WO2018131346A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018131346A1
WO2018131346A1 PCT/JP2017/044084 JP2017044084W WO2018131346A1 WO 2018131346 A1 WO2018131346 A1 WO 2018131346A1 JP 2017044084 W JP2017044084 W JP 2017044084W WO 2018131346 A1 WO2018131346 A1 WO 2018131346A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
assembly
shape
electrode
positive electrode
Prior art date
Application number
PCT/JP2017/044084
Other languages
English (en)
French (fr)
Inventor
徹 川合
大塚 正博
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018561860A priority Critical patent/JP6721059B2/ja
Priority to CN201780076044.4A priority patent/CN110050376B/zh
Publication of WO2018131346A1 publication Critical patent/WO2018131346A1/ja
Priority to US16/416,520 priority patent/US20190296399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery.
  • the present invention relates to a secondary battery configured by wrapping an electrode assembly composed of a stack of electrode constituent layers with an exterior body.
  • the secondary battery includes at least a positive electrode, a negative electrode, and a separator between them.
  • the positive electrode is composed of a positive electrode material layer and a positive electrode current collector
  • the negative electrode is composed of a negative electrode material layer and a negative electrode current collector.
  • the secondary battery has a laminated structure in which electrode constituent layers composed of a positive electrode and a negative electrode sandwiching a separator are stacked on each other, and the electrode assembly having such a laminated structure is enclosed in an outer package together with an electrolyte.
  • Such a secondary battery can be repeatedly charged and discharged because it is a so-called “storage battery”, and is used in various applications.
  • secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.
  • secondary batteries are generally housed in a casing. That is, the secondary battery is arranged and used so as to partially occupy the internal space of the housing.
  • the inventor of the present application has found that there is a problem to be overcome in the conventional secondary battery, and has found that it is necessary to take measures for that. Specifically, the present inventors have found that there are the following problems.
  • the installation space of the secondary battery in the housing needs to consider the balance with other equipment elements such as circuit boards and various parts.
  • other equipment elements such as circuit boards and various parts.
  • the installation space of the secondary battery is more restricted by the casing and various elements accommodated therein, and the shape of the conventional secondary battery can sufficiently cope with it. It is gone.
  • the secondary battery is often used together with a substrate (for example, an electronic circuit substrate typified by a printed circuit board and a protection circuit board) in the housing.
  • a substrate for example, an electronic circuit substrate typified by a printed circuit board and a protection circuit board
  • the main object of the present invention is to provide a secondary battery particularly suitable for use in combination with a substrate.
  • the inventor of the present application tried to solve the above-mentioned problem by addressing in a new direction rather than responding on the extension of the prior art. As a result, the inventors have reached the invention of a secondary battery in which the main object is achieved.
  • the secondary battery according to the present invention is An electrode assembly in which an electrode constituent layer including a positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode is laminated, and a secondary battery having an exterior body that encloses the electrode assembly,
  • the electrode assembly has an assembly step composed of a relatively low level assembly low surface and a relatively high level assembly high surface, and the secondary battery has a relatively low level battery low surface. It has a battery step composed of a relatively high level battery high surface, The battery lower surface is a substrate placement surface with a margin of displacement between the assembly step and the battery step.
  • the secondary battery according to the present invention is a battery that is particularly suitable for combined use with a substrate. More specifically, the secondary battery of the present invention is a battery in which the lower surface of the battery due to the level difference can be used more effectively as the substrate placement surface.
  • Sectional drawing which showed the electrode structure layer typically (FIG. 1 (A): non-winding part, FIG. 1 (B): winding part)
  • the schematic diagram for demonstrating the secondary battery in which a notch part is contained in three-dimensional external shape as one Embodiment of this invention As an embodiment of the present invention, in order to explain “a dimensional relationship in which the positional deviation direction dimension of the assembly high surface is smaller than the difference between the maximum positional deviation direction dimension and the minimum positional deviation direction dimension in the contour shape of the electrode assembly” Schematic diagram of The top view which showed typically the process aspect of the manufacturing method regarding the secondary battery which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating producing an electrode assembly from a small piece shape and a large piece shape as one Embodiment of this invention Plan view schematically showing a process aspect in a conventional manufacturing method (prior art)
  • the direction of “thickness” described directly or indirectly in this specification is based on the stacking direction of the electrode material constituting the secondary battery, that is, “thickness” is in the stacking direction of the positive electrode and the negative electrode. Corresponds to the dimensions.
  • the “plan view” used in the present specification is based on a sketch when the object is viewed along the thickness direction.
  • vertical direction and horizontal direction used directly or indirectly in the present specification correspond to the vertical direction and horizontal direction in the drawing, respectively. Unless otherwise specified, the same symbols or symbols indicate the same members or the same meaning. In a preferable aspect, it can be understood that the downward direction in the vertical direction (that is, the direction in which gravity works) corresponds to the “down direction” and the reverse direction corresponds to the “up direction”.
  • a secondary battery In the present invention, a secondary battery is provided.
  • the “secondary battery” in the present specification refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery of the present invention is not excessively bound by its name, and for example, “electric storage device” can be included in the object.
  • the secondary battery according to the present invention includes an electrode assembly in which electrode configuration layers including a positive electrode, a negative electrode, and a separator are stacked.
  • 1A and 1B illustrate an electrode assembly 100 ′.
  • the positive electrode 1 and the negative electrode 2 are stacked via a separator 3 to form an electrode constituent layer 5, and at least one electrode constituent layer 5 is laminated to form an electrode assembly 100 ′.
  • the electrode configuration layer 5 has a planar laminated structure in which the electrode constituting layer 5 is laminated in a planar shape without being wound.
  • FIG. 1 (B) it has the winding laminated structure by which the electrode structure layer 5 was wound by the winding shape.
  • such an electrode assembly 100 ′ is enclosed in an exterior body together with an electrolyte (for example, a nonaqueous electrolyte).
  • an electrolyte for example, a nonaqueous electrolyte
  • the positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector.
  • a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material.
  • each of the plurality of positive electrodes in the electrode assembly may be provided with a positive electrode material layer on both surfaces of the positive electrode current collector, or may be provided with a positive electrode material layer only on one surface of the positive electrode current collector.
  • the positive electrode is preferably provided with a positive electrode material layer on both surfaces of the positive electrode current collector.
  • the negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector.
  • a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material.
  • each of the plurality of negative electrodes in the electrode assembly may be provided with a negative electrode material layer on both surfaces of the negative electrode current collector, or may be provided with a negative electrode material layer only on one surface of the negative electrode current collector.
  • the negative electrode is preferably provided with a negative electrode material layer on both sides of the negative electrode current collector.
  • the electrode active materials contained in the positive electrode and the negative electrode are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged.
  • the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions.
  • the secondary battery of the present invention corresponds to a so-called “lithium ion battery”, and the positive electrode and the negative electrode have layers capable of occluding and releasing lithium ions.
  • the positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer is also composed of, for example, a granular material, and it is preferable that a binder is included for more sufficient contact between the particles and shape retention, and transmission of electrons that promote the battery reaction.
  • the conductive support agent may be contained in the negative electrode material layer.
  • the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery of the present invention, such a lithium transition metal composite oxide is preferably included as a positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal.
  • positive electrode active material may be included as a single species, two or more types may be included in combination. Although it is only an illustration to the last, in the secondary battery of this invention, the positive electrode active material contained in a positive electrode material layer may be lithium cobaltate.
  • the binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • the binder of the positive electrode material layer may be polyvinylidene fluoride
  • the conductive additive of the positive electrode material layer may be carbon black.
  • the binder and conductive support agent of a positive electrode material layer may be a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of a negative electrode material layer may be artificial graphite.
  • the binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned.
  • the binder contained in the negative electrode material layer may be styrene butadiene rubber.
  • the conductive auxiliary agent that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer.
  • the negative electrode active material and the binder in the negative electrode material layer may be a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator used for the positive electrode and the negative electrode is a member provided from the viewpoint of preventing short circuit due to contact between the positive electrode and the negative electrode and maintaining the electrolyte.
  • the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
  • the surface of the separator may be covered with an inorganic particle coat layer, an adhesive layer, or the like.
  • the surface of the separator may have adhesiveness.
  • the separator is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles or the like having the same function.
  • an electrode assembly including an electrode constituent layer including a positive electrode, a negative electrode, and a separator is enclosed in an exterior together with an electrolyte.
  • the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte). preferable).
  • the electrolyte metal ions released from the electrodes (positive electrode and negative electrode) exist, and therefore, the electrolyte assists the movement of the metal ions in the battery reaction.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • the combination of cyclic carbonate and chain carbonate may be used as a non-aqueous electrolyte, for example, the mixture of ethylene carbonate and diethyl carbonate is used.
  • a Li salt such as LiPF 6 and / or LiBF 4 is preferably used as LiPF 6 and / or LiBF 4 is preferably used.
  • the outer package of the secondary battery encloses an electrode assembly in which electrode configuration layers including a positive electrode, a negative electrode, and a separator are laminated, but may have a hard case form or a soft case form. You may do it.
  • the exterior body may be a hard case type corresponding to a so-called “metal can” or a soft case type corresponding to a “pouch” made of a so-called laminate film.
  • a positive electrode material slurry is prepared.
  • the positive electrode material slurry is an electrode material layer raw material containing at least a positive electrode active material and a binder.
  • a positive electrode material slurry is applied to a metal sheet material (for example, aluminum foil) used as a positive electrode current collector, and subjected to rolling with a roll press.
  • a positive electrode precursor that is, an electrode precursor is obtained.
  • the metal sheet material preferably has a long strip shape, and the positive electrode material slurry is applied to such a long metal sheet.
  • the area to be applied is not the entire area of the long metal sheet, but the peripheral portion in the width direction of the metal sheet material (more specifically, the end portion in the direction orthogonal to the direction in which the cutting is sequentially performed). Is preferably not applied.
  • the obtained positive electrode precursor (especially a positive electrode precursor that is long in a band shape) is stored by being wound in a roll or the like as needed, or is appropriately transported until it is used in the next step. Then, in the next step, cutting out is performed to obtain a plurality of positive electrodes from the positive electrode precursor (if they are wound in a roll shape, they are expanded and cut out).
  • the positive electrode precursor is subjected to mechanical cutting to cut out the positive electrode from the positive electrode precursor (particularly, “part where the positive electrode material slurry is applied”).
  • mechanical cutting to cut out the positive electrode from the positive electrode precursor (particularly, “part where the positive electrode material slurry is applied”).
  • a so-called “punching operation” may be performed.
  • a plurality of desired positive electrodes can be obtained through the operations described above.
  • the production of the negative electrode is the same as the production of the positive electrode.
  • a negative electrode material slurry is prepared.
  • the negative electrode material slurry is an electrode material layer raw material containing at least a negative electrode active material and a binder.
  • Such negative electrode material slurry is applied to a metal sheet material (for example, copper foil) used as a negative electrode current collector, and is rolled by a roll press.
  • a negative electrode precursor that is, an electrode precursor is obtained.
  • the metal sheet material preferably has a long strip shape, and the negative electrode material slurry is applied to such a long metal sheet material.
  • the area to be applied is not the entire area of the long metal sheet material, but the peripheral portion in the width direction of the metal sheet material (more specifically, the end portion in the direction orthogonal to the direction in which cutting is performed sequentially), etc. It is preferable not to apply to. In one preferable aspect, it is preferable to apply the negative electrode material slurry in a similar long shape so as to be slightly smaller than the long metal sheet material.
  • the obtained negative electrode precursor (particularly, a long negative electrode precursor) is stored by being rolled into a roll or the like as needed until it is used in the next step, or is appropriately transported. Then, in the next step, cutting is performed to obtain a plurality of negative electrodes from the negative electrode precursor (when the material is wound in a roll shape, it is expanded and cut out).
  • the negative electrode is cut out from the negative electrode precursor (particularly, “part where the negative electrode material slurry is applied”) by subjecting the negative electrode precursor to mechanical cutting.
  • a so-called “punching operation” may be performed.
  • a plurality of desired negative electrodes can be obtained through the operations described above.
  • an electrolyte that will be responsible for ion transfer between the positive and negative electrodes when the battery is used.
  • a nonaqueous electrolyte is particularly prepared. Therefore, the raw material used as an electrolyte is mixed and a desired electrolyte is prepared.
  • the electrolyte may be a conventional electrolyte used in a conventional secondary battery, and therefore, the raw material may be one conventionally used in the production of a secondary battery.
  • the separator interposed between the positive electrode and the negative electrode may be a conventional separator, and therefore, a separator conventionally used as a secondary battery may be used.
  • the secondary battery can be obtained by integrally combining the positive electrode, the negative electrode, the electrolytic solution, and the separator prepared and prepared as described above.
  • a secondary battery can be obtained by stacking a plurality of positive electrodes and negative electrodes through a separator to form an electrode assembly and enclosing the electrode assembly together with an electrolyte in an exterior body.
  • the separator may be a laminate of sheets cut into sheets, or may be stacked in a ninety-nine shape and cut off excess. Furthermore, you may laminate
  • the secondary battery of the present invention is characterized by its contour design.
  • the present invention has a feature that the position design of the uneven step is suitably achieved by an electrode assembly and a secondary battery obtained by wrapping the electrode assembly with an exterior body.
  • the design of the step position between the electrode assembly in which the electrode constituent layers including the positive electrode, the negative electrode, and the separator between them are stacked and the secondary battery having an exterior body that wraps the electrode assembly is further improved. It is made suitable.
  • the secondary battery 100 of the present invention includes an electrode assembly 100 ′ having a relatively low level assembly low surface 160 ′ and a relatively high level assembly high surface 180 ′. And the secondary battery 100 has a battery step 190 composed of a relatively low level battery low surface 160 and a relatively high level battery high surface 180, The low surface 160 is a substrate placement surface with a margin of displacement between the assembly step 190 ′ and the battery step 190.
  • the “level” used in relation to the “step” refers to the height level of an object such as an electrode assembly or a secondary battery, and in particular, one main surface of each of the electrode assembly or the secondary battery (particularly, The height level is based on the bottom surface or the surface corresponding to the bottom surface.
  • the “relatively low level substrate placement surface used for the combined use with the substrate” takes into account the displacement of the installation position between the assembly step 190 ′ and the battery step 190. ing.
  • the surface (assembly lower surface 160 ′) that can be used as the substrate placement surface in the electrode assembly 100 ′ is more suitable as the substrate placement surface of the final secondary battery. Designed.
  • the “substrate placement surface” broadly means a surface of the outer surface of the battery on which the substrate can be placed, and in a narrow sense, the three-dimensional outer shape of the battery due to a step.
  • a low battery surface provided by being relatively low (preferably locally low), and a dead space between the battery and a board (for example, an electronic circuit board described later) installed in the housing. It means a low battery surface that can be deferred. Therefore, in the present invention, the secondary battery can also be provided as a battery assembly suitably used with the substrate.
  • the misalignment between the assembly step and the battery step is a misalignment in a plane perpendicular to the thickness direction of the electrode assembly / secondary battery.
  • the term “with a margin” means that the “substrate misalignment” is included in advance as a margin or a dead dimension to provide a substrate placement surface. That is, in the secondary battery of the present invention, not only the step position of the three-dimensional outer shape of the secondary battery but also the step position of the three-dimensional outer shape of the electrode assembly is provided with a battery lower surface serving as a substrate placement surface. ing.
  • the inventor of the present application has found that the exterior body of the secondary battery has a significant influence on the substrate arrangement surface.
  • the electrode assembly 100 ′ is finally wrapped in an exterior body to be a secondary battery 100, and the assembly step 190 ′ and the battery are caused by the exterior body.
  • a positional shift may occur between the step 190.
  • Such “positional displacement” was not particularly recognized by those skilled in the art in the first place, and was first noticed by the present inventor when designing the battery lower surface of the secondary battery due to the step as the substrate placement surface. It is.
  • the battery lower surface 160 is a substrate placement surface with a margin of misalignment between the assembly step 190 ′ and the battery step 190 so that the effective area as the substrate placement surface is not excessively reduced.
  • FIG. 4A shows an example in which the battery lower surface is designed without considering the positional deviation between the assembly step and the battery step as a margin.
  • FIG. 4B shows an example in which the battery lower surface 160 is suitably designed in consideration of the positional deviation between the assembly step 190 ′ and the battery step 190 as a margin.
  • FIG. 4A shows an example in which the battery lower surface is designed without considering the positional deviation between the assembly step and the battery step as a margin.
  • FIG. 4B shows an example in which the battery lower surface 160 is suitably designed in consideration of the positional deviation between the assembly step 190 ′ and the battery step 190 as a margin.
  • the surface that can be used as the substrate placement surface in the electrode assembly due to the “position shift” is excessively reduced due to the presence of the exterior body when the secondary battery is used.
  • the surface that can be used as the substrate placement surface in the electrode assembly due to the “position shift” is a secondary battery, it is not excessively reduced due to the presence of the outer package. That is, as shown in FIG. 4 (B), in the secondary battery in which the battery lower surface 160 is suitably designed in consideration of the positional deviation between the assembly step 190 ′ and the battery step 190 as a margin, there is an exterior body. Even if it does, the battery low surface 160 as a board
  • the battery lower surface 160 has a substrate placement surface with a margin of displacement between the assembly step 190 ′ and the battery step 190.
  • the surface shape of the battery lower surface 160 in plan view corresponds to a shape in which the dimension of the position shift direction of the surface shape of the assembly lower surface 160 ′ is slightly reduced.
  • the surface shape of the low surface 160 is a rectangle.
  • the substrate placement surface on which the substrate can be placed has a geometric shape (preferably a symmetrical geometric shape) such as a rectangular shape or a square shape.
  • the positional deviation between the assembly step 190 ′ and the battery step 190 is particularly caused by the exterior body. More specifically, the “positional displacement” is caused by the exterior body enclosing the electrode assembly, and in particular, by the “exterior body bent portion” positioned adjacent to the assembly step in the exterior body. ing.
  • the “exterior body bent portion” extends along the contour shape of the assembly step, but the exterior body is slightly at the top of the step and the bottom of the step. Can have a bulge, which can constitute a “misalignment” with the thickness of the outer package.
  • components such as separators may have a form protruding from the side surface, which also constitutes “positional deviation” together with the thickness of the exterior body. obtain.
  • the “assembly step 190 ′ and the battery step 190 The battery lower surface 160 is preferably provided as a “substrate placement surface with a positional deviation as a margin”.
  • the “positional displacement dimension between the assembly step 190 ′ and the battery step 190 (positional displacement dimension in plan view)” is preferably 1. It may be 5 to 50 times, more preferably 1.5 to 30 times, more preferably 1.5 to 20 times (for example, 1.5 to 10 times).
  • the battery lower surface 160 in which the positional deviation between the assembly step 190 ′ and the battery step 190 is preferably included as a margin is provided as a substrate placement surface.
  • the exterior body used for the secondary battery of the present invention may be a so-called laminate film. That is, the exterior body may be a soft case type corresponding to a “pouch”. Alternatively, the outer package used in the secondary battery of the present invention may be a hard case type corresponding to a so-called “metal can”. Typically, the thickness of the outer case of the soft case is smaller than the thickness of the outer case of the hard case, and in view of this point, in the secondary battery of the present invention, the “assembly step 190 ′ and the battery step 190 The “positional displacement dimension” can be relatively small when the exterior body is in the soft case mode as compared to the hard case mode, while the hard case mode can be relatively large compared to the soft case mode.
  • the thickness dimension and / or the soft characteristic can lead to a reduction in “positional deviation between the assembly step 190 ′ and the battery step 190” in the secondary battery of the present invention.
  • the exterior body in the soft case mode is a flexible pouch (soft bag body) preferably made of a soft sheet.
  • the flexible sheet is easy to bend and is preferably a plastic sheet.
  • Such a plastic sheet is a sheet that can be kept deformed by an external force when the force is removed after the external force is applied.
  • a so-called laminate film can be used for the flexible pouch.
  • a flexible pouch made of a laminate film can be obtained, for example, by superimposing two laminate films and heating the peripheral edge thereof.
  • a film in which a metal foil and a polymer film are laminated can be used.
  • a laminate film having a three-layer structure including an outer layer polymer film / metal foil / inner layer polymer film can be used.
  • the outer layer polymer film may be formed of a polymer such as polyamide and polyester, which contributes to preventing damage to the metal foil due to permeation and contact of moisture.
  • the metal foil is for preventing moisture and gas permeation, and is preferably a foil made of copper, aluminum, stainless steel, or the like.
  • the inner layer polymer film protects the metal foil from the electrolyte in the secondary battery, can contribute to melt sealing during heat sealing, and may be formed from polyolefin or acid-modified polyolefin.
  • the outer case thickness of the soft case may be in the range of 10 ⁇ m to 500 ⁇ m, for example, 40 ⁇ m to 100 ⁇ m.
  • the outer case in the hard case mode for example, one that is conventionally employed as the hard case outer case of a conventional secondary battery may be used.
  • the thickness of the hard case-type exterior body may be, for example, in the range of 60 ⁇ m to 2 mm, and is merely an example, but may be 80 ⁇ m to 800 ⁇ m.
  • the substrate that can be used with the present invention is particularly preferably an electronic circuit board. That is, the substrate that can be placed on the substrate placement surface may be in the category of so-called flexible substrates, or may be in the category of so-called rigid substrates. Moreover, as for another cut end, such a substrate may be a printed circuit board, a protection circuit board, a semiconductor substrate, a glass substrate, or the like.
  • the secondary battery of the present invention is used together with a protection circuit board for preventing the battery from being overfilled, overdischarged and / or overcurrent. It is the surface for the protection circuit board.
  • the main surface shape (for example, bottom surface shape) of such a substrate is substantially the same as the planar view shape of the substrate arrangement surface of the secondary battery, and is constituted by the secondary battery and the substrate of the present invention.
  • the substrate can be provided without protruding from the secondary battery (without protruding in the direction orthogonal to the stacking direction).
  • the present invention is particularly easy to understand in the case of a secondary battery in which a three-dimensional outer shape includes a notch. This will be described in detail below.
  • FIG. 5 A typical external appearance of the “secondary battery in which a three-dimensional external shape includes a notch” is shown in FIG.
  • the secondary battery 100 includes a notch in the entire outer shape thereof. Therefore, the electrode assembly 100 ′ also includes a notch.
  • “notched portion is included” means that, as shown in FIG. 5 (particularly in the lower bracket), the shape of the secondary battery / electrode assembly in plan view is based on a certain shape. This means that the shape is partially cut away.
  • the shape of the secondary battery / electrode assembly in plan view is based on a square / rectangular shape, but is partially cut away from the base (particularly, the square / rectangular corner portion of the base is It means that the shape is notched.
  • the difference between the peripheral line of the notch and the assembly step is “position” in plan view. It preferably corresponds to “deviation”. That is, as shown in the lower parenthesis in FIG. 3, it is preferable that the positional deviation between the assembly step 190 ′ and the battery step 190 in a plan view corresponds to the difference between the peripheral line of the notch and the assembly step. .
  • the “periphery line of the notch” here is, as can be seen from FIGS.
  • the outline of the portion corresponding to the notch in the outline with the secondary battery / electrode assembly in plan view (particularly, This means a contour line on the side substantially parallel to the extending direction of the step) or a virtual line obtained by extending the contour line.
  • FIG. 4 (A) shows a “mode in which the difference between the peripheral line (notched peripheral line) of the notch portion and the assembly step in the plan view corresponds to“ positional displacement ””.
  • FIG. It is an aspect not in such a condition.
  • the surface that can be used more widely as the substrate placement surface in the electrode assembly is more limited due to the “positional deviation between the assembly step and the battery step”, whereas in FIG. In (B), the surface that can be used more widely as the substrate placement surface is not limited by the “positional deviation between the assembly step and the battery step”. In other words, there is no “positional deviation” in the wide region in the shape of the secondary battery / electrode assembly in plan view, and therefore the surface that can be used more widely as a substrate placement surface (surface of the wide region) is not limited. .
  • the planar view outlines of the substrate arrangement surface are substantially all linear (more specifically, all sides constituting the outline are linear, for example, 4 constituting the outline. One side is straight).
  • the shape of the notch is rectangular in plan view, while the contour shape (contour shape in plan view) of the electrode assembly or the secondary battery is non-rectangular. It is preferable.
  • the “rectangular shape” means a shape that is normally included in a rectangular concept such as a square shape and a rectangular shape in which the cut shape (that is, a shape cut from the base shape) in a plan view. Therefore, “rectangular shape” indicates that a virtual cut-out shape in a plan view viewed from above in the thickness direction corresponds to a substantially square or a substantially rectangular shape.
  • non-rectangular shape refers to a shape that is not normally included in the concept of a rectangular shape such as a square shape and a rectangular shape in plan view. It refers to the shape lacking part. Therefore, in a broad sense, “non-rectangular shape” refers to a shape that is not square or rectangular when viewed from above in the thickness direction, and in a narrow sense, the shape in plan view is based on a square or rectangle. However, it is a partial cutout shape (preferably a shape in which a corner portion of a square / rectangular base is cut out) (see FIG. 5).
  • non-rectangular shape is based on a square / rectangular shape of an electrode assembly or a secondary battery in a plan view, and a square, rectangle, semi-circle, semi-ellipse having a plan view size smaller than the base shape.
  • a shape obtained by cutting out a part of a shape, a circle or an ellipse, or a combination thereof from the base shape may be used.
  • the shape of the cut-out portion in plan view is rectangular, while the shape of the electrode assembly or the secondary battery in non-rectangular shape in plan view is non-rectangular. This can contribute to the fact that the lower surface of the battery resulting from the step is provided more widely as a substrate arrangement surface.
  • the lower surface of the battery resulting from the step as described above is provided more widely as the substrate placement surface (ie, However, the lower surface of the battery is a substrate arrangement surface with a margin of positional deviation between the assembly step and the battery step).
  • the dimension in the direction of “positional deviation” in the plan view is the dimension of the positional deviation direction
  • the position of the assembly high surface is larger than the difference between the maximum positional deviation direction dimension and the minimum positional deviation direction dimension in the contour shape of the electrode assembly.
  • the dimension in the displacement direction is small (see FIG. 6). More specifically, as shown on the lower side of FIG.
  • the difference between the difference between the minimum dimension L and the minimum dimension L is the same as that of the high surface 180 ′ of the assembly high surface 180 ′ when viewed along the direction of “positional deviation”.
  • the latter is smaller than the former. Yes. That is, (L maximum ⁇ L minimum )> 1 height .
  • the lower surface of the battery caused by the step can be provided as a wider substrate arrangement surface because of having such a dimensional relationship.
  • the area of the height of the assembly is smaller than the area of the notch in plan view. More specifically, as shown in FIG. 5, when the planar view area of the assembly high surface 180 ′ is “S 1 ” and the planar view area of the notch is “S 2 ”, S 1 ⁇ S 2 . It is preferable. Such characteristics may be particularly relevant to a method for manufacturing a secondary battery.
  • FIG. 3 a typical manufacturing method for obtaining the electrode assembly / secondary battery shown in FIG. 3, FIG. 4 (B) and FIG. 5 will be described in detail.
  • Such a manufacturing method is characterized by a method for producing an electrode, and particularly has a feature in cutting out a plurality of electrodes when producing at least one of a positive electrode and a negative electrode.
  • a method for producing an electrode and particularly has a feature in cutting out a plurality of electrodes when producing at least one of a positive electrode and a negative electrode.
  • at least one of the positive electrode and the negative electrode is formed by forming the electrode material layer 20 on the metal sheet material 10 serving as the electrode current collector to obtain the electrode precursor 30.
  • a plurality of cuts from the electrode precursor 30 to form electrodes, and the plurality of cut-out shapes include a relatively small small piece 42 and a relatively large large piece 47;
  • a pair shape consisting of
  • the “paired shape” here means a combination of two adjacent shapes in a plan view in a broad sense, and adjacent to each other in a plan view seen from above in the thickness direction in a narrow sense. It means a combination (“pair”) of a relatively small shape (“small piece”) and a relatively large shape (“large piece”). Therefore, a combination of two large and small shapes positioned side by side among a plurality of cut shapes in plan view as shown in FIG. 7 corresponds to a “pair shape”.
  • a plurality of electrodes are cut out so as to include at least one paired shape consisting of “a relatively small piece” and “a relatively large piece”.
  • the term “relatively large large piece” as used herein means a cutout shape having a relatively large area among the above-mentioned paired shapes in plan view.
  • the “relatively small piece” means a cutout shape having a relatively small area among the above-described paired shapes in plan view.
  • the area of the small piece shape in planar view may be 3/4 or less of the area of a large piece shape, for example, may be half or less.
  • the “relatively small piece 42” and the “relatively large piece 47” forming a pair have complementary shapes. That is, it preferably has a planar shape such that the small piece 42 and the large piece 47 complement each other in plan view.
  • “having a complementary shape” here means having a shape in which the portions facing each other in a small piece outline and a large piece outline in a plan view substantially overlap each other. Yes. More specifically, the “substantially overlapping shape” means that a small piece outline can be substantially included in a large piece outline portion of the outline portions facing each other in plan view.
  • the positive electrode it is preferable to cut out from the positive electrode precursor so that the small piece 42 and the large piece 47 that form a pair with respect to the cut shape of the plurality of positive electrodes are complementary to each other.
  • the negative electrode precursor it is preferable to cut out from the negative electrode precursor so that the small piece 42 and the large piece 47 which form a pair with respect to the cut shape of a plurality of negative electrodes are complementary to each other.
  • the complementary relationship is continuous in the longitudinal direction of the electrode precursor 30 (that is, the longitudinal direction of the metal sheet material 10).
  • the “relatively small piece 42” forming a pair shape is rectangular, while the “relatively large piece 47” is non-rectangular.
  • the term “rectangular shape” as used herein means a shape that is normally included in the concept of a rectangular shape such as a square shape and a rectangular shape when the cut shape in a plan view (that is, the shape cut out as an electrode from the electrode precursor). Therefore, the “rectangular shape” indicates that the cut-out shape (electrode shape) in a plan view as viewed from above in the thickness direction is a substantially square or a substantially rectangular shape.
  • non-rectangular shape refers to a shape that is not normally included in the concept of a rectangular shape such as a square shape and a rectangular shape when the cut shape in a plan view (that is, a shape cut out as an electrode from the electrode precursor). In particular, it refers to a shape partially lacking from such a square or rectangle. Therefore, in a broad sense, “non-rectangular” refers to a shape in which the cut-out shape (electrode shape) in plan view as viewed from above in the thickness direction is not square or rectangular, and in a narrow sense, electrode shape in plan view.
  • non-rectangular shape is based on a square / rectangular shape of an electrode in plan view, and is a square, rectangular, semicircular, semi-elliptical, or circular / elliptical one having a size smaller than the base shape. It may be a shape obtained by cutting out at least one portion or a combination shape thereof from the base shape (particularly a shape obtained by cutting out from a corner portion of the base shape).
  • the area of the assembly high surface is larger than the area of the notch in plan view. Get smaller. That is, the “area of the assembly high surface” corresponds to the area of the small piece 42 in the above manufacturing method, and the “notch” is used for cutting out the small piece 42 in the electrode precursor 30 of FIG. Since it corresponds to a region, the former (the area of the assembly high surface) is smaller than the latter (the area of the notch).
  • the bottom surface (that is, the lowermost surface) of the electrode assembly 100 ′ corresponds to the step size of the assembly step 190 ′.
  • This can be attributed to the electrode assembly 100 'being constructed using a pair of small pieces 42 and large pieces 47, respectively. That is, as shown in FIG. 8, when the electrode assembly 100 ′ is manufactured from the large piece laminate 47 ′ constituted by the large pieces 47 and the small piece laminate 42 ′ constituted by the small pieces 42, the small pieces used are produced. 42 and the large piece 47 can be the same number or substantially the same number due to “pairs”.
  • the thickness of the large piece laminate 47 ′ and the thickness of the small piece laminate 42 ′ can be substantially the same.
  • the level difference between the bottom surface of 'and the assembly lower surface 160' may correspond to the step size of the assembly step 190 '.
  • “the level difference corresponds to the step size” means that one of the level difference and the step size falls within ⁇ 10% of the other.
  • a so-called “double-sided positive electrode” (a positive electrode in which a positive electrode material layer is provided on both sides of the positive electrode current collector) cannot be positioned. It is desirable.
  • the “positional displacement dimension” is, for example, 0.5 mm. It can be 5 mm or less. That is, although it is only an example, in the secondary battery, the “positional displacement dimension between the assembly step 190 ′ and the battery step 190 (positional displacement dimension in plan view)” may be in the range of 0.5 mm to 5 mm. This is because a secondary battery suitably designed in consideration of a range of 0.5 mm or more and 5 mm or less where the battery lower surface 160 is a positional deviation dimension between the assembly step 190 ′ and the battery step 190 is a margin of the present invention. It is meant to be served.
  • the secondary battery of the present invention can be used in various fields where power storage is assumed.
  • secondary batteries are used in the electrical / information / communication field where mobile devices are used (for example, mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers and electronic paper).
  • Mobile equipment household / small industrial applications (eg, power tools, golf carts, household / nursing / industrial robots), large industrial applications (eg, forklifts, elevators, bay harbor cranes), transportation System fields (for example, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.), power system applications (for example, various power generation, road conditioners, smart grids, general home-installed energy storage systems) ), IoT field, space and deep sea applications (eg space probe) It can be used, such as in the field), such as diving research vessel.
  • household / small industrial applications eg, power tools, golf carts, household / nursing / industrial robots
  • large industrial applications eg, forklifts, elevators, bay harbor cranes
  • transportation System fields for example, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.
  • power system applications for example, various power generation, road conditioners, smart grids, general home-installed energy storage systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

基板との併用設置に特に好適な二次電池が提供される。本発明の二次電池は、正極、負極およびセパレータから成る電極構成層が積層した電極組立体、ならびに、かかる電極組立体を包み込む外装体を有して成る。本発明の二次電池では、電極組立体が相対的に低いレベルの組立体低面と相対的に高いレベルの組立体高面とから構成された組立体段差を有すると共に、二次電池が相対的に低いレベルの電池低面と相対的に高いレベルの電池高面とから構成された電池段差を有しており、電池低面が組立体段差と電池段差との位置ずれをマージンとした基板配置面となっている。

Description

二次電池
 本発明は二次電池に関する。特に、電極構成層の積層から成る電極組立体が外装体で包まれて構成された二次電池に関する。
 二次電池は、正極、負極およびそれらの間のセパレータから少なくとも構成されている。正極は正極材層および正極集電体から構成され、負極は負極材層および負極集電体から構成されている。二次電池は、セパレータを挟み込んだ正極および負極から成る電極構成層が互いに積み重なった積層構造を有しており、かかる積層構造の電極組立体が電解質と共に外装体内に封入されている。
 このような二次電池は、いわゆる“蓄電池”ゆえ充電・放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。
 モバイル機器などを含め種々の用途では、二次電池は一般に筐体内に収められて使用される。つまり、筐体の内部空間を部分的に占めるように二次電池が配置されて使用される。
特表2015-536036号公報
 本願発明者は、従前の二次電池では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。
 筐体内において二次電池の設置スペースは回路基板および各種部品などの他の機器要素との兼ね合いを考慮する必要がある。特に、近年のニーズの多様化に伴って、筐体およびその内部に収める種々の要素によって二次電池の設置スペースがより制限を受ける傾向があり、従前の二次電池の形状では十分に対応できなくなってきている。
 特に、二次電池は、筐体内において基板(例えば、プリント基板および保護回路基板などに代表される電子回路基板)と共に使用されることが多い。かかる基板と二次電池との併用設置には、設置スペースの有効活用の観点から二次電池の形状を凹凸状にすることが考えられるが、単に凹凸状にしただけでは、必ずしも効率的な併用設置とならないことを本願発明者は見出した。
 本発明はかかる課題に鑑みて為されたものである。即ち、本発明の主たる目的は、基板との併用設置に特に好適な二次電池を提供することである。
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された二次電池の発明に至った。
 本発明に係る二次電池は、
 正極、負極および当該正極と負極との間のセパレータを含む電極構成層が積層した電極組立体、ならびに、電極組立体を包み込む外装体を有して成る二次電池であって、
 電極組立体が相対的に低いレベルの組立体低面と相対的に高いレベルの組立体高面とから構成された組立体段差を有すると共に、二次電池が相対的に低いレベルの電池低面と相対的に高いレベルの電池高面とから構成された電池段差を有し、
 電池低面が、組立体段差と電池段差との位置ずれをマージンとした基板配置面となっていることを特徴とする。
 本発明に係る二次電池は、基板との併用設置に特に好適な電池となっている。より具体的には、本発明の二次電池は、段差に起因した電池低面が基板配置面としてより有効に利用可能になった電池となっている。
電極構成層を模式的に示した断面図(図1(A):非巻回状部、図1(B):巻回状部) 本発明の一実施形態に係る二次電池(切欠き無しの三次元外形)の特徴を模式的に示した斜視図および断面視・平面視図 本発明の一実施形態に係る二次電池(切欠き有りの三次元外形)の特徴を模式的に示した斜視図および断面視・平面視図 本発明の一実施形態として電極組立体の段差と電池段差との位置ずれに起因した基板配置面の有効面積を説明するための模式図 本発明の一実施形態として三次元的外形に切欠部が含まれる二次電池を説明するための模式図 本発明の一実施形態として「電極組立体の輪郭形状における最大位置ずれ方向寸法と最小位置ずれ方向寸法との差よりも組立体高面の位置ずれ方向寸法が小さくなった寸法関係」を説明するための模式図 本発明の一実施形態に係る二次電池に関する製造方法のプロセス態様を模式的に示した平面図 本発明の一実施形態として小片形と大片形とから電極組立体を作製することを説明するための模式図 従前の製造方法におけるプロセス態様を模式的に示した平面図(従来技術)
 以下では、本発明の一実施形態に係る二次電池をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
 本明細書で直接的または間接的に説明される“厚み”の方向は、二次電池を構成する電極材の積層方向に基づいており、即ち、“厚み”は正極と負極との積層方向における寸法に相当する。本明細書で用いる「平面視」とは、かかる厚みの方向に沿って対象物をみた場合の見取図に基づいている。
 また、本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。
[本発明の二次電池の構成]
 本発明では二次電池が提供される。本明細書でいう「二次電池」とは、充電・放電の繰り返しが可能な電池のことを指している。従って、本発明の二次電池は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども対象に含まれ得る。
(電池の基本構成)
 本発明に係る二次電池は、正極、負極及びセパレータを含む電極構成層が積層した電極組立体を有して成る。図1(A)および1(B)には電極組立体100’を例示している。図示されるように、正極1と負極2とはセパレータ3を介して積み重なって電極構成層5を成しており、かかる電極構成層5が少なくとも1つ以上積層して電極組立体100’が構成されている。図1(A)では、電極構成層5が巻回されずに平面状に積層した平面積層構造を有している。一方、図1(B)では、電極構成層5が巻回状に巻かれた巻回積層構造を有している。二次電池ではこのような電極組立体100’が電解質(例えば非水電解質)と共に外装体に封入されている。
 正極は、少なくとも正極材層および正極集電体から構成されている。正極では正極集電体の少なくとも片面に正極材層が設けられており、正極材層には電極活物質として正極活物質が含まれている。例えば、電極組立体における複数の正極は、それぞれ、正極集電体の両面に正極材層が設けられていてよいし、あるいは、正極集電体の片面にのみ正極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば正極は正極集電体の両面に正極材層が設けられていることが好ましい。
 負極は、少なくとも負極材層および負極集電体から構成されている。負極では負極集電体の少なくとも片面に負極材層が設けられており、負極材層には電極活物質として負極活物質が含まれている。例えば、電極組立体における複数の負極は、それぞれ、負極集電体の両面に負極材層が設けられていてよいし、あるいは、負極集電体の片面にのみ負極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば負極は負極集電体の両面に負極材層が設けられていることが好ましい。
 正極および負極に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていることが好ましい。充放電にリチウムイオンが関与する場合、本発明の二次電池は、いわゆる“リチウムイオン電池”に相当し、正極および負極がリチウムイオンを吸蔵放出可能な層を有している。
 正極材層の正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質もまた例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本発明の二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。あくまでも例示にすぎないが、本発明の二次電池では、正極材層に含まれる正極活物質がコバルト酸リチウムとなっていてよい。
 正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。例えば、正極材層のバインダーはポリフッ化ビニリデンであってよく、また、正極材層の導電助剤はカーボンブラックであってよい。あくまでも例示にすぎないが、正極材層のバインダーおよび導電助剤は、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっていてよい。
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。あくまでも例示にすぎないが、本発明の二次電池では、負極材層の負極活物質が人造黒鉛となっていてよい。
 負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば、負極材層に含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。
 あくまでも例示にすぎないが、負極材層における負極活物質およびバインダーは人造黒鉛とスチレンブタジエンゴムとの組合せになっていてよい。
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。
 正極および負極に用いられるセパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極と間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面が無機粒子コート層や接着層等により覆われていてもよい。セパレータの表面が接着性を有していてもよい。なお、本発明において、セパレータは、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。
 本発明の二次電池では、正極、負極およびセパレータを含む電極構成層から成る電極組立体が電解質と共に外装に封入されている。正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質・有機溶媒などの“非水系”の電解質であることが好ましい(すなわち、電解質が非水電解質となっていることが好ましい)。電解質では電極(正極・負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。また、具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩が好ましく用いられる。
 二次電池の外装体は、正極、負極及びセパレータを含む電極構成層が積層した電極組立体を包み込むものであるが、ハードケースの形態を有していてよく、あるいは、ソフトケースの形態を有していてもよい。具体的には、外装体は、いわゆる“金属缶”に相当するハードケース型であってよく、あるいは、いわゆるラミネートフィルムから成る“パウチ”に相当するソフトケース型であってもよい。
(基本的な電池製造)
 本発明の二次電池に係る基本的な電池製法について説明する。二次電池の製法では、正極、負極、電解液およびセパレータをそれぞれに作製・調製した後(必要に応じて市販品から調達してもよい)、それらを一体化して組み合わせることで二次電池を得ることができる。
 正極の作製では、まず、正極材スラリーを調製する。正極材スラリーは、正極活物質およびバインダーを少なくとも含む電極材層原料である。かかる正極材スラリーを正極集電体として用いられる金属シート材(例えば、アルミニウム箔)に塗布し、ロールプレス機で圧延に付す。これにより、正極前駆体、すなわち、電極前駆体が得られる。特に、金属シート材は、帯状に長い形状を有していることが好ましく、そのような長尺状の金属シートに対して正極材スラリーを塗布する。塗布するエリアは、長尺状の金属シートの全領域ではなく、金属シート材の両幅方向の周縁部分(より具体的には、切出しが逐次行われる方向に直交する方向における端部分)などには塗布しないことが好ましい。ある1つの好適な態様では、長尺状の金属シート材よりもひとまわり小さくなるように正極材スラリーを同様の長尺状に塗布することが好ましい。得られる正極前駆体(特に帯状に長い正極前駆体)は、次工程に供されるまで、必要に応じてロール状に巻かれるなどして保管されたり、適宜運搬などに付されたりする。そして、次工程では、正極前駆体から複数の正極を得るべく切り出しが行われる(ロール状に巻かれていた場合では展開して切り出しが行われる)。例えば、正極前駆体を機械的な切断に付すことによって正極前駆体(特に「正極材スラリーが塗布された部分」)から正極の切出しを行う。あくまでも例示にすぎないが、いわゆる“打ち抜き操作”を行ってよい。以上のような操作を経ることによって、所望の正極を複数得ることができる。
 負極の作製は、正極の作製と同様である。負極の作製では、まず、負極材スラリーを調製する。負極材スラリーは、負極活物質およびバインダーを少なくとも含む電極材層原料である。かかる負極材スラリーを負極集電体として用いられる金属シート材(例えば銅箔)に塗布し、ロールプレス機で圧延する。これにより、負極前駆体、すなわち、電極前駆体が得られる。特に、金属シート材は、帯状に長い形状を有していることが好ましく、そのような長尺状の金属シート材に対して負極材スラリーを塗布する。塗布するエリアは、長尺状の金属シート材の全領域ではなく、金属シート材の両幅方向の周縁部分(より具体的には、切出しが逐次行われる方向に直交する方向における端部分)などには塗布しないことが好ましい。ある1つの好適な態様では、長尺状の金属シート材よりもひとまわり小さくなるように負極材スラリーを同様の長尺状に塗布することが好ましい。得られる負極前駆体(特に帯状に長い負極前駆体)は、次工程に供されるまで、必要に応じてロール状に丸められるなどして保管されたり、適宜運搬などに付されたりする。そして、次工程では、負極前駆体から複数の負極を得るべく切り出しが行われる(ロール状に巻かれていた場合では展開して切り出しが行われる)。例えば、負極前駆体を機械的な切断に付すことによって負極前駆体(特に「負極材スラリーが塗布された部分」)から負極の切出しを行う。あくまでも例示にすぎないが、いわゆる“打ち抜き操作”を行ってよい。以上のような操作を経ることによって、所望の負極を複数得ることができる。
 電池使用時にて正極・負極間のイオン移動を担うことになる電解質を調製する。リチウムイオン電池の場合、特に非水電解質を調製する。よって、電解質となる原料を混合して所望の電解質を調製する。なお、電解質は常套の二次電池に使用される常套的な電解質であってよく、それゆえ、その原料も二次電池の製造に常套的に使用されるものを用いてよい。
 正極と負極との間に介在させるセパレータは常套的なものであってよく、それゆえ、二次電池として常套的に使用されるものを用いてよい。
 二次電池は、以上のように作製・調製された正極、負極、電解液およびセパレータを一体的に組み合わせることによって得ることができる。特に、正極と負極とはセパレータを介して複数積み重ねて電極組立体を形成し、かかる電極組立体を電解質と共に外装体に封入することによって二次電池を得ることができる。なお、セパレータは枚葉にカットしたものを積層してよいし、あるいは、九十九状に積層して余剰分をカットしたものでもよい。更には電極をセパレータで個装したものを積層してもよい。
[本発明の二次電池の特徴]
 本発明の二次電池は、その凹凸の外形設計に特徴を有している。特に、本発明は、電極組立体とそれを外装体で包み込んで得られる二次電池とで凹凸段差の位置設計が好適に図られた特徴を有している。つまり、正極、負極およびそれらの間のセパレータを含む電極構成層が積層した電極組立体と、かかる電極組立体を包み込む外装体を有して成る二次電池との間において段差位置の設計がより好適になされている。
 図2および図3に示すように、本発明の二次電池100は、電極組立体100’が相対的に低いレベルの組立体低面160’と相対的に高いレベルの組立体高面180’とから成る組立体段差190’を有すると共に、二次電池100が相対的に低いレベルの電池低面160と相対的に高いレベルの電池高面180とから成る電池段差190を有しており、電池低面160が、組立体段差190’と電池段差190との位置ずれをマージンとした基板配置面となっている。
 “段差”に関連して用いる「レベル」とは、電極組立体または二次電池といった対象物の高さレベルを指しており、特に電極組立体または二次電池のそれぞれの一方の主面(特に底面ないしは下面に相当する面)を基準とした高さレベルを指している。
 本発明の二次電池においては「基板との併用設置に用いられる相対的に低い低レベルの基板配置面」が組立体段差190’と電池段差190との設置位置のずれを考慮したものとなっている。換言すれば、本発明では、電極組立体100’において基板配置面として利用でき得る面(組立体低面160’)が最終的な二次電池の基板配置面としてより好適なものとなるように設計されている。
 本明細書でいう「基板配置面」とは、広義には、電池の外面のうち基板を据え置くことができる面を意味しており、狭義には、段差に起因して電池の三次元外形が相対的に低く(好ましくは局所的に低く)なることでもたらされた電池低面であって、電池と共に筐体内に設置される基板(例えば、後述する電子回路基板)との間でデットスペースを減じるように据え置くことができる電池低面を意味している。したがって、本発明では、二次電池は基板と共に好適に用いられる電池組合体としても供され得る。
 ここで、本発明の二次電池において組立体段差と電池段差との位置ずれは、電極組立体・二次電池の厚み方向に直交する面における位置ずれであるところ、本発明にいう「位置ずれをマージンとした」とは、そのような“位置ずれ”を余裕代あるいはデット寸法として予め含めて基板配置面を設けることを意味している。つまり、本発明の二次電池では、単に二次電池の三次元外形の段差位置だけでなく、電極組立体の三次元外形の段差位置までも考慮して基板配置面となる電池低面を設けている。
 本願発明者は、特に二次電池の外装体が基板配置面に有意に影響を及ぼすことになることを見出した。図2および図3に示されるように、電極組立体100’は、最終的には外装体に包まれて二次電池100とされるところ、外装体に起因して組立体段差190’と電池段差190との間では位置ずれが生じ得る。このような“位置ずれ”は、そもそも当業者に特に意識されていたものでなく、段差に起因する二次電池の電池低面を基板配置面として設計するに際して初めて本願発明者によって着目されたものである。
 特に本発明では、基板配置面としての有効面積が過度に減じられないように、電池低面160が組立体段差190’と電池段差190との位置ずれをマージンとした基板配置面となっている。基板配置面としての有効面積が過度に減じられる態様を図4を例に挙げて説明する。図4(A)には電池低面が組立体段差と電池段差との位置ずれをマージンとして考慮せずに設計した一例を示す。一方、図4(B)には電池低面160が組立体段差190’と電池段差190との位置ずれをマージンとして考慮して好適に設計した一例を示す。図4(A)では“位置ずれ”に起因して電極組立体において基板配置面として利用でき得る面が二次電池とした場合に外装体の存在で過度に減じられている一方、図4(B)では“位置ずれ”に起因して電極組立体において基板配置面として利用でき得る面が二次電池とした場合でも外装体の存在で過度に減じられていない。つまり、図4(B)に示す如く、電池低面160が組立体段差190’と電池段差190との位置ずれをマージンとして考慮して好適に設計された二次電池においては、外装体が存在したとしても基板配置面としての電池低面160が過度に制限されず、段差に起因した電池低面160を基板配置面としてより広く供すことができる。
 図3、図4(A)および図4(B)を参照して分かるように、「電池低面160が、組立体段差190’と電池段差190との位置ずれをマージンとした基板配置面となっている二次電池」においては、平面視における電池低面160の面形状は、組立体低面160’の面形状の位置ずれ方向寸法が僅かに減じられた形状に相当し、好ましくは電池低面160の面形状が矩形となっている。換言すれば、基板を据え置くことができる基板配置面が矩形状または正方形状などの幾何学的形状(好ましくは対称的な幾何学的形状)を有している。
 本発明の二次電池は、組立体段差190’と電池段差190との位置ずれが特に外装体に起因する。より具体的には、“位置ずれ”は電極組立体を包み込んでいる外装体に起因しており、特にその外装体の中でも組立体段差に隣接して位置付けられる“外装体屈曲部分”に起因している。
 図2および図3の括弧内の断面視に示す如く、かかる“外装体屈曲部分”は、組立体段差の輪郭形状に沿うように延在するものの、段差頂部および段差最下部では外装体が僅かな膨らみを有し得、それが、外装体の厚みと共に“位置ずれ”を構成し得る。また、電極構成層が平面状に積層した平面積層構造の電極組立体ではセパレータなどの構成要素が側面から突出した形態を有する場合があり、それも外装体の厚みと共に“位置ずれ”を構成し得る。それゆえ、本発明の二次電池では、そのような“外装体屈曲部分”および/または“組立体構成要素の側方突出”などを考慮して「組立体段差190’と電池段差190との位置ずれをマージンとした基板配置面」として電池低面160が好ましく設けられている。
 より具体的にいえば、本発明の二次電池において「組立体段差190’と電池段差190との位置ずれの寸法(平面視における位置ずれ寸法)」は、好ましくは外装体の厚みの1.5倍以上50倍以下、より好ましくは1.5倍以上30倍以下、より好ましくは1.5倍以上20倍以下(例えば、1.5倍以上10倍以下)であってよい。これにより、組立体段差190’と電池段差190との位置ずれがマージンとして好適に含まれた電池低面160が基板配置面として供される。
 本発明の二次電池に用いられる外装体は、いわゆるラミネートフィルムから成るものであってよい。つまり、外装体は“パウチ”に相当するソフトケース型であってもよい。あるいは、本発明の二次電池に用いられる外装体は、いわゆる“金属缶”に相当するハードケース型であってもよい。典型的にはソフトケース態様の外装体の厚みはハードケース態様の外装体の厚みよりも小さいので、その点に鑑みれば本発明の二次電池において「組立体段差190’と電池段差190との位置ずれの寸法」は、外装体がソフトケース態様の場合がハードケース態様と比べて相対的に小さくなり得る一方、ハードケース態様がソフトケース態様と比べて相対的に大きくなり得る。
 ソフトケース態様の外装体についていえば、その厚み寸法および/または軟質特性は、本発明の二次電池において「組立体段差190’と電池段差190との位置ずれの寸法」の低減につながり得る。より具体的には、ソフトケース態様の外装体は、好ましくは軟質シートから構成されるフレキシブルパウチ(軟質袋体)である。軟質シートは、折り曲げ易く、好ましくは可塑性シートである。かかる可塑性シートは、外力を付与した後に除力すると、外力による変形が維持され得るシートである。例えば、いわゆるラミネートフィルムがフレキシブルパウチに利用され得る。ラミネートフィルムから成るフレキシブルパウチは、例えば2枚のラミネートフィルムを重ね合わせ、その周縁部を加熱処理することにより得られる。ラミネートフィルムとして金属箔とポリマーフィルムとを積層したフィルムを用いることができ、例えば外側層ポリマーフィルム/金属箔/内側層ポリマーフィルムから成る3層構成のラミネートフィルムを用いることができる。外側層ポリマーフィルムは水分などの透過および接触などによる金属箔の損傷を防止に資するところ、ポリアミドおよびポリエステルなどのポリマーから形成されていてよい。金属箔は水分およびガスの透過を防止するためのものであり、銅、アルミニウムおよびステンレスなどから成る箔であることが好ましい。そして、内側層ポリマーフィルムは、二次電池において電解質から金属箔を保護するとともに、ヒートシール時の溶融封止に寄与し得、ポリオレフィンまたは酸変性ポリオレフィンから形成されていよい。ソフトケース態様の外装体厚さは10μm以上500μm以下の範囲であり得、例えば40μm以上100μm以下である。これに対して、ハードケース態様の外装体についていえば、例えば、常套の二次電池のハードケース外装体として常套的に採用されているものを用いてよい。ハードケース態様の外装体の厚さは、例えば60μm以上2mm以下の範囲であり得、あくまでも1つの例示にすぎないが80μm以上800μm以下であり得る。
 本発明と共に用いられ得る基板、すなわち、基板配置面に据え置くことができる基板は、特に電子回路基板が好ましい。つまり、基板配置面に据え置くことができる基板は、いわゆるフレキシブル基板の範疇に入るものであってもよいし、あるいは、いわゆるリジット基板の範疇に入るものであってもよい。また、別の切り口でいえば、そのような基板は、プリント基板、保護回路基板、半導体基板、ガラス基板などであってよい。ある好適な態様では、本発明の二次電池は、その電池の過充填、過放電および/または過電流を防止するための保護回路基板とともに用いられ、それゆえ、“基板配置面”は、かかる保護回路基板のための面となっている。好ましくは、そのような基板の主面形状(例えば底面形状)と二次電池の基板配置面の平面視形状とは略同じになっており、本発明の二次電池と基板とから構成される電池組合体では基板を二次電池からはみ出さずに(積層方向と直交する方向にはみ出さずに)設けることができる。
 本発明は、三次元的外形に切欠部が含まれる二次電池の場合に特に効果を理解し易い。以下これについて詳述する。
 「三次元的外形に切欠部が含まれる二次電池」の典型的な外観態様は図3に示されている。図示されるように、かかる二次電池100は、その全体外形に切欠部が含まれており、それゆえ、電極組立体100’としても同様に切欠部が含まれている。ここでいう「切欠部が含まれている」とは、図5(特に下側括弧内)に示すように、平面視の二次電池・電極組立体の形状がある形状をベースにつつ、それから部分的に一部切欠いた形状となっていることを意味している。例えば、図示するように、二次電池・電極組立体の平面視形状が正方形・長方形をベースにしつつも、それから部分的に一部切欠いた形状(特に、そのベースの正方形・長方形のコーナー部分が切欠かれた形状)となっていることを意味している。
 このような態様の二次電池の場合(すなわち「二次電池の全体外形に切欠部が含まれる態様」の場合)、平面視にて切欠部の周縁ラインと組立体段差との差が“位置ずれ”に相当していることが好ましい。つまり、図3の下側括弧内に示すように、平面視において組立体段差190’と電池段差190との位置ずれが、切欠部の周縁ラインと組立体段差との差に相当することが好ましい。ここでいう「切欠部の周縁ライン」とは、図3および図5から分かるように、平面視において二次電池・電極組立体との輪郭のうち切欠部に相当する部分の輪郭線(特に、段差の延在方向と略平行する側の輪郭線)又はその輪郭線を延長をした仮想線を意味している。
 平面視において切欠部の周縁ラインと組立体段差との差が“位置ずれ”に相当すると、外装体が最終的に存在したとしても基板配置面としての電池低面が過度に制限されなくなり、段差に起因した電池低面を基板配置面としてより広く供すことができる。これは図4(A)と図4(B)とを比べると良く理解することができる。図4(B)は「平面視において切欠部の周縁ライン(切欠周縁ライン)と組立体段差との差が“位置ずれ”に相当する態様」となっており、図4(A)は、そのような条件にない態様である。図4(A)では、電極組立体において基板配置面としてより広く利用でき得る面が「組立体段差と電池段差との位置ずれ」に起因してより制限されているのに対して、図4(B)では、そのように基板配置面としてより広く利用でき得る面が「組立体段差と電池段差との位置ずれ」によっては制限されていない。つまり、平面視の二次電池・電極組立体の形状における幅広領域に“位置ずれ”が存在せず、それゆえ、基板配置面としてより広く利用できる面(幅広領域の面)が制限されていない。図4(B)に示すように、かかる基板配置面の平面視輪郭部は実質的に全て直線状(より具体的には、輪郭を構成する全ての辺が直線状、例えば輪郭を構成する4つ辺が直線状)となっている。
 図3~図5に示す典型的な態様について、平面視において切欠部の形状は矩形状である一方、電極組立体または二次電池の輪郭形状(平面視における輪郭形状)は非矩形状であることが好ましい。ここでいう「矩形状」とは、平面視における上記の切出し形状(即ち、ベース形状から切り取られる形状)が正方形および長方形といった矩形状の概念に通常含まれる形状を意味している。従って、「矩形状」は、厚み方向にて上側から見た平面視の仮想的な切取り形状が略正方形または略長方形に相当することを指している。一方、ここでいう「非矩形状」とは、平面視における形状が正方形および長方形といった矩形状の概念に通常含まれるものでない形状を指しており、特にそのような正方形・長方形から部分的に一部欠いた形状のことを指している。従って、広義には、「非矩形状」は、厚み方向にて上側から見た平面視の形状が正方形・長方形でない形状を指しており、狭義には、平面視の形状が正方形・長方形をベースにしつつも、それから部分的に一部切欠いた形状(好ましくはベースの正方形・長方形のコーナー部分が切欠かれた形状)となっていることを指している(図5参照)。例示すると、「非矩形状」は、平面視における電極組立体または二次電池の輪郭形状が正方形・長方形をベースとし、かかるベース形状よりも小さい平面視サイズの正方形、長方形、半円形、半楕円形、円形・楕円形の一部またはそれらの組合せ形状を当該ベース形状から切り欠いて得られる形状(特にベース形状のコーナー部分から切り欠いて得られる形状)となっていてよい。
 このように切欠部の平面視形状が矩形状である一方、電極組立体または二次電池の平面視の輪郭形状が非矩形状であることは、図3~図5に示す態様から分かるように、段差に起因する電池低面がより広く基板配置面として供されることに寄与し得る。
 図3、図4(B)および図5に示される電極組立体・二次電池では、上述のごとく段差に起因する電池低面がより広く基板配置面として設けられているものであるが(すなわち、電池低面が組立体段差と電池段差との位置ずれをマージンとした基板配置面となっているが)、それがゆえの特徴を有している。例えば、平面視において“位置ずれ”を成す方向の寸法を位置ずれ方向寸法とすると、電極組立体の輪郭形状における最大位置ずれ方向寸法と最小位置ずれ方向寸法との差よりも組立体高面の位置ずれ方向寸法が小さくなっている(図6参照)。より具体的には、図6の下側に示すように「電極組立体100’の平面視の輪郭形状において“位置ずれ”を成す方向に沿ってみた場合に最大となる寸法L最大と最小となる寸法L最小との差」と「同様に“位置ずれ”を成す方向に沿ってみた場合に組立体高面180’の寸法l高面」とを比べた場合、後者が前者よりも小さくなっている。つまり、(L最大-L最小)>l高面となっている。換言すれば、そのような寸法関係を有しているからこそ、段差に起因する電池低面がより広く基板配置面として供され得るといえる。
 また、図3、図4(B)および図5に示される電極組立体・二次電池では、平面視において組立体高面の面積が切欠部の面積よりも小さくなっていることが好ましい。より具体的には、図5に示す如く組立体高面180’の平面視面積を「S」とし、切欠部の平面視面積を「S」とすると、S<Sとなっていることが好ましい。かかる特徴は、特に二次電池の製造方法に関係し得る。
 以下では、図3、図4(B)および図5に示される電極組立体・二次電池を得るための典型的な製造方法について詳述する。
 かかる製造方法は、電極の作製法に特徴を有しており、特に、正極および負極の少なくとも一方の電極の作製時における複数の電極の切出しに特徴を有している。具体的には、正極および負極の少なくとも一方の電極の作製が、図7に示すように、電極集電体となる金属シート材10に電極材層20を形成して電極前駆体30を得ること、および、電極前駆体30から複数個の切出しを行って電極を形成することを含んで成り、かかる複数個の切出しの形状として、相対的に小さい小片形42と相対的に大きい大片形47とから成る対形状を含む。
 ここでいう「対形状」とは、広義には、平面視における隣接する2つの形状の組合せのことを意味しており、狭義には、厚み方向にて上側から見た平面視において互いに隣接する相対的に小さい形状(“小片形”)と相対的に大きい形状(“大片形”)との組合せ(“対”)を意味している。よって、図7に示すような平面視における複数の切出し形状のうちで互いに横並びに位置付けられる大・小の2つの形状の組合せが「対形状」に相当する。
 大・小の2つの形状から成る対形状を含むように複数個の電極切出しを行うと、切出し後の残余分をより効果的に減じることができる。これは、二次電池製造に最終的に使用されない“無駄部分”を少なくできる(特に、最終的に電池構成要素にならない電極活物質の廃棄を少なくできる)ことを意味しており、二次電池の製造効率がより高くなる。また、“無駄部分”の低減は二次電池の低コスト製造にもつながる(従前のプロセス態様を示した図9を参照すると、“高い製造効率”/“低コスト製造”をより容易に理解されよう)。
 特に、本発明の二次電池についていえば「相対的に小さい小片形」と「相対的に大きい大片形」とから少なくとも成る対形状を少なくとも1つ含むように複数個の電極切出しを行う。ここでいう「相対的に大きい大片形」とは、平面視における上記対形状のうちで面積が相対的に大きな切り出し形状のことを意味している。同様にして「相対的に小さい小片形」とは、平面視における上記対形状のうちで面積が相対的に小さい切り出し形状のことを意味している。あくまでも例示にすぎないが、平面視における小片形の面積が大片形の面積の3/4以下であってよく、例えば半分以下であってもよい。
 図7に示すように、対形状を成す「相対的に小さい小片形42」と「相対的に大きい大片形47」とは相補的形状を有することが好ましい。つまり、好ましくは平面視において小片形42と大片形47とが互いに補うような平面形状を有している。図7を参照すると分かるように、ここでいう「相補的形状を有する」とは、平面視における小片形の輪郭と大片形の輪郭において相互に向かい合う部分が略重なり合う形状を有することを意味している。より具体的にいえば、“略重なり合う形状”とは、平面視の相互に向かい合う輪郭部について大片形の輪郭部分に小片形の輪郭が実質含まれ得ることを意味している。
 正極の作製の場合、複数の正極の切出し形状について対を成す小片形42と大片形47とが互いに相補的となるように正極前駆体から切り出すことが好ましい。同様にして、負極の作製の場合、複数の負極の切出し形状について対を成す小片形42と大片形47とが互いに相補的となるように負極前駆体から切り出すことが好ましい。双方の場合とも、電極前駆体30の長手方向(すなわち、金属シート材10の長手方向)において相補的な関係が連続する態様となることが好ましい。このように相補的な関係性を維持して複数個の電極切出しを行うと、切出し後の残余分をより効果的に減じることができる。
 特に好ましくは、図7に示すように、対形状を成す「相対的に小さい小片形42」が矩形状である一方、「相対的に大きい大片形47」とが非矩形状となっている。ここでいう「矩形状」とは、平面視における切出し形状(即ち、電極前駆体から電極として切り出される形状)が正方形および長方形といった矩形状の概念に通常含まれる形状を意味している。従って、「矩形状」は、厚み方向にて上側から見た平面視の切出し形状(電極形状)が略正方形または略長方形を指している。一方、ここでいう「非矩形状」とは、平面視における切出し形状(即ち、電極前駆体から電極として切り出される形状)が正方形および長方形といった矩形状の概念に通常含まれるものでない形状を指しており、特にそのような正方形・長方形から部分的に一部欠いた形状のことを指している。従って、広義には、「非矩形状」は、厚み方向にて上側から見た平面視の切出し形状(電極形状)が正方形・長方形でない形状を指しており、狭義には、平面視の電極形状が正方形・長方形をベースにしつつも、それから部分的に一部切欠いた形状(好ましくはベースの正方形・長方形のコーナー部分が切欠かれた形状)となっていることを指している。例示すると、「非矩形状」は、平面視における電極形状が正方形・長方形をベースとし、かかるベース形状よりも小さい平面視サイズの正方形、長方形、半円形、半楕円形、円形・楕円形の一部またはそれらの組合せ形状を当該ベース形状から少なくとも1つ切り欠いて得られる形状(特にベース形状のコーナー部分から切り欠いて得られる形状)であってよい。
 このように矩形・非矩形の関係を有するように複数個の電極切出しを行うと、切出し後の残余分をより効果的に減じることができる。
 得られた小片形42と大片形47は同一電池製造に用いると、図3、図4(B)および図5に示される電極組立体を得ることができ、ひいては二次電池を得ることができる。具体的には、図8に示すように大片形47から構成される大片積層体47’の上に小片形42から構成される小片積層体42’を位置付けると、相対的に低いレベルの組立体低面160’と相対的に高いレベルの組立体高面180’とから構成された組立体段差を有する電極組立体100’を得ることができ、次いで、それを電解質と共に外装体で封入すると、同様に相対的に低いレベルの電池低面と相対的に高いレベルの電池高面とから構成された電池段差を備えた二次電池を得ることができる。
 以上の如く説明した製造方法に基づくと、図3、図4(B)および図5に示される電極組立体・二次電池では、平面視にて組立体高面の面積が切欠部の面積よりも小さくなる。つまり、「組立体高面の面積」は、上記の製造方法においては小片形42の面積に相当し、「切欠部」は、図7の電極前駆体30において、かかる小片形42が切り出されるための領域に相当するので、前者(組立体高面の面積)は後者(切欠部の面積)よりも小さくなる。
 また、同様に上記説明した製造方法に基づくと、図3、図4(B)および図5に示される電極組立体・二次電池では、電極組立体100’の底面(すなわち、最下面)と組立体低面160’とのレベル差が、組立体段差190’の段差寸法に相当する。これは、対を成す小片形42および大片形47をそれぞれ用いて電極組立体100’を構成することに起因し得る。つまり、図8に示すように大片形47から構成される大片積層体47’と小片形42から構成される小片積層体42’とから電極組立体100’を作製するところ、使用される小片形42と大片形47とは“対”に起因して同数または略同数にすることができる。これは、図8に示される電極組立体100’において大片積層体47’の厚みと小片積層体42’の厚みとが略同じになり得ることを意味しており、それゆえ、電極組立体100’の底面と組立体低面160’とのレベル差が、組立体段差190’の段差寸法に相当し得る。なお、ここでいう「レベル差が段差寸法に相当する」とは、レベル差と段差寸法との間に関して一方が他方の±10%以内の範囲に入ることを意味している。なお、また、大片積層体47’の“基板配置面”となる露出する電極についていえば、いわゆる“両面正極”(正極集電体の両面に正極材層が設けられた正極)が位置付けられないことが望まれる。
 更にいえば、同様に上記説明した製造方法に基づくと、図3、図4(B)および図5に示される電極組立体・二次電池において、“位置ずれの寸法”は、例えば0.5mm以上5mm以下となり得る。つまり、あくまでも例示にすぎないが、二次電池において「組立体段差190’と電池段差190との位置ずれの寸法(平面視における位置ずれ寸法)」は0.5mm以上5mm以下の範囲となり得る。これは、電池低面160が組立体段差190’と電池段差190との位置ずれ寸法となる0.5mm以上5mm以下の範囲をマージンとして考慮して好適に設計された二次電池が本発明で供されることを意味している。
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。
 本発明の二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコン、デジタルカメラ、活動量計、アームコンピューターおよび電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
 1    正極
 2    負極
 3    セパレータ
 5    電極構成層
 10   金属シート材
 20   電極材層
 30   電極前駆体
 42   小片形
 42’  小片積層体
 47   大片形
 47’  大片積層体
 100  二次電池
 160  電池低面
 180  電池高面
 190  電池段差
 100’ 電極組立体
 160’ 組立体低面
 180’ 組立体高面
 190’ 組立体段差

Claims (13)

  1. 正極、負極および該正極と該負極との間のセパレータを含む電極構成層が積層した電極組立体、ならびに、該電極組立体を包み込む外装体を有して成る二次電池であって、
     前記電極組立体が相対的に低いレベルの組立体低面と相対的に高いレベルの組立体高面とから構成された組立体段差を有すると共に、前記二次電池が相対的に低いレベルの電池低面と相対的に高いレベルの電池高面とから構成された電池段差を有し、
     前記電池低面が、前記組立体段差と前記電池段差との位置ずれをマージンとした基板配置面となっている、二次電池。
  2. 前記位置ずれが前記外装体に起因する、請求項1に記載の二次電池。
  3. 前記位置ずれの寸法が、前記外装体の厚みの1.5倍以上50倍以下となっている、請求項1または2に記載の二次電池。
  4. 前記二次電池の全体外形に切欠部が含まれ、平面視にて該切欠部の周縁ラインと前記組立体段差との差が、前記位置ずれに相当する、請求項1~3のいずれかに記載の二次電池。
  5. 平面視において前記切欠部の形状が矩形状である一方、前記電極組立体または前記二次電池の輪郭形状が非矩形状である、請求項4に記載の二次電池。
  6. 平面視において前記組立体高面の面積が前記切欠部の面積よりも小さい、請求項4または5に記載の二次電池。
  7. 平面視において前記位置ずれを成す方向の寸法を位置ずれ方向寸法とすると、前記電極組立体の輪郭形状における最大位置ずれ方向寸法と最小位置ずれ方向寸法との差よりも前記組立体高面の位置ずれ方向寸法が小さくなっている、請求項4~6のいずれかに記載の二次電池。
  8. 前記電極組立体の底面と前記組立体低面とのレベル差が、前記組立体段差の段差寸法に相当する、請求項1~7のいずれかに記載の二次電池。
  9. 前記位置ずれの寸法が0.5mm以上5mm以下である、請求項1~8のいずれかに記載の二次電池。
  10. 前記基板配置面に配置される基板がリジッド基板またはフレキシブル基板である、請求項1~9のいずれかに記載の二次電池。
  11. 前記基板配置面に配置される基板が保護回路基板である、請求項1~10のいずれかに記載の二次電池。
  12. 前記正極、前記負極および前記セパレータが平面状に積層した平面積層構造を有する、請求項1~11のいずれかに記載の二次電池。
  13. 前記正極および前記負極が、リチウムイオンを吸蔵放出可能な層を有する、請求項1~12のいずれかに記載の二次電池。
PCT/JP2017/044084 2017-01-13 2017-12-07 二次電池 WO2018131346A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018561860A JP6721059B2 (ja) 2017-01-13 2017-12-07 二次電池
CN201780076044.4A CN110050376B (zh) 2017-01-13 2017-12-07 二次电池
US16/416,520 US20190296399A1 (en) 2017-01-13 2019-05-20 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017004476 2017-01-13
JP2017-004476 2017-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/416,520 Continuation US20190296399A1 (en) 2017-01-13 2019-05-20 Secondary battery

Publications (1)

Publication Number Publication Date
WO2018131346A1 true WO2018131346A1 (ja) 2018-07-19

Family

ID=62839963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044084 WO2018131346A1 (ja) 2017-01-13 2017-12-07 二次電池

Country Status (4)

Country Link
US (1) US20190296399A1 (ja)
JP (1) JP6721059B2 (ja)
CN (1) CN110050376B (ja)
WO (1) WO2018131346A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707979A (zh) * 2021-08-27 2021-11-26 深圳市海雅达数字科技有限公司 一种电池结构
CN116544523B (zh) * 2023-07-04 2024-02-27 宁德新能源科技有限公司 电化学装置及用电终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167743A (ja) * 1999-12-09 2001-06-22 Sharp Corp 二次電池及びそれを用いた電子機器
JP2011210662A (ja) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 積層式電池
JP2014013726A (ja) * 2012-07-05 2014-01-23 Denso Corp 電池ユニット
JP2014045205A (ja) * 2013-10-17 2014-03-13 Seiko Instruments Inc リード端子付き電気化学セル
JP2015514291A (ja) * 2012-11-09 2015-05-18 エルジー・ケム・リミテッド 段差が形成された電極組立体、上記電極組立体を含む二次電池、電池パック及びデバイス、並びに上記電極組立体の製造方法
JP2016509349A (ja) * 2014-01-06 2016-03-24 エルジー・ケム・リミテッド ステップドバッテリーとこの製造方法及びその装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244725A (ja) * 2009-04-01 2010-10-28 Sony Corp 非水電解質電池
JP5646202B2 (ja) * 2010-04-14 2014-12-24 三洋電機株式会社 電池パック
FR2987173A1 (fr) * 2012-02-17 2013-08-23 St Microelectronics Tours Sas Procede de realisation d'une microbatterie
US20140113184A1 (en) * 2012-10-18 2014-04-24 Apple Inc. Three-dimensional non-rectangular battery cell structures
KR101596269B1 (ko) * 2013-02-13 2016-02-23 주식회사 엘지화학 안전성이 향상된 신규한 구조의 전지셀
KR20140145787A (ko) * 2013-06-14 2014-12-24 삼성에스디아이 주식회사 이차 전지 팩
KR101590979B1 (ko) * 2014-03-18 2016-02-03 주식회사 엘지화학 비대칭 구조 및 만입 구조를 포함하는 전지셀
KR101800932B1 (ko) * 2015-03-16 2017-11-23 주식회사 엘지화학 스텝드 배터리

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167743A (ja) * 1999-12-09 2001-06-22 Sharp Corp 二次電池及びそれを用いた電子機器
JP2011210662A (ja) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 積層式電池
JP2014013726A (ja) * 2012-07-05 2014-01-23 Denso Corp 電池ユニット
JP2015514291A (ja) * 2012-11-09 2015-05-18 エルジー・ケム・リミテッド 段差が形成された電極組立体、上記電極組立体を含む二次電池、電池パック及びデバイス、並びに上記電極組立体の製造方法
JP2014045205A (ja) * 2013-10-17 2014-03-13 Seiko Instruments Inc リード端子付き電気化学セル
JP2016509349A (ja) * 2014-01-06 2016-03-24 エルジー・ケム・リミテッド ステップドバッテリーとこの製造方法及びその装置

Also Published As

Publication number Publication date
CN110050376A (zh) 2019-07-23
CN110050376B (zh) 2022-07-22
US20190296399A1 (en) 2019-09-26
JP6721059B2 (ja) 2020-07-08
JPWO2018131346A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
US11811022B2 (en) Secondary battery
JP6780766B2 (ja) 二次電池およびその製造方法
WO2017209052A1 (ja) 二次電池
US11437653B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US11329273B2 (en) Method for manufacturing secondary battery
WO2018180152A1 (ja) 二次電池
WO2019203047A1 (ja) 二次電池
WO2018131346A1 (ja) 二次電池
WO2017208533A1 (ja) 二次電池
WO2018186205A1 (ja) 二次電池およびその製造方法
JP6773208B2 (ja) 二次電池およびその製造方法
JP6885410B2 (ja) 二次電池
WO2018163775A1 (ja) 二次電池の製造方法
WO2018131398A1 (ja) 二次電池
WO2017208534A1 (ja) 二次電池
WO2018131344A1 (ja) 二次電池の製造方法
US11929467B2 (en) Secondary battery
WO2020071362A1 (ja) 二次電池
WO2018116623A1 (ja) 二次電池および電池組合体
WO2018100846A1 (ja) 二次電池およびデバイス
WO2017208532A1 (ja) 二次電池
JPWO2017208531A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891804

Country of ref document: EP

Kind code of ref document: A1