WO2018133054A1 - 压力感应式结构及电子产品 - Google Patents

压力感应式结构及电子产品 Download PDF

Info

Publication number
WO2018133054A1
WO2018133054A1 PCT/CN2017/072000 CN2017072000W WO2018133054A1 WO 2018133054 A1 WO2018133054 A1 WO 2018133054A1 CN 2017072000 W CN2017072000 W CN 2017072000W WO 2018133054 A1 WO2018133054 A1 WO 2018133054A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
signal measuring
strain
measuring circuit
substrate
Prior art date
Application number
PCT/CN2017/072000
Other languages
English (en)
French (fr)
Inventor
李灏
Original Assignee
深圳纽迪瑞科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳纽迪瑞科技开发有限公司 filed Critical 深圳纽迪瑞科技开发有限公司
Priority to PCT/CN2017/072000 priority Critical patent/WO2018133054A1/zh
Priority to CN201780084178.0A priority patent/CN110192172B/zh
Priority to US16/479,405 priority patent/US11162851B2/en
Publication of WO2018133054A1 publication Critical patent/WO2018133054A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • G01L1/2262Measuring circuits therefor involving simple electrical bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Definitions

  • the present invention belongs to the field of pressure sensing structures, and more particularly to pressure sensing structures and electronic products.
  • the present invention is implemented in such a manner that the pressure sensing structure includes:
  • a signal measuring circuit having at least one electronic component, wherein at least one of the electronic components is located on the first elastic carrier, and at least one of the electronic components is a strain for detecting a bending deformation amount of the substrate Inductive parts.
  • Another object of the present invention is to provide an electronic product comprising a panel and the above pressure-sensitive structure, the pressure-sensitive structure being attached to the inside of the panel.
  • Another object of the present invention is to provide an electronic product including a side frame and the pressure sensing structure, and the pressure sensing structure is attached to the inner side of the side frame.
  • the technical effect of the present invention relative to the prior art is that, in the pressure sensing structure, the first mounting surface of the substrate is provided with a first elastic carrier, and the first elastic carrier is provided with electronic components, and the substrate is deformed.
  • the first elastic carrier follows a bending deformation of the substrate, and the substrate amplifies the strain signal, wherein the strain sensing member can detect the bending deformation amount of the substrate, and the identifiable electrical signal is output by the measuring circuit.
  • the pressure sensing structure is a sensor structure with high precision, high reliability and high sensitivity.
  • the pressure-sensitive structure can be used for the pressure button of any electronic product of plastic or metal by detecting strain, and the pressure can be detected at the same time.
  • the pressure-sensitive structure is more sensitive and easy to use, and can be used for electronic products with higher structural strength and mass production.
  • the pressure-sensitive structure is attached to the inner side of the electronic product panel.
  • the panel When the panel is pressed, the panel will be bent and deformed, and the substrate will be bent and deformed.
  • the strain sensing member detects the bending deformation and is output by the signal measuring circuit. The identified electrical signal. The detection of the pressing pressure and position is achieved by detecting the strain of the panel.
  • the pressure-sensitive structure is attached to the side frame of the electronic product, especially the side frame of the smart phone.
  • the substrate When the side frame is pressed, the substrate will be bent and deformed following the side frame, and the strain sensing member detects the bending deformation and is measured by the signal.
  • the circuit outputs an identifiable electrical signal, recognizes the pressing position and strength, and realizes the side touch button function, and does not need to be separately grooved on the side frame of the electronic product, so that the appearance is simple and generous.
  • FIG. 1 is a schematic structural view of a pressure sensing structure according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a substrate applied in the pressure inductive structure of FIG. 1;
  • FIG. 3 is a schematic diagram of a signal measuring circuit applied in the pressure inductive structure of FIG. 1; [0017] FIG.
  • FIG. 4 is a schematic structural view of the pressure-sensitive structure of FIG. 1 applied to a panel without pressing a crucible; [0018] FIG.
  • FIG. 5 is a schematic view showing the structure of the pressure-sensitive structure of FIG. 4 applied to a panel
  • FIG. 6 is a relationship diagram between a substrate thickness obtained by finite element simulation and an output signal of a signal measuring circuit
  • FIG. 7 is a strain simulation diagram of a first elastic carrier obtained by finite element simulation
  • 8 is a schematic structural view of a pressure sensing structure according to a second embodiment of the present invention
  • FIG. 9 is a schematic diagram of a signal measuring circuit applied in the pressure inductive structure of FIG. 8; [0023] FIG.
  • FIG. 10 is a schematic structural view of a pressure sensing structure according to a third embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a signal measuring circuit applied in the pressure inductive structure of FIG. 10; [0025] FIG.
  • FIG. 12 is a schematic structural view of the pressure-sensitive structure of FIG. 1 applied to a side frame.
  • a pressure sensing structure 100 includes a substrate 10 having a first mounting surface 10a and a second mounting surface 10b opposite to each other; a first elastic carrier 20 of 10a; and a signal measuring circuit 40 having at least one electronic component, wherein at least one of the electronic components is located on the first elastic carrier 20, and at least one of the electronic components is strained for detecting the amount of bending deformation of the substrate 10. Inductive parts.
  • a first elastic carrier 20 is disposed on the first mounting surface 10a of the substrate 10.
  • the first elastic carrier 20 is provided with electronic components. After the substrate 10 is deformed, the first elastic carrier 20 Following the bending deformation of the substrate 10, the substrate 10 amplifies the strain signal, wherein the strain sensing member can detect the amount of bending deformation of the substrate 10, and the signal measuring circuit 40 outputs an identifiable electrical signal.
  • the pressure-sensitive structure 100 is a sensor structure with high precision, high reliability, and high sensitivity.
  • the pressure-sensitive structure 100 can detect the strain and can be used for the pressure button of any electronic product of plastic or metal, and can detect the pressing force at the same time.
  • the pressure-sensitive structure 100 is more sensitive and convenient to use, and can be used for electronic products with higher structural strength and mass production.
  • the substrate 10 may be made of a material having elastic deformation characteristics.
  • the substrate 10 can increase the thickness of the overall structure, and the strain sensing member has a larger strain under the deformation of the radius of curvature of the thin-walled member.
  • the corresponding change value AR is larger, so that a larger electrical signal can be obtained, making the pressure-sensitive structure 100 more sensitive to the response.
  • the output signal of the signal measuring circuit 40 changes in proportion to the thickness of the substrate 10, that is, the thicker the substrate 10, the more sensitive the pressure-sensitive structure 100 is. As shown in FIG. 6, the output signals of the signal measuring circuit 40 of different thicknesses are taken on the substrate 10 by finite element simulation, and it is found that the relationship between the output signal of the signal measuring circuit 40 and the thickness of the substrate 10 is consistent with the theoretical result.
  • the second mounting surface 10b is provided with a second elastic carrier 30, and the number of electronic components of each signal measuring circuit 40 is at least two, wherein at least one electronic component is located on the first elastic carrier 20, and another electronic component The components are located on the second elastic carrier 30, and the electronic components in the signal measuring circuit 40 are adjacently distributed.
  • the first elastic carrier 20 and the second elastic carrier 30 are respectively disposed on the two mounting surfaces of the substrate 10.
  • the first elastic carrier 20 and the second elastic carrier 30 are respectively provided with electronic components.
  • the carrier 20 and the second elastic carrier 30 are bent and deformed following the substrate 10.
  • the substrate 10 amplifies the strain signal, wherein the strain sensing member can detect the amount of bending deformation of the substrate 10, and the signal measuring circuit 40 outputs an identifiable electrical signal.
  • the first elastic carrier 20 and the second elastic carrier 30 have elastic deformation characteristics for mounting electronic components.
  • the first elastic carrier 20 and the second elastic carrier 30 are each provided with a strain sensing member ⁇ , and the strain sensing member detects the strain difference between the first elastic carrier 20 and the second elastic carrier 30, and outputs an identifiable electrical signal through circuit processing.
  • a strain concentration groove 11 is disposed on the substrate 10, and the electronic component is disposed adjacent to the strain concentration groove 11.
  • the solution is easy to process, and the strain sensing member is disposed close to the strain concentration groove 11, so that the strain can be concentrated on the elastic carrier close to the strain concentration groove 11, and the strain sensing member can detect the strain in the region of the strain concentration groove.
  • the strain sensing member can detect the strain in the region of the strain concentration groove.
  • eight strain concentration grooves are arranged on the substrate, and the first elastic carrier 20 is subjected to finite element simulation analysis. As shown in FIG. 7, the strain of the first elastic carrier 20 is concentrated on the substrate. At the strain concentrating groove, the strain sensing member can detect a very large strain signal, making the pressure sensing structure 100 high in accuracy, high in reliability, and high in sensitivity.
  • the case of the second elastic carrier 30 is similar to the first elastic carrier 20.
  • the strain concentrating groove 11 is a through groove extending in a direction perpendicular to the first mounting surface 10a; or, as shown in FIG. 2(b), the strain concentrating groove 11 a through groove extending in a direction inclined to the first mounting surface 10a; or, as shown in FIG. 2(c), the strain concentration groove 11 is a through groove having a predetermined shape in a longitudinal section; the predetermined shape may be a funnel longitudinal section, a circle Shape and so on.
  • strain The concentrating groove 11 is a blind groove having a predetermined shape in a longitudinal section.
  • the blind groove refers to a groove that does not penetrate the substrate 10.
  • the predetermined shape may be a funnel longitudinal section, a circular shape, or the like.
  • the strain sensing member is disposed adjacent to the strain concentration groove 11 for amplifying the strain signal of the elastic carrier to realize pressure sensing.
  • the substrate 10 is a monolithic board, and the bending deformation of the substrate 10 is transmitted to the first elastic carrier 20 and the second elastic carrier 30, and the strain sensing member can detect the bending deformation amount of the substrate 10, The identifiable electrical signal is output by the signal measuring circuit 40.
  • the pressure-sensitive structure 100 can be adapted to different sensitivity requirements in different situations by changing the thickness of the substrate 10 and changing the shape of the strain concentrating groove 11.
  • a signal measuring circuit 40 has four electronic components, and the signal measuring circuit 40 is a full bridge formed by electrically connecting four strain sensing members R1, R2, R3 and R4.
  • the case where the pressure-sensitive structure 100 is attached to the inside of the panel, the inside of the side frame, or the inside of other thin-walled members is similar.
  • the pressure-sensitive structure 100 is attached to the panel 201 through the colloid 203, and the signal measuring circuit 40 is a full bridge formed by electrically connecting the four strain sensing members R1, R2, R3, and R4.
  • the dependence on the colloid 203 is lower, and the error due to the difference in the adhesion of the colloid 203 can be eliminated, so that the measurement is accurate and reliable.
  • the strain sensing member in this embodiment is a strain gauge pressure sensor.
  • R1, R2, R3 and R4 can be used. All of the strain sensing members are adjacent to the corresponding strain concentration grooves 11 of the substrate 10.
  • the strain sensing members R1 and R4 are opposite arm arms on the lower side of the substrate 10; R2 and R3 are opposite arm arms on the upper side of the substrate 10; the strain sensing members R1, R2, R3 and R4 are composed as shown in Fig. 3. The full bridge shown.
  • V ⁇ and ⁇ ⁇ apply voltage to both ends, VI and V2 have a voltage difference V across the output.
  • the panel 201 When the panel 201 is compressed, the panel 201 will produce a downward bending deformation, and the pressure-sensitive structure 100 will deform along the panel 201 by the colloid 203, thereby causing the strain sensing members R1, R2, R3 and R4 to deform, and further This causes the resistance of Rl, R2, R3 and R4 to change. Since the panel 201 is deformed downward, the lower surface of the panel 201 is subjected to tensile deformation. For the selected colloid 203, since the lateral direction is much larger than the longitudinal dimension, usually the ratio of the width to the thickness is at least 50:1, and the amount of deformation of the colloid 203 in the longitudinal direction is much smaller than that of the lateral deformation.
  • the elastic modulus is less than or equal to 50 MPa, and the lateral deformation of the colloid 203 itself is large, that is, the lateral deformation is easy, and the transverse tensile strain of the panel 201 is transmitted to Pressure
  • the force-inducing structure 100 is extremely small, and most of it is absorbed by the colloid 203 itself; on the other hand, the longitudinal strain of the colloid 203 is small due to its longitudinal dimension, and the longitudinal deformation of the glue is small, that is, the longitudinal deformation is difficult, and the pressure is relatively high.
  • the inductive structure 100 will be in close contact with the panel 201, so that the pressure-sensitive structure 100 can be approximated to the deformation radius of curvature of the panel 201, and the transverse deformation of the pressure-sensitive structure 100 is too small to be negligible, so the pressure
  • the pure bending of the inductive structure 100 from lateral tensile deformation is similar to the bending strain of the beam.
  • the strain sensing members R1 and R4 on the lower side of the substrate 10 generate tensile strain
  • the strain sensing members R2 and R3 on the upper side generate compressive strain.
  • the resistance values of the strain sensing members R1, R2, R3, and R4 increase with the tensile strain, and decrease with the compressive strain, that is, the strain sensing members R1 and R4 become larger, and R2 and R3 become smaller. Since the pressure-sensitive structure 100 adopts a vertically symmetrical structure, considering the bending deformation of pure bending, the changes of R1, R4, R2, and R3 are equal in magnitude and opposite in direction. For convenience of description of the embodiment, it is assumed that the magnitude of the resistance change is AR (AR>0), and the resistance values of the deformations of the shells ljRl, R2, R3 and R4 are respectively:
  • AR is a variation value caused by deformation of the strain sensing member itself.
  • the AR change value and the corresponding relationship should be changed, and the strain is related to the magnitude and position of the applied pressure, so that the force and position of the user's pressing can be recognized by detecting the change of V, and the pressure touch function is realized.
  • the elastic modulus is greater than 50 MPa
  • the transverse strain of the colloid 203 is also small
  • the tensile deformation of the pressure-sensitive structure 100 is not negligible
  • the pressure-sensitive structure 100 is subjected to
  • the self-bending deformation is again subjected to tensile deformation of the panel 201, and the pressure-sensitive structure 100 is a superposition of two strain deformations.
  • the strain of the first elastic carrier 20 and the second elastic carrier 30 are the same, and the resistance changes of the strain sensing members R1, R2, R3, and R4 due to the tensile deformation are the same, for convenience of explanation.
  • the resistance change due to deformation caused by stretching is AR' > 0).
  • the post-resistance values of Rl, R2, R3 and R4 due to tensile and bending deformation are:
  • the change in resistance ⁇ ⁇ R the above formula can be simplified as:
  • V sig « (AR/R) *V V sign
  • the pressure-sensitive structure 100 has a lower dependence on the colloid 203 than other conventional sensor structures, and can eliminate errors caused by the difference in adhesion of the colloid 203, making the measurement accurate and reliable.
  • a signal measuring circuit 40 has four electronic components, and the signal measuring circuit 40 is a Wheatstone bridge electrically connected to three reference resistors by a strain sensing member.
  • a signal measuring circuit 40 has four electronic components, and the signal measuring circuit 40 is a half bridge formed by electrically connecting two strain sensing members and two reference resistors; or, a signal measuring circuit 40 has four electronic components, and the signal measuring circuit 40 is electrically connected to a reference resistor by three strain sensing members. The resulting bridge circuit.
  • the strain sensing member is a strain gauge pressure sensor, an inductive pressure sensor, a capacitive pressure sensor or a polymer strain sensor or other strain sensing member. Specifically selected as needed.
  • the electronic component on the first elastic carrier 20 is located on a side of the first elastic carrier 20 facing the substrate 10, and the electronic component on the first elastic carrier 20 is located away from the substrate 10 of the first elastic carrier 20.
  • One side It is sufficient to use at least one of the above two schemes.
  • the electronic component on the second elastic carrier 30 is located on a side of the second elastic carrier 30 facing the substrate 10, and the electronic component on the second elastic carrier 30 is located on a side of the second elastic carrier 30 facing away from the substrate 10. It is sufficient to use at least one of the above two schemes.
  • the electronic components may be distributed on one side or both sides of the corresponding elastic carrier, and the electronic components may be distributed on either side of the corresponding elastic carrier to form a corresponding signal measuring circuit 40.
  • the number of signal measuring circuits 40 is at least two, and the signal measuring circuits 40 are distributed in an array on the substrate 10.
  • the solution can perform pressure sensing on multiple locations, and can also implement gesture recognition and sliding functions that cannot be achieved by mechanical buttons.
  • two of the electronic components in a signal measuring circuit 40 are in one-to-one correspondence; or two of the electronic components in a signal measuring circuit 40 are misaligned.
  • the electronic components may be distributed in whole or in part in the vicinity of the strain concentration groove 11 as needed.
  • the pressure-sensitive structure 100 provided by the second embodiment of the present invention is substantially the same as the pressure-sensitive structure 100 provided by the first embodiment, and is different from the first embodiment.
  • the signal measuring circuit 40 has two electronic components, and the signal measuring circuit 40 is a voltage dividing circuit formed by a strain sensing member R1 and a reference resistor R0 in series.
  • the signal measuring circuit 40 obtains the output voltage Uo, and the corresponding electrical signal output is obtained, thereby realizing pressure recognition and detection.
  • a signal measuring circuit 40 has two electronic components, and the signal measuring circuit 40 is a voltage dividing circuit formed by connecting two strain sensing members in series.
  • the program can also get the corresponding electrical signal output to achieve pressure identification and detection.
  • a pressure-sensitive structure 100 according to a third embodiment of the present invention is substantially the same as the pressure-sensing structure 100 provided in the first embodiment, and is different from the first embodiment.
  • the signal measuring circuit 40 has two electronic components, and the signal measuring circuit 40 is a shunt circuit formed by a strain sensing member R1 in parallel with a reference resistor R0.
  • the signal measuring circuit 40 obtains the output current II, and the corresponding electrical signal output is obtained, thereby realizing pressure identification and detection.
  • one signal measuring circuit 40 has two electronic components, and the signal measuring circuit 40 is a shunting circuit formed by two strain sensing members connected in parallel. The solution can also obtain the corresponding electrical signal output through the pressure sensing detection circuit to realize pressure identification and detection.
  • signal measurement circuit 40 may employ other existing signal measurement circuits.
  • an electronic product according to a first embodiment of the present invention includes a panel 201 and the pressure sensing structure 100, and the pressure sensing structure 100 is attached to the inner side of the panel 201.
  • the pressure-sensitive structure 100 is attached to the inner side of the electronic product panel 201.
  • the panel 201 is deformed by bending, and the substrate 10 is caused to undergo bending deformation, and the strain sensing member detects bending deformation, and Signal measurement circuit 40 outputs an identifiable electrical signal.
  • the detection of the pressing pressure and the position is performed by detecting the strain of the panel 201.
  • Electronic products can avoid the appearance of the traditional mechanical buttons, the appearance is not continuous, waterproof and dustproof, short life, difficult to install.
  • the panel 201 may be a touch screen, display, or other electronic device having a rigid structure.
  • the pressure-sensitive structure 100 By connecting the pressure-sensitive structure 100 to the panel 201, it is possible to accurately recognize the touch pressure while accurately identifying the touch position, and expand the application space for the electronic device in product application, human-computer interaction and consumption experience. Users can directly obtain accurate pressure levels and quantities by touching the touch screen, display or electronic device. After the correction, the exact pressure value of the press can be obtained.
  • the pressure-sensitive structure 100 and the panel 201 are connected by a colloid 203, welding or other mechanical connection.
  • the use of colloidal 203 ⁇ ready to use, easy to use, simplify the assembly process, and easy to rework.
  • the glue 203 drives the pressure sensing structure 100 to deform, thereby obtaining the user's operating position and strength, and implementing the pressure touch function.
  • the colloid 203 is a water gel or a double-sided tape.
  • an electronic product according to a second embodiment of the present invention includes a side frame 202 and the pressure sensing structure 100, and the pressure sensing structure 100 is attached to the inner side of the side frame 202.
  • the pressure-sensitive structure 100 is attached to the electronic product side frame 202, especially the smart phone side frame 202.
  • the substrate 10 When the side frame 202 is pressed, the substrate 10 will follow the side frame 202 to generate bending deformation, and the strain sensing member detects the bending.
  • the deformation, and the signal measurement circuit 40 outputs an identifiable electrical signal, identifies the pressing position and the force, and realizes the side touch button function, and does not need to be separately grooved in the electronic product side frame 202, so that the appearance is simple and generous.
  • Electronic products can avoid the appearance of discontinuity, waterproof and dustproof difficulties caused by traditional mechanical buttons , short life and difficult installation.
  • the pressure-sensitive structure 100 and the side frame 202 are connected by a colloid 203, welding or other mechanical connection.
  • the colloid 203 is a water gel or a double-sided tape.
  • the pressure-sensitive structure 100 can also be attached to the inner side of other thin-walled members.
  • the thin-walled member When the thin-walled member is pressed, the thin-walled member will be bent and deformed, and the substrate will be bent and deformed, and the strain sensing member detects Bending deformation, and an identifiable electrical signal is output by the signal measuring circuit. The detection of the pressing pressure and the position is achieved by detecting the strain of the thin-walled member.
  • the pressure-sensitive structure is connected to the thin-walled member by colloid, welding or other mechanical connection.
  • colloidal enamel it is easy to use and easy to use, simplifying the assembly process and facilitating rework.
  • the glue is water glue or double-sided tape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

在压力感应式结构(100)中,基板(10)第一安装面(10a)上设有第一弹性载体(20),弹性载体上设有电子元件,在基板(10)变形时,弹性载体跟随基板(10)弯曲变形,基板(10)放大应变信号,应变感应件能检测基板(10)的弯曲变形量,由信号测量电路(40)输出可识别的电信号。该压力感应式结构为精度高、可靠度高、灵敏度高的传感器结构。将压力感应式结构(100)贴合在电子产品面板(201)或侧边框(202),在按压面板(201)或侧边框(202)时,应变感应件检测出弯曲变形,并由信号测量电路(40)输出可识别的电信号。电子产品能避免传统机械按键会带来的外观上不连续、防水防尘困难、寿命短、安装困难的情况。

Description

压力感应式结构及电子产品
技术领域
[0001] 本发明属于压力感应结构领域, 尤其涉及压力感应式结构及电子产品。
背景技术
[0002] 目前, 随着电容屏的大范围使用, 电子产品, 尤其是智能手机的各个部件也幵 始用触摸式结构替代原有机械式结构, 如手机键盘、 home键等, 逐渐电子智能 化。 然而, 目前智能手机侧键由于技术和一些其它方面的原因, 大部分还是使 用传统的机械按键。 传统机械按键存在, 会带来外观上的不连续、 防水防尘困 难、 使用寿命较短以及较难安装的缺点。
技术问题
[0003] 本发明的目的在于提供一种压力感应式结构, 旨在解决现有触摸式结构外观上 的不连续、 防水防尘困难、 使用寿命较短以及较难安装的技术问题。
问题的解决方案
技术解决方案
[0004] 本发明是这样实现的, 压力感应式结构, 包括:
[0005] 基板, 其具有相背对的第一安装面与第二安装面;
[0006] 第一弹性载体, 设于所述第一安装面; 以及
[0007] 信号测量电路, 其具有至少一个电子元件, 其中至少一个所述电子元件位于所 述第一弹性载体上, 且至少一个所述电子元件为用于检测所述基板的弯曲变形 量的应变感应件。
[0008] 本发明的另一目的在于提供一电子产品, 包括面板及上述压力感应式结构, 所 述压力感应式结构贴合在所述面板的内侧。
[0009] 本发明的另一目的在于提供一电子产品, 包括侧边框及上述压力感应式结构, 所述压力感应式结构贴合在所述侧边框的内侧。
发明的有益效果
有益效果 [0010] 本发明相对于现有技术的技术效果是, 在压力感应式结构中, 基板的第一安装 面上设有第一弹性载体, 第一弹性载体上设有电子元件, 在基板变形吋, 第一 弹性载体跟随基板弯曲变形, 基板放大应变信号, 其中应变感应件能检测基板 的弯曲变形量, 并由测量电路输出可识别的电信号。 该压力感应式结构为精度 高、 可靠度高、 灵敏度高的传感器结构。
[0011] 相对于传统的电容按键, 该压力感应式结构通过检测应变, 可用于塑胶或金属 的任一种电子产品的压力按键, 同吋可检测按压力度。 相比较于现有的压力电 容、 应变片或应变膜, 该压力感应式结构更加灵敏、 使用方便, 能够用于对结 构强度更高的电子产品上, 并能够实现量产。
[0012] 将压力感应式结构贴合在电子产品面板的内侧, 在按压面板吋, 面板会产生弯 曲变形, 并带动基板产生弯曲变形, 应变感应件检测出弯曲变形, 并由信号测 量电路输出可识别的电信号。 通过检测面板的应变, 来实现按压压力与位置的 检测。
[0013] 将压力感应式结构贴合在电子产品侧边框, 尤其是智能手机侧边框, 在按压侧 边框吋, 基板会跟随侧边框产生弯曲变形, 应变感应件检测出弯曲变形, 并由 信号测量电路输出可识别的电信号, 识别按压位置和力度, 实现侧边触摸按键 功能, 不需要单独在电子产品侧边框幵槽, 使外观简洁大方。
[0014] 上述两种电子产品均能避免传统机械按键会带来的外观上不连续、 防水防尘困 难、 寿命短、 安装困难的情况。
对附图的简要说明
附图说明
[0015] 图 1是本发明第一实施例提供的压力感应式结构的结构示意图;
[0016] 图 2是图 1的压力感应式结构中应用的基板的结构示意图;
[0017] 图 3是图 1的压力感应式结构中应用的信号测量电路的示意图;
[0018] 图 4是图 1的压力感应式结构应用于面板上在未按压吋的结构示意图;
[0019] 图 5是图 4的压力感应式结构应用于面板上在按压吋的结构示意图;
[0020] 图 6是有限元模拟得到的基板厚度与信号测量电路输出信号的关系图;
[0021] 图 7是有限元模拟得到的第一弹性载体的应变仿真图; [0022] 图 8是本发明第二实施例提供的压力感应式结构的结构示意图;
[0023] 图 9是图 8的压力感应式结构中应用的信号测量电路的示意图;
[0024] 图 10是本发明第三实施例提供的压力感应式结构的结构示意图;
[0025] 图 11是图 10的压力感应式结构中应用的信号测量电路的示意图;
[0026] 图 12是图 1的压力感应式结构应用于侧边框的结构示意图。
本发明的实施方式
[0027] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0028] 请参阅图 1, 本发明第一实施例提供的压力感应式结构 100, 包括基板 10, 其具 有相背对的第一安装面 10a与第二安装面 10b; 设于第一安装面 10a的第一弹性载 体 20; 以及信号测量电路 40, 其具有至少一个电子元件, 其中至少一个电子元 件位于第一弹性载体 20上, 至少一个电子元件为用于检测基板 10的弯曲变形量 的应变感应件。
[0029] 在压力感应式结构 100中, 基板 10的第一安装面 10a上设有第一弹性载体 20, 第 一弹性载体 20上设有电子元件, 在基板 10变形吋, 第一弹性载体 20跟随基板 10 弯曲变形, 基板 10放大应变信号, 其中应变感应件能检测基板 10的弯曲变形量 , 并由信号测量电路 40输出可识别的电信号。 该压力感应式结构 100为精度高、 可靠度高、 灵敏度高的传感器结构。
[0030] 相对于传统的电容按键, 该压力感应式结构 100通过检测应变, 可用于塑胶或 金属的任一种电子产品的压力按键, 同吋可检测按压力度。 相比较于现有的压 力电容、 应变片或应变膜, 该压力感应式结构 100更加灵敏、 使用方便, 能够用 于对结构强度更高的电子产品上, 并能够实现量产。
[0031] 基板 10可由具有弹性变形特性的材料制作。 在压力感应式结构 100贴合于面板 内侧、 侧边框内侧或其它薄壁件内侧吋, 基板 10能增加整体结构的厚度, 在薄 壁件曲率半径相同的变形下, 应变感应件的应变更大, 相应变化值 AR更大, 从 而能够获得更大的电信号, 使压力感应式结构 100对应变的反应更加灵敏。 从理 论上, 信号测量电路 40的输出信号与基板 10的厚度成正比例变化, 即基板 10越 厚, 压力感应式结构 100越灵敏。 如图 6所示, 通过有限元模拟在基板 10取不同 厚度吋信号测量电路 40的输出信号, 发现信号测量电路 40的输出信号与基板 10 厚度的关系与理论结果一致。
[0032] 进一步地, 第二安装面 10b设有第二弹性载体 30, 每一信号测量电路 40的电子 元件的数量至少为二, 其中至少一个电子元件位于第一弹性载体 20上, 另外的 电子元件位于第二弹性载体 30上, 信号测量电路 40中的电子元件相邻分布。 基 板 10的两个安装面上分别设有第一弹性载体 20与第二弹性载体 30, 第一弹性载 体 20与第二弹性载体 30上均设有电子元件, 在基板 10变形吋, 第一弹性载体 20 与第二弹性载体 30跟随基板 10弯曲变形, 基板 10放大应变信号, 其中应变感应 件能检测基板 10的弯曲变形量, 并由信号测量电路 40输出可识别的电信号。
[0033] 第一弹性载体 20、 第二弹性载体 30具有弹性变形的特性, 用于安装电子元件。
在第一弹性载体 20与第二弹性载体 30均设有应变感应件吋, 应变感应件检测第 一弹性载体 20与第二弹性载体 30的应变差异, 通过电路处理, 输出可识别的电 信号。
[0034] 进一步地, 基板 10上幵设有应变集中槽 11, 电子元件靠近于应变集中槽 11设置 。 该方案容易加工, 应变感应件靠近于应变集中槽 11设置, 能够使应变更为集 中在弹性载体上靠近于应变集中槽 11处, 能够让应变感应件检测到应变集中槽 1 1区域的应变, 从而获取更大的应变信号, 使压力感应式结构 100更灵敏。 参照 压力感应式结构 100的约束条件, 基板上幵设有 8个应变集中槽, 对第一弹性载 体 20进行有限元模拟分析, 如图 7所示, 第一弹性载体 20的应变集中在基板的应 变集中槽处, 应变感应件能检测到非常大的应变信号, 使得该压力感应式结构 1 00精度高、 可靠度高、 灵敏度高。 第二弹性载体 30的情况类似于第一弹性载体 2 0。
[0035] 进一步地, 如图 2 (a) 所示, 应变集中槽 11为沿垂直于第一安装面 10a的方向 延伸的通槽; 或者, 如图 2 (b) 所示, 应变集中槽 11为沿倾斜于第一安装面 10a 的方向延伸的通槽; 或者, 如图 2 (c) 所示, 应变集中槽 11为纵截面呈预定形状 的通槽; 预定形状可以呈漏斗纵截面、 圆形等。 或者, 如图 2 (d) 所示, 应变 集中槽 11为纵截面呈预定形状的盲槽。 盲槽是指不贯通于基板 10的槽。 预定形 状可以呈漏斗纵截面、 圆形等。 应变感应件靠近于应变集中槽 11设置, 用于放 大弹性载体的应变信号, 实现压力感应。 或者, 如图 2 (e) 所示, 基板 10为一整 体板, 基板 10的弯曲变形传递至第一弹性载体 20、 第二弹性载体 30上, 应变感 应件能检测基板 10的弯曲变形量, 并由信号测量电路 40输出可识别的电信号。
[0036] 压力感应式结构 100可通过更改基板 10的厚度和改变应变集中槽 11的形状, 适 用于不同场合下不同灵敏度要求。
[0037] 进一步地, 请参阅图 3至图 5, 一信号测量电路 40具有四个电子元件, 信号测量 电路 40为由四个应变感应件 Rl、 R2、 R3和 R4电连接形成的全桥。
[0038] 将压力感应式结构 100贴合于面板内侧、 侧边框内侧或其它薄壁件内侧的情况 是类似的。 以压力感应式结构 100通过胶体 203贴合于面板 201且信号测量电路 40 为由四个应变感应件 Rl、 R2、 R3和 R4电连接形成的全桥为例, 说明该压力感应 式结构 100, 相对于现有其它传感器结构, 对胶体 203的依赖更低, 能够消除因 胶体 203的粘合差异带来误差, 使测量精确可靠。
[0039] 本实施例中应变感应件为应变片压力传感器, 为方便说明本实施例, 可用 Rl、 R2、 R3和 R4表示。 其中所有应变感应件均靠近于基板 10对应的应变集中槽 11处 。 应变感应件 R1和 R4互为相对桥臂, 位于基板 10的下侧; R2和 R3互为相对桥臂 , 位于基板 10的上侧; 应变感应件 Rl、 R2、 R3和 R4组成如图 3所示的全桥。 当 V ∞和¥ §两端施加电压¥, VI和 V2两端有电压差 V,输出。 为便于说明本实施例工 作原理, 假设 R1=R2=R3=R4=R, 则 VI和 V2两端的电压差 V sign=V2-Vl=0。
[0040] 当面板 201受压吋, 面板 201将产生向下的弯曲变形, 压力感应式结构 100将通 过胶体 203跟随面板 201产生形变, 从而导致应变感应件 Rl、 R2、 R3和 R4形变, 进而导致 Rl、 R2、 R3和 R4电阻发生改变。 由于面板 201为向下弯曲变形, 面板 2 01下表面产生拉伸变形。 对于选用的胶体 203, 由于横向比纵向的尺寸大很多, 通常宽度和厚度之比至少在 50:1以上, 胶体 203在纵向的变形量远远小于横向变 形量。
[0041] 当选用弹性模量较小的胶体 203吋, 弹性模量小于或等于 50 MPa, 胶体 203本身 的横向变形量较大, 即容易横向变形, 会导致面板 201的横向拉伸应变传递到压 力感应式结构 100的极少, 绝大部分被胶体 203自身吸收; 而另一方面胶体 203的 纵向应变, 由于本身纵向尺寸很小, 胶的纵向变形量很小, 即纵向变形较困难 , 压力感应式结构 100将紧贴于面板 201, 从而可以近似的看成压力感应式结构 1 00与面板 201的变形曲率半径一致, 且压力感应式结构 100横向的拉伸形变太小 可忽略, 所以压力感应式结构 100不受横向的拉伸形变的纯弯曲类似于梁的弯曲 应变。 对于类似于梁的弯曲应变, 位于基板 10下侧的应变感应件 R1和 R4产生拉 伸应变, 上侧的应变感应件 R2和 R3产生压缩应变。 本实施例中, 应变感应件 R1 、 R2、 R3和 R4的阻值会随拉伸应变增大, 而随压缩应变减小, 即应变感应件 R1 和 R4变大, R2和 R3变小。 由于压力感应式结构 100采用上下对称结构, 考虑到 是纯弯曲的弯曲变形, Rl、 R4与 R2、 R3的变化是大小相等, 方向相反。 为便于 说明实施例, 假设阻值变化大小为 AR (AR〉0) , 贝 ljRl、 R2、 R3和 R4变形后 的阻值分别为:
[0042] R1=R4=R + AR; R2=R3=R-AR
[0043] 其中, AR为应变感应件自身弯曲的变形引起的变化值。
[0044] 而此吋的电桥两端的电压差:
[0045] V sign=V2-Vl=Rl*V/(Rl+R2)-R3*V/(R3+R4)=(AR/R) *V
[0046] 本实施例中 AR变化值与应变成对应关系, 而应变与施加压力大小和位置有关 , 因此可通过检测 V,的变化, 识别用户按压的力度和位置, 实现压力触控功能
[0047] 当选用弹性模量较大的胶体 203吋, 弹性模量大于 50 MPa, 胶体 203的横向应变 也很小, 压力感应式结构 100的拉伸变形不可忽略, 压力感应式结构 100即受到 自身弯曲变形, 又受到面板 201的拉伸变形, 压力感应式结构 100是两种应变变 形的叠加。 由于拉伸形变是横向变形, 第一弹性载体 20与第二弹性载体 30的应 变相同, 应变感应件 Rl、 R2、 R3和 R4因拉伸变形所导致的阻值变化相同, 为方 便说明本实施例, 假设因拉伸产生的变形而导致的阻值变化为 AR' 〉0 ) 。 Rl、 R2、 R3和 R4因拉伸和弯曲变形所产生后阻值分别为:
[0048] R1=R4=R + AR + AR / ; R2=R3=R-AR + AR/
[0049] 而此种情况下电压差: [0050] V sig =V2-V1=R1*V/(R1+R2) -R3*V/(R3+R4) = (AR/ (R + AR ' ) ) *V [0051] 本实施例中, 所检测的是微变形, 则电阻的变化 ΔΕΤ < < R, 上述公式可简化 为:
[0052] V sig « (AR/R) *V = V sign
[0053] 即无论选取弹性模量较大或较小的胶体 203, 所得到的输出信号都非常接近。
上述说明该压力感应式结构 100, 相对于现有其它传感器结构, 对胶体 203的依 赖更低, 能够消除因胶体 203的粘合差异带来误差, 使测量精确可靠。
[0054] 可以理解地, 信号测量电路 40还可以采用其它方案。 一信号测量电路 40具有四 个电子元件, 信号测量电路 40为由一个应变感应件与三个参考电阻电连接的惠 斯通电桥; 或者, 一信号测量电路 40具有四个电子元件, 信号测量电路 40为由 两个应变感应件与两个参考电阻电连接形成的半桥; 或者, 一信号测量电路 40 具有四个电子元件, 信号测量电路 40为由三个应变感应件与一个参考电阻电连 接形成的电桥电路。
[0055] 进一步地, 应变感应件为应变片压力传感器、 电感式压力传感器、 电容式压力 传感器或聚合物应变传感器或其它应变感应件。 具体按需选用。
[0056] 进一步地, 第一弹性载体 20上的电子元件位于该第一弹性载体 20面向于基板 10 的一侧, 第一弹性载体 20上的电子元件位于该第一弹性载体 20背离于基板 10的 一侧。 选用上述两种方案中的至少一种即可。 第二弹性载体 30上的电子元件位 于该第二弹性载体 30面向于基板 10的一侧, 第二弹性载体 30上的电子元件位于 该第二弹性载体 30背离于基板 10的一侧。 选用上述两种方案中的至少一种即可 。 电子元件可分布于对应弹性载体一侧或两侧, 电子元件可分布于对应弹性载 体正反任意一面, 组成相应的信号测量电路 40。
[0057] 进一步地, 信号测量电路 40的数量至少为二, 信号测量电路 40呈阵列状分布在 基板 10上。 该方案可以对多个位置进行压力感应, 还可以通过算法实现机械按 键无法实现的手势识别和滑动功能。
[0058] 进一步地, 一信号测量电路 40中的其中两个电子元件一一对应相重合; 或者, 一信号测量电路 40中的其中两个电子元件相错幵分布。 电子元件可根据需要全 部或部分分布在应变集中槽 11的附近。 [0059] 请参阅图 8、 图 9, 本发明第二实施例提供的压力感应式结构 100, 与第一实施 例提供的压力感应式结构 100大致相同, 与第一实施例不同的是, 一信号测量电 路 40具有两个电子元件, 信号测量电路 40为由一个应变感应件 R1与一个参考电 阻 R0串联形成的分压电路。
[0060] 采用恒压源, 在 V+与 V-两端加以输入电压 Ui, 检测 Vo处的电势, 或测量 Vo与 地之间的输出电压 Uo, 有输入输出电压公式:
[0061]
:s1
Ά. 十 Λ
[0062] 在应变感应件 Rl发生形变, 其电学特性的变化, 信号测量电路 40得到输出电压 Uo, 得到相应的电学信号输出, 实现压力识别和检测。
[0063] 可以理解地, 一信号测量电路 40具有两个电子元件, 信号测量电路 40为由两个 应变感应件串联形成的分压电路。 该方案也能得到相应的电学信号输出, 实现 压力识别和检测。
[0064] 请参阅图 10、 图 11, 本发明第三实施例提供的压力感应式结构 100, 与第一实 施例提供的压力感应式结构 100大致相同, 与第一实施例不同的是, 一信号测量 电路 40具有两个电子元件, 信号测量电路 40为由一个应变感应件 R1与一个参考 电阻 R0并联形成的分流电路。
[0065] 采用恒流源, 在 1+与 I-两端加以输入电流 I, 测量 R1支路上的输出电流 II, 有输 入输出电流公式:
[0066]
11,-
Figure imgf000010_0001
[0067] 在应变感应件 R1发生形变, 其电学特性的变化, 信号测量电路 40得到输出电流 II, 得到相应的电学信号输出, 实现压力识别和检测。 [0068] 可以理解地, 一信号测量电路 40具有两个电子元件, 信号测量电路 40为由两个 应变感应件并联形成的分流电路。 该方案也能通过压力感应检测电路, 得到相 应的电学信号输出, 实现压力识别和检测。 或者, 信号测量电路 40还可以采用 其它现有的信号测量电路。
[0069] 请参阅图 4、 图 5, 本发明第一实施例提供的电子产品, 包括面板 201及上述压 力感应式结构 100, 压力感应式结构 100贴合在面板 201的内侧。
[0070] 将压力感应式结构 100贴合在电子产品面板 201的内侧, 在按压面板 201吋, 面 板 201会产生弯曲变形, 并带动基板 10产生弯曲变形, 应变感应件检测出弯曲变 形, 并由信号测量电路 40输出可识别的电信号。 通过检测面板 201的应变, 来实 现按压压力与位置的检测。 电子产品能避免传统机械按键会带来的外观上不连 续、 防水防尘困难、 寿命短、 安装困难的情况。
[0071] 面板 201可以为具有刚性结构的触摸屏、 显示器或其他电子设备。 通过将压力 感应式结构 100与面板 201连接, 能够在实现精准识别触控位置的同吋精准识别 触控压力的大小, 为电子设备在产品应用、 人机交互及消费体验上扩展了应用 空间。 用户通过触按触摸屏、 显示器或电子设备, 可以直接获得精确地压力级 别及量数。 通过校正之后, 可以获得按压的精确压力值。
[0072] 进一步地, 压力感应式结构 100与面板 201之间通过胶体 203、 焊接或其它机械 连接方式相连接。 在使用胶体 203吋, 即贴即用, 使用方便, 简化装配工序, 方 便返工。 当用户手指按压在面板 201上, 面板 201将发生弯曲变形, 胶体 203带动 压力感应式结构 100发生形变, 得出用户操作位置和力度, 实现压力触控功能。 胶体 203为水胶或双面胶。
[0073] 请参阅图 12, 本发明第二实施例提供的电子产品, 包括侧边框 202及上述压力 感应式结构 100, 压力感应式结构 100贴合在侧边框 202的内侧。
[0074] 将压力感应式结构 100贴合在电子产品侧边框 202, 尤其是智能手机侧边框 202 , 在按压侧边框 202吋, 基板 10会跟随侧边框 202产生弯曲变形, 应变感应件检 测出弯曲变形, 并由信号测量电路 40输出可识别的电信号, 识别按压位置和力 度, 实现侧边触摸按键功能, 不需要单独在电子产品侧边框 202幵槽, 使外观简 洁大方。 电子产品能避免传统机械按键会带来的外观上不连续、 防水防尘困难 、 寿命短、 安装困难的情况。
[0075] 进一步地, 压力感应式结构 100与侧边框 202之间通过胶体 203、 焊接或其它机 械连接方式相连接。 在使用胶体 203吋, 即贴即用, 使用方便, 简化装配工序, 方便返工。 胶体 203为水胶或双面胶。
[0076] 可以理解地, 压力感应式结构 100还可以贴合于其它薄壁件内侧, 在按压薄壁 件吋, 薄壁件会产生弯曲变形, 并带动基板产生弯曲变形, 应变感应件检测出 弯曲变形, 并由信号测量电路输出可识别的电信号。 通过检测薄壁件的应变, 来实现按压压力与位置的检测。
[0077] 进一步地, 压力感应式结构与薄壁件之间通过胶体、 焊接或其它机械连接方式 相连接。 在使用胶体吋, 即贴即用, 使用方便, 简化装配工序, 方便返工。 胶 体为水胶或双面胶。
[0078] 以上仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神 和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范 围之内。

Claims

权利要求书
压力感应式结构, 其特征在于, 包括:
基板, 其具有相背对的第一安装面与第二安装面; 第一弹性载体, 设于所述第一安装面; 以及 信号测量电路, 其具有至少一个电子元件, 其中至少一个所述电子元 件位于所述第一弹性载体上, 且至少一个所述电子元件为用于检测所 述基板的弯曲变形量的应变感应件。
如权利要求 1所述的压力感应式结构, 其特征在于, 所述第二安装面 设有第二弹性载体, 每一所述信号测量电路的电子元件的数量至少为 二, 其中至少一个所述电子元件位于所述第一弹性载体上, 另外的所 述电子元件位于所述第二弹性载体上, 所述信号测量电路中的所述电 子元件相邻分布。
如权利要求 2所述的压力感应式结构, 其特征在于, 所述第一弹性载 体上的所述电子元件位于该第一弹性载体面向于所述基板的一侧和 / 或该第一弹性载体背离于所述基板的一侧; 所述第二弹性载体上的所 述电子元件位于该第二弹性载体面向于所述基板的一侧和 /或该第二 弹性载体背离于所述基板的一侧。
如权利要求 1至 3任一项所述的压力感应式结构, 其特征在于, 所述基 板上幵设有应变集中槽, 所述电子元件靠近于所述应变集中槽设置。 如权利要求 4所述的压力感应式结构, 其特征在于, 所述应变集中槽 为沿垂直于所述第一安装面的方向延伸的通槽; 或者, 所述应变集中槽为沿倾斜于所述第一安装面的方向延伸的通槽
或者, 所述应变集中槽为纵截面呈预定形状的通槽;
或者, 所述应变集中槽为纵截面呈预定形状的盲槽。
[权利要求 6] 如权利要求 1至 3任一项所述的压力感应式结构, 其特征在于, 所述应 变感应件为应变片压力传感器、 电感式压力传感器、 电容式压力传感 器或聚合物应变传感器。 [权利要求 7] 如权利要求 1至 3任一项所述的压力感应式结构, 其特征在于, 所述信 号测量电路的数量至少为二, 所述信号测量电路呈阵列状分布在所述 基板上。
[权利要求 8] 如权利要求 1至 3任一项所述的压力感应式结构, 其特征在于, 一所述 信号测量电路具有两个电子元件, 所述信号测量电路为由一个所述应 变感应件与一个参考电阻串联形成的分压电路; 或者, 一所述信号测量电路具有两个电子元件, 所述信号测量电路为 由两个所述应变感应件串联形成的分压电路;
或者, 一所述信号测量电路具有两个电子元件, 所述信号测量电路为 由一个所述应变感应件与一个参考电阻并联形成的分流电路; 或者, 一所述信号测量电路具有两个电子元件, 所述信号测量电路为 由两个所述应变感应件并联形成的分流电路。
[权利要求 9] 如权利要求 2或 3所述的压力感应式结构, 其特征在于, 一所述信号测 量电路具有四个电子元件, 所述信号测量电路为由一个所述应变感应 件与三个参考电阻电连接的惠斯通电桥;
或者, 一所述信号测量电路具有四个电子元件, 所述信号测量电路为 由两个所述应变感应件与两个参考电阻电连接形成的半桥; 或者, 一所述信号测量电路具有四个电子元件, 所述信号测量电路为 由四个所述应变感应件电连接形成的全桥;
或者, 一所述信号测量电路具有四个电子元件, 所述信号测量电路为 由三个所述应变感应件与一个参考电阻电连接形成的电桥电路。
[权利要求 10] 如权利要求 2或 3所述的压力感应式结构, 其特征在于, 一所述信号测 量电路中的其中两个所述电子元件一一对应相重合; 或者, 一所述信 号测量电路中的其中两个所述电子元件相错幵分布。
[权利要求 11] 电子产品, 其特征在于, 包括面板及如权利要求 1至 10任一项所述的 压力感应式结构, 所述压力感应式结构贴合在所述面板的内侧。
[权利要求 12] 如权利要求 11所述的电子产品, 其特征在于, 所述压力感应式结构与 所述面板之间通过胶体或焊接相连接。 [权利要求 13] 电子产品, 其特征在于, 包括侧边框及如权利要求 1至 10任一项所述 的压力感应式结构, 所述压力感应式结构贴合在所述侧边框的内侧。
[权利要求 14] 如权利要求 13所述的电子产品, 其特征在于, 所述压力感应式结构与 所述侧边框之间通过胶体或焊接相连接。
PCT/CN2017/072000 2017-01-21 2017-01-21 压力感应式结构及电子产品 WO2018133054A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/072000 WO2018133054A1 (zh) 2017-01-21 2017-01-21 压力感应式结构及电子产品
CN201780084178.0A CN110192172B (zh) 2017-01-21 2017-01-21 压力感应式结构及电子产品
US16/479,405 US11162851B2 (en) 2017-01-21 2017-07-21 Pressure sensing structure and electronic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072000 WO2018133054A1 (zh) 2017-01-21 2017-01-21 压力感应式结构及电子产品

Publications (1)

Publication Number Publication Date
WO2018133054A1 true WO2018133054A1 (zh) 2018-07-26

Family

ID=62907598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072000 WO2018133054A1 (zh) 2017-01-21 2017-01-21 压力感应式结构及电子产品

Country Status (3)

Country Link
US (1) US11162851B2 (zh)
CN (1) CN110192172B (zh)
WO (1) WO2018133054A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200120391A (ko) 2019-04-12 2020-10-21 일진디스플레이(주) 모바일 단말의 프레임 사이드 키용 스트레인 게이지 포스터치
CN111998976A (zh) * 2020-08-07 2020-11-27 维沃移动通信有限公司 压力传感器和电子设备
US20210025768A1 (en) * 2019-07-25 2021-01-28 Boe Technology Group Co., Ltd. Display panel, preparing method thereof, and display device
WO2021035741A1 (zh) * 2019-08-30 2021-03-04 深圳纽迪瑞科技开发有限公司 力感应装置、力感应方法及设备
WO2021185003A1 (zh) * 2020-03-19 2021-09-23 深圳纽迪瑞科技开发有限公司 压力感应式结构及电子产品
CN114061798A (zh) * 2021-11-15 2022-02-18 南昌黑鲨科技有限公司 一种智能终端的压力传感器及系统
CN114258479A (zh) * 2019-08-30 2022-03-29 深圳纽迪瑞科技开发有限公司 压力感应组件、压力感应方法及设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156509B2 (en) * 2016-02-29 2021-10-26 Liquid Wire Inc. Sensors with deformable conductors and selective deformation
US10672530B2 (en) 2016-02-29 2020-06-02 Liquid Wire Inc. Deformable conductors and related sensors, antennas and multiplexed systems
WO2020124477A1 (zh) * 2018-12-20 2020-06-25 深圳纽迪瑞科技开发有限公司 压力感应装置、压力感应方法及电子终端
WO2020124476A1 (zh) * 2018-12-20 2020-06-25 深圳纽迪瑞科技开发有限公司 压力传感器及电子终端
CN217878102U (zh) 2019-06-05 2022-11-22 液态电线公司 具有选择性约束的可变形传感器
US10796537B1 (en) * 2019-11-19 2020-10-06 Capital One Services, Llc System and method for detecting ATM fraud via counting notes
CN111147062B (zh) * 2020-01-19 2023-03-14 芯海科技(深圳)股份有限公司 压力传感器模组、压力检测装置及终端设备
CN113163045B (zh) * 2020-01-22 2023-08-04 华为技术有限公司 一种压力检测结构及电子设备
CN113555346B (zh) * 2020-08-21 2023-05-23 友达光电股份有限公司 电路基板以及电路基板的应变量的测量方法
CN112764575A (zh) * 2021-01-08 2021-05-07 维沃移动通信有限公司 电子设备
CN113282192A (zh) * 2021-05-24 2021-08-20 维沃移动通信有限公司 压感模组及电子设备
CN113411078A (zh) * 2021-06-07 2021-09-17 维沃移动通信有限公司 按键模组及电子设备
CN113503808B (zh) * 2021-07-23 2023-04-07 深圳瑞湖科技有限公司 一种适用于曲面形变检测的压力感应结构
CN115014587B (zh) * 2022-05-30 2023-02-10 西安工程大学 一种磁力效应相控阵信号采集结构、系统及方法
CN116760258B (zh) * 2023-08-21 2023-12-12 江西新菲新材料有限公司 应变感知vcm弹片、驱动组件、摄像头模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201281604Y (zh) * 2008-10-30 2009-07-29 浙江先芯科技有限公司 电阻应变式传感器供电电路
CN204740575U (zh) * 2015-06-29 2015-11-04 深圳纽迪瑞科技开发有限公司 触摸设备用按压识别装置
CN105094449A (zh) * 2015-09-01 2015-11-25 宸鸿科技(厦门)有限公司 一种压力感测输入模块
CN105224129A (zh) * 2015-09-01 2016-01-06 宸鸿科技(厦门)有限公司 一种压力感测输入装置
CN105278792A (zh) * 2015-04-13 2016-01-27 希迪普公司 压力检测模块及包括该压力检测模块的触摸输入装置
CN105675183A (zh) * 2015-12-31 2016-06-15 汕头超声显示器技术有限公司 一种力学感应板
CN106066737A (zh) * 2016-07-18 2016-11-02 北京集创北方科技股份有限公司 一种压力触控单元、压力大小检测方法及触控基板

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576128A (en) * 1969-03-13 1971-04-27 Blh Electronics Half bridge moment desensitization of parallelogram-type beams
US3915015A (en) * 1974-03-18 1975-10-28 Stanford Research Inst Strain gauge transducer system
CH609774A5 (zh) * 1977-01-21 1979-03-15 Semperit Ag
US4429756A (en) * 1981-11-17 1984-02-07 Revere Corporation Of America Weighing scale
US6701296B1 (en) * 1988-10-14 2004-03-02 James F. Kramer Strain-sensing goniometers, systems, and recognition algorithms
US5154247A (en) * 1989-10-31 1992-10-13 Teraoka Seiko Co., Limited Load cell
JPWO2007102327A1 (ja) * 2006-03-08 2009-07-23 コニカミノルタオプト株式会社 偏光板及び液晶表示装置
US20080202251A1 (en) * 2007-02-27 2008-08-28 Iee International Electronics & Engineering S.A. Capacitive pressure sensor
JP4855373B2 (ja) * 2007-10-30 2012-01-18 ミネベア株式会社 曲げセンサ
US20100036287A1 (en) * 2008-08-08 2010-02-11 Michael Weber Method and Device for Detecting Parameters for the Characterization of Motion Sequences at the Human or Animal Body
TWI420086B (zh) * 2008-10-15 2013-12-21 Ind Tech Res Inst 軟性電子壓力感測裝置及其製造方法
EP2459977B1 (en) * 2009-07-28 2018-06-13 Vishay Precision Group, Inc. Circuit compensation in strain gage based transducers
US8596137B2 (en) * 2010-07-09 2013-12-03 Alliant Techsystems Inc. Methods, devices, and systems relating to a sensing device
JP5486683B2 (ja) * 2010-11-04 2014-05-07 東海ゴム工業株式会社 曲げセンサ
AU2015100011B4 (en) * 2014-01-13 2015-07-16 Apple Inc. Temperature compensating transparent force sensor
JP6366426B2 (ja) * 2014-03-05 2018-08-01 富士フイルム株式会社 偏光板用組成物、偏光板保護フィルム、偏光子、偏光板、液晶表示装置およびこれに用いる化合物
JP6383608B2 (ja) * 2014-03-05 2018-08-29 富士フイルム株式会社 偏光板用組成物、偏光板保護フィルム、偏光子、偏光板および液晶表示装置
WO2016023203A1 (zh) * 2014-08-14 2016-02-18 深圳纽迪瑞科技开发有限公司 一种压力检测结构及触控装置
US20160328065A1 (en) * 2015-01-12 2016-11-10 Rockwell Collins, Inc. Touchscreen with Dynamic Control of Activation Force
KR20160149982A (ko) * 2015-06-18 2016-12-28 삼성전자주식회사 입력장치를 구비한 전자장치
KR101817966B1 (ko) * 2015-08-07 2018-01-11 전자부품연구원 플렉서블 촉각 센서 및 이의 제조 방법
US10585456B2 (en) * 2015-08-26 2020-03-10 Lg Display Co., Ltd. Flexible display device having bending sensing device
KR102396458B1 (ko) * 2015-08-26 2022-05-10 엘지디스플레이 주식회사 연성 표시장치
US10197459B2 (en) * 2015-12-17 2019-02-05 Facebook Technologies, Llc Indexable strain sensor
CN108885085A (zh) * 2016-05-26 2018-11-23 深圳纽迪瑞科技开发有限公司 曲率半径测量器、电子设备及曲率半径测量器的制作方法
US10203254B2 (en) * 2016-09-12 2019-02-12 Apple Inc. Strain sensor with thermally conductive element
CN106371672B (zh) * 2016-10-24 2024-04-19 上海天马微电子有限公司 柔性显示面板和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201281604Y (zh) * 2008-10-30 2009-07-29 浙江先芯科技有限公司 电阻应变式传感器供电电路
CN105278792A (zh) * 2015-04-13 2016-01-27 希迪普公司 压力检测模块及包括该压力检测模块的触摸输入装置
CN204740575U (zh) * 2015-06-29 2015-11-04 深圳纽迪瑞科技开发有限公司 触摸设备用按压识别装置
CN105094449A (zh) * 2015-09-01 2015-11-25 宸鸿科技(厦门)有限公司 一种压力感测输入模块
CN105224129A (zh) * 2015-09-01 2016-01-06 宸鸿科技(厦门)有限公司 一种压力感测输入装置
CN105675183A (zh) * 2015-12-31 2016-06-15 汕头超声显示器技术有限公司 一种力学感应板
CN106066737A (zh) * 2016-07-18 2016-11-02 北京集创北方科技股份有限公司 一种压力触控单元、压力大小检测方法及触控基板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200120391A (ko) 2019-04-12 2020-10-21 일진디스플레이(주) 모바일 단말의 프레임 사이드 키용 스트레인 게이지 포스터치
US20210025768A1 (en) * 2019-07-25 2021-01-28 Boe Technology Group Co., Ltd. Display panel, preparing method thereof, and display device
US11579027B2 (en) * 2019-07-25 2023-02-14 Boe Technology Group Co., Ltd. Display panel, preparing method thereof, and display device
WO2021035741A1 (zh) * 2019-08-30 2021-03-04 深圳纽迪瑞科技开发有限公司 力感应装置、力感应方法及设备
CN114258479A (zh) * 2019-08-30 2022-03-29 深圳纽迪瑞科技开发有限公司 压力感应组件、压力感应方法及设备
WO2021185003A1 (zh) * 2020-03-19 2021-09-23 深圳纽迪瑞科技开发有限公司 压力感应式结构及电子产品
CN111998976A (zh) * 2020-08-07 2020-11-27 维沃移动通信有限公司 压力传感器和电子设备
WO2022028525A1 (zh) * 2020-08-07 2022-02-10 维沃移动通信有限公司 压力传感器和电子设备
CN114061798A (zh) * 2021-11-15 2022-02-18 南昌黑鲨科技有限公司 一种智能终端的压力传感器及系统

Also Published As

Publication number Publication date
US20190368952A1 (en) 2019-12-05
CN110192172A (zh) 2019-08-30
CN110192172B (zh) 2022-10-14
US11162851B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2018133054A1 (zh) 压力感应式结构及电子产品
CN108603799B (zh) 压力传感器、电子设备及该压力传感器的制作方法
US10473538B2 (en) Pressure sensing device having a rigid force conductor and a soft deformable object sensing arrangement
CN108604149B (zh) 压力传感器、电子设备及该压力传感器的制作方法
WO2017152561A1 (zh) 触控基板及显示装置
CN206818338U (zh) 压力感应组件及具有该压力感应组件的电子设备
WO2021185003A1 (zh) 压力感应式结构及电子产品
CN208653681U (zh) 压力感应组件及电子设备
WO2017201721A1 (zh) 曲率半径测量器、电子设备及曲率半径测量器的制作方法
WO2022179438A1 (zh) 一种压感模组及电子设备
TWM588284U (zh) 一種壓力感測模組及其觸控面板
CN204085769U (zh) 一种压力传感器组件及检测装置
CN212391154U (zh) 压力感应装置及电子设备
CN213715902U (zh) 压力触摸板
CN211454566U (zh) 应力感应组件及曲面屏
CN211321318U (zh) 压力传感器模组、压力检测装置及电子设备
CN211321317U (zh) 压力传感器模组、压力检测装置及电子设备
CN114270157A (zh) 力感应装置、力感应方法及设备
CN206639200U (zh) 具有压感功能的显示装置以及电子设备
CN217591270U (zh) 触控装置及电子产品
CN221261636U (zh) 一种平面二维触控装置及一种触控结构
CN113242965B (zh) 压力传感器及电子终端
CN106575171B (zh) 压力感应器、显示装置及电子设备
CN215120758U (zh) 感应装置和电子产品
CN218156598U (zh) 一种惠斯通电桥压力检测元件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893028

Country of ref document: EP

Kind code of ref document: A1