WO2017201721A1 - 曲率半径测量器、电子设备及曲率半径测量器的制作方法 - Google Patents

曲率半径测量器、电子设备及曲率半径测量器的制作方法 Download PDF

Info

Publication number
WO2017201721A1
WO2017201721A1 PCT/CN2016/083554 CN2016083554W WO2017201721A1 WO 2017201721 A1 WO2017201721 A1 WO 2017201721A1 CN 2016083554 W CN2016083554 W CN 2016083554W WO 2017201721 A1 WO2017201721 A1 WO 2017201721A1
Authority
WO
WIPO (PCT)
Prior art keywords
radius
curvature
strain sensing
resistors
curvature measuring
Prior art date
Application number
PCT/CN2016/083554
Other languages
English (en)
French (fr)
Inventor
李灏
黄拓厦
Original Assignee
深圳纽迪瑞科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳纽迪瑞科技开发有限公司 filed Critical 深圳纽迪瑞科技开发有限公司
Priority to CN201680084190.7A priority Critical patent/CN108885085A/zh
Priority to PCT/CN2016/083554 priority patent/WO2017201721A1/zh
Publication of WO2017201721A1 publication Critical patent/WO2017201721A1/zh
Priority to US16/200,044 priority patent/US20190094007A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • G01B7/293Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending

Definitions

  • the invention belongs to the technical field of curvature radius measurement, and particularly relates to a method for manufacturing a radius of curvature measuring device, an electronic device and a radius of curvature measuring device.
  • the curvature radius measuring device in the prior art generally uses an optical measuring instrument to amplify the measured object, and the measured piece can be adjusted in the computer to test the position and zoom, and the radius of curvature can be measured, and all the data is processed by the computer and can be output. Measurement data and image graphics, the measurement is more accurate.
  • the existing curvature radius measuring device is difficult to be applied to an electronic device or the like, and the curvature radius measurement can be performed only when the object to be measured is placed on the optical measuring instrument, which is inconvenient to use and high in cost.
  • the present invention is achieved by a radius of curvature measuring device comprising a substrate bonded to a panel and a radius of curvature measuring circuit disposed on the substrate, the substrate having a first mounting surface disposed away from the back surface a second mounting surface, the radius of curvature measuring circuit having at least two resistors formed on the substrate, at least one of the resistors being disposed on the first mounting surface and configured to measure the first mounting a first strain sensing resistor of the strain value of the surface, at least one of the resistors being a second strain sensing resistor disposed on the second mounting surface for measuring a strain value of the second mounting surface, the radius of curvature
  • the resistors in the measurement circuit are adjacently distributed.
  • Another object of the present invention is to provide an electronic device including a panel, a radius of curvature measurer, and a device A radius of curvature detecting circuit electrically connected to the radius of curvature measurer, the substrate being attached to the panel.
  • Another object of the present invention is to provide a method for fabricating a radius of curvature measurer, comprising the steps of:
  • the curvature radius measuring device is attached to the desired panel, and when the panel is pressed, the panel is deformed by bending, and the strain sensing resistor follows the deformation, causing a change in electrical characteristics of the curvature radius measuring circuit, and the electrical characteristic is only related to the curvature of the panel.
  • the radius is related, and the corresponding electrical signal is obtained by the radius of curvature measuring circuit, so that the radius of curvature of the panel at the pressed position can be accurately detected.
  • the curvature radius measuring device is easy to manufacture and assemble, avoids the need to place the measured object on the existing optical measuring instrument, which is inconvenient to use; avoids interference caused by different glue bonding conditions, has good stability and can be repeated Good character.
  • the detection is reliable, and the substrate can be as small as 0.1 mm.
  • the radius of curvature of the panel is generally greater than 1000 mm, so the radius of curvature measuring device is very suitable for detecting micro-deformation.
  • the radius of curvature measuring device is small in thickness and is suitable for use in pressure sensitive sensors for mobile phones, computers and other electronic products with high thickness requirements; it is also suitable for household appliances and used as a pressure button; and is also applicable to any panel having a curvature change. Used to detect changes in the radius of curvature of the panel, or to detect changes in the cause of changes in the radius of curvature.
  • FIG. 1 is a schematic structural view of a curvature radius measuring device according to an embodiment of the present invention.
  • Figure 2 is a schematic view showing the structure of the radius of curvature measuring device of Figure 1 when pressed;
  • FIG. 3 is a schematic structural view of the curvature radius measuring device of FIG. 1 applied to a panel;
  • FIG. 4 is a schematic structural view showing a rigid rubber connection between the radius of curvature measuring device and the panel of FIG. 3;
  • FIG. 5 is a schematic structural view showing a soft rubber connection between the radius of curvature measuring device and the panel of FIG. 3;
  • FIG. 6 is a curvature radius measuring circuit applied in a curvature radius measuring device according to a first embodiment of the present invention
  • FIG. 7 is a curvature radius measuring circuit applied in a curvature radius measuring device according to a second embodiment of the present invention.
  • FIG. 8 is a radius of curvature measuring circuit applied in a radius of curvature measuring device according to a third embodiment of the present invention.
  • FIG. 9 is a radius of curvature measuring circuit applied in a radius of curvature measuring device according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a radius of curvature measuring device according to a fifth embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of the radius of curvature measuring device of Figure 10 when pressed;
  • Figure 12 is a radius of curvature measuring circuit applied in the radius of curvature measuring device of Figure 10;
  • FIG. 13 is a schematic structural view of a radius of curvature measuring device according to a sixth embodiment of the present invention.
  • Figure 14 is a schematic view showing the structure of the radius of curvature measuring device of Figure 13 when pressed;
  • Fig. 15 is a radius of curvature measuring circuit applied in the radius of curvature measuring device of Fig. 13.
  • a radius of curvature measuring device 100 includes a substrate 10 that is bonded to a panel 200 and a radius of curvature measuring circuit 20 disposed on the substrate 10 .
  • 10 has a first mounting surface 10a and a second mounting surface 10b disposed away from each other.
  • the radius of curvature measuring circuit 20 has at least two resistors formed on the substrate 10, and at least one resistor is disposed on the first mounting surface 10a.
  • a first strain sensing resistor R 1 for measuring the strain value of the first mounting surface 10a, the at least one resistor is a first value provided on the second mounting surface 10b and used to measure the strain value of the second mounting surface 10b.
  • the two strain sensing resistors R 2 and the resistors in the radius of curvature measuring circuit 20 are adjacently distributed.
  • the curvature radius measuring device 100 is attached to the desired panel 200.
  • the panel 200 When the panel 200 is pressed, the panel 200 is deformed by bending, and the strain sensing resistor follows the deformation, thereby causing the radius of curvature measuring circuit.
  • the electrical characteristic of 20 is related to the radius of curvature of the panel 200.
  • the corresponding electrical signal is obtained by the radius of curvature measuring circuit 20, so that the radius of curvature of the panel 200 at the pressed portion can be accurately detected.
  • the curvature radius measuring device 100 is easy to manufacture and assemble, and avoids the need to place the measured component on the existing optical measuring instrument, which is inconvenient to use; the interference caused by the difference of the colloidal adhesion can be avoided, and the stability is good. Reproducible features.
  • the detection is reliable, and the substrate 10 can be as small as 0.1 mm.
  • the radius of curvature of the panel 200 is generally greater than 1000 mm, so the radius of curvature measuring device 100 is very Suitable for detecting micro-deformation.
  • the radius of curvature measuring device 100 has a small thickness and is suitable for use in a mobile phone, a computer or the like having a high thickness, and is used as a pressure sensing sensor; it is also suitable for use in a household appliance as a pressure button; and is also applicable to any change in curvature.
  • the panel 200 is configured to detect a change in the radius of curvature of the panel 200 or to detect a change in the cause of the change in the radius of curvature.
  • a radius of curvature measuring circuit 20 has two resistors, and the radius of curvature measuring circuit 20 is a voltage dividing circuit formed by a first strain sensing resistor R 1 and a second strain sensing resistor R 2 in series.
  • the panel is simplified into a one-dimensional beam structure, and the substrate is attached to the panel.
  • the relationship between the strain value of the strain-sensing resistor and the resistance value is related by the pressure-variation coefficient
  • R 0 and R 1 are the initial resistance value of the strain sensing resistor and the resistance value after the change
  • is the strain value of the strain sensing resistor
  • GF is the pressure variable coefficient
  • R 1 R 0 (1+ ⁇ GF)
  • the radius of curvature measuring device 100 and the panel 200 are connected by a hard rubber (ie, a completely rigid colloid).
  • a hard rubber ie, a completely rigid colloid.
  • a strain sensing resistor R 1 can characterize the strain value of the first mounting surface 10a
  • a second strain sensing resistor R 2 can characterize the strain value of the second mounting surface 10b.
  • the colloidal thickness is ignored and the deformed neutral line falls on the panel 200.
  • the strain value at the first strain sensing resistor R 1 is the strain value at the first strain sensing resistor R 1 :
  • the first strain inducing initial resistance value resistor R 1 R 1
  • t 1 and r 1 are respectively a distance between the first strain sensing resistor R 1 and the deformed neutral line, a radius of curvature at the first strain sensing resistor R 1 , and t 2 and r 2 are respectively the second strain sensing resistor R 2 .
  • the first strain sensing resistor R 1 is equal to the initial resistance value of the second strain sensing resistor R 2 ,
  • d is the thickness of the substrate 10.
  • the output voltage U is only related to the radius of curvature r at the first strain sensing resistor R 1 .
  • the radius of curvature of the strain measuring circuit 20 to obtain a first output voltage U across the sensing resistors R 1 can know at a first radius of curvature r of strain sensing resistors R 1.
  • the curvature radius measuring device 100 and the panel 200 are connected by a soft rubber (ie, a completely flexible colloid).
  • a soft rubber ie, a completely flexible colloid.
  • a strain sensing resistor R 1 can characterize the strain value of the first mounting surface 10a
  • a second strain sensing resistor R 2 can characterize the strain value of the second mounting surface 10b.
  • the colloidal thickness is neglected and the deformed neutral line falls on the substrate 10.
  • the strain value at the first strain sensing resistor R 1 is the strain value at the first strain sensing resistor R 1 :
  • t 1 and r 1 are respectively a distance between the first strain sensing resistor R 1 and the deformed neutral line, a radius of curvature at the first strain sensing resistor R 1 , and t 2 and r 2 are respectively the second strain sensing resistor R 2 .
  • the first strain sensing resistor R 1 is equal to the initial resistance value of the second strain sensing resistor R 2 ,
  • d is the thickness of the substrate 10.
  • the output voltage U is only related to the radius of curvature r at the first strain sensing resistor R 1 .
  • the radius of curvature of the strain measuring circuit 20 to obtain a first output voltage U across the sensing resistors R 1 can know at a first radius of curvature r of strain sensing resistors R 1.
  • the third case is the actual situation.
  • the rigid flexibility of the colloid is between the first case and the second case.
  • the rigid flexibility of the colloid determines the position of the deformed neutral line, and then changes t 1 and t 2 , the first case.
  • the second case the output voltage U of the same, i.e., does not affect the voltage U Rigid colloids first strain inducing both ends of the resistors R 1, the first strain inducing voltage across resistors R 1 U depends only on pressure change coefficient GF, substrate 10 thickness d and radius of curvature r, and pressure variable coefficient GF, substrate 10 thickness d are determined, so the voltage U across the first strain sensing resistor R 1 is directly determined by the radius of curvature r.
  • the strain and the strain sensing resistor correspondence both strain value may be converted to the change in resistance of the strain inducing resistance, the radius of curvature measuring circuit 20 outputs the voltage U a first strain inducing across resistors R 1, to obtain the panel The radius of curvature of the 200 when pressed.
  • Simplifying the panel to a one-dimensional beam structure can be a special case.
  • the panel is regarded as a two-dimensional planar structure, and the radius of curvature measurer can be applied to a two-dimensional planar structure to determine the radius of curvature of the panel when it is pressed into a spherical surface.
  • the panel is regarded as a two-dimensional planar structure, and the relationship between the strain value of the strain-sensing resistor and the resistance value is related to the change of the strain-induced resistance when the substrate is attached to the panel under the action of the force.
  • 0 and R 1 are the initial resistance value of the strain sensing resistor and the resistance value after the change
  • is the strain value of the strain sensing resistor
  • the strain value ⁇ of the strain sensing resistor can be regarded as the strain ⁇ x and ⁇ y in two directions
  • GF Pressure coefficient
  • R 1 R 0 (1+ ⁇ 1x ⁇ GF)(1+ ⁇ 1y ⁇ GF)
  • ⁇ 1x ⁇ ⁇ 1y ⁇ GF 2 is small and can be ignored.
  • R 1 R 0 (1+ ⁇ 1x ⁇ GF+ ⁇ 1y ⁇ GF)
  • k is the aspect ratio of the panel, which should be partial differential, but can be approximated as a proportional relationship.
  • R 1 R 0 (1+GF ⁇ t 1 /r x +GF ⁇ t 1 /kr x ),
  • the voltage U across the first strain sensing resistor R 1 can also be determined only by the panel aspect ratio k, the pressure coefficient GF, the thickness d of the substrate 10 and the radius of curvature r, and the panel aspect ratio k, pressure
  • the variable coefficient GF and the thickness d of the substrate 10 are determined, so the voltage U across the first strain sensing resistor R 1 is directly determined by the radius of curvature r.
  • the strain and the strain sensing resistor correspondence both strain value may be converted to the change in resistance of the strain inducing resistance, the radius of curvature measuring circuit 20 outputs the voltage U a first strain inducing across resistors R 1, to obtain the panel The radius of curvature of the 200 when pressed.
  • two resistors coincide in a one-to-one correspondence in the thickness direction of the substrate 10; or, in a radius of curvature measuring circuit 20, two The resistors are staggered and distributed.
  • the staggered distribution of the resistors means that within a certain range, the points of curvature of the two staggered resistors are similar and can be approximated as the same.
  • the above two solutions are easy to process and assemble, and are selected as needed.
  • the position of the first strain sensing resistor R 1 of one radius of curvature measuring circuit 20 serves as a radius of curvature measuring point.
  • the number of the radius of curvature measuring circuits 20 is at least two, and the radius of curvature measuring circuits 20 are distributed in an array on the substrate 10; or the number of the radius of curvature measuring circuits 20 is at least two, and the radius of curvature measuring circuit 20 is circular. Distributed on the substrate 10. Both of the above solutions can generate a measurement signal by following the bending deformation of the panel 200 when pressure is applied to a plurality of positions of the panel 200, and the strain value of the panel 200 is measured.
  • the number of bridge circuits can vary depending on the physical size of the panel 200.
  • the positions of the plurality of curvature radius measuring circuits 20 can be set as desired.
  • the number of the radius of curvature measuring circuits 20 is at least two, and the radius of curvature measuring circuit 20 is distributed on the substrate 10 in a predetermined shape, and the predetermined shape may be a triangle, a rectangle or the like.
  • the radius of curvature measuring circuit 20 is arranged on the substrate 10 in various ways to detect the deformation radius of curvature of the panel 200 at different positions. When arranged under certain conditions, the deformation curvature of each position of the entire panel 200 can be approximated. radius.
  • the thickness of the substrate 10 ranges from 0.03 mm to 5 mm. Preferably, the thickness of the substrate 10 ranges from 0.1 mm to 3 mm.
  • the thickness of the radius of curvature measuring device 100 is small, and is suitable for electronic products such as mobile phones and computers with high thickness requirements.
  • each resistor ranges from 3 um to 20 um.
  • the thickness of the radius of curvature measuring device 100 is small, and is suitable for electronic products such as mobile phones and computers with high thickness requirements.
  • the substrate 10 includes a substrate and a circuit layer disposed on the substrate.
  • the circuit layer is used to connect the strain sensing resistors to form a complete circuit to achieve predetermined circuit functions.
  • the circuit layer may be a circuit layer formed by printing or coating.
  • the substrate is a plastic substrate, a glass substrate, a metal substrate or a composite substrate.
  • PI film polyimide film
  • PET film high temperature resistant polyester film
  • fiberglass board The substrate can be equipped with a strain sensing resistor. It will be appreciated that the substrate may also be other substrates.
  • the substrate 10 can also be a flexible circuit board with its own circuitry.
  • the substrate 10 is a soft board or a hard board.
  • the resistor is a printed resistor, a coated resistor, and is printed and formed. Polymer coating with pressure sensing properties or sintered piezoelectric ceramic coating. The above resistors can change the resistance according to the deformation or as a reference resistance.
  • the radius of curvature measuring device provided by the second embodiment of the present invention is substantially the same as the radius of curvature measuring device provided by the first embodiment.
  • a radius of curvature measuring circuit 20 has two.
  • the resistor, radius of curvature measuring circuit 20 is a shunt circuit formed by a first strain sensing resistor R 1 and a second strain sensing resistor R 2 in parallel.
  • the panel is simplified into a one-dimensional beam structure.
  • the following uses a shunt circuit, uses a constant current source, and inputs an input current I 0 at both ends of the circuit to measure the current I 2 of the second strain sensing resistor R 2 branch.
  • the input and output current formulas are:
  • the reasoning process can refer to the first embodiment.
  • the second current sensing resistor R 2 strain branch I 2 depends only on the pressure change GF coefficient, curvature of the substrate and the thickness d
  • the radius r, and the pressure variable coefficient GF, the substrate thickness d are determined, so the current I 2 of the second strain sensing resistor R 2 branch is directly determined by the radius of curvature r.
  • the strain sensing resistance has a one-to-one correspondence with the strain value, the change of the strain value can be converted into the resistance value change of the strain sensing resistor, and the curvature radius measuring circuit 20 outputs the current I 2 of the branch of the second strain sensing resistor R 2 .
  • the radius of curvature of the panel 200 when pressed is obtained.
  • a radius of curvature measuring device is substantially the same as the radius of curvature measuring device provided by the first embodiment. Unlike the first embodiment, a radius of curvature measuring circuit 20 has two.
  • the resistor, radius of curvature measuring circuit 20 is a series constant current circuit formed by a first strain sensing resistor R 1 and a second strain sensing resistor R 2 in series.
  • the panel is simplified into a one-dimensional beam structure.
  • the radius of curvature measuring device is connected with the panel by a hard rubber (ie, a completely rigid colloid).
  • the substrate follows the panel deformation.
  • the strain sensing resistor R 1 can characterize the strain value of the first mounting surface
  • the second strain sensing resistor R 2 can characterize the strain value of the second mounting surface, the colloidal thickness is neglected, and the deformed neutral line falls on the panel.
  • the second case, the third case, and the reasoning process of considering the panel as a two-dimensional planar structure can be referred to the first embodiment.
  • the rigid flexibility of the colloid has no influence on the voltage difference ⁇ U, so the voltage difference ⁇ U is determined only by the pressure variable coefficient GF, the substrate thickness d and the radius of curvature r, and the pressure variable coefficient GF and the substrate thickness d are determined, so The voltage difference ⁇ U is directly determined by the radius of curvature r.
  • the strain sensing resistance corresponds to the strain value one by one
  • the change of the strain value can be converted into the resistance value change of the strain sensing resistor
  • the curvature radius measuring circuit 20 outputs the voltage difference ⁇ U, thereby obtaining the radius of curvature of the panel 200 when pressed. .
  • a radius of curvature measuring device is substantially the same as the radius of curvature measuring device provided by the first embodiment. Unlike the first embodiment, a radius of curvature measuring circuit 20 has two.
  • the resistor, radius of curvature measuring circuit 20 is a parallel constant voltage circuit formed by a first strain sensing resistor R 1 and a second strain sensing resistor R 2 in parallel.
  • the panel is simplified to a one-dimensional beam structure.
  • the radius of curvature measuring device is connected with the panel by a hard rubber (ie, a completely rigid colloid).
  • the substrate follows the panel deformation, first.
  • the strain sensing resistor R 1 can characterize the strain value of the first mounting surface
  • the second strain sensing resistor R 2 can characterize the strain value of the second mounting surface, the colloidal thickness is neglected, and the deformed neutral line falls on the panel.
  • the constant voltage circuit using a parallel, constant voltage source, the input voltage U 0 to be in the end of the circuit, a first current measuring resistors R 1 strain sensing branch currents I 1 and the second strain-sensing resistor branch I 2 R 2 In order to obtain the ratio of the two, there is a current ratio formula:
  • the current ratio ⁇ I is only related to the radius of curvature r at the first strain sensing resistor R 1 .
  • the radius of curvature measuring circuit 20 obtains the current ratio ⁇ I, and the radius of curvature r at the first strain sensing resistor R 1 can be known.
  • the second case, the third case, and the reasoning process of considering the panel as a two-dimensional planar structure can be referred to the first embodiment.
  • the rigidness of the colloid is between the first case and the second case.
  • the rigidness of the colloid determines the position of the deformed neutral line, and then changes t 1 and t 2 .
  • the current ratio of the first case to the second case ⁇ I is the same, that is, the rigid flexibility of the colloid has no influence on the current ratio ⁇ I, so the current ratio ⁇ I is determined only by the pressure variable coefficient GF, the substrate thickness d and the radius of curvature r, and the pressure variable coefficient GF and the substrate thickness d are determined. Therefore, the current ratio ⁇ I is directly determined by the radius of curvature r.
  • the strain sensing resistance corresponds to the strain value one by one
  • the change of the strain value can be converted into the resistance value change of the strain sensing resistor
  • the curvature radius measuring circuit 20 outputs the current ratio ⁇ I to obtain the radius of curvature of the panel 200 when pressed.
  • the radius of curvature measuring device is substantially the same as the radius of curvature measuring device provided by the first embodiment.
  • a radius of curvature measuring circuit 20 is provided. There are four resistors, and the radius of curvature measuring circuit 20 is a half bridge formed by electrically connecting one first strain sensing resistor R 1 and one second strain sensing resistor R 2 to two reference resistors R.
  • the panel is simplified into a one-dimensional beam structure, and a half bridge is used to input an input voltage U 0 at both ends of the circuit.
  • a reference point is formed between the first strain sensing resistor R 1 and the second strain sensing resistor R 2 , and two reference resistors R Forming a reference point, measuring the output voltage U between the two reference points,
  • the reasoning process of simplifying the panel into a one-dimensional beam structure and considering the panel as a two-dimensional planar structure can be referred to the first embodiment.
  • the rigid flexibility of the colloid has no effect on the output voltage U, so the output voltage U is determined only by the compressive coefficient GF, the substrate thickness d and the radius of curvature r, and the compressive variable GF and the substrate thickness d are determined, so the output voltage U is directly determined by the radius of curvature r.
  • the strain sensing resistance corresponds to the strain value one by one
  • the change of the strain value can be converted into the resistance value change of the strain sensing resistor
  • the curvature radius measuring circuit 20 outputs the output voltage U, thereby obtaining the radius of curvature of the panel 200 when pressed.
  • two of the resistors coincide with the other two resistors in the thickness direction of the substrate 10; or, in one radius of curvature measuring circuit 20, four
  • the resistors are staggered and distributed.
  • the staggered distribution of the resistors means that within a certain range, the points of curvature at the points where the resistors are staggered are similar and can be approximated as the same.
  • the above two schemes are easy to process and assemble, and are selected as needed.
  • the position of the first strain sensing resistor R 1 of the radius of curvature measuring circuit 20 serves as a radius of curvature measuring point.
  • the radius of curvature measuring device provided by the sixth embodiment of the present invention is substantially the same as the radius of curvature measuring device provided by the fifth embodiment.
  • a radius of curvature measuring circuit 20 is provided.
  • the radius of curvature measuring circuit 20 has a third strain sensing resistor R 3 disposed on the second mounting surface 10b for measuring the strain value of the second mounting surface 10b and is disposed on the first mounting surface 10a.
  • a fourth strain sensing resistor R 4 for measuring the strain value of the first mounting surface 10a, the radius of curvature measuring circuit 20 is composed of a first strain sensing resistor R 1 , a second strain sensing resistor R 2 , and a third The strain sensing resistor R 3 is electrically connected to a fourth strain sensing resistor R 4 to form a full bridge.
  • the panel is simplified into a one-dimensional beam structure, and a full bridge is used.
  • An input voltage U 0 is applied across the circuit, a reference point is formed between the first strain sensing resistor R 1 and the second strain sensing resistor R 2 , and two reference resistors R Forming a reference point, measuring the output voltage U between the two reference points,
  • the reasoning process of simplifying the panel into a one-dimensional beam structure and considering the panel as a two-dimensional planar structure can be referred to the first embodiment.
  • the rigid flexibility of the colloid has no effect on the output voltage U, so the output voltage U is determined only by the compressive coefficient GF, the substrate thickness d and the radius of curvature r, and the compressive variable GF and the substrate thickness d are determined, so the output voltage U is directly determined by the radius of curvature r.
  • the strain sensing resistance corresponds to the strain value one by one
  • the change of the strain value can be converted into the resistance value change of the strain sensing resistor
  • the curvature radius measuring circuit 20 outputs the output voltage U, thereby obtaining the radius of curvature of the panel 200 when pressed.
  • radius of curvature measuring circuit 20 can also be other existing circuits.
  • an electronic device includes a panel 200, a radius of curvature measuring device 100, and a radius of curvature detecting circuit electrically connected to the radius of curvature measuring device 100.
  • the substrate 10 is attached to the panel 200. .
  • the radius of curvature measuring device 100 has a film shape or a plate shape.
  • the radius of curvature measurer 100 is stacked with the panel 200 and is compact and easy to install.
  • the radius of curvature detecting circuit analyzes and processes the electrical signal of the radius of curvature measuring device 100 and transmits it to the controller of the electronic device to measure the radius of curvature of the panel 200.
  • Panel 200 can be a touch screen, display, or other electronic device having a rigid structure. By connecting the radius of curvature measuring device 100 to the panel 200, it is possible to accurately detect the radius of curvature of the panel 200 when pressed, and expand the application space for the electronic device in product application, human-computer interaction and consumption experience. The user can directly obtain a precise radius of curvature by touching the touch screen, display or electronic device.
  • the panel 200 may be a glass plate having a thickness of 1.1 mm, and the glass plate itself is designed with a function of a touch screen; or, the panel 200 may be a 1.6 mm thick LCD liquid crystal display or an OLED display; or the panel 200 may have a touch function. And electronic components that display functions.
  • the radius of curvature detecting circuit is for detecting an electrical signal obtained by the curvature radius measuring device 100, and processing and analyzing the electrical signal.
  • the radius of curvature measuring device 100 is connected to the radius of curvature detecting circuit through a connecting line, which is merely a description of the combination of the radius of curvature measuring device 100 and the radius of curvature detecting circuit. As other embodiments, the radius of curvature measuring device 100 can also pass other The method is electrically connected directly or indirectly to the detection circuit.
  • the solution can produce a bending deformation of the panel 200 when the panel 200 is pressed, so that the strain sensing resistance is correspondingly deformed, and the radius of curvature is measured.
  • the quantity circuit 20 converts the deformation into an electrical signal and outputs the electrical signal at this time.
  • the curvature radius measuring device 100 is attached to the desired panel 200.
  • the panel 200 When the panel 200 is pressed, the panel 200 is deformed by bending, and the strain sensing resistor follows deformation, causing a change in electrical characteristics of the radius of curvature measuring circuit 20, which is electrically characterized. Only in relation to the radius of curvature of the panel 200, the radius of curvature of the panel 200 at the pressed portion can be accurately detected by obtaining the corresponding electrical signal by the radius of curvature measuring circuit 20.
  • the curvature radius measuring device 100 is easy to manufacture and assemble, and avoids the need to place the measured component on the existing optical measuring instrument, which is inconvenient to use; the interference caused by the difference of the colloidal adhesion can be avoided, and the stability is good.
  • the detection is reliable, and the substrate 10 can be as small as 0.1 mm.
  • the radius of curvature of the panel 200 is generally greater than 1000 mm, so the radius of curvature measuring device 100 is very Suitable for detecting micro-deformation.
  • the radius of curvature measuring device 100 has a small thickness and is suitable for use in a mobile phone, a computer or the like having a high thickness, and is used as a pressure sensing sensor; it is also suitable for use in a household appliance as a pressure button; and is also applicable to any change in curvature.
  • the panel 200 is configured to detect a change in the radius of curvature of the panel 200 or to detect a change in the cause of the change in the radius of curvature.
  • the substrate 10 and the panel 200 are bonded by a gel.
  • This configuration is easy to assemble, and the substrate 10 is firmly connected to the panel 200 and can also transmit deformation.
  • the radius of curvature measuring device 100 is attached to the desired panel 200, and the radius of curvature measuring device 100 and the panel 200 are connected by other mechanical means such as a gel, a fastener, a snap-fit structure, and the like.
  • the radius of curvature of the panel 200 when pressed is directly measured using the radius of curvature measurer 100.
  • the colloid is UV glue, AB glue, 502 glue, double-sided tape, foam glue or other hard colloid or soft gel.
  • the material selection and thickness of these rubber materials are determined according to the materials of the force substrate 10 and the panel 200.
  • a method for manufacturing a radius of curvature measuring device 100 includes the following steps:
  • the curvature radius measuring device 100 is attached to the desired panel 200.
  • the panel 200 When the panel 200 is pressed, the panel 200 is deformed by bending, and the strain sensing resistor follows deformation, causing a change in electrical characteristics of the radius of curvature measuring circuit 20, which is electrically characterized. Only in relation to the radius of curvature of the panel 200, the radius of curvature of the panel 200 at the pressed portion can be accurately detected by obtaining the corresponding electrical signal by the radius of curvature measuring circuit 20.
  • the curvature radius measuring device 100 is easy to manufacture and assemble, and avoids the need to place the measured component on the existing optical measuring instrument, which is inconvenient to use; the interference caused by the difference of the colloidal adhesion can be avoided, and the stability is good.
  • the detection is reliable, and the substrate 10 can be as small as 0.1 mm.
  • the radius of curvature of the panel 200 is generally greater than 1000 mm, so the radius of curvature measuring device 100 is very Suitable for detecting micro-deformation.
  • the radius of curvature measuring device 100 has a small thickness and is suitable for use in a mobile phone, a computer or the like having a high thickness, and is used as a pressure sensing sensor; it is also suitable for use in a household appliance as a pressure button; and is also applicable to any change in curvature.
  • the panel 200 is configured to detect a change in the radius of curvature of the panel 200 or to detect a change in the cause of the change in the radius of curvature.
  • a first strain sensing resistor R 1 and a second strain sensing resistor R 2 in series to form a voltage dividing circuit as a radius of curvature measuring circuit 20;
  • a first strain sensing resistor R 1 and a second strain sensing resistor R 2 in parallel to form a shunt circuit as a radius of curvature measuring circuit 20;
  • a first strain sensing resistor R 1 and a second strain sensing resistor R 2 in series to form a series constant current circuit, as a radius of curvature measuring circuit 20;
  • a first strain sensing resistor R 1 and a second strain sensing resistor R 2 in parallel to form a parallel constant voltage circuit as a radius of curvature measuring circuit 20;
  • a first strain sensing resistor R 1 a second strain sensing resistor R 2 and two reference resistors R are electrically connected to form a half bridge as a radius of curvature measuring circuit 20;
  • the strain sensing resistor follows the bending deformation of the panel 200 to generate a measurement signal, and the radius of curvature of the panel 200 is measured.
  • the curvature radius measurers provided by the first to sixth embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种曲率半径测量器(100)、电子设备及曲率半径测量器(100)的制作方法,将曲率半径测量器(100)贴合于所需面板(200)上,在按压面板(200)时,面板(200)会产生弯曲形变,应变感应电阻(R1,R2,R3,R4)跟随产生形变,造成曲率半径测量电路(20)电学特性变化,该电学特性只与面板(200)曲率半径(r)有关,通过曲率半径测量电路(20)得到相应电学信号,即可准确检测面板(200)在被按压处曲率半径(r)。该曲率半径测量器(100)制作与装配容易,避免需将被测量件放置于现有光学测量仪上引起使用不方便的情况;可避免由于胶体粘合情况不同造成的干扰,具有稳定性好、可重复性好的特性。当面板(200)曲率半径(r)远大于衬底(10)厚度时,检测可靠,衬底(10)最小可达0.1mm,在微变形情况下,面板(200)曲率半径一般大于1000mm,曲率半径测量器(100)适用于检测微变形。

Description

曲率半径测量器、电子设备及曲率半径测量器的制作方法 技术领域
本发明属于曲率半径测量技术领域,尤其涉及曲率半径测量器、电子设备及曲率半径测量器的制作方法。
背景技术
现有技术中的曲率半径测量器通常采用光学测量仪对被测量件进行放大、被测量件可在电脑中进行调整测试位置与缩放,可对曲率半径进行测量,所有数据全电脑处理并可以输出测量数据与影像图形,测量比较精确。但是,现有曲率半径测量器难以适用于电子设备等场合,只有将被测量件放置于光学测量仪上才能进行曲率半径测量,使用不方便,成本较高。
技术问题
本发明的目的在于提供一种曲率半径测量器,旨在解决在测量被测量件曲率半径时要将被测量件放置于现有光学测量仪上引起使用不方便的技术问题。
技术解决方案
本发明是这样实现的,曲率半径测量器,包括与一面板相贴合的衬底以及设于所述衬底上的曲率半径测量电路,所述衬底具有背向设置的第一安装面与第二安装面,所述曲率半径测量电路具有成型于所述衬底上的至少两个电阻器,至少一个所述电阻器为设于所述第一安装面上且用于测量该第一安装面的应变值的第一应变感应电阻,至少一个所述电阻器为设于所述第二安装面上且用于测量该第二安装面的应变值的第二应变感应电阻,所述曲率半径测量电路中的所述电阻器相邻分布。
本发明的另一目的在于提供一种电子设备,包括面板、曲率半径测量器及与所 述曲率半径测量器电连接的曲率半径检测电路,所述衬底贴合在所述面板上。本发明的另一目的在于提供一种曲率半径测量器的制作方法,包括以下步骤:
S1)提供所述衬底;
S2)于所述衬底上成型至少两个电阻器,确保至少一个所述电阻器为设于所述第一安装面上的第一应变感应电阻,至少一个所述电阻器为设于所述第二安装面上的第二应变感应电阻;
S3)将所述电阻器电连接形成一曲率半径测量电路。
有益效果
将该曲率半径测量器贴合于所需面板上,在按压面板时,面板会产生弯曲形变,应变感应电阻跟随产生形变,造成曲率半径测量电路的电学特性变化,该电学特性只与面板的曲率半径有关,通过曲率半径测量电路得到相应的电学信号,即可准确检测面板在被按压处的曲率半径。该曲率半径测量器制作与装配容易,避免需将被测量件放置于现有光学测量仪上引起使用不方便的情况;可避免由于胶体粘合情况不同造成的干扰,具有稳定性好、可重复性好的特性。当面板曲率半径远大于衬底的厚度时,检测可靠,而衬底最小可达0.1mm,在一些微变形情况下,面板曲率半径一般都大于1000mm,所以曲率半径测量器非常适用于检测微变形。该曲率半径测量器厚度小,适用于对厚度要求很高的手机、电脑等电子产品,作为压力感应传感器使用;还适用于家用电器,作为压力按键使用;还适用于任何存在曲率发生变化的面板,用于检测面板曲率半径的变化,或检测造成曲率半径变化原因的变化。
附图说明
图1是本发明实施例提供的曲率半径测量器的结构示意图;
图2是图1的曲率半径测量器在按压时的结构示意图;
图3是图1的曲率半径测量器应用于面板的结构示意图;
图4是图3的曲率半径测量器与面板之间采用硬胶连接的结构示意图;
图5是图3的曲率半径测量器与面板之间采用软胶连接的结构示意图;
图6是本发明第一实施例提供的曲率半径测量器中应用的曲率半径测量电路;
图7是本发明第二实施例提供的曲率半径测量器中应用的曲率半径测量电路;
图8是本发明第三实施例提供的曲率半径测量器中应用的曲率半径测量电路;
图9是本发明第四实施例提供的曲率半径测量器中应用的曲率半径测量电路;
图10是本发明第五实施例提供的曲率半径测量器的结构示意图;
图11是图10的曲率半径测量器在按压时的结构示意图;
图12是图10的曲率半径测量器中应用的曲率半径测量电路;
图13是本发明第六实施例提供的曲率半径测量器的结构示意图;
图14是图13的曲率半径测量器在按压时的结构示意图;
图15是图13的曲率半径测量器中应用的曲率半径测量电路。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1至图3,本发明第一实施例提供的曲率半径测量器100,包括与一面板200相贴合的衬底10以及设于衬底10上的曲率半径测量电路20,衬底10具有背向设置的第一安装面10a与第二安装面10b,曲率半径测量电路20具有成型于衬底10上的至少两个电阻器,至少一个电阻器为设于第一安装面10a上且用于测量该第一安装面10a的应变值的第一应变感应电阻R1,至少一个电阻器为设于第二安装面10b上且用于测量该第二安装面10b的应变值的第二应变感应电阻R2,曲率半径测量电路20中的电阻器相邻分布。
将该曲率半径测量器100贴合于所需面板200上,在按压面板200时,面板200会产生弯曲形变,应变感应电阻跟随产生形变,造成曲率半径测量电路 20的电学特性变化,该电学特性只与面板200的曲率半径有关,通过曲率半径测量电路20得到相应的电学信号,即可准确检测面板200在被按压处的曲率半径。该曲率半径测量器100制作与装配容易,避免需将被测量件放置于现有光学测量仪上引起使用不方便的情况;可避免由于胶体粘合情况不同造成的干扰,具有稳定性好、可重复性好的特性。当面板200曲率半径远大于衬底10的厚度时,检测可靠,而衬底10最小可达0.1mm,在一些微变形情况下,面板200曲率半径一般都大于1000mm,所以曲率半径测量器100非常适用于检测微变形。该曲率半径测量器100厚度小,适用于对厚度要求很高的手机、电脑等电子产品,作为压力感应传感器使用;还适用于家用电器,作为压力按键使用;还适用于任何存在曲率发生变化的面板200,用于检测面板200曲率半径的变化,或检测造成曲率半径变化原因的变化。
进一步地,一曲率半径测量电路20具有两个电阻器,曲率半径测量电路20为由一个第一应变感应电阻R1与一个第二应变感应电阻R2串联形成的分压电路。
将面板简化为一维梁结构,衬底贴合于面板上在力的作用下应变感应电阻产生应变时,应变感应电阻的应变值和电阻值变化的关系是由压变系数联系在一起,R0、R1分别为应变感应电阻的初始电阻值、变化后电阻值,ε为应变感应电阻的应变值,GF为压变系数,有:
R1=R0(1+εGF)
请参阅图4,第一种情况是理想情况,曲率半径测量器100与面板200之间采用硬胶(即完全刚性的胶体)连接,在按压面板200时,衬底10跟随面板200变形,第一应变感应电阻R1可表征第一安装面10a的应变值,第二应变感应电阻R2可表征第二安装面10b的应变值,胶体厚度忽略,变形中性线落在面板200上。
已知:
第一应变感应电阻R1处的应变值:
Figure PCTCN2016083554-appb-000001
第一应变感应电阻R1的初始电阻值:R1
第二应变感应电阻R2处的应变值:
Figure PCTCN2016083554-appb-000002
第二应变感应电阻R2的初始电阻值:R2
其中,t1、r1分别为第一应变感应电阻R1与变形中性线的间距、第一应变感应电阻R1处的曲率半径,t2、r2分别为第二应变感应电阻R2与变形中性线的间距、第二应变感应电阻R2处的曲率半径。
第一应变感应电阻R1与第二应变感应电阻R2的初始电阻值相等,
即R1=R2=R0
此时,有d=r1-r2
其中,d为衬底10的厚度。
以下为第一应变感应电阻R1与第二应变感应电阻R2处应变值的简化处理:
Figure PCTCN2016083554-appb-000003
又∵r1,r2>>d
∴r1≈r2=r
Figure PCTCN2016083554-appb-000004
请同时参阅图5,以下采用分压电路,采用恒压源,在电路两端加以输入电压U0,测量第一应变感应电阻R1两端的电压,有输入输出电压公式:
Figure PCTCN2016083554-appb-000005
∵t2-t1=d
Figure PCTCN2016083554-appb-000006
Figure PCTCN2016083554-appb-000007
Figure PCTCN2016083554-appb-000008
Figure PCTCN2016083554-appb-000009
故输出电压U只是与第一应变感应电阻R1处的曲率半径r有关。在按压面板200时,曲率半径测量电路20得到第一应变感应电阻R1两端的输出电压U,即可得知第一应变感应电阻R1处的曲率半径r。
请参阅图5,第二种情况是理想情况,曲率半径测量器100与面板200之间采用软胶(即完全柔性的胶体)连接,在按压面板200时,衬底10跟随面板200变形,第一应变感应电阻R1可表征第一安装面10a的应变值,第二应变感应电阻R2可表征第二安装面10b的应变值,胶体厚度忽略,变形中性线落在衬底10上。
已知:
第一应变感应电阻R1处的应变值:
Figure PCTCN2016083554-appb-000010
第一应变感应电阻R1的初始电阻值:R1
第二应变感应电阻R2处的应变值:
Figure PCTCN2016083554-appb-000011
第二应变感应电阻R2的初始电阻值:R2
其中,t1、r1分别为第一应变感应电阻R1与变形中性线的间距、第一应变感应电阻R1处的曲率半径,t2、r2分别为第二应变感应电阻R2与变形中性线的间距、第二应变感应电阻R2处的曲率半径。
第一应变感应电阻R1与第二应变感应电阻R2的初始电阻值相等,
即R1=R2=R0
此时,有d=r1-r2
其中,d为衬底10的厚度。
以下为第一应变感应电阻R1与第二应变感应电阻R2处应变值的简化处理:
Figure PCTCN2016083554-appb-000012
又∵r1,r2>>d
∴r1≈r2=r
请同时参阅图6,同样采用分压电路,采用恒压源,在电路两端加以输入电压U0,测量第一应变感应电阻R1两端的电压U,有输入输出电压公式:
Figure PCTCN2016083554-appb-000014
∵t1+t2=d
Figure PCTCN2016083554-appb-000015
∵t1<<r∴
Figure PCTCN2016083554-appb-000016
Figure PCTCN2016083554-appb-000017
故输出电压U只是与第一应变感应电阻R1处的曲率半径r有关。在按压面板200时,曲率半径测量电路20得到第一应变感应电阻R1两端的输出电压U,即可得知第一应变感应电阻R1处的曲率半径r。
第三种情况是实际情况,胶体的刚柔性介于第一种情况与第二种情况之间,胶体的刚柔性决定变形中性线的位置,进而改变t1与t2,第一种情况与第二种情况的输出电压U相同,即胶体的刚柔性对第一应变感应电阻R1两端的电压U并无影响,所以第一应变感应电阻R1两端的电压U只决定于压变系数GF、衬底10厚度d和曲率半径r,而压变系数GF、衬底10厚度d是确定的,所以第一应变感应电阻R1两端的电压U直接决定于曲率半径r。同时,应变感应电阻与应变值一一对应,应变值的变化可转换为应变感应电阻的阻值变化,曲率半径测量电路20将第一应变感应电阻R1两端的电压U输出,即可得到面板200在按压时的曲率半径。
将面板简化为一维梁结构可作为特例。以下考虑一般情况,即将面板视为二维平面结构,曲率半径测量器可以适用于二维平面结构,求出面板在按压变作球面时的曲率半径。
将面板视为二维平面结构,衬底贴合于面板上在力的作用下应变感应电阻产生应变时,应变感应电阻的应变值和电阻值变化的关系是由压变系数联系在一起,R0、R1分别为应变感应电阻的初始电阻值、变化后电阻值,ε为应变感应电阻的应变值,应变感应电阻的应变值ε可看成两个方向上的应变εx和εy,GF为压变系数,有:
R1=R0(1+ε1x·GF)(1+ε1y·GF)
=R0(1+ε1x·GF+ε1y·GF+ε1x·ε1y·GF2),
其中,ε1x·ε1y·GF2很小,可忽略。
则R1=R0(1+ε1x·GF+ε1y·GF)
而ε1x=t1x/rx,ε1y=t1y/ry
又t1x=t1y=t1
ry≈k·rx
其中,k为面板长宽比,此处应该是偏微分,但可近似为比例关系,
那么R1=R0(1+GF·t1/rx+GF·t1/krx),
可以理解地,同样可以推导第一应变感应电阻R1两端的电压U只决定于面板长宽比k、压变系数GF、衬底10厚度d和曲率半径r,而面板长宽比k、压变系数GF、衬底10厚度d是确定的,所以第一应变感应电阻R1两端的电压U直接决定于曲率半径r。同时,应变感应电阻与应变值一一对应,应变值的变化可转换为应变感应电阻的阻值变化,曲率半径测量电路20将第一应变感应电阻R1两端的电压U输出,即可得到面板200在按压时的曲率半径。
进一步地,请参阅图1至图3,在一曲率半径测量电路20中,在衬底10的厚度方向上两个电阻器一一对应相重合;或者,在一曲率半径测量电路20中,两个电阻器相错开分布。电阻器相错开分布,指的是在一定的范围内,两错开 电阻器所在点的曲率半径相近,可近似地看成相同。上述两种方案容易加工与装配,按需选用。一个曲率半径测量电路20的第一应变感应电阻R1位置作为一个曲率半径测量点。
进一步地,曲率半径测量电路20的数量至少为二,曲率半径测量电路20呈阵列状分布在衬底10上;或者,曲率半径测量电路20的数量至少为二,曲率半径测量电路20呈圆形分布在衬底10上。上述两方案均能在压力施加到面板200多个位置时,应变感应电阻跟随面板200的弯曲变形而产生测量信号,测量出面板200的应变值。电桥电路的数量可以根据面板200的物理尺寸的变化而改变。多个曲率半径测量电路20的位置可按需设置。可以理解地,曲率半径测量电路20的数量至少为二,曲率半径测量电路20呈预定形状分布在衬底10上,预定形状可以为三角形、矩形等。通过多种方式将曲率半径测量电路20排布于衬底10上,检测面板200不同位置的变形曲率半径,当在一定情形下排布时,可以近似测出整个面板200每一个位置的变形曲率半径。
进一步地,衬底10的厚度范围是0.03mm至5mm。优选地,衬底10的厚度范围是0.1mm至3mm。使得曲率半径测量器100的厚度小,适用于对厚度要求很高的手机、电脑等电子产品。
进一步地,各个电阻器的厚度范围是3um至20um。使得曲率半径测量器100的厚度小,适用于对厚度要求很高的手机、电脑等电子产品。
进一步地,衬底10包括基材及设置于基材上的电路层。电路层用以连接应变感应电阻,形成完整的电路,实现预定电路功能。电路层可以为通过印刷、涂布方式形成的电路层。
进一步地,基材为塑料基材、玻璃基材、金属基材或复合材料基材。比如PI膜(聚酰亚胺薄膜)、PET膜(耐高温聚酯薄膜)或玻纤板。上述基材能安装应变感应电阻。可以理解地,基材还可以为其它基材。或者,衬底10还可以为自身带有电路的柔性电路板。衬底10为软板或硬板。
进一步地,电阻器为印刷成型的电阻器、涂布成型的电阻器、印刷成型且 具有压力感应性能的聚合物涂层或者烧结成型的压电陶瓷涂层。上述电阻器均能根据形变改变阻值或作为参考电阻。
请参阅图7,本发明第二实施例提供的曲率半径测量器,与第一实施例提供的曲率半径测量器大致相同,与第一实施例不同的是,一曲率半径测量电路20具有两个电阻器,曲率半径测量电路20为由一个第一应变感应电阻R1与一个第二应变感应电阻R2并联形成的分流电路。
将面板简化为一维梁结构,以下采用分流电路,采用恒流源,在电路两端加以输入电流I0,测量第二应变感应电阻R2支路的电流I2,有输入输出电流公式:
Figure PCTCN2016083554-appb-000018
推理过程可参考第一实施例。
胶体的刚柔性对第二应变感应电阻R2支路的电流I2并无影响,所以第二应变感应电阻R2支路的电流I2只决定于压变系数GF、衬底厚度d和曲率半径r,而压变系数GF、衬底厚度d是确定的,所以第二应变感应电阻R2支路的电流I2直接决定于曲率半径r。同时,应变感应电阻与应变值一一对应,应变值的变化可转换为应变感应电阻的阻值变化,曲率半径测量电路20将第二应变感应电阻R2支路的电流I2输出,即可得到面板200在按压时的曲率半径。
请参阅图8,本发明第三实施例提供的曲率半径测量器,与第一实施例提供的曲率半径测量器大致相同,与第一实施例不同的是,一曲率半径测量电路20具有两个电阻器,曲率半径测量电路20为由一个第一应变感应电阻R1与一个第二应变感应电阻R2串联形成的串联恒流电路。
将面板简化为一维梁结构,以第一种情况为例,曲率半径测量器与面板之间采用硬胶(即完全刚性的胶体)连接,在按压面板时,衬底跟随面板变形, 第一应变感应电阻R1可表征第一安装面的应变值,第二应变感应电阻R2可表征第二安装面的应变值,胶体厚度忽略,变形中性线落在面板上。
以下采用串联恒流电路,采用恒流源,在电路输入电流I0,测量第二应变感应电阻R2两端的电压U2与第一应变感应电阻R1两端的电压U1的差值ΔU,有输出电压差值公式:
Figure PCTCN2016083554-appb-000019
第二种情况、第三种情况、将面板视为二维平面结构的推理过程可参考第一实施例。
胶体的刚柔性对电压差值ΔU并无影响,所以电压差值ΔU只决定于压变系数GF、衬底厚度d和曲率半径r,而压变系数GF、衬底厚度d是确定的,所以电压差值ΔU直接决定于曲率半径r。同时,应变感应电阻与应变值一一对应,应变值的变化可转换为应变感应电阻的阻值变化,曲率半径测量电路20将电压差值ΔU输出,即可得到面板200在按压时的曲率半径。
请参阅图9,本发明第四实施例提供的曲率半径测量器,与第一实施例提供的曲率半径测量器大致相同,与第一实施例不同的是,一曲率半径测量电路20具有两个电阻器,曲率半径测量电路20为由一个第一应变感应电阻R1与一个第二应变感应电阻R2并联形成的并联恒压电路。
将面板简化为一维梁结构,以第一种情况为例,曲率半径测量器与面板之间采用硬胶(即完全刚性的胶体)连接,在按压面板时,衬底跟随面板变形,第一应变感应电阻R1可表征第一安装面的应变值,第二应变感应电阻R2可表征第二安装面的应变值,胶体厚度忽略,变形中性线落在面板上。
以下采用并联恒压电路,采用恒压源,在电路两端加以输入电压U0,测量第一应变感应电阻R1支路的电流I1与第二应变感应电阻R2支路的电流I2,以求 得两者比值,有电流比值公式:
Figure PCTCN2016083554-appb-000020
又∵t2-t1=d
Figure PCTCN2016083554-appb-000021
Figure PCTCN2016083554-appb-000022
Figure PCTCN2016083554-appb-000023
Figure PCTCN2016083554-appb-000024
故电流比值ΔI只是与第一应变感应电阻R1处的曲率半径r有关。在按压面板200时,曲率半径测量电路20得到电流比值ΔI,即可得知第一应变感应电阻R1处的曲率半径r。
第二种情况、第三种情况、将面板视为二维平面结构的推理过程可参考第一实施例。胶体的刚柔性介于第一种情况与第二种情况之间,胶体的刚柔性决定变形中性线的位置,进而改变t1与t2,第一种情况与第二种情况的电流比值ΔI相同,即胶体的刚柔性对电流比值ΔI并无影响,所以电流比值ΔI只决定于压变系数GF、衬底厚度d和曲率半径r,而压变系数GF、衬底厚度d是确定的,所以电流比值ΔI直接决定于曲率半径r。同时,应变感应电阻与应变值一一对应,应变值的变化可转换为应变感应电阻的阻值变化,曲率半径测量电路20将电流比值ΔI输出,即可得到面板200在按压时的曲率半径。
请参阅图10至图12,本发明第五实施例提供的曲率半径测量器,与第一实施例提供的曲率半径测量器大致相同,与第一实施例不同的是,一曲率半径测量电路20具有四个电阻器,曲率半径测量电路20为由一个第一应变感应电阻R1、一个第二应变感应电阻R2与两个参考电阻R电连接形成的半桥。
将面板简化为一维梁结构,采用半桥,在电路两端加以输入电压U0,第一应变感应电阻R1与第二应变感应电阻R2之间形成参考点,两个参考电阻R之间形成参考点,测量两个参考点之间的输出电压U,
已知:
Figure PCTCN2016083554-appb-000025
Figure PCTCN2016083554-appb-000026
有输入输出电压公式:
Figure PCTCN2016083554-appb-000027
将面板简化为一维梁结构与将面板视为二维平面结构的推理过程可参考第一实施例。
胶体的刚柔性对输出电压U并无影响,所以输出电压U只决定于压变系数GF、衬底厚度d和曲率半径r,而压变系数GF、衬底厚度d是确定的,所以输出电压U直接决定于曲率半径r。同时,应变感应电阻与应变值一一对应,应变值的变化可转换为应变感应电阻的阻值变化,曲率半径测量电路20将输出电压U输出,即可得到面板200在按压时的曲率半径。
进一步地,在一曲率半径测量电路20中,在衬底10的厚度方向上其中两个电阻器与另外两个电阻器一一对应相重合;或者,在一曲率半径测量电路20中,四个电阻器相错开分布。电阻器相错开分布,指的是在一定的范围内,错 开电阻器所在点的曲率半径相近,可近似地看成相同。上述两种方案容易加工与装配,具体按需选用。一个曲率半径测量电路20的第一应变感应电阻R1的位置作为一个曲率半径测量点。
请参阅图13至图15,本发明第六实施例提供的曲率半径测量器,与第五实施例提供的曲率半径测量器大致相同,与第五实施例不同的是,一曲率半径测量电路20具有四个电阻器,曲率半径测量电路20具有设于第二安装面10b上且用于测量该第二安装面10b的应变值的第三应变感应电阻R3及设于第一安装面10a上且用于测量该第一安装面10a的应变值的第四应变感应电阻R4,曲率半径测量电路20为由一个第一应变感应电阻R1、一个第二应变感应电阻R2、一个第三应变感应电阻R3与一个第四应变感应电阻R4电连接形成的全桥。
具体地,第一应变感应电阻R1与第四应变感应电阻R4作为相对桥臂,第二应变感应电阻R2与第三应变感应电阻R3作为相对桥臂,满足R1R4=R2R3
将面板简化为一维梁结构,采用全桥,在电路两端加以输入电压U0,第一应变感应电阻R1与第二应变感应电阻R2之间形成参考点,两个参考电阻R之间形成参考点,测量两个参考点之间的输出电压U,
已知:
Figure PCTCN2016083554-appb-000028
Figure PCTCN2016083554-appb-000029
有输入输出电压公式:
Figure PCTCN2016083554-appb-000030
将面板简化为一维梁结构与将面板视为二维平面结构的推理过程可参考第一实施例。
胶体的刚柔性对输出电压U并无影响,所以输出电压U只决定于压变系数GF、衬底厚度d和曲率半径r,而压变系数GF、衬底厚度d是确定的,所以输出电压U直接决定于曲率半径r。同时,应变感应电阻与应变值一一对应,应变值的变化可转换为应变感应电阻的阻值变化,曲率半径测量电路20将输出电压U输出,即可得到面板200在按压时的曲率半径。
可以理解地,曲率半径测量电路20还可以为现有的其它电路。
请参阅图1至图5,本发明实施例提供的电子设备,包括面板200、曲率半径测量器100及与曲率半径测量器100电连接的曲率半径检测电路,衬底10贴合在面板200上。
曲率半径测量器100呈膜状或板状。曲率半径测量器100与面板200层叠布置,结构紧凑,容易安装。曲率半径检测电路对曲率半径测量器100的电信号进行分析处理后传递给电子设备的控制器,实现面板200曲率半径的测量。
面板200可以为具有刚性结构的触摸屏、显示器或其他电子设备。通过将曲率半径测量器100与面板200连接,能够在实现精准检测面板200在按压时的曲率半径,为电子设备在产品应用、人机交互及消费体验上扩展了应用空间。用户通过触按触摸屏、显示器或电子设备,可以直接获得精确地曲率半径。
具体地,面板200可以为1.1mm厚度的玻璃板,玻璃板自身设计有触摸屏的功能;或者,面板200可以为1.6mm厚的LCD液晶显示器或OLED显示屏;或者,面板200可以为具有触摸功能和显示功能的电子组件。
曲率半径检测电路是用于检测曲率半径测量器100所获得的电信号,并对电信号进行处理分析。曲率半径测量器100通过连接线与该曲率半径检测电路连接,该连接线仅仅在于描述曲率半径测量器100和曲率半径检测电路的结合方式,作为其它实施例,曲率半径测量器100还可以通过其它方式直接或间接地与检测电路电性连接。
进一步地,衬底10与面板200之间整面相连接。该方案能在按压面板200时,面板200将会产生弯曲形变,使应变感应电阻产生相应形变,曲率半径测 量电路20会将形变转换为电信号,输出此时电信号。
将该曲率半径测量器100贴合于所需面板200上,在按压面板200时,面板200会产生弯曲形变,应变感应电阻跟随产生形变,造成曲率半径测量电路20的电学特性变化,该电学特性只与面板200的曲率半径有关,通过曲率半径测量电路20得到相应的电学信号,即可准确检测面板200在被按压处的曲率半径。该曲率半径测量器100制作与装配容易,避免需将被测量件放置于现有光学测量仪上引起使用不方便的情况;可避免由于胶体粘合情况不同造成的干扰,具有稳定性好、可重复性好的特性。当面板200曲率半径远大于衬底10的厚度时,检测可靠,而衬底10最小可达0.1mm,在一些微变形情况下,面板200曲率半径一般都大于1000mm,所以曲率半径测量器100非常适用于检测微变形。该曲率半径测量器100厚度小,适用于对厚度要求很高的手机、电脑等电子产品,作为压力感应传感器使用;还适用于家用电器,作为压力按键使用;还适用于任何存在曲率发生变化的面板200,用于检测面板200曲率半径的变化,或检测造成曲率半径变化原因的变化。
进一步地,衬底10与面板200之间通过胶体粘接。该配置容易装配,衬底10与面板200连接牢固,还能传递形变。可以理解地,将该曲率半径测量器100贴合于所需面板200上,曲率半径测量器100与面板200之间通过胶体、紧固件、卡接结构等其它机械连接,各种情况均可采用曲率半径测量器100直接测量面板200在按压时的曲率半径。
进一步地,该胶体的连接特性只需要保证在径向上紧密连接,而不要求在切向上紧密连接。胶体为UV胶、AB胶、502胶、双面胶、泡棉胶或其它硬胶体或软胶体。这些胶材的材料选择及厚度根据力衬底10与面板200的材质决定。
请参阅图1至图5,本发明实施例提供的曲率半径测量器100的制作方法,包括以下步骤:
S1)提供衬底10;
S2)于衬底10上成型至少两个电阻器,确保至少一个电阻器为设于第一安 装面10a上的第一应变感应电阻R1,至少一个电阻器为设于第二安装面10b上的第二应变感应电阻R2
S3)将电阻器电连接形成一曲率半径测量电路20。
将该曲率半径测量器100贴合于所需面板200上,在按压面板200时,面板200会产生弯曲形变,应变感应电阻跟随产生形变,造成曲率半径测量电路20的电学特性变化,该电学特性只与面板200的曲率半径有关,通过曲率半径测量电路20得到相应的电学信号,即可准确检测面板200在被按压处的曲率半径。该曲率半径测量器100制作与装配容易,避免需将被测量件放置于现有光学测量仪上引起使用不方便的情况;可避免由于胶体粘合情况不同造成的干扰,具有稳定性好、可重复性好的特性。当面板200曲率半径远大于衬底10的厚度时,检测可靠,而衬底10最小可达0.1mm,在一些微变形情况下,面板200曲率半径一般都大于1000mm,所以曲率半径测量器100非常适用于检测微变形。该曲率半径测量器100厚度小,适用于对厚度要求很高的手机、电脑等电子产品,作为压力感应传感器使用;还适用于家用电器,作为压力按键使用;还适用于任何存在曲率发生变化的面板200,用于检测面板200曲率半径的变化,或检测造成曲率半径变化原因的变化。
进一步地,请参阅图6,将一个第一应变感应电阻R1与一个第二应变感应电阻R2串联形成分压电路,作为曲率半径测量电路20;
或者,请参阅图7,将一个第一应变感应电阻R1与一个第二应变感应电阻R2并联形成分流电路,作为曲率半径测量电路20;
或者,请参阅图8,将一个第一应变感应电阻R1与一个第二应变感应电阻R2串联形成串联恒流电路,作为曲率半径测量电路20;
或者,请参阅图9,将一个第一应变感应电阻R1与一个第二应变感应电阻R2并联形成并联恒压电路,作为曲率半径测量电路20;
或者,请参阅图12,将一个第一应变感应电阻R1、一个第二应变感应电阻R2与两个参考电阻R电连接形成半桥,作为曲率半径测量电路20;
或者,请参阅图15,于第二安装面10b上成型第三应变感应电阻R3,于第一安装面10a上成型第四应变感应电阻R4,将一个第一应变感应电阻R1、一个第二应变感应电阻R2、一个第三应变感应电阻R3与一个第四应变感应电阻R4电连接形成全桥,作为曲率半径测量电路20。
以上方案均能在按压面板200时,应变感应电阻跟随面板200的弯曲变形而产生测量信号,测量出面板200的曲率半径。具体可参考本发明第一实施例至第六实施例提供的曲率半径测量器。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 曲率半径测量器,其特征在于,包括与一面板相贴合的衬底以及设于所述衬底上的曲率半径测量电路,所述衬底具有背向设置的第一安装面与第二安装面,所述曲率半径测量电路具有成型于所述衬底上的至少两个电阻器,至少一个所述电阻器为设于所述第一安装面上且用于测量该第一安装面的应变值的第一应变感应电阻,至少一个所述电阻器为设于所述第二安装面上且用于测量该第二安装面的应变值的第二应变感应电阻,所述曲率半径测量电路中的所述电阻器相邻分布。
  2. 如权利要求1所述的曲率半径测量器,其特征在于,一所述曲率半径测量电路具有两个电阻器,所述曲率半径测量电路为由一个所述第一应变感应电阻与一个所述第二应变感应电阻串联形成的分压电路;
    或者,一所述曲率半径测量电路具有两个电阻器,所述曲率半径测量电路为由一个所述第一应变感应电阻与一个所述第二应变感应电阻并联形成的分流电路;
    或者,一所述曲率半径测量电路具有两个电阻器,所述曲率半径测量电路为由一个所述第一应变感应电阻与一个所述第二应变感应电阻串联形成的串联恒流电路;
    或者,一所述曲率半径测量电路具有两个电阻器,所述曲率半径测量电路为由一个所述第一应变感应电阻与一个所述第二应变感应电阻并联形成的并联恒压电路。
  3. 如权利要求2所述的曲率半径测量器,其特征在于,在一所述曲率半径测量电路中,在所述衬底的厚度方向上两个所述电阻器一一对应相重合;
    或者,在一所述曲率半径测量电路中,两个所述电阻器相错开分布。
  4. 如权利要求1所述的曲率半径测量器,其特征在于,一所述曲率半径测量电路具有四个电阻器,所述曲率半径测量电路为由一个所述第一应变感应电阻、一个所述第二应变感应电阻与两个参考电阻电连接形成的半桥;
    或者,一所述曲率半径测量电路具有四个电阻器,所述曲率半径测量电路具有设于所述第二安装面上且用于测量该第二安装面的应变值的第三应变感应电阻及设于所述第一安装面上且用于测量该第一安装面的应变值的第四应变感应电阻,所述曲率半径测量电路为由一个所述第一应变感应电阻、一个所述第二应变感应电阻、一个所述第三应变感应电阻与一个所述第四应变感应电阻电连接形成的全桥。
  5. 如权利要求4所述的曲率半径测量器,其特征在于,在一所述曲率半径测量电路中,在所述衬底的厚度方向上其中两个所述电阻器与另外两个所述电阻器一一对应相重合;
    或者,在一所述曲率半径测量电路中,四个所述电阻器相错开分布。
  6. 如权利要求1至5任一项所述的曲率半径测量器,其特征在于,所述曲率半径测量电路的数量至少为二,所述曲率半径测量电路呈阵列状分布在所述衬底上;
    或者,所述曲率半径测量电路的数量至少为二,所述曲率半径测量电路呈圆形分布在所述衬底上。
  7. 如权利要求1至5任一项所述的曲率半径测量器,其特征在于,所述衬底的厚度范围是0.03mm至5mm。
  8. 如权利要求1至5任一项所述的曲率半径测量器,其特征在于,所述衬底包括基材及设置于所述基材上的电路层。
  9. 如权利要求8所述的曲率半径测量器,其特征在于,所述基材为塑料基材、玻璃基材、金属基材或复合材料基材。
  10. 如权利要求1至5任一项所述的曲率半径测量器,其特征在于,所述电阻器为印刷成型的电阻器、涂布成型的电阻器、印刷成型且具有压力感应性能的聚合物涂层或者烧结成型的压电陶瓷涂层。
  11. 电子设备,其特征在于,包括面板、如权利要求1至10任一项所述的曲率半径测量器及与所述曲率半径测量器电连接的曲率半径检测电路,所述衬底贴 合在所述面板上。
  12. 如权利要求11所述的电子设备,其特征在于,所述衬底与所述面板之间通过胶体粘接。
  13. 如权利要求12所述的电子设备,其特征在于,所述胶体为UV胶、AB胶、502胶、双面胶或泡棉胶。
  14. 如权利要求1所述的曲率半径测量器的制作方法,其特征在于,包括以下步骤:
    S1)提供所述衬底;
    S2)于所述衬底上成型至少两个电阻器,确保至少一个所述电阻器为设于所述第一安装面上的第一应变感应电阻,至少一个所述电阻器为设于所述第二安装面上的第二应变感应电阻;
    S3)将所述电阻器电连接形成一曲率半径测量电路。
  15. 如权利要求14所述的曲率半径测量器的制作方法,其特征在于,将一个所述第一应变感应电阻与一个所述第二应变感应电阻串联形成分压电路,作为所述曲率半径测量电路;
    或者,将一个所述第一应变感应电阻与一个所述第二应变感应电阻并联形成分流电路,作为所述曲率半径测量电路;
    或者,将一个所述第一应变感应电阻与一个所述第二应变感应电阻串联形成串联恒流电路,作为所述曲率半径测量电路;
    或者,将一个所述第一应变感应电阻与一个所述第二应变感应电阻并联形成并联恒压电路,作为所述曲率半径测量电路;
    或者,将一个所述第一应变感应电阻、一个所述第二应变感应电阻与两个参考电阻电连接形成半桥,作为所述曲率半径测量电路;
    或者,于所述第二安装面上成型第三应变感应电阻,于所述第一安装面上成型第四应变感应电阻,将一个所述第一应变感应电阻、一个所述第二应变感应电阻、一个所述第三应变感应电阻与一个所述第四应变感应电阻电连接形成全桥, 作为所述曲率半径测量电路。
PCT/CN2016/083554 2016-05-26 2016-05-26 曲率半径测量器、电子设备及曲率半径测量器的制作方法 WO2017201721A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680084190.7A CN108885085A (zh) 2016-05-26 2016-05-26 曲率半径测量器、电子设备及曲率半径测量器的制作方法
PCT/CN2016/083554 WO2017201721A1 (zh) 2016-05-26 2016-05-26 曲率半径测量器、电子设备及曲率半径测量器的制作方法
US16/200,044 US20190094007A1 (en) 2016-05-26 2018-11-26 Curvature radius measurer, electronic device and method of manufacturing curvature radius measurer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083554 WO2017201721A1 (zh) 2016-05-26 2016-05-26 曲率半径测量器、电子设备及曲率半径测量器的制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/200,044 Continuation-In-Part US20190094007A1 (en) 2016-05-26 2018-11-26 Curvature radius measurer, electronic device and method of manufacturing curvature radius measurer

Publications (1)

Publication Number Publication Date
WO2017201721A1 true WO2017201721A1 (zh) 2017-11-30

Family

ID=60412022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083554 WO2017201721A1 (zh) 2016-05-26 2016-05-26 曲率半径测量器、电子设备及曲率半径测量器的制作方法

Country Status (3)

Country Link
US (1) US20190094007A1 (zh)
CN (1) CN108885085A (zh)
WO (1) WO2017201721A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551791A (zh) * 2021-07-02 2021-10-26 中国科学院力学研究所 一种可快速制备的电阻式应变传感器及其制备方法
CN113776424A (zh) * 2021-08-25 2021-12-10 中南大学 一种柔性压电复合材料的弯曲半径测量装置及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133017A1 (zh) * 2016-02-06 2017-08-10 深圳纽迪瑞科技开发有限公司 压力传感器、电子设备及该压力传感器的制作方法
CN110192172B (zh) * 2017-01-21 2022-10-14 深圳纽迪瑞科技开发有限公司 压力感应式结构及电子产品
WO2020186475A1 (zh) * 2019-03-20 2020-09-24 深圳纽迪瑞科技开发有限公司 压力感应装置、压力感应方法及电子终端
DE102020006662A1 (de) * 2020-10-29 2022-05-05 MinkTec GmbH Sensorstreifen und Vorrichtung zur Messung von geometrischen Formen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123604A (ja) * 1992-08-31 1994-05-06 Yamaha Corp 曲げセンサ
CN201083486Y (zh) * 2007-07-27 2008-07-09 宝山钢铁股份有限公司 排辊成形erw焊管的曲率半径在线测量装置
CN101424509A (zh) * 2007-10-30 2009-05-06 美蓓亚株式会社 弯曲传感器
CN205120035U (zh) * 2015-11-14 2016-03-30 际华三五一五皮革皮鞋有限公司 一种三维度电阻式曲面传感器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551260B2 (ja) * 1991-04-18 1996-11-06 ヤマハ株式会社 曲げ方向検出装置
JP2959205B2 (ja) * 1991-07-16 1999-10-06 ヤマハ株式会社 曲げ角度検出装置
CN1176345C (zh) * 2003-04-01 2004-11-17 上海大学 三维曲线形状检测装置和检测方法
US20080146958A1 (en) * 2006-10-12 2008-06-19 Kenneth Shane Guillory Self-contained seizure monitor and method
US8890649B2 (en) * 2009-11-24 2014-11-18 Tokai Rubber Industries, Ltd Bending sensor and deformed shape measurement method
US8596137B2 (en) * 2010-07-09 2013-12-03 Alliant Techsystems Inc. Methods, devices, and systems relating to a sensing device
US9228907B2 (en) * 2013-11-14 2016-01-05 Nokia Technologies Oy Flexible device deformation measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123604A (ja) * 1992-08-31 1994-05-06 Yamaha Corp 曲げセンサ
CN201083486Y (zh) * 2007-07-27 2008-07-09 宝山钢铁股份有限公司 排辊成形erw焊管的曲率半径在线测量装置
CN101424509A (zh) * 2007-10-30 2009-05-06 美蓓亚株式会社 弯曲传感器
CN205120035U (zh) * 2015-11-14 2016-03-30 际华三五一五皮革皮鞋有限公司 一种三维度电阻式曲面传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551791A (zh) * 2021-07-02 2021-10-26 中国科学院力学研究所 一种可快速制备的电阻式应变传感器及其制备方法
CN113776424A (zh) * 2021-08-25 2021-12-10 中南大学 一种柔性压电复合材料的弯曲半径测量装置及方法

Also Published As

Publication number Publication date
US20190094007A1 (en) 2019-03-28
CN108885085A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2017201721A1 (zh) 曲率半径测量器、电子设备及曲率半径测量器的制作方法
CN108603799B (zh) 压力传感器、电子设备及该压力传感器的制作方法
CN108604149B (zh) 压力传感器、电子设备及该压力传感器的制作方法
CN110192172B (zh) 压力感应式结构及电子产品
US10353506B2 (en) Dual resistive strain and pressure sensor for force touch
TWI482055B (zh) 資訊輸入裝置及使用於資訊輸入裝置之壓力檢測單元
KR100969504B1 (ko) 센서일체형 터치입력장치
US20160377501A1 (en) Systems and Methods for Measuring Resistive Sensors
CN208653681U (zh) 压力感应组件及电子设备
WO2021185003A1 (zh) 压力感应式结构及电子产品
TWM588284U (zh) 一種壓力感測模組及其觸控面板
CN212391154U (zh) 压力感应装置及电子设备
CN213715902U (zh) 压力触摸板
CN113242965B (zh) 压力传感器及电子终端
US20210333085A1 (en) Strain gauge having unbalanced bias for single sided applications
JP2003083820A (ja) 面圧センサ
CN109186819B (zh) 一种mems压力传感器模组
WO2022056850A1 (zh) 温度压力传感器及电子设备
KR20120053205A (ko) 클램프 압력측정 장치
LU102398B1 (en) Sensor device
WO2022047739A1 (zh) 梁式压力传感器、压力传感装置以及电子设备
JP6973654B2 (ja) タッチパネル
CN112197891A (zh) 传感器、温度和压力的检测方法及传感装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902711

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902711

Country of ref document: EP

Kind code of ref document: A1