the third distance and smaller than the sum of the third distance and the width of the third compensation spacer itself on axis Y, the third compensation spacer will contact the first protrusion on the second horizontal conductive line in the second area so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the third compensation spacer and the first protrusion on the second horizontal conductive line in the second area.
  • According to an embodiment of the present invention, at least one of the aforementioned horizontal and vertical conductive lines includes a scan line, a Cs line, or a data line.
  • According to an embodiment of the present invention, the aforementioned first substrate includes TFT array substrate.
  • According to an embodiment of the present invention, the aforementioned second substrate includes CF substrate.
  • In summary, according to the present invention, a main spacer and a compensation spacer are disposed, and the reduced contacting area between the main spacer and the first protrusion is made equal to the increased contacting area between the compensation spacer and another first protrusion, uniform compressing density of spacers and consistent panel gap can be obtained even when the panel shifts a great distance. Accordingly, the LCD panel of the present invention has better display performance.
  • In order to make the aforementioned and other objects, features and advantages of the present invention comprehensible, a preferred embodiment accompanied with figures is described in detail below.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIGS. 1A and 1B are cross-sectional views of two conventional LCD panels.
  • FIG. 2A is a cross-sectional view of another conventional LCD panel.
  • FIG. 2B is a top view of the spacers in FIG. 2A.
  • FIG. 3 is a partial top view of an LCD panel according to the first embodiment of the present invention.
  • FIG. 3A is a cross-sectional view of the LCD panel in FIG. 3 along line A-A′.
  • FIG. 4 is a top view of an LCD panel according to the second embodiment of the present invention.
  • FIG. 5 is a top view of an LCD panel according to the third embodiment of the present invention.
  • FIG. 5A is a cross-sectional view of the LCD panel in FIG. 5 along line B-B′.
  • FIG. 6 is a top view of an LCD panel according to the fourth embodiment of the present invention.
  • DESCRIPTION OF EMBODIMENTS The First Embodiment
  • FIG. 3 is a partial top view of a LCD panel according to the first embodiment of the present invention. FIG. 3A is a cross-sectional view of the LCD panel in FIG. 3 along line A-A′.
  • Referring to both FIG. 3 and FIG. 3A, the LCD panel 400 includes a first substrate 410, a plurality of horizontal conductive lines 420 and vertical conductive lines 430, a second substrate 440, a main spacer 450, a compensation spacer 460, and a liquid crystal layer 470. The horizontal conductive lines 420 and the vertical conductive lines 430 are disposed on the first substrate 410 and overlapped with each other to form a plurality of first protrusions 480 a, 480 b, and 480 c. The second substrate 440 is disposed over the first substrate 410. The main spacer 450 and the compensation spacer 460 are disposed on the second substrate 440. The main spacer 450 is in sliding contact with the first protrusion 480 a, and the compensation spacer 460 is disposed around the main spacer 450. The liquid crystal layer 470 is disposed between the first substrate 410 and the second substrate 440. Wherein, when shift occurs between the first substrate 410 and the second substrate 440, the main spacer 450 moves away from the first protrusion 480 a, at the same time, the compensation spacer 460 comes into contact with the adjacent first protrusions 480 b/480 c, and the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the compensation spacer 460 and the first protrusions 480 b/480 c.
  • In an embodiment, the horizontal conductive lines 420 may be scan lines, or Cs lines, while the vertical conductive lines 430 may be data lines, or Cs lines. In addition, the first substrate 410 may be a thin film transistor array substrate (TFT array substrate), and the second substrate 440 may be a color filter substrate (CF substrate).
  • Referring to FIG. 3, the areas of the first protrusions 480 a, 480 b, and 480 c are smaller than the areas of the main spacer 450 and the compensation spacer 460. However, in another embodiment, the areas of the first protrusions 480 a, 480 b, and 480 c may be greater than the areas of the main spacer 450 and the compensation spacer 460 (not shown).
  • The biased compensation in horizontal direction of the LCD panel 400 in the present embodiment will be further described below. Referring to FIG. 3, in an embodiment, the compensation spacer 460 includes a first compensation spacer 460 a and a second compensation spacer 460 b. The main spacer 450, the first compensation spacer 460 a, and the second compensation spacer 460 b are disposed corresponding to the same horizontal conductive line 420, and the main spacer 450 is disposed between the first compensation spacer 460 a and the second compensation spacer 460 b.
  • It is remarkable that the main spacer 450 protrudes a first distance B from the edge of the first protrusion 480 a in contact therewith along direction +X and a second distance C along direction −X. The first compensation spacer 460 a is at the aforementioned second distance C from the adjacent vertical conductive line 430. The second compensation spacer 460 b is at the aforementioned first distance B from the adjacent vertical conductive line 430.
  • When the shifting distance of the main spacer 450 along direction −X is greater than the first distance B and smaller than the sum of the first distance B and the width W2 of the second compensation spacer 460 b itself on axis X, the second compensation spacer 460 b will be in contact with the adjacent first protrusion 480 b so that the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the second compensation spacer 460 b and the first protrusion 480 b.
  • In addition, when the shifting distance of the main spacer 450 along direction +X is greater than the second distance C and smaller than the sum of the second distance C and the width W1 of the first compensation spacer 460 a itself on axis X, the first compensation spacer 460 a will be in contact with the adjacent first protrusion 480 c so that the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the first compensation spacer 460 a and the first protrusion 480 c.
  • Accordingly, the main spacer 450 has a compensation value of the first distance B in direction −X and the second distance C in direction +X when the horizontal shifting distance of the LCD panel 400 is relatively small. Moreover, according to the design described above, the LCD panel 400 can compensate the horizontal shift within the range of “W1+C” or “W2+B” when the horizontal shift of the panel is greater than the first distance B or the second distance C. Thus, the LCD panel 400 of the present invention can compensate larger panel shift horizontally. Accordingly, the LCD panel 400 can obtain uniform compressing density of the spacers and even panel gap, and further better display performance, even though the panel shift is large.
  • The Second Embodiment
  • FIG. 4 is a top view of an LCD panel according to the second embodiment of the present invention. Referring to FIG. 4, the LCD panel 402 has compensation spacers 460 both horizontally and vertically, wherein the disposition of the first compensation spacer 460 a and the second compensation spacer 460 b in horizontal direction is the same as that shown in FIG. 3, so the detail will not be described again.
  • In addition, the horizontal conductive lines 420 may be scan lines, or Cs lines, while the vertical conductive lines 430 may be data lines, or Cs lines. Moreover, the first substrate 410 may be TFT array substrate, while the second substrate 440 may be CF substrate.
  • Similarly, the areas of the first protrusions 480 a, 480 b, 480 c, 480 d, and 480 e shown in FIG. 4 may be smaller than the areas of the main spacer 450 and the compensation spacer 460. However, the areas of the first protrusions 480 a, 480 b, 480 c, 480 d, and 480 e may also be greater than the areas of the main spacer 450 and the compensation spacer 460 (not shown).
  • It is remarkable that the compensation spacer 460 in the LCD panel 402 may further include a third compensation spacer 460 c and a fourth compensation spacer 460 d. The main spacer 450, the third compensation spacer 460 c, and the fourth compensation spacer 460 d are disposed corresponding to the same vertical conductive line 430, and the main spacer 450 is disposed between the third compensation spacer 460 c and the fourth compensation spacer 460 d.
  • In particular, the main spacer 450 protrudes a third distance D from the edge of the first protrusion 480 a in contact therewith along direction +Y and a fourth distance E along direction −Y. The third compensation spacer 460 c is at the aforementioned third distance D from the adjacent horizontal conductive line 420, and the fourth compensation spacer 460 d is at the aforementioned fourth distance E from the adjacent horizontal conductive line 420.
  • When the shifting distance of the main spacer 450 along direction −Y is greater than the third distance D and smaller than the sum of the third distance D and the width W3 of the third compensation spacer 460 c itself on axis Y, the third compensation spacer 460 c will be in contact with the adjacent first protrusion 480 d so that the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the third compensation spacer 460 c and the first protrusion 480 d.
  • When the shifting distance of the main spacer 450 along direction +Y is greater than the fourth distance E and smaller than the sum of the fourth distance E and the width W4 of the fourth compensation spacer 460 d itself on axis Y, the fourth compensation spacer 460 d will be in contact with the adjacent first protrusion 480 e so that the reduced contacting area between the main spacer 450 and the first protrusion 480 a is equal to the increased contacting area between the fourth compensation spacer 460 d and the first protrusion 480 e.
  • Accordingly, the main spacer 450 itself has the compensation value of the third distance D in direction −Y and the fourth distance E in direction +Y when the vertical shift of the LCD panel 402 is little. Moreover, according to the design described above, the LCD panel 402 can compensate the vertical shift within the range of “W3+D” or “W4+E” when the vertical panel shift is greater than the third distance D or the fourth distance E.
  • Moreover, since the first compensation spacer 460 a and the second compensation spacer 460 b are also disposed in the LCD panel 402, it can compensate the horizontal panel shift within the range of “W1 +C” or “W2+B”. Thus, in the present embodiment, the LCD panel 402 allows large panel shift both horizontally and vertically. Accordingly, the LCD panel 402 can have uniform compressing density of the spacers and even panel gap, and further better display performance, even though the panel shift is large.
  • The Third Embodiment
  • FIG. 5 is a top view of an LCD panel according to the third embodiment of the present invention. FIG. 5A is a cross-sectional view of the LCD panel in FIG. 5 along line B-B′. Referring to both FIG. 5 and FIG. 5A, the LCD panel 500 includes a first substrate 510, a plurality of horizontal conductive lines 520 and a plurality of vertical conductive lines 530, a plurality of support pads 540, a second substrate 550, a main spacer 560, a compensation spacer 570, and a liquid crystal layer 580. The horizontal conductive lines 520 and the vertical conductive lines 530 are disposed on the first substrate 510 and divide the first substrate 510 into a first area 510 a, a second area 510 b (as shown in FIG. 6) and a third area 510 c (as shown in FIG. 6). The support pads 540 are respectively disposed under at least one of the horizontal conductive lines 520 and the vertical conductive lines 530 to form a plurality of first protrusions 590. The second substrate 550 is disposed above the first substrate 510. The main spacer 560 and the compensation spacer 570 are disposed on the second substrate 550. The main spacer 560 is in sliding contact with the first protrusion 590, and the compensation spacer 570 is disposed around the main spacer 560. The liquid crystal layer 580 is disposed between the first substrate 510 and the second substrate 550. Wherein, when shift occurs between the first substrate 510 and the second substrate 550, the main spacer 560 moves away from the first protrusions 590, at the same time, the compensation spacer 570 comes into contact with the adjacent first protrusions 590, and the reduced contacting area between the main spacer 560 and the first protrusions 590 is equal to the increased contacting area between the compensation spacer 570 and the first protrusions 590.
  • In an embodiment, the horizontal conductive lines 520 may be scan lines, or Cs lines, while the vertical conductive lines 530 may be data lines, or Cs lines. In addition, the first substrate 510 may be TFT array substrate, and the second substrate 550 may be CF substrate.
  • Referring to FIG. 5A, in an embodiment, the area of the first protrusion 590 is greater than the areas of the main spacer 560 and the compensation spacer 570. However, in another embodiment, the area of the first protrusion 590 may also be smaller than the areas of the main spacer 560 and the compensation spacer 570 (not shown).
  • The biased compensation in horizontal direction of the LCD panel 500 in the present embodiment will be further described below. Referring to FIG. 5, in an embodiment, the horizontal conductive lines 520 include a first horizontal conductive line 520 a, a second horizontal conductive line 520 b, and a third horizontal conductive line 520 c, and the second horizontal conductive line 520 b is disposed between the first horizontal conductive line 520 a and the third horizontal conductive line 520 c. The compensation spacer 570 includes a first compensation spacer 570 a and a second compensation spacer 570 b respectively disposed on the first horizontal conductive line 520 a and on the third horizontal conductive line 520 c in the first area 510 a.
  • It is remarkable that the main spacer 560 retracts a first distance B from the edge of the first protrusion 590 in contact therewith along direction −X and a second distance C along direction +X. The first compensation spacer 570 a is at the aforementioned second distance C from the first protrusion 590 on the first horizontal conductive line 520 a in the first area 510 a. The second compensation spacer 570 b is at the aforementioned first distance B from the first protrusion 590 on the third horizontal conductive line 520 c in the first area 510 a.
  • When the shifting distance of the main spacer 560 along direction −X is greater than the second distance C and smaller than the sum of the second distance C and the width W1 of the first compensation spacer 570 a itself on axis X, the first compensation spacer 570 a will be in contact with the first protrusion 590 on the first horizontal conductive line 520 a so that the reduced contacting area between the main spacer 560 and the first protrusion 590 on the second horizontal conductive line 520 b is equal to the increased contacting area between the first compensation spacer 570 a and the first protrusion 590 on the first horizontal conductive line 520 a.
  • When the shifting distance of the main spacer 560 along direction +X is greater than the first distance B and smaller than the sum of the first distance B and the width W2 of the second compensation spacer 570 b itself on axis X, the second compensation spacer 570 b will be in contact with the first protrusion 590 on the third horizontal conductive line 520 c so that the reduced contacting area between the main spacer 560 and the first protrusion 590 on the second horizontal conductive line 520 b is equal to the increased contacting area between the second compensation spacer 570 b and the first protrusion 590 on the third horizontal conductive line 520 c.
  • Accordingly, the main spacer 560 has the compensation value of the second distance C in direction −X and the first distance B in direction +X when the horizontal shifting distance of the LCD panel 500 is small. However, according to the design described above, the LCD panel 500 can compensate the horizontal shift within the range of “W1+C” or “W2+B” when the horizontal panel shift is greater than the first distance B or the second distance C.
  • Thus, the LCD panel 500 in the present invention can compensate large panel shift horizontally, and the LCD panel 500 can obtain consistent compressing density of the spacers and uniform panel gap, and further better display performance, even though the panel shift is large.
  • In particular, in the present embodiment, the support pads 540 are disposed under the horizontal conductive lines 520 and the vertical conductive lines 530 to form the first protrusions 590. Thus, compared to the first embodiment or the second embodiment, the positions of the first protrusions 590 in the present embodiment can be self-determined so as to obtain better biased compensation effect.
  • The Fourth Embodiment
  • FIG. 6 is a top view of an LCD panel according to the fourth embodiment of the present invention. Referring to FIG. 6, the LCD panel 502 has compensation spacers 570 both horizontally and vertically, wherein the disposition of the first compensation spacer 570 a and the second compensation spacer 570 b in horizontal direction is the same as that shown in FIG. 5, so the detail will not be described again.
  • In addition, the horizontal conductive lines 520 may be scan lines, or Cs lines. The vertical conductive lines 530 may be data lines, or Cs lines. Moreover, the first substrate 510 may be TFT array substrate, and the second substrate 550 may be CF substrate.
  • Similarly, as shown in FIG. 6, the area of the first protrusion 590 is greater than the areas of the main spacers 560 and the compensation spacer 570. However, the area of the first protrusion 590 may also be smaller than the areas of the main spacers 560 and the compensation spacer 570 (not shown).
  • It is remarkable that the compensation spacer 570 in the LCD panel 502 can further includes a third compensation spacer 570 c and a fourth compensation spacer 570 d respectively disposed on the second horizontal conductive line 520 b in the second area 510 b and on the second horizontal conductive line 520 b in the third area 510 c.
  • In particular, the main spacer 560 is at the third distance D from the upper edge of the second horizontal conductive line 520 b in direction +Y and at the fourth distance E from the lower edge of the second horizontal conductive line 520 b in direction −Y. The third compensation spacer 570 c is at the aforementioned third distance D from the first protrusion 590 on the second horizontal conductive line 520 b in the second area 510 b. The fourth compensation spacer 570 d is at the fourth distance E from the first protrusion 590 on the second horizontal conductive line 520 b in the third area 510 c.
  • When the shifting distance of the main spacer 560 along direction −Y is greater than the fourth distance E and smaller than the sum of the fourth distance E and the width W4 of the fourth compensation spacer itself on axis Y, the fourth compensation spacer 570 d will be in contact with the first protrusion 590 on the second horizontal conductive line 520 b in the third area 510 c so that the reduced contacting area between the main spacer 560 and the first protrusion 590 on the second horizontal conductive line 520 b is equal to the increased contacting area between the fourth compensation spacer 570 d and the first protrusion 590 on the second horizontal conductive line 520 b in the third area 510 c.
  • When the shifting distance of the main spacer 560 along direction +Y is greater than the third distance D and smaller than the sum of the third distance D and the width W3 of the third compensation spacer itself on axis Y, the third compensation spacer 570 c will be in contact with the first protrusion 590 on the second horizontal conductive line 520 b in the second area 510 b so that the reduced contacting area between the main spacer 560 and the first protrusion 590 on the second horizontal conductive line 520 b is equal to the increased contacting area between the third compensation spacer 570 c and the first protrusion 590 on the second horizontal conductive line 520 b in the second area 510 b.
  • Accordingly, the main spacer 560 has the compensation value of the fourth distance E in direction −Y and the third distance D in direction +Y when the vertical shifting distance of the LCD panel 502 is small. However, according to the design described above, the LCD panel 502 can also compensate the vertical panel shift within the range of “W3+D” or “W4+E” when the vertical panel shift is greater than the third distance D or the fourth distance E. In addition, the LCD panel 502 allows large panel shift both horizontally and vertically since the first compensation spacer 570 a and the second compensation spacer 570 b are also disposed. Accordingly, the LCD panel 502 can have uniform compressing density of the spacers and consistent panel gap, and further better display performance, even though the panel shift is large.
  • It is remarkable that the positions of the first protrusions 590 can be self-determined to obtain better biased compensation effect because the first protrusions 590 are formed by support pads 540.
  • In addition, the support pads 540 in the present embodiment can be the thin film in thin film transistors (not shown), so that the first protrusion 590 can be formed by the protrusions on the thin film transistors. As described above, biased compensation in both horizontal and vertical directions can be performed by letting the main spacer 560 be in contact with a first protrusion 590 of a thin film transistor and disposing the compensation spacer 570 around the main spacer 560.
  • In overview, the LCD panel in the present invention has the following advantages:
  • With the disposition the main spacer and the compensation spacer in the present invention, large panel shift can be compensated in horizontal and vertical directions, and uniform compressing density of the spacers and consistent panel gap can be obtained. In addition, by using the support pads, the flexibility in disposing the first protrusions is improved, and the biased compensation effect is further improved. Since the LCD panel in the present invention has uniform panel gap and is not affected by panel shift, the LCD panel in the present invention can have outstanding display performance.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims (24)

1. A liquid crystal display (LCD) panel, comprising:
a first substrate;
a plurality of horizontal and vertical conductive lines, disposed on the first substrate and overlapped to form a plurality of first protrusions;
a second substrate, disposed over the first substrate;
a main spacer and a compensation spacer, disposed on the second substrate, the main spacer being in sliding contact with the first protrusions, the compensation spacer being disposed around the main spacer; and
a liquid crystal layer, disposed between the first substrate and the second substrate;
wherein, when shift occurs between the first substrate and the second substrate, the main spacer moves away from the first protrusions, at the same time, the compensation spacer comes into contact with the adjacent first protrusion, and the reduced contacting area between the main spacer and the first protrusions is equal to the increased contacting area between the compensation spacer and the first protrusions.
2. The LCD panel as claimed in claim 1, wherein the area of each of the first protrusions is greater than the areas of the main spacer and the compensation spacer.
3. The LCD panel as claimed in claim 1, wherein the area of each of the first protrusions is smaller than the areas of the main spacer and the compensation spacer.
4. The LCD panel as claimed in claim 3, wherein the compensation spacer includes a first compensation spacer and a second compensation spacer, the main spacer, the first compensation spacer, and the second compensation spacer are disposed corresponding to the same horizontal conductive line, and the main spacer is disposed between the first compensation spacer and the second compensation spacer;
the main spacer protrudes a first distance from the edge of the first protrusion in contact therewith along direction +X and a second distance along direction −X;
the first compensation spacer is at the second distance from the adjacent vertical conductive line; and
the second compensation spacer is at the first distance from the adjacent vertical conductive line.
5. The LCD panel as claimed in claim 4, wherein when the shifting distance of the main spacer along direction −X is greater than the first distance and smaller than the sum of the first distance and the width of the second compensation spacer itself on axis X, the second compensation spacer contacts the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the second compensation spacer and the first protrusion.
6. The LCD panel as claimed in claim 4, wherein when the shifting distance of the main spacer along direction +X is greater than the second distance and smaller than the sum of the second distance and the width of the first compensation spacer itself on axis X, the first compensation spacer contacts the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the first compensation spacer and the first protrusion.
7. The LCD panel as claimed in claim 4, wherein the compensation spacer further includes a third compensation spacer and a fourth compensation spacer; the main spacer, the third compensation spacer, and the fourth compensation spacer are disposed corresponding to the same vertical conductive line, and the main spacer is disposed between the third compensation spacer and the fourth compensation spacer;
the main spacer protrudes a third distance from the edge of the first protrusion in contact therewith along direction +Y and a fourth distance along direction −Y;
the third compensation spacer is at the third distance from the adjacent horizontal conductive line; and
the fourth compensation spacer is at the fourth distance from the adjacent horizontal conductive line.
8. The LCD panel as claimed in claim 7, wherein when the shifting distance of the main spacer along direction −Y is greater than the third distance and smaller than the sum of the third distance and the width of the third compensation spacer itself on axis Y, the third compensation spacer contacts the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the third compensation spacer and the first protrusion.
9. The LCD panel as claimed in claim 7, wherein when the shifting distance of the main spacer along direction +Y is greater than the fourth distance and smaller than the sum of the fourth distance and the width of the fourth compensation spacer itself on axis Y, the fourth compensation spacer contacts the adjacent first protrusion so that the reduced contacting area between the main spacer and the first protrusion is equal to the increased contacting area between the fourth compensation spacer and the first protrusion.
10. The LCD panel as claimed in claim 1, wherein at least one of the horizontal and vertical conductive lines includes scan line, Cs line, or data line.
11. The LCD panel as claimed in claim 1, wherein the first substrate includes thin film transistor array substrate (TFT array substrate).
12. The LCD panel as claimed in claim 1, wherein the second substrate includes color filter substrate (CF substrate).
13. An LCD panel, comprising:
a first substrate;
a plurality of horizontal and vertical conductive lines, disposed on the first substrate and dividing the first substrate into a first area, a second area, and a third area;
a plurality of support pads, respectively disposed under at least one of the horizontal and vertical conductive lines to form a plurality of first protrusions;
a second substrate, disposed over the first substrate;
a main spacer and a compensation spacer, disposed on the second substrate, the main spacer being in sliding contact with the first protrusions, the compensation spacer being disposed around the main spacer; and
a liquid crystal layer, disposed between the first substrate and the second substrate;
wherein, when shift occurs between the first substrate and the second substrate, the main spacer moves away from the first protrusion, at the same time, the compensation spacer comes into contact with the adjacent first protrusion, and the reduced contacting area between the main spacer and the first protrusions is equal to the increased contacting area between the compensation spacer and the first protrusions.
14. The LCD panel as claimed in claim 13, wherein the area of each of the first protrusions is greater than the areas of the main spacer and the compensation spacer.
15. The LCD panel as claimed in claim 13, wherein the area of each of the first protrusions is smaller than the areas of the main spacer and the compensation spacer.
16. The LCD panel as claimed in claim 13, wherein the horizontal conductive lines include a first horizontal conductive line, a second horizontal conductive line, and a third horizontal conductive line, and the second horizontal conductive line is disposed between the first horizontal conductive line and the third horizontal conductive line, the compensation spacer includes a first compensation spacer and a second compensation spacer respectively disposed on the first horizontal conductive line and the third horizontal conductive line in the first area;
the main spacer retracts a first distance from the edge of the first protrusion in contact therewith along direction −X and a second distance along direction +X;
the first compensation spacer is at the second distance from the first protrusion disposed on the first horizontal conductive line in the first area; and
the second compensation spacer is at the first distance from the first protrusion disposed on the third horizontal conductive line in the first area.
17. The LCD panel as claimed in claim 16, wherein when the shifting distance of the main spacer along direction −X is greater than the second distance and smaller than the sum of the second distance and the width of the first compensation spacer itself on axis X, the first compensation spacer contacts the first protrusion on the first horizontal conductive line so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the first compensation spacer and the first protrusion on the first horizontal conductive line.
18. The LCD panel as claimed in claim 16, wherein when the shifting distance of the main spacer along direction +X is greater than the first distance and smaller than the sum of the first distance and the width of the second compensation spacer itself on axis X, the second compensation spacer contacts the first protrusion on the third horizontal conductive line so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the second compensation spacer and the first protrusion on the third horizontal conductive line.
19. The LCD panel as claimed in claim 16, wherein the compensation spacer further includes a third compensation spacer and a fourth compensation spacer respectively disposed on the second horizontal conductive line in the second area and on the second horizontal conductive line in the third area;
the main spacer is at a third distance from the upper edge of the second horizontal conductive line in direction +Y and at a fourth distance from the lower edge of the second horizontal conductive line in direction −Y;
the third compensation spacer is at the third distance from the first protrusion on the second horizontal conductive line in the second area; and
the fourth compensation spacer is at the fourth distance from the first protrusion on the second horizontal conductive line in the third area.
20. The LCD panel as claimed in claim 19, wherein when the shifting distance of the main spacer along −Y direction is greater than the fourth distance and smaller than the sum of the fourth distance and the width of the fourth compensation spacer itself on axis Y, the fourth compensation spacer contacts the first protrusion on the second horizontal conductive line in the third area so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the fourth compensation spacer and the first protrusion on the second horizontal conductive line in the third area.
21. The LCD panel as claimed in claim 19, wherein when the shifting distance of the main spacer along direction +Y is greater than the third distance and smaller than the sum of the third distance and the width of the third compensation spacer itself on axis Y, the third compensation spacer contacts the first protrusion on the second horizontal conductive line in the second area so that the reduced contacting area between the main spacer and the first protrusion on the second horizontal conductive line is equal to the increased contacting area between the third compensation spacer and the first protrusion on the second horizontal conductive line in the second area.
22. The LCD panel as claimed in claim 13, wherein at least one of the horizontal and vertical conductive lines includes scan line, Cs line, or data line.
23. The LCD panel as claimed in claim 13, wherein the first substrate includes TFT array substrate.
24. The LCD panel as claimed in claim 13, wherein the second substrate includes CF substrate.
US11/308,277 2006-03-15 2006-03-15 Liquid crystal display panel Abandoned US20070216847A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/308,277 US20070216847A1 (en) 2006-03-15 2006-03-15 Liquid crystal display panel
US12/869,786 US8451416B2 (en) 2006-03-15 2010-08-27 Liquid crystal display panel with uniform compressing density by cooperating main and compensation spacers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/308,277 US20070216847A1 (en) 2006-03-15 2006-03-15 Liquid crystal display panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/869,786 Division US8451416B2 (en) 2006-03-15 2010-08-27 Liquid crystal display panel with uniform compressing density by cooperating main and compensation spacers

Publications (1)

Publication Number Publication Date
US20070216847A1 true US20070216847A1 (en) 2007-09-20

Family

ID=38517400

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/308,277 Abandoned US20070216847A1 (en) 2006-03-15 2006-03-15 Liquid crystal display panel
US12/869,786 Expired - Fee Related US8451416B2 (en) 2006-03-15 2010-08-27 Liquid crystal display panel with uniform compressing density by cooperating main and compensation spacers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/869,786 Expired - Fee Related US8451416B2 (en) 2006-03-15 2010-08-27 Liquid crystal display panel with uniform compressing density by cooperating main and compensation spacers

Country Status (1)

Country Link
US (2) US20070216847A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139604A1 (en) * 2005-12-15 2007-06-21 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method for manufacturing the same
US20080123043A1 (en) * 2006-11-24 2008-05-29 Chunghwa Picture Tubes, Ltd. Liquid crystal display panel
US20100053536A1 (en) * 2008-08-26 2010-03-04 Hitachi Displays, Ltd. Liquid crystal display device
CN103076700A (en) * 2013-02-18 2013-05-01 合肥京东方光电科技有限公司 Liquid crystal panel and display device
US20150060858A1 (en) * 2013-08-29 2015-03-05 Panasonic Liquid Crystal Display Co., Ltd. Display device
CN104460122A (en) * 2014-12-18 2015-03-25 深圳市华星光电技术有限公司 Liquid crystal displayer and manufacturing method thereof
WO2015109713A1 (en) * 2014-01-22 2015-07-30 京东方科技集团股份有限公司 Display device, display panel and manufacturing method for display panel
WO2017035908A1 (en) * 2015-09-02 2017-03-09 深圳市华星光电技术有限公司 Liquid crystal display panel
CN106773356A (en) * 2017-01-20 2017-05-31 京东方科技集团股份有限公司 A kind of display panel and preparation method thereof and display device
WO2019114336A1 (en) * 2017-12-15 2019-06-20 京东方科技集团股份有限公司 Display panel and display device
CN109932843A (en) * 2017-12-15 2019-06-25 京东方科技集团股份有限公司 Display panel and display device
WO2021195976A1 (en) * 2020-03-31 2021-10-07 京东方科技集团股份有限公司 Display panel and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929606B (en) * 2016-06-30 2020-01-10 南京中电熊猫液晶显示科技有限公司 Liquid crystal display panel
JP7408456B2 (en) 2020-03-26 2024-01-05 株式会社ジャパンディスプレイ display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050088606A1 (en) * 2003-10-27 2005-04-28 Hitachi Displays, Ltd. Liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050088606A1 (en) * 2003-10-27 2005-04-28 Hitachi Displays, Ltd. Liquid crystal display device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139604A1 (en) * 2005-12-15 2007-06-21 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method for manufacturing the same
US7483113B2 (en) * 2005-12-15 2009-01-27 Lg Display Co., Ltd. Liquid crystal display device and method for manufacturing the same
US20080123043A1 (en) * 2006-11-24 2008-05-29 Chunghwa Picture Tubes, Ltd. Liquid crystal display panel
US20100053536A1 (en) * 2008-08-26 2010-03-04 Hitachi Displays, Ltd. Liquid crystal display device
CN103076700A (en) * 2013-02-18 2013-05-01 合肥京东方光电科技有限公司 Liquid crystal panel and display device
WO2014124573A1 (en) * 2013-02-18 2014-08-21 合肥京东方光电科技有限公司 Liquid crystal display panel and display device
US9304360B2 (en) 2013-02-18 2016-04-05 Hefei Boe Optoelectronics Technology Co., Ltd. Liquid crystal panel and display device
US20150060858A1 (en) * 2013-08-29 2015-03-05 Panasonic Liquid Crystal Display Co., Ltd. Display device
US9287296B2 (en) * 2013-08-29 2016-03-15 Panasonic Liquid Crystal Display Co., Ltd. Display device
WO2015109713A1 (en) * 2014-01-22 2015-07-30 京东方科技集团股份有限公司 Display device, display panel and manufacturing method for display panel
US9541788B2 (en) 2014-01-22 2017-01-10 Boe Technology Group Co., Ltd. Display device, display panel and fabricating method thereof
CN104460122A (en) * 2014-12-18 2015-03-25 深圳市华星光电技术有限公司 Liquid crystal displayer and manufacturing method thereof
WO2017035908A1 (en) * 2015-09-02 2017-03-09 深圳市华星光电技术有限公司 Liquid crystal display panel
CN106773356A (en) * 2017-01-20 2017-05-31 京东方科技集团股份有限公司 A kind of display panel and preparation method thereof and display device
WO2018133372A1 (en) * 2017-01-20 2018-07-26 京东方科技集团股份有限公司 Display panel, method for manufacturing same, and display device
US10705388B2 (en) 2017-01-20 2020-07-07 Boe Technology Group Co., Ltd. Display panel and method for producing the same and display apparatus
WO2019114336A1 (en) * 2017-12-15 2019-06-20 京东方科技集团股份有限公司 Display panel and display device
CN109932844A (en) * 2017-12-15 2019-06-25 京东方科技集团股份有限公司 Display panel and display device
CN109932843A (en) * 2017-12-15 2019-06-25 京东方科技集团股份有限公司 Display panel and display device
US11181783B2 (en) 2017-12-15 2021-11-23 Boe Technology Group Co., Ltd. Display panel, display device and terminal
US11480830B2 (en) 2017-12-15 2022-10-25 Beijing Boe Technology Development Co., Ltd. Display panel and display device
US11906853B2 (en) 2017-12-15 2024-02-20 Boe Technology Group Co., Ltd. Display panel and display device
WO2021195976A1 (en) * 2020-03-31 2021-10-07 京东方科技集团股份有限公司 Display panel and display device
CN113748376A (en) * 2020-03-31 2021-12-03 京东方科技集团股份有限公司 Display panel and display device

Also Published As

Publication number Publication date
US20100321625A1 (en) 2010-12-23
US8451416B2 (en) 2013-05-28

Similar Documents

Publication Publication Date Title
US8451416B2 (en) Liquid crystal display panel with uniform compressing density by cooperating main and compensation spacers
US10644038B2 (en) Array substrate, display panel, and display device thereof
US9964823B2 (en) Display panel and display device
EP3567422B1 (en) Array substrate and display device
US9465256B2 (en) Liquid crystal display panel and manufacturing method thereof
US10222663B2 (en) Array substrate and method of manufacturing the same and display panel
CN103676373A (en) Array substrate and production method thereof and display device comprising same
US20110149183A1 (en) Liquid crystal display
US20050275328A1 (en) Flat display panel with a spacer unit to prevent displacement between upper and lower glass substrates
US5654731A (en) Shielded pixel structure for liquid crystal displays
CN104656318A (en) Display substrate and display device
US20160370659A1 (en) Array substrate and display device
US7808476B2 (en) Pixel structure
US11003030B2 (en) Array substrate and display device
CN110570825A (en) Pixel circuit and liquid crystal display panel
JP4545137B2 (en) Array substrate and panel structure of liquid crystal display device
CN111580296B (en) Array substrate, display panel and display device
US7567331B2 (en) Liquid crystal display
US10802348B2 (en) Array substrate, display panel and display device
US20190196238A1 (en) Liquid-crystal display device
US20230094410A1 (en) Liquid crystal display panel and display device
US7633568B2 (en) Pixel structure
US9563084B2 (en) Liquid crystal display device and array substrate thereof
US7391492B2 (en) Multi-domain LCD device and method of fabricating the same
US11404450B2 (en) Array substrate and display panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHUNGHWA PICTURE TUBES, LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANG, TSUNG-CHIEN;HE, CHIEN-KUO;REEL/FRAME:017304/0797

Effective date: 20060313

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION