WO2018131398A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018131398A1
WO2018131398A1 PCT/JP2017/045558 JP2017045558W WO2018131398A1 WO 2018131398 A1 WO2018131398 A1 WO 2018131398A1 JP 2017045558 W JP2017045558 W JP 2017045558W WO 2018131398 A1 WO2018131398 A1 WO 2018131398A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
positive electrode
negative electrode
secondary battery
negative
Prior art date
Application number
PCT/JP2017/045558
Other languages
English (en)
French (fr)
Inventor
徹 川合
大塚 正博
雄二 水口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780081680.6A priority Critical patent/CN110121797B/zh
Priority to JP2018561883A priority patent/JP6828751B2/ja
Publication of WO2018131398A1 publication Critical patent/WO2018131398A1/ja
Priority to US16/434,353 priority patent/US11411241B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery.
  • Secondary batteries that can be repeatedly charged and discharged have been used for various purposes.
  • the secondary battery is used as a power source for electronic devices such as smartphones and notebook computers.
  • Patent Document 1 discloses a secondary battery having a step structure. More specifically, in Patent Document 1, It is disclosed that an electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, which are constituent elements of a secondary battery, forms a step structure in a cross-sectional view.
  • the inventors of the present application have found that the following problems may occur when a secondary battery including an electrode assembly having a step structure in a cross-sectional view is used. Specifically, the inventors of the present application, when using an electrode assembly having a step structure in a cross-sectional view, is because it is necessary to electrically connect each positive electrode and each negative electrode that are constituent elements thereof. And found that the location of the external terminal is limited.
  • an object of the present invention is to provide a secondary battery capable of avoiding restrictions on the location of external terminals.
  • An electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and an electrolyte, and a secondary battery in which an electrolyte is housed
  • the electrode assembly includes a step structure including a first region having a relatively high height in a cross-sectional view and a second region having a relatively low height adjacent to the first region
  • An electrode assembly including a step structure includes a positive electrode side connection tab that connects a part of positive electrode side connection tabs of a part of positive electrodes in a first region, and a negative electrode side connection tab of a part of a negative electrode in the first region.
  • At least one of the negative electrode side connecting portions that connect each other, and at least two positive electrode side extraction tabs of at least two positive electrodes in the second region, and at least two negative electrode At least one of the negative electrode side extraction portions that connect the negative electrode side extraction tabs to each other is configured to be electrically connected to the external terminal.
  • a secondary battery is provided.
  • FIG. 1 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an electrode assembly having a step structure according to one aspect.
  • FIG. 3 is a cross-sectional view schematically showing an aspect in which the positive electrode side extraction tab and / or the negative electrode side extraction tab located in the second region of the electrode assembly are electrically connected to an external terminal.
  • FIG. 4 is a cross-sectional view schematically showing one aspect of the positive electrode side connection portion that mutually connects the positive electrode side connection tabs located in the first region of the electrode assembly.
  • FIG. 5 is a cross-sectional view schematically showing one aspect of the negative electrode side connection portion that mutually connects the negative electrode side connection tabs located in the first region of the electrode assembly.
  • FIG. 6 is a cross-sectional view schematically showing one aspect of a positive electrode side extraction portion that connects positive electrode side extraction tabs located in the second region of the electrode assembly.
  • FIG. 7 is a cross-sectional view schematically showing one aspect of the negative electrode side extraction portion that mutually connects the negative electrode side extraction tabs located in the second region of the electrode assembly.
  • FIG. 8 is a cross-sectional view schematically showing an electrode assembly having a step structure according to another embodiment.
  • FIG. 9 is a cross-sectional view schematically showing a basic configuration of an electrode assembly having a planar laminated structure.
  • FIG. 10 is a cross-sectional view schematically showing a basic configuration of an electrode assembly having a winding structure.
  • FIG. 11 is a cross-sectional view schematically showing a specific configuration of the electrode assembly
  • the secondary battery is also described in an embodiment of the present invention described below.
  • the secondary battery has a structure in which an electrode assembly and an electrolyte are accommodated and enclosed in an exterior body.
  • the “secondary battery” refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery of the present invention is not excessively bound by its name, and for example, “electric storage device” can also be included in the subject of the present invention.
  • the electrode assembly includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. Examples of the type of electrode assembly include the following types.
  • the electrode assembly 10A has a planar stacked structure in which a plurality of unit electrode units including positive electrodes 1 and 1A, negative electrodes 2 and 2A, and separators 3 and 3A are stacked (see FIG. 9).
  • the electrode assembly 10B has a winding structure in which electrode units including the positive electrodes 1 and 1B, the negative electrodes 2 and 2B, and the separators 3 and 3B are wound in a roll shape (see FIG. 10). ).
  • the electrode assembly is formed by folding a positive electrode, a negative electrode, a separator, and a negative electrode unit (particularly preferably an electrode unit (laminate) extending long in one direction). It may have a stack and fold structure.
  • the exterior body may take the form of a conductive hard case or a flexible case (such as a pouch).
  • a flexible case such as a pouch
  • each of the plurality of positive electrodes is connected to the positive electrode external terminal via the positive electrode current collecting lead.
  • the external terminal for positive electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • each of the plurality of negative electrodes is connected to a negative electrode external terminal via a negative electrode current collecting lead.
  • the external terminal for negative electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • the present invention is not limited thereto, and the positive electrode current collector lead connected to each of the plurality of positive electrodes may have the function of a positive electrode external terminal, and the negative electrode current collector connected to each of the plurality of negative electrodes.
  • the lead may have a function of an external terminal for negative electrode.
  • each of the plurality of positive electrodes is connected to a positive electrode external terminal via a positive electrode current collecting lead.
  • the external terminal for positive electrode is fixed to the exterior body by a seal portion, and the seal portion prevents electrolyte leakage.
  • the positive electrode 1 is composed of at least a positive electrode current collector 11 and a positive electrode material layer 12 (see FIG. 11), and a positive electrode material layer 12 is provided on at least one surface of the positive electrode current collector 11.
  • a positive electrode side extraction tab 13 is positioned at a portion of the positive electrode current collector 11 where the positive electrode material layer 12 is not provided, that is, at an end of the positive electrode current collector 11.
  • the positive electrode material layer 12 contains a positive electrode active material as an electrode active material.
  • the negative electrode 2 is composed of at least a negative electrode current collector 21 and a negative electrode material layer 22 (see FIG. 11), and the negative electrode current material layer 22 is provided on at least one surface of the negative electrode current collector 21.
  • a negative electrode side extraction tab 23 is positioned at a portion of the negative electrode current collector 21 where the negative electrode material layer 22 is not provided, that is, at an end of the negative electrode current collector 21.
  • the negative electrode material layer 22 contains a negative electrode active material as an electrode active material.
  • the positive electrode active material contained in the positive electrode material layer 12 and the negative electrode active material contained in the negative electrode material layer 22 are materials directly involved in the transfer of electrons in the secondary battery, and are the main positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. It is a substance. More specifically, ions are brought into the electrolyte due to “the positive electrode active material contained in the positive electrode material layer 12” and “the negative electrode active material contained in the negative electrode material layer 22”, and these ions are converted into the positive electrode 1 and the negative electrode. 2 is transferred between the two and the electrons are transferred and charged and discharged.
  • the positive electrode material layer 12 and the negative electrode material layer 22 are particularly preferably layers capable of occluding and releasing lithium ions.
  • a secondary battery in which lithium ions move between the positive electrode 1 and the negative electrode 2 through the electrolyte and the battery is charged and discharged is preferable.
  • the secondary battery corresponds to a so-called “lithium ion battery”.
  • the positive electrode active material of the positive electrode material layer 12 is made of, for example, a granular material, and a binder (also referred to as a “binder”) is included in the positive electrode material layer 12 for sufficient contact between the particles and shape retention. It is preferable. Furthermore, a conductive additive may be included in the positive electrode material layer 12 to facilitate the transmission of electrons that promote the battery reaction. Similarly, the negative electrode active material of the negative electrode material layer 22 is made of, for example, a granular material, and it is preferable that a binder is included for sufficient contact and shape retention between the particles, which facilitates the transfer of electrons that promote the battery reaction. In order to do so, a conductive additive may be included in the negative electrode material layer 22. Thus, because of the form in which a plurality of components are contained, the positive electrode material layer 12 and the negative electrode material layer 22 can also be referred to as a “positive electrode mixture layer” and a “negative electrode mixture layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer 12 of the secondary battery, such a lithium transition metal composite oxide is preferably included as a positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination.
  • the positive electrode active material contained in the positive electrode material layer 12 is lithium cobalt oxide.
  • the binder that can be included in the positive electrode material layer 12 is not particularly limited, but poly (vinylidene fluoride), vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride-tetrafluoroethylene copolymer. And at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive additive that can be included in the positive electrode material layer 12 is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and gas phase.
  • the binder of the positive electrode material layer 12 may be polyvinylidene fluoride.
  • the conductive support agent of the positive electrode material layer 12 is carbon black.
  • the binder and conductive additive of the positive electrode material layer 12 may be a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector 21.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of the negative electrode material layer 22 may be artificial graphite.
  • the binder that can be included in the negative electrode material layer 22 is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Species can be mentioned.
  • the binder contained in the negative electrode material layer 22 may be styrene butadiene rubber.
  • the conductive aid that can be included in the negative electrode material layer 22 is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and gas phase.
  • the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer 22.
  • the negative electrode active material and binder in the negative electrode material layer 22 may be a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector 11 and the negative electrode current collector 21 used for the positive electrode 1 and the negative electrode 2 are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector 11 used for the positive electrode 1 is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector 21 used for the negative electrode 2 is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator 3 used for the positive electrode 1 and the negative electrode 2 is a member provided from the viewpoints of preventing short circuit due to contact between the positive and negative electrodes and holding the electrolyte.
  • the separator 3 can be said to be a member that allows ions to pass through while preventing electronic contact between the positive electrode 1 and the negative electrode 2.
  • the separator 3 is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous film used as the separator 3 may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator 3 may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
  • the surface of the separator 3 may be covered with an inorganic particle coat layer and / or an adhesive layer.
  • the surface of the separator may have adhesiveness.
  • the separator 3 is not particularly restricted by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles or the like having the same function.
  • it is preferable that the separator 3 and the electrode (positive electrode 1 / negative electrode 2) are bonded from the viewpoint of further improving the handling of the electrode.
  • the separator 3 and the electrode are bonded by using an adhesive separator as the separator 3, applying an adhesive binder on the electrode material layer (positive electrode material layer 12 / negative electrode material layer 22) and / or thermocompression bonding, or the like. Can be done.
  • the adhesive that provides adhesion to the separator 3 or the electrode material layer include polyvinylidene fluoride and an acrylic adhesive.
  • the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte and / or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte).
  • the electrolyte metal ions released from the electrodes (the positive electrode 1 and the negative electrode 2) exist, and therefore the electrolyte assists the movement of the metal ions in the battery reaction.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • the combination of cyclic carbonate and chain carbonate is used as a nonaqueous electrolyte, for example, the mixture of ethylene carbonate and diethyl carbonate may be used.
  • a Li salt such as LiPF 6 or LiBF 4
  • a Li salt such as LiPF 6 and / or LiBF 4 is preferably used.
  • any current collecting lead used in the field of secondary batteries can be used.
  • a current collecting lead may be made of a material that can achieve electron movement, and is made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the positive electrode current collector lead is preferably composed of aluminum, and the negative electrode current collector lead is preferably composed of nickel.
  • the form of the positive electrode current collector lead and the negative electrode current collector lead is not particularly limited, and may be, for example, a wire or a plate.
  • any external terminal used in the field of secondary batteries can be used.
  • Such an external terminal may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device.
  • the present invention is not limited to this, and the positive electrode current collecting lead electrically connected to each of the plurality of positive electrodes may have the function of the positive electrode external terminal, and electrically connected to each of the plurality of negative electrodes.
  • the negative electrode current collecting lead may have the function of the negative electrode external terminal.
  • the exterior body may have the form of a conductive hard case or a flexible case (such as a pouch) as described above.
  • the conductive hard case consists of a main body and a lid.
  • a main-body part consists of the bottom part and side part which comprise the bottom face of the said exterior body.
  • the main body and the lid are sealed after the electrode assembly, the electrolyte, the current collecting lead, and the external terminal are accommodated.
  • the sealing method is not particularly limited, and examples thereof include a laser irradiation method.
  • a material constituting the main body part and the lid part any material capable of constituting a hard case type exterior body in the field of secondary batteries can be used.
  • Such a material may be any material that can achieve electron transfer, and examples thereof include conductive materials such as aluminum, nickel, iron, copper, and stainless steel.
  • the dimensions of the main body and the lid are mainly determined according to the dimensions of the electrode assembly.
  • the dimensions are such that the electrode assembly is prevented from moving (displacement) within the exterior body. It is preferable to have. By preventing the movement of the electrode assembly, the electrode assembly is prevented from being destroyed, and the safety of the secondary battery is improved.
  • the flexible case is composed of a soft sheet.
  • the soft sheet only needs to have a degree of softness that can achieve bending of the seal portion, and is preferably a plastic sheet.
  • the plastic sheet is a sheet having a characteristic that the deformation due to the external force is maintained when the external sheet is applied and then removed.
  • a so-called laminate film can be used.
  • a flexible pouch made of a laminate film can be produced, for example, by laminating two laminate films and heat-sealing the peripheral edge.
  • the laminate film a film obtained by laminating a metal foil and a polymer film is generally used. Specifically, a film having a three-layer structure including an outer layer polymer film / metal foil / inner layer polymer film is exemplified.
  • the outer layer polymer film is for preventing damage to the metal foil due to permeation and contact of moisture and the like, and polymers such as polyamide and polyester can be suitably used.
  • the metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used.
  • the inner layer polymer film is for protecting the metal foil from the electrolyte accommodated therein, and for melting and sealing at the time of heat sealing, and polyolefin or acid-modified polyolefin can be suitably used.
  • Secondary battery of the present invention A secondary battery according to an embodiment of the present invention will be described below in consideration of the basic configuration of the secondary battery. Note that the secondary battery according to an embodiment of the present invention is preliminarily assumed to be a secondary battery having a step structure.
  • FIG. 1 is a perspective view schematically showing a secondary battery according to an embodiment of the present invention.
  • a secondary battery 100 has a structure in which an electrode assembly and an electrolyte are accommodated and enclosed in an exterior body 20.
  • the exterior body 20 includes at least two steps that are continuous with each other and have different height levels on the upper surface.
  • the exterior body 20 may include at least two step portions (a first step portion 20 a and a second step portion 20 b). Specifically, the first step portion 20a and a second stepped portion 20b, the height h 2 of the top surface 20b 1 of each other in succession and the second step portion 20b of the top surface 20a 1 of the first step portion 20a High It is configured to be larger than the length h 1 .
  • a top surface 20a 1 of the first step portion 20a of the second step portion 20b A step surface 20b 2 is formed between the upper surface 20b 1 .
  • the first step portion 20a and a second stepped portion 20b, the width W 2 of the upper surface 20b 1 of the second step portion 20b (longitudinal direction) of the top surface 20a 1 of the first step portion 20a width W 1 is configured to be equal to (the longitudinal direction).
  • the step surface 20b 2 has a height h 3 and a width dimension (longitudinal direction) W 3 .
  • the height h 3 of the step surface 20b 2 is equal to the difference between the height h 2 of the upper surface 20b 1 of the second step portion 20b and the height h 1 of the upper surface 20a 1 of the first step portion 20a.
  • the width W 3 of the stepped surface 20b 2 (longitudinal direction), a width dimension W 2 of the upper surface 20b 1 of the second step portion 20b (longitudinal direction) and the width W 1 of the top surface 20a 1 of the first step portion 20a ( In the longitudinal direction).
  • the step surface 20b 2 is configured to be continuous with the upper surface 20a 1 of the first step portion 20a.
  • the upper surface 20a 1 of the first step portion 20a is continuous with the stepped surface 20b 2 so as to extend in different directions with respect to the extending direction of the step surface 20b 2.
  • the top surface 20a 1 of the first step portion 20a may not extend in a direction perpendicular to the extending direction of the step surface 20b 2.
  • the angle between the step surface 20b 2 and the upper surface 20a 1 of the first step portion 20a theta may have a 90 °.
  • the angle ⁇ between the step surface 20b 2 and the upper surface 20a 1 of the first stepped portion 20a may be 30 to 150 degrees in consideration of the arrangement of the substrates, The angle is preferably 50 ° to 130 °, more preferably 70 ° to 110 °.
  • the outer body and thus comprises a stepped structure formed between the top surface 20a 1 of the stepped surface and the first step portion 20a.
  • the step structure, the spatial region on the top surface 20a 1 of the concrete first step portion 20a is preferably provided with a substrate from the viewpoint of efficient use of such areas.
  • the above-described substrate may be a so-called rigid substrate or a flexible substrate, and is preferably a rigid substrate.
  • any rigid substrate used in the field of substrates used with secondary batteries can be used, and examples thereof include a glass / epoxy resin substrate.
  • the substrate include a circuit board such as a printed circuit board and a protection circuit board, a semiconductor substrate such as a silicon wafer, and a glass substrate such as a display panel.
  • a secondary battery pack is constituted by the protection circuit board and the secondary battery.
  • external terminals 30 for the secondary battery are provided on the surface of the outer package 20.
  • an external terminal 30 may be configured so as to be exposed to the side surface 20a 2 of the first step portion 20a.
  • the exterior body which is a component of the secondary battery according to the embodiment of the present invention, includes at least two step portions (a lower step portion having a relatively low upper surface height and an upper surface continuous with the lower step portion.
  • the electrode assembly disposed in the exterior body having the step structure is substantially the same as the exterior body in a sectional view from the viewpoint of preventing the electrode assembly from moving (displacement) in the exterior body. It is preferable to have a stepped structure.
  • the content described below is merely an example, and it is confirmed that it is assumed that the electrode assembly is provided inside an exterior body having two steps.
  • the electrode assembly which is a component of the secondary battery includes the positive electrode, the negative electrode, and the separator disposed between the positive electrode and the negative electrode as described above.
  • Examples of the type of electrode assembly include the following types.
  • the electrode assembly 10A is formed by laminating a plurality of unit electrode units including the positive electrodes 1 and 1A, the negative electrodes 2 and 2A, and the separators 3 and 3A (see FIG. 9).
  • the second type (winding structure type) is an electrode assembly 10B in which an electrode unit including positive electrodes 1 and 1B, negative electrodes 2 and 2B, and separators 3 and 3B is wound in a roll shape (FIG. 10). reference).
  • the electrode assembly is formed by folding a positive electrode, a negative electrode, a separator, and a negative electrode unit (particularly preferably an electrode unit (laminate) extending long in one direction). It may have a stack and fold structure.
  • the electrode assembly 10 may comprise at least two planar stacked sub-electrode assemblies (see FIG. 2).
  • the electrode assembly 10 may comprise a first planar layered structure type sub-electrode assembly 10A 1 and the second planar layered structure type sub-electrode assembly 10A 2.
  • the first planar layered structure type sub-electrode assembly 10A 1 is to the positive electrode 1A 1, the unit electrode unit including a negative electrode 2A 1, and the separator 3A 1 are stacked.
  • the second planar layered structure type sub-electrode assembly 10A 2 are those unit electrode unit including the positive electrode 1A 2, the negative electrode 2A 2, and the separator 3A 2 are stacked.
  • the electrode assembly 10 in the electrode assembly 10, the second planar layered structure type sub-electrode assembly 10A 2, the first planar layered structure type sub-electrode assembly 10A in cross section as shown in FIG. 2 has a larger width than the first width dimension, and in contact with the first planar layered structure type sub-electrode assembly 10A 1 and each other as to be positioned below the first planar layered structure type sub-electrode assembly 10A 1 It may be.
  • the electrode assembly 10 can have a step structure in a cross-sectional view.
  • connection tab in this specification refers to a portion corresponding to an uncoated portion of an electrode (positive electrode / negative electrode) that is not bonded to a current collecting lead.
  • the “connecting portion” in the present specification refers to one configured such that each of a plurality of connection tabs can be connected to each other.
  • the “drawer tab” in this specification refers to a portion corresponding to an uncoated portion of an electrode (positive electrode / negative electrode) and bonded to a current collecting lead.
  • drawer portion in the present specification refers to one configured such that each of a plurality of drawer tabs can be connected to each other.
  • the electrode assembly 10 having the step structure is, as shown in FIG. 3, the first region 10 ⁇ / b> X having a relatively high height in a sectional view (component of the electrode assembly 10). And a second region 10Y (a component of the electrode assembly 10) adjacent to the first region 10X and having a relatively low height.
  • adjacent means not only a state in which the first region 10X and the second region 10Y, which are components of a single electrode assembly, are continuous but also one electrode assembly that functions as a separate component. It refers to one that can include a state in which (corresponding to the first region) and the other electrode assembly (corresponding to the second region) are continuous.
  • each of the positive electrode and the negative electrode in the second region 10Y and the first region 10X may be adjacent to each other.
  • the positive electrode side connection tabs 13X included in the “partial” positive electrodes of the plurality of positive electrodes composed of the positive electrode 1A 2 and the positive electrode side connection tabs 13X are joined to each other, as shown in FIG.
  • a connecting portion 14X is formed.
  • the positive electrode side connection portion 14X is formed, for example, by joining the end portions of the plurality of positive electrode side connection tabs 13X so as to form a bundle as a whole as shown in FIG. Although it does not specifically limit as a joining method, Laser welding, ultrasonic welding, etc. are mentioned.
  • Each of the negative electrode side connection tabs 23X included in each “part” negative electrode of the plurality of negative electrodes composed of 2A 2 is joined to each other, whereby the negative electrode side connection portion 24X as shown in FIG. Is formed.
  • the negative electrode side connection portion 24X is formed, for example, by joining the end portions of the plurality of negative electrode side connection tabs 23X so as to form a bundle as a whole as shown in FIG. Although it does not specifically limit as a joining method, Laser welding, ultrasonic welding, etc. are mentioned.
  • the positive electrode side extraction portion 14 ⁇ / b> Y is formed by joining the ends of the positive electrode side extraction tabs 13 ⁇ / b> Y so as to form a bundle as a whole.
  • a joining method Laser welding, ultrasonic welding, etc. are mentioned.
  • a part of the positive electrode extraction tab 13Y in the formation region of the positive electrode extraction portion 14Y may be configured to be electrically connected to the external terminal 30a via the positive electrode current collecting lead 40a.
  • the present invention is not limited to this, and on the premise that the positive electrode side extraction portion 14Y is formed, a part of the positive electrode side extraction tab 13Y in the other region other than the formation region of the positive electrode side extraction portion 14Y is formed on the positive electrode side.
  • a part of the positive electrode side extraction tab 13Y is not limited to being connected to the external terminal 30a via the positive electrode side current collecting lead 40a.
  • a part of the positive electrode side extraction tab 13Y may be connected to a positive electrode side current collecting lead having a function of an external terminal.
  • each of the second negative electrode side lead tab of the negative electrode 2A 2 planar laminated structure type sub-electrode assembly 10A 2 23Y is mutually as By joining, the negative electrode side lead portion 24Y is formed.
  • the negative electrode side extraction portion 24Y is formed by joining the ends of the negative electrode side extraction tabs 23Y so as to form a bundle as a whole as shown in FIG. 7, for example.
  • a joining method Laser welding, ultrasonic welding, etc. are mentioned.
  • a part of the negative electrode side extraction tab 23Y in the formation region of the negative electrode side extraction portion 24Y may be configured to be electrically connected to the external terminal 30b via the negative electrode side current collecting lead 40b.
  • the negative electrode side lead section part of the negative electrode side lead tab 23Y in the formation region of the 24Y is "provided on the side surface 20a 2 of the first step portion 20a" via the negative electrode side current collector lead 40b external terminals 30b electrically May be connected.
  • the present invention is not limited to this, and on the premise that the negative electrode side extraction portion 24Y is formed, a part of the negative electrode side extraction tab 23Y in a region other than the formation region of the negative electrode side extraction portion 24Y is on the negative electrode side.
  • a part of the negative electrode side extraction tab 23Y is not limited to being connected to the external terminal 30b through the negative electrode side current collecting lead 40b.
  • a part of the negative electrode side extraction tab 23Y may be connected to a negative electrode side current collecting lead having a function of an external terminal.
  • At least one positive electrode 1A 2 located in the second region 10Y is located in the first region 10X. there needs to be configured so as to be electrically connected to each other and one at least one of the positive electrode 1A.
  • at least one positive electrode needs to include both the positive electrode side connection tab 13X and the positive electrode side extraction tab 13Y in a plan view. There is. Similarly, as shown in FIG.
  • the negative electrode 2A 2 at least one positioned in the second region 10Y is positioned in the first region 10X at least one of the negative electrode 2A 1 mutually are required to be configured to be electrically connected to.
  • at least one negative electrode needs to include both the negative electrode side connection tab 23X and the negative electrode side extraction tab 23Y in a plan view. There is.
  • the positive lead-out portion 14Y in the second region 10Y can be electrically connected to the external terminal 30a through the positive current collecting lead 40a.
  • the negative electrode side lead portion 24Y in the second region 10Y can be electrically connected to the external terminal 30b through the negative electrode side current collecting lead 40b.
  • the external terminal is connected to the second step portion 20b of the exterior body 20.
  • An external terminal can be provided not on the side but on the first step portion 20a side. From the above, in one embodiment of the present invention, it can be avoided that the installation location of the external terminal is limited to the second step portion 20b side of the exterior body 20. That is, in one embodiment of the present invention, the degree of freedom of installation of the external terminals can be increased.
  • the positive electrode side extraction tab 13Y when the positive electrode side extraction tab 13Y can be electrically connected to a single positive electrode side external terminal 30a via the positive electrode side current collecting lead 40a, the positive electrode side external terminal 30a.
  • the number of wirings that connect the circuit board and the substrate can be only one. Therefore, it is possible to suppress the complexity of the wiring structure that may occur when a plurality of positive electrode side external terminals are used. In other words, the wiring structure that connects the positive external terminal 30a and the substrate can be simplified. Similarly, for example, as shown in FIGS.
  • the negative electrode side extraction tab 23Y when the negative electrode side extraction tab 23Y can be electrically connected to the single negative electrode side external terminal 30b via the negative electrode side current collecting lead 40b, the negative electrode side
  • the number of wirings connecting the external terminal 30b and the substrate can be only one. Therefore, it is possible to suppress the complexity of the wiring structure that may occur when a plurality of negative electrode-side external terminals are used. In other words, the wiring structure that connects the negative electrode side external terminal 30b and the substrate can be simplified.
  • the positive electrode side connecting portion 14X and the negative electrode side connecting portion 24X, and the positive electrode side leading portion 14Y and the negative electrode side leading portion 24Y are provided only on one side in the exterior body 20. It is preferable that they are configured to be arranged respectively.
  • the positive electrode side connection portion 14X and the positive electrode side lead portion 14Y are disposed on one side of the electrode assembly 10, while the negative electrode side connection portion 24X and the negative electrode side lead portion 24Y are disposed on the electrode assembly 10.
  • the negative electrode side connection portion 24X and the negative electrode side lead portion 24Y are not present on the other side of the electrode assembly 10.
  • the width dimension of the electrode assembly 10 can be made relatively small. Therefore, due to the relative reduction of the width dimension of the electrode assembly 10, the dimension of the exterior body 20 that houses the electrode assembly 10 can be made relatively small. That is, the size of the secondary battery 100 according to the embodiment of the present invention can be relatively reduced.
  • the positive electrode side connection portion 14X all the positive electrodes are connected to each other via the respective positive electrode side connection tabs 13X, and by forming the negative electrode side connection portion 24X, all of the positive electrode side connection tabs 23X are formed.
  • the negative electrodes may be connected to each other. In this case, since all the positive electrodes are connected to each other by the single positive electrode side connecting portion 14X, it is possible to stabilize the electrical connection between the positive electrodes.
  • the electrode assembly 10 including first planar layered structure type sub-electrode assembly 10A 1 and the second planar layered structure type sub-electrode assembly 10A 2, without being limited thereto, the electrodes If the assembly has a step structure in cross-sectional view, the following mode may be adopted.
  • an electrode assembly 10 ′ including a planar stacked structure type sub-electrode assembly and a wound structure type sub-electrode assembly may be adopted.
  • the planar laminated structure type sub-electrode assembly 10A 1 ′ is obtained by laminating a plurality of unit electrode units including a positive electrode 1A 1 ′, a negative electrode 2A 1 ′, and separators 3A 1 ′.
  • the wound structure type sub-electrode assembly 10B 1 ′ is obtained by winding an electrode unit including a positive electrode 1B 1 ′, a negative electrode 2B 1 ′, and a separator 3B 1 ′ in a roll shape.
  • the width of the planar laminate structure-type sub-electrode assembly 10A 1 in cross-section view as shown in FIG. 8 It has a greater width dimension than the dimension, and may be in contact with the planar laminate structure-type sub-electrode assembly 10A 1 and each other as to be positioned below the planar laminate structure-type sub-electrode assembly 10A 1.
  • planar stacked structure type sub-electrode assembly has a width dimension larger than the width dimension of the wound structure type sub-electrode assembly in a sectional view, and
  • the winding structure type sub-electrode assembly may be in contact with each other so as to be positioned below the winding structure type sub-electrode assembly.
  • the electrode assembly may include at least two wound structure type sub-electrode assemblies (not shown).
  • the electrode assembly may include a first winding structure type sub-electrode assembly and a second winding structure type sub-electrode assembly. Both the first winding structure type sub-electrode assembly and the second winding structure type sub-electrode assembly are obtained by winding an electrode unit including a positive electrode, a negative electrode, and a separator in a roll shape.
  • the second winding structure type sub-electrode assembly has a width dimension larger than the width dimension of the first winding structure type sub-electrode assembly in a sectional view. And may be in contact with the first winding structure type sub-electrode assembly so as to be positioned below the first winding structure type sub-electrode assembly.
  • an electrode assembly is a level
  • the characteristic configuration from the following two viewpoints Is preferably adopted.
  • Each of the positive electrode side connection tabs included in the positive electrode constituted by the positive electrode 1B 1 ′ of the wound structure type sub-electrode assembly 10B 1 ′ is connected to each other by forming a positive electrode side connection portion. Is preferred.
  • the positive electrode side extraction tab included in the positive electrode 1B 1 ′ of the wound structure type sub electrode assembly 10B 1 ′ in the second region having a relatively low height of the electrode assembly 10 ′ has a positive electrode side collecting tab.
  • the negative electrode 2A 1 ′ of the planar stacked sub-electrode assembly 10A 1 ′ in the first region having a relatively high height of the electrode assembly 10 ′ in a cross-sectional view, and the winding in the first region It is preferable that the negative electrode side connection tabs respectively included in the negative electrode constituted by the negative electrode 2B 1 ′ of the structural sub-electrode assembly 10B 1 ′ are connected to each other by forming a negative electrode side connection portion. .
  • the negative electrode side extraction tab included in the negative electrode 2B 1 ′ of the wound structure type sub electrode assembly 10B 1 ′ in the second region having a relatively low height of the electrode assembly 10 ′ has a negative electrode side collecting tab. It is preferable to be electrically connected to the negative electrode side external terminal 30b (for example, see FIG. 1) through the electric lead.
  • the electrode assembly has a characteristic configuration in an aspect (not shown) including at least two wound structure type sub-electrode assemblies having different width dimensions in cross-sectional view. Is preferably adopted. Specifically, the positive electrode of the first winding structure type sub-electrode assembly in the first region having a relatively high height of the electrode assembly in a cross-sectional view, and the second winding in the first region It is preferable that each of the positive electrode side connection tabs included in the positive electrode composed of the positive electrode of the structural type sub-electrode assembly is connected to each other by forming a positive electrode side connection portion.
  • the positive electrode extraction tab included in the positive electrode of the second winding structure type sub electrode assembly in the second region having a relatively low height is provided via the positive electrode current collecting lead. It is preferable to be electrically connected to the positive electrode side external terminal 30a (see, for example, FIG. 1).
  • the negative electrode of the first winding structure type sub-electrode assembly in the first region having a relatively high height of the electrode assembly in cross-sectional view, and the second winding structure type in the first region It is preferable that the negative electrode side connection tabs respectively included in the negative electrode constituted by the negative electrode of the sub-electrode assembly are connected to each other by forming a negative electrode side connection part.
  • the negative electrode side extraction tab included in the negative electrode of the second wound structure type sub electrode assembly in the second region having a relatively low height is provided via the negative electrode side current collecting lead. It is preferable to be electrically connected to the negative external terminal 30b (see, for example, FIG. 1).
  • the secondary battery according to an embodiment of the present invention can be used in various fields where power storage is assumed.
  • the secondary battery according to an embodiment of the present invention particularly the non-aqueous electrolyte secondary battery, is merely an example, and the electric / information / communication field (for example, a mobile phone, a smart phone, a notebook)
  • Mobile devices such as personal computers and digital cameras, activity meters, arm computers, and electronic paper
  • home and small industrial applications eg, power tools, golf carts, home, nursing and industrial robots
  • large industries Applications eg, forklifts, elevators, bay harbor cranes
  • transportation systems eg, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles
  • power system applications eg, various power generation
  • IoT field space and deep sea applications (for example, spacecraft, areas such as submersible research vessel) and the like.

Abstract

本発明の一実施形態では、正極1、負極2および正極1と負極2との間に配置されたセパレータ3を含む電極組立体10と、電解質とが外装体20に収容された二次電池100であって、電極組立体10は、断面視において相対的に高さが高い第1領域10Xと、第1領域10Xに隣接する相対的に高さが低い第2領域10Yとを含む段差構造を備え、段差構造を備える電極組立体10は、第1領域10X内の一部の正極1Aの正極側接続タブ13Xの各々を相互に接続する正極側接続部14X、および第1領域10X内の一部の負極2Aの負極側接続タブ23Xの各々を相互に接続する負極側接続部24Xの少なくとも一方を備え、並びに第2領域10Y内の少なくとも2つの正極1Aの正極側引出しタブ13Yの各々を相互に接続する正極側引出し部14Y、および少なくとも2つの負極2Aの負極側引出しタブ23Yの各々を相互に接続する負極側引出し部24Yの少なくとも一方が、外部端子30と電気的に接続されるように構成されている、二次電池100が提供される。

Description

二次電池
 本発明は、二次電池に関する。
 従前より充放電が繰り返し可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォン、ノートパソコン等の電子機器の電源として用いられている。
 近年、電子機器の薄型化・小型化の要求が一層高まっており、それに伴い、電子機器内にて二次電池に基板等を効率的に設けることが要求されている。これにつき、特許文献1には、段差構造を備えた二次電池が開示されている。より具体的には、特許文献1では、
二次電池の構成要素である、正極、負極および正極と負極との間に配置されたセパレータを含む電極組立体が断面視にて段差構造を成している旨が開示されている。
特表2014-523629号公報
 ここで、本願発明者らは、断面視において段差構造を備えた電極組立体を含む二次電池を用いる場合、以下の問題が生じ得ることを見出した。具体的には、本願発明者らは、断面視において段差構造を備えた電極組立体を用いる場合、その構成要素である各正極および各負極をそれぞれ電気的に接続する必要があることに起因して、外部端子の設置箇所が制限されることを見出した。
 本発明は、かかる事情に鑑みて案出されたものである。具体的には、本発明は、外部端子の設置箇所の制限が回避可能な二次電池を提供することを目的とする。
 上記目的を達成するために、本発明の一実施形態では、
 正極、負極および正極と負極との間に配置されたセパレータを含む電極組立体と、電解質とが外装体に収容された二次電池であって、
 電極組立体は、断面視において相対的に高さが高い第1領域と、第1領域に隣接する相対的に高さが低い第2領域とを含む段差構造を備え、
 段差構造を備える電極組立体は、第1領域内の一部の正極の正極側接続タブの各々を相互に接続する正極側接続部、および第1領域内の一部の負極の負極側接続タブの各々を相互に接続する負極側接続部の少なくとも一方を備え、並びに
 第2領域内の少なくとも2つの正極の正極側引出しタブの各々を相互に接続する正極側引出し部、および少なくとも2つの負極の負極側引出しタブの各々を相互に接続する負極側引出し部の少なくとも一方が、外部端子と電気的に接続されるように構成されている、
二次電池が提供される。
 本発明によれば、外部端子の設置箇所の制限が回避可能である。
図1は、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。 図2は、一態様の段差構造を備えた電極組立体を模式的に示した断面図である。 図3は、電極組立体の第2領域に位置する正極側引出しタブおよび/又は負極側引出しタブが外部端子と電気的に接続される態様を模式的に示した断面図である。 図4は、電極組立体の第1領域に位置する正極側接続タブを相互に接続する正極側接続部の一態様を模式的に示した断面図である。 図5は、電極組立体の第1領域に位置する負極側接続タブを相互に接続する負極側接続部の一態様を模式的に示した断面図である。 図6は、電極組立体の第2領域に位置する正極側引出しタブを相互に接続する正極側引出し部の一態様を模式的に示した断面図である。 図7は、電極組立体の第2領域に位置する負極側引出しタブを相互に接続する負極側引出し部の一態様を模式的に示した断面図である。 図8は、別態様の段差構造を備えた電極組立体を模式的に示した断面図である。 図9は、平面積層構造を有する電極組立体の基本的構成を模式的に示した断面図である。 図10は、巻回構造を有する電極組立体の基本的構成を模式的に示した断面図である。 図11は、電極組立体の具体的構成を模式的に示した断面図である。
 以下、本発明の一実施形態に係る二次電池について説明する前に、二次電池の基本的構成について説明しておく。
[二次電池の基本的構成] 
 二次電池は、下記の本発明の一実施形態においても述べるが、外装体の内部に電極組立体と電解質とが収容および封入された構造を有して成る。本明細書において「二次電池」とは、充電および放電の繰り返しが可能な電池のことを指す。従って、本発明の二次電池は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども本発明の対象に含まれ得る。電極組立体は、正極、負極、および正極と負極との間に配置されたセパレータを含んでいる。電極組立体のタイプとしては下記のタイプが挙げられる。第1のタイプは、電極組立体10Aが正極1,1A、負極2,2Aおよびセパレータ3,3Aを含む単位電極ユニットが複数積層された平面積層構造を有するものである(図9参照)。第2のタイプは、電極組立体10Bが、正極1,1B、負極2,2Bおよびセパレータ3,3Bを含む電極ユニットがロール状に巻回された巻回構造を有するものである(図10参照)。更に、第3のタイプとして、電極組立体は、正極、負極、セパレータおよび負極の電極ユニット(特に好ましくは一方向に長く延在する電極ユニット(積層体))を折り畳むことで形成された、いわゆるスタックアンドフォールド構造を有するものであってもよい。また、外装体は、導電性ハードケース又はフレキシブルケース(パウチ等)の形態を採ってよい。外装体の形態がフレキシブルケース(パウチ等)である場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。同様に、複数の負極の各々は、負極用集電リードを介して負極用外部端子に連結されている。負極用外部端子はシール部により外装体に固定され、シール部が電解質の液漏れを防止する。なお、これに限定されず、複数の正極の各々と接続される正極用集電リードは正極用外部端子の機能を備えていてよく、また、複数の負極の各々と接続される負極用集電リードは負極用外部端子の機能を備えていてよい。外装体の形態が導電性ハードケースの場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。
 正極1は、少なくとも正極集電体11および正極材層12から構成されており(図11参照)、正極集電体11の少なくとも片面に正極材層12が設けられている。当該正極集電体11のうち正極材層12が設けられていない箇所、すなわち正極集電体11の端部には正極側引出しタブ13が位置付けられている。正極材層12には電極活物質として正極活物質が含まれている。負極2は少なくとも負極集電体21および負極材層22から構成されており(図11参照)、負極集電体21の少なくとも片面に負極材層22が設けられている。当該負極集電体21のうち負極材層22が設けられていない箇所、すなわち負極集電体21の端部には負極側引出しタブ23が位置付けられている。負極材層22には電極活物質として負極活物質が含まれている。
 正極材層12に含まれる正極活物質および負極材層22に含まれる負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層12に含まれる正極活物質」および「負極材層22に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極1と負極2との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層12および負極材層22は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、電解質を介してリチウムイオンが正極1と負極2との間で移動して電池の充放電が行われる二次電池が好ましい。充放電にリチウムイオンが関与する場合、二次電池は、いわゆる“リチウムイオン電池”に相当する。
 正極材層12の正極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダー(“結着材”とも称される)が正極材層12に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層12に含まれていてよい。同様に、負極材層22の負極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層22に含まれていてよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層12および負極材層22はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、二次電池の正極材層12においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層12に含まれる正極活物質がコバルト酸リチウムとなっている。
 正極材層12に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層12に含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。例えば、正極材層12のバインダーはポリフッ化ビニリデンであってよい。あくまでも例示にすぎないが、正極材層12の導電助剤はカーボンブラックである。さらに好適な態様では、正極材層12のバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっていてよい。
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体21との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。あくまでも例示にすぎないが、負極材層22の負極活物質が人造黒鉛となっていてよい。
 負極材層22に含まれ得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば負極材層22に含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層22に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層22には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。
 あくまでも例示にすぎないが、負極材層22における負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっていてよい。
 正極1および負極2に用いられる正極集電体11および負極集電体21は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極1に用いられる正極集電体11は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極2に用いられる負極集電体21は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。
 正極1および負極2に用いられるセパレータ3は、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータ3は、正極1と負極2との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータ3は多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータ3として用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータ3は、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータ3の表面は無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面は接着性を有していてもよい。なお、セパレータ3は、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。なお、電極の取扱いの更なる向上の観点から、セパレータ3と電極(正極1/負極2)は接着されていることが好ましい。セパレータ3と電極との接着は、セパレータ3として接着性セパレータを用いること、電極材層(正極材層12/負極材層22)の上に接着性バインダーを塗布および/または熱圧着すること等によって為され得る。セパレータ3または電極材層に接着性を供する接着剤としては、ポリフッ化ビニリデン、アクリル系接着剤等が挙げられる。
 正極1および負極2がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質および/または有機溶媒などの“非水系”の電解質であることが好ましい(すなわち、電解質が非水電解質となっていることが好ましい)。電解質では電極(正極1・負極2)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられてよい。また、具体的な非水電解質の溶質としては、例えばLiPF、LiBF等のLi塩が用いられる。また、具体的な非水電解質の溶質としては、好ましくは例えばLiPFおよび/またはLiBF等のLi塩が用いられる。
 正極用集電リードおよび負極用集電リードとしては、二次電池の分野で使用されているあらゆる集電リードが使用可能である。そのような集電リードは、電子の移動が達成され得る材料から構成されればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。正極用集電リードはアルミニウムから構成されることが好ましく、負極用集電リードはニッケルから構成されることが好ましい。正極用集電リードおよび負極用集電リードの形態は特に限定されず、例えば、線又はプレート状であってよい。
 外部端子としては、二次電池の分野で使用されているあらゆる外部端子が使用可能である。そのような外部端子は、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。外部端子5は、基板と電気的かつ直接的に接続されてもよいし、または他のデバイスを介して基板と電気的かつ間接的に接続されてもよい。なお、これに限定されず、複数の正極の各々と電気的に接続される正極用集電リードが正極用外部端子の機能を備えていてよく、また、複数の負極の各々と電気的に接続される負極用集電リードは負極用外部端子の機能を備えていてよい。
 外装体は、上述のように導電性ハードケース又はフレキシブルケース(パウチ等)の形態を有していてよい。
 導電性ハードケースは、本体部および蓋部からなっている。本体部は当該外装体の底面を構成する底部および側面部から成る。本体部と蓋部とは、電極組立体、電解質、集電リードおよび外部端子の収容後に密封される。密封方法としては、特に限定されるものではなく、例えばレーザー照射法等が挙げられる。本体部および蓋部を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は電子の移動が達成され得る材料であればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料が挙げられる。本体部および蓋部の寸法は、主として電極組立体の寸法に応じて決定され、例えば電極組立体を収容したとき、外装体内での電極組立体の移動(ズレ)が防止される程度の寸法を有することが好ましい。電極組立体の移動を防止することにより、電極組立体の破壊が防止され、二次電池の安全性が向上する。
 フレキシブルケースは、軟質シートから構成される。軟質シートは、シール部の折り曲げを達成できる程度の軟質性を有していればよく、好ましくは可塑性シートである。可塑性シートは、外力を付与した後、除去したとき、外力による変形が維持される特性を有するシートのことであり、例えば、いわゆるラミネートフィルムが使用できる。ラミネートフィルムからなるフレキシブルパウチは例えば、2枚のラミネートフィルムを重ね合わせ、その周縁部をヒートシールすることにより製造できる。ラミネートフィルムとしては、金属箔とポリマーフィルムを積層したフィルムが一般的であり、具体的には、外層ポリマーフィルム/金属箔/内層ポリマーフィルムから成る3層構成のものが例示される。外層ポリマーフィルムは水分等の透過および接触等による金属箔の損傷を防止するためのものであり、ポリアミドおよびポリエステル等のポリマーが好適に使用できる。金属箔は水分およびガスの透過を防止するためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内層ポリマーフィルムは、内部に収納する電解質から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィンまたは酸変性ポリオレフィンが好適に使用できる。
[本発明の二次電池]
 上記二次電池の基本的構成を考慮した上で、以下、本発明の一実施形態に係る二次電池について説明する。なお、本発明の一実施形態に係る二次電池は、段差構造を備えた二次電池であることを前提としていることを予め述べておく。
 図1は、本発明の一実施形態に係る二次電池を模式的に示した斜視図である。
 本発明の一実施形態に係る二次電池100は、外装体20の内部に電極組立体と電解質とが収容および封入された構造を有して成る。外装体20は、相互に連続しかつ上面の高さレベルが相互に異なる少なくとも2つの段部を備えている。例えば、一例を挙げると、図1に示すように、外装体20は、少なくとも2つの段部(第1段部20aおよび第2段部20b)を備えていてよい。具体的には、第1段部20aと第2段部20bとは、相互に連続しかつ第2段部20bの上面20bの高さhが第1段部20aの上面20aの高さhよりも大きくなるように構成されている。第1段部20aの上面20aの高さレベルと第2段部20bの上面20bの高さレベルとが相互に異なるため、第1段部20aの上面20aと第2段部20bの上面20bとの間に段差面20bが形成される。一方、一実施形態では、第1段部20aと第2段部20bとは、第2段部20bの上面20bの幅寸法W(長手方向)が第1段部20aの上面20aの幅寸法W(長手方向)と等しくなるように構成されている。
 段差面20bは、高さhおよび幅寸法(長手方向)Wを有する。段差面20bの高さhは、第2段部20bの上面20bの高さhと第1段部20aの上面20aの高さhとの差分に等しくなっている。一方、段差面20bの幅W(長手方向)は、第2段部20bの上面20bの幅寸法W(長手方向)と第1段部20aの上面20aの幅寸法W(長手方向)とにそれぞれ等しくなっている。
 段差面20bは第1段部20aの上面20aと連続するように構成されている。具体的には、第1段部20aの上面20aは、段差面20bの延在方向に対して異なる方向に延在するように段差面20bと連続している。特に限定されるものではないが、第1段部20aの上面20aは、段差面20bの延在方向に対して垂直な方向に延在していてよい。つまり、段差面20bと第1段部20aの上面20aとの間の角度θが90度となっていてよい。なお、これに限定されることなく、段差面20bと第1段部20aの上面20aとの間の角度θは、基板の配置態様を考慮して30度~150度であってよく、好ましくは50度~130度、より好ましくは70度~110度である。
これにより、外装体は、段差面と第1段部20aの上面20aとの間に形成される段差構造を備えることとなる。当該段差構造、具体的には第1段部20aの上面20a上の空間領域は、かかる領域の効率的な活用の観点から基板を設けることが好ましい。
 なお、上述の基板はいわゆるリジッド基板又はフレキシブル基板であってよく、好ましくはリジッド基板である。リジッド基板としては、二次電池とともに使用される基板の分野で使用されるあらゆるリジッド基板が使用可能であり、例えば、ガラス・エポキシ樹脂基板が挙げられる。基板としては、プリント基板、保護回路基板などの回路基板、シリコンウェハーなどの半導体基板、ディスプレイパネルなどのガラス基板等が挙げられる。基板が、二次電池の過充電、過放電および過電流を防止するための、いわゆる保護回路基板であるとき、当該保護回路基板および上記二次電池より、二次電池パックが構成される。
 また、外装体20の表面には二次電池用の外部端子30(正極用外部端子30aおよび負極用外部端子30b)が設けられている。特に限定されるものではないが、例えば外部端子30は第1段部20aの端部側面20aに露出するように構成されていてよい。
 以下、本発明の一実施形態に係る二次電池の構成要素である電極組立体について説明する。
 本発明の一実施形態の二次電池の構成要素である外装体は、上述のように少なくとも2つの段部(上面の高さが相対的に低い低段部および低段部に連続する上面の高さが相対的に高い高段部)を備えている。当該低段部の上面と当該高段部の上面とは相互に高さレベルが異なるため、それに起因して低段部の上面と高段部の上面との間に段差面が形成される。これにより、外装体は、当該段差面と低段部の上面との間に形成される段差構造を備えることとなる。本発明の一実施形態では、当該段差構造を備えた外装体内に配置する電極組立体は、外装体内での電極組立体の移動(ズレ)防止等の観点から、断面視において外装体と略同一形状の段差構造を備えていることが好ましい。
 なお、下記で説明する内容は、あくまでも一例にすぎず、電極組立体が、2つの段部を備えている外装体の内部に設ける場合を前提としていることを確認的に述べておく。
 二次電池の構成要素である電極組立体は、上述のように正極、負極、および正極と負極との間に配置されたセパレータを含んでいる。電極組立体のタイプとしては下記のタイプが挙げられる。第1のタイプ(平面積層構造型)は、電極組立体10Aが正極1,1A、負極2,2Aおよびセパレータ3,3Aを含む単位電極ユニットが複数積層されたものであり(図9参照)、第2のタイプ(巻回構造型)は、電極組立体10Bが、正極1,1B、負極2,2Bおよびセパレータ3,3Bを含む電極ユニットがロール状に巻回されたものである(図10参照)。更に、第3のタイプとして、電極組立体は、正極、負極、セパレータおよび負極の電極ユニット(特に好ましくは一方向に長く延在する電極ユニット(積層体))を折り畳むことで形成された、いわゆるスタックアンドフォールド構造を有するものであってもよい。
 一態様では、電極組立体10は少なくとも2つの平面積層構造型のサブ電極組立体を備えていてよい(図2参照)。例えば、電極組立体10は、第1平面積層構造型サブ電極組立体10Aおよび第2平面積層構造型サブ電極組立体10Aを備えていてよい。第1平面積層構造型サブ電極組立体10Aは、正極1A、負極2Aおよびセパレータ3Aを含む単位電極ユニットが複数積層されたものである。同様に、第2平面積層構造型サブ電極組立体10Aは、正極1A、負極2Aおよびセパレータ3Aを含む単位電極ユニットが複数積層されたものである。
 この場合において、一例を挙げると、電極組立体10では、第2平面積層構造型サブ電極組立体10Aが、図2に示すように断面視にて第1平面積層構造型サブ電極組立体10Aの幅寸法よりも大きな幅寸法を有し、かつ第1平面積層構造型サブ電極組立体10Aの下方に位置するように第1平面積層構造型サブ電極組立体10Aと相互に接触していてよい。かかる構造を有することにより、電極組立体10は断面視において段差構造を備え得る。
 以下、本発明の一実施形態に係る二次電池の構成要素である電極組立体が断面視において段差構造を備える場合を前提として説明する。なお、以下、本明細書でいう「接続タブ」とは、電極(正極/負極)の未塗工部に相当する部分であって、集電リードに接合されていないものを指す。本明細書でいう「接続部」とは、複数の接続タブの各々が相互に接続可能となるように構成されたものを指す。本明細書でいう「引出しタブ」とは、電極(正極/負極)の未塗工部に相当する部分であって、集電リードに接合されるものを指す。又、本明細書でいう「引出し部」とは、複数の引出しタブの各々が相互に接続可能となるように構成されたものを指す。
 かかる場合、本発明の一実施形態では、段差構造を備える電極組立体10は、図3に示すように断面視において相対的に高さの高い第1領域10X(電極組立体10の構成要素)と、第1領域10Xに隣接する相対的に高さが低い第2領域10Y(電極組立体10の構成要素)とを含む。ここで言う「隣接する」とは、単一の電極組立体の構成要素である第1領域10Xと第2領域10Yとが連なる状態のみならず、別々の構成体として機能する一方の電極組立体(第1領域に相当)と他方の電極組立体(第2領域に相当)とが連なる状態を包含し得るものを指す。換言すれば、第1領域10Xと第2領域10Yを含む電極組立体10が全体として電気的に接続可能とする観点から、第2領域10Y内の正極および負極の各々と、第1領域10X内の正極および負極の各々とが相互に隣り合うように構成され得る。
 本発明の一実施形態では、第1領域10X内の第1平面積層構造型サブ電極組立体10Aの正極1Aと、第1領域10X内の第2平面積層構造型サブ電極組立体10Aの正極1Aと、から構成される複数の正極のうちの「一部」の正極にそれぞれ含まれる正極側接続タブ13Xの各々が相互に接合されることによって、図3に示すように正極側接続部14Xが形成されている。具体的には、当該正極側接続部14Xは、例えば図4に示すように複数の正極側接続タブ13Xの端部同士が全体として1束となるように接合されることによって形成される。接合方法としては、特に限定されるものではないが、レーザー溶接、超音波溶接等が挙げられる。
 同様に、本発明の一実施形態では、第1領域10X内に位置する第1平面積層構造型サブ電極組立体10Aの負極2Aと第2平面積層構造型サブ電極組立体10Aの負極2Aとから構成される複数の負極のうちの「一部」の負極にそれぞれ含まれる負極側接続タブ23Xの各々が相互に接合されることによって、図3に示すように負極側接続部24Xが形成されている。具体的には、当該負極側接続部24Xは、例えば図5に示すように複数の負極側接続タブ23Xの端部同士が全体として1束となるように接合されることによって形成される。接合方法としては、特に限定されるものではないが、レーザー溶接、超音波溶接等が挙げられる。
 一方、本発明の一実施形態では、図3に示すように、第2領域10Y内の少なくとも2つの正極、一例として第2平面積層構造型サブ電極組立体10Aの正極1Aの正極側引出しタブ13Yの各々が相互に接合されることによって正極側引出し部14Yが形成されている。具体的には、正極側引出し部14Yは、例えば図6に示すように正極側引出しタブ13Yの各々の端部同士が全体として1束となるように接合されることによって形成される。接合方法としては、特に限定されるものではないが、レーザー溶接、超音波溶接等が挙げられる。
 一態様では、正極側引出し部14Yの形成領域における正極側引出しタブ13Yの一部が正極側集電リード40aを介して外部端子30aと電気的に接続されるように構成されてよい。例えば、正極側引出し部14Yの形成領域における正極側引出しタブ13Yの一部が正極側集電リード40aを介して「第1段部20aの端部側面20aに設けられる」外部端子30aと電気的に接続されてよい。なお、これに限定されることなく、正極側引出し部14Yが形成されていることを前提として、正極側引出し部14Yの形成領域以外の他の領域における正極側引出しタブ13Yの一部が正極側集電リード40aを介して外部端子30aと電気的に接続されるように構成されてよい。更に、正極側引出しタブ13Yの一部は、正極側集電リード40aを介して外部端子30aと接続されることに限定されない。例えば、正極側引出しタブ13Yの一部は、外部端子の機能を備えた正極側集電リードと接続されてもよい。
 同様に、図3に示すように、第2領域10Y内の少なくとも2つの負極、一例として第2平面積層構造型サブ電極組立体10Aの負極2Aの負極側引出しタブ23Yの各々が相互に接合されることによって負極側引出し部24Yが形成されている。具体的には、負極側引出し部24Yは、例えば図7に示すように負極側引出しタブ23Yの各々の端部同士が全体として1束となるように接合されることによって形成される。接合方法としては、特に限定されるものではないが、レーザー溶接、超音波溶接等が挙げられる。
 一態様では、負極側引出し部24Yの形成領域における負極側引出しタブ23Yの一部が負極側集電リード40bを介して外部端子30bと電気的に接続されるように構成されてよい。例えば、負極側引出し部24Yの形成領域における負極側引出しタブ23Yの一部が負極側集電リード40bを介して「第1段部20aの端部側面20aに設けられる」外部端子30bと電気的に接続されてよい。なお、これに限定されることなく、負極側引出し部24Yが形成されていることを前提として、負極側引出し部24Yの形成領域以外の他の領域における負極側引出しタブ23Yの一部が負極側集電リード40bを介して外部端子30bと電気的に接続されるように構成されてよい。更に、負極側引出しタブ23Yの一部は、負極側集電リード40bを介して外部端子30bと接続されることに限定されない。例えば、負極側引出しタブ23Yの一部は、外部端子の機能を備えた負極側集電リードと接続されてもよい。
 なお、図3に示すように、電極組立体10が全体として電気的に接続可能とする観点から、第2領域10Y内に位置する少なくとも1つの正極1Aは、第1領域10X内に位置する少なくとも1つの正極1Aと相互に電気的に接続されるように構成されている必要がある。端的に言うと、電極組立体10が全体として電気的に接続可能とする観点から、少なくとも1つの正極が、平面視にて正極側接続タブ13Xと正極側引出しタブ13Yの両方を備えている必要がある。同様に、図3に示すように、電極組立体10が全体として電気的に導通可能とする観点から、第2領域10Y内に位置する少なくとも1つの負極2Aは、第1領域10X内に位置する少なくとも1つの負極2Aと相互に電気的に接続されるように構成されている必要がある。端的に言うと、電極組立体10が全体として電気的に導通可能とする観点から、少なくとも1つの負極が、平面視にて負極側接続タブ23Xと負極側引出しタブ23Yの両方を備えている必要がある。
 本発明の一実施形態では、図6に示すように第2領域10Y内の正極側引出し部14Yが正極側集電リード40aを介して外部端子30aと電気的に接続され得る。又、図7に示すように第2領域10Y内の負極側引出し部24Yが負極側集電リード40bを介して外部端子30bと電気的に接続され得る。かかる構成を採ることで、引出しタブを、集電リードを介して電気的に接続される外部端子を外装体20の第2段部20b側に必ずしも設ける必要がない。換言すれば、第1領域10X内にて正極側接続部14Xが形成されることにより正極側接続タブ13Xを介して複数の正極のうちの一部が相互に接続され、また第1領域10X内にて負極側接続部24Xが形成されることにより負極側接続タブ23Xを介して複数の負極うちの一部が相互に接続されているとしても、外部端子を外装体20の第2段部20b側ではなく、第1段部20a側に外部端子を設けることができ得る。以上の事から、本発明の一実施形態では、外部端子の設置箇所が外装体20の第2段部20b側に限定されることが回避され得る。つまり、本発明の一実施形態では、外部端子の設置の自由度を高めることができ得る。
 図6および図7に示すように、本態様では、第2領域10Y内の少なくとも2つの正極1Aの正極側引出しタブ13Yを、正極側引出し部14Yを介して外部端子30aと電気的に接続させているため、第2領域10Y内にて単一の正極1Aのみを外部端子30aと電気的に接続させる場合と比べて、1つの正極に電気抵抗が集中してかかることを抑制することができ得る。また、同様に、図6および図7に示すように、本態様では、第2領域10Y内の少なくとも2つの負極2Aの負極側引出しタブ23Yを、負極側引出し部24Yを介して外部端子30bと電気的に接続させているため、第2領域10Y内にて単一の負極2Aのみを外部端子30bと電気的に接続させる場合と比べて、1つの正極に電気抵抗が集中してかかることを抑制することができ得る。以上の事から、全体として本発明の一実施形態に係る二次電池100に生じる電気抵抗を相対的に減じることが可能となる。
 例えば、図1および図6に示すように、正極側引出しタブ13Yが、正極側集電リード40aを介して単一の正極側外部端子30aと電気的に接続され得ると、正極側外部端子30aと基板とをつなぐ配線の数も1つのみにすることができる。それ故、複数の正極側外部端子を用いた場合に生じ得る配線構造の複雑化を抑制することができ得る。換言すれば、正極側外部端子30aと基板とをつなぐ配線構造を簡素化することができる。同様に、例えば、図1および図7に示すように、負極側引出しタブ23Yが、負極側集電リード40bを介して単一の負極側外部端子30bと電気的に接続され得ると、負極側外部端子30bと基板とをつなぐ配線の数も1つのみにすることができる。それ故、複数の負極側外部端子を用いた場合に生じ得る配線構造の複雑化を抑制することができ得る。換言すれば、負極側外部端子30bと基板とをつなぐ配線構造を簡素化することができる。
 一態様では、図1および図6に示すように、正極側接続部14Xおよび負極側接続部24X、並びに正極側引出し部14Yおよび負極側引出し部24Yが、外装体20内の一方の側のみにそれぞれ配置されるように構成されていることが好ましい。
 かかる構成を採ると、例えば、正極側接続部14Xと正極側引出し部14Yが電極組立体10の一方の側に配置される一方、負極側接続部24Xと負極側引出し部24Yが電極組立体10の一方の側に対向する他方の側に配置されている場合と比べて、例えば電極組立体10の他方の側に負極側接続部24Xと負極側引出し部24Yが存在しないことに起因して平面視において電極組立体10の幅寸法を相対的に小さくすることができ得る。従って、かかる電極組立体10の幅寸法の相対的な低減に起因して、電極組立体10を内部に収容する外装体20の寸法を相対的に小さくすることができ得る。つまり、本発明の一実施形態に係る二次電池100の寸法を相対的に小さくすることができ得る。
 また、上記で説明した態様に限定されず、例えば、外部端子と電気的に接続される電極組立体10の第2領域10Yではなく、外部端子と電気的に接続されない第1領域10X内にて、正極側接続部14Xが形成されることにより各正極側接続タブ13Xを介して全て正極が相互に接続され、また負極側接続部24Xが形成されることにより負極側接続タブ23Xを介して全ての負極が相互に接続されてもよい。この場合、単一の正極側接続部14Xによって全ての正極が相互に接続されるため、それに起因して各正極間の電気的接続を安定させることができる。また、単一の負極側接続部24Xによって全ての負極が相互に接続されるため、それに起因して各負極間の電気的接続を安定させることができる。これにより、全ての電極で電池反応を安定的に生じさせることが可能となるため、電池特性をより向上させることができ得る。
 なお、上記では、第1平面積層構造型サブ電極組立体10Aと第2平面積層構造型サブ電極組立体10Aとを含む電極組立体10に基づき説明したが、これに限定されず、電極組立体が断面視にて段差構造を備えるならば、以下の態様を採ってよい。
 例えば、図8に示すように、平面積層構造型サブ電極組立体と巻回構造型サブ電極組立体と含む電極組立体10’の構成を採ってもよい。平面積層構造型サブ電極組立体10A’は、正極1A’、負極2A’およびセパレータ3A’を含む単位電極ユニットが複数積層されたものである。一方、巻回構造型サブ電極組立体10B’は、正極1B’、負極2B’およびセパレータ3B’を含む電極ユニットがロール状に巻回されたものである。この場合において、一例を挙げると、電極組立体10’では、巻回構造型サブ電極組立体10Bは、図8に示すように断面視にて平面積層構造型サブ電極組立体10Aの幅寸法よりも大きな幅寸法を有し、かつ当該平面積層構造型サブ電極組立体10Aの下方に位置するように平面積層構造型サブ電極組立体10Aと相互に接触していてよい。
 これに限定されることなく、更に別の態様では、平面積層構造型サブ電極組立体は、断面視にて巻回構造型サブ電極組立体の幅寸法よりも大きな幅寸法を有し、かつ当該巻回構造型サブ電極組立体の下方に位置するように巻回構造型サブ電極組立体と相互に接触していてよい。
 更に別の態様では、電極組立体は少なくとも2つの巻回構造型のサブ電極組立体を備えていてよい(図示せず)。例えば、電極組立体は、第1巻回構造型サブ電極組立体および第2巻回構造型サブ電極組立体を備えていてよい。第1巻回構造型サブ電極組立体および第2巻回構造型サブ電極組立体は共に、正極、負極、およびセパレータを含む電極ユニットがロール状に巻回されたものである。この場合において、一例を挙げると、電極組立体では、第2巻回構造型サブ電極組立体が、断面視にて第1巻回構造型サブ電極組立体の幅寸法よりも大きな幅寸法を有し、かつ第1巻回構造型サブ電極組立体の下方に位置するように第1巻回構造型サブ電極組立体と相互に接触していてよい。
 なお、少なくとも2つの平面積層構造型のサブ電極組立体を備えている態様(図3参照)において述べた内容と重複するため、詳細な説明は避けるが、電極組立体が断面視にて段差構造を備えるならば、電極組立体が少なくとも平面積層構造型サブ電極組立体と巻回構造型サブ電極組立体を備えている態様(図8参照)においても、下記の2つの観点から特徴的な構成が採られることが好ましい。具体的には、かかる態様においても、「外部端子の設置箇所が外装体20の第2段部20b側に限定されることを回避し、それによって外部端子の設置の自由度を高める」観点から、以下の構成を採ることが好ましい。
 具体的には、断面視にて電極組立体10’の相対的に高さの高い第1領域内の平面積層構造型サブ電極組立体10A’の正極1A’と、第1領域内の巻回構造型サブ電極組立体10B’の正極1B’とから構成される正極にそれぞれ含まれる正極側接続タブの各々が、正極側接続部を形成することにより相互に接続されていることが好ましい。また、これと共に電極組立体10’の相対的に高さの低い第2領域内の巻回構造型サブ電極組立体10B’の正極1B’に含まれる正極側引出しタブが、正極側集電リードを介して正極側外部端子30a(例えば図1参照)と電気的に接続されることが好ましい。同様に、断面視にて電極組立体10’の相対的に高さの高い第1領域内の平面積層構造型サブ電極組立体10A’の負極2A’と、第1領域内の巻回構造型サブ電極組立体10B’の負2B’とから構成される負極にそれぞれ含まれる負極側接続タブの各々が、負極側接続部を形成することにより相互に接続されていることが好ましい。また、これと共に電極組立体10’の相対的に高さの低い第2領域内の巻回構造型サブ電極組立体10B’の負極2B’に含まれる負極側引出しタブが、負極側集電リードを介して負極側外部端子30b(例えば図1参照)と電気的に接続されることが好ましい。
 同様に、上記の観点から、電極組立体が断面視にて相互に幅寸法の異なる少なくとも2つの巻回構造型のサブ電極組立体を備えている態様(図示せず)においても特徴的な構成が採られることが好ましい。具体的には、断面視にて電極組立体の相対的に高さの高い第1領域内の第1の巻回構造型サブ電極組立体の正極と、第1領域内の第2の巻回構造型サブ電極組立体の正極とから構成される正極にそれぞれ含まれる正極側接続タブの各々が、正極側接続部を形成することにより相互に接続されていることが好ましい。また、これと共に電極組立体の相対的に高さの低い第2領域内の第2の巻回構造型サブ電極組立体の正極に含まれる正極側引出しタブが、正極側集電リードを介して正極側外部端子30a(例えば図1参照)と電気的に接続されることが好ましい。同様に、断面視にて電極組立体の相対的に高さの高い第1領域内の第1の巻回構造型サブ電極組立体の負極と、第1領域内の第2の巻回構造型サブ電極組立体の負極とから構成される負極にそれぞれ含まれる負極側接続タブの各々が、負極側接続部を形成することにより相互に接続されていることが好ましい。また、これと共に電極組立体の相対的に高さの低い第2領域内の第2の巻回構造型サブ電極組立体の負極に含まれる負極側引出しタブが、負極側集電リードを介して負極側外部端子30b(例えば図1参照)と電気的に接続されることが好ましい。
 本発明の一実施形態に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る二次電池、特に非水電解質二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
  1      正極
  2      負極
  3      セパレータ
  1A     正極
  2A     負極
  3A     セパレータ
  1A    正極
  2A    負極
  3A    セパレータ
  1A’   正極
  2A’   負極
  3A’   セパレータ
  1A    正極
  2A    負極
  3A    セパレータ
  1B     正極
  2B     負極
  3B     セパレータ
  1B’   正極
  2B’   負極
  3B’   セパレータ
  10     電極組立体
  10X    電極組立体の第1領域
  10Y    電極組立体の第2領域
  10A    平面積層構造型電極組立体
  10A   第1平面積層構造型サブ電極組立体
  10A’  平面積層構造型サブ電極組立体
  10A   第2平面積層構造型サブ電極組立体
  10B’  巻回構造型サブ電極組立体
  11     正極集電体
  12     正極材層
  13     正極側引出しタブ
  13X    正極側接続タブ
  13Y    正極側引出しタブ
  14X    正極側接続部
  14X   第1の正極側接続部
  14X   第2の正極側接続部
  14Y    正極側引出し部
  14Y   第1の正極側引出し部
  14Y   第2の正極側引出し部
  20     外装体
  20a    外装体の第1段部
  20a   第1段部の上面
  20a   第1段部の端部側面
  20b    外装体の第2段部
  20b   第2段部の上面
  20b   段差面
  21     負極集電体
  22     負極材層
  23     負極側引出しタブ
  23X    負極側接続タブ
  23Y    負極側引出しタブ
  24X    負極側接続部
  24X   第1の負極側接続部
  24X   第2の負極側接続部
  24Y    負極側引出し部
  24Y   第1の負極側引出し部
  24Y   第2の負極側引出し部
  30     外部端子
  30a    正極側外部端子
  30b    負極側外部端子
  40a    正極側集電リード
  40b    負極側集電リード
  100    二次電池
  W     第1段部の上面の幅寸法
  W     第2段部の上面の幅寸法
  W     段差面の幅寸法
  h     第1段部の上面の高さ寸法
  h     第2段部の上面の高さ寸法
  h     段差面の高さ寸法
  θ      段差面と第1段部の上面との間の角度

Claims (17)

  1.  正極、負極および該正極と該負極との間に配置されたセパレータを含む電極組立体と、電解質とが外装体に収容された二次電池であって、
     前記電極組立体は、断面視において相対的に高さが高い第1領域と、該第1領域に隣接する相対的に高さが低い第2領域とを含む段差構造を備え、
     前記段差構造を備える前記電極組立体は、前記第1領域内の一部の前記正極の正極側接続タブの各々を相互に接続する正極側接続部、および該第1領域内の一部の前記負極の負極側接続タブの各々を相互に接続する負極側接続部の少なくとも一方を備え、並びに
     前記第2領域内の少なくとも2つの前記正極の正極側引出しタブの各々を相互に接続する正極側引出し部、および少なくとも2つの前記負極の負極側引出しタブの各々を相互に接続する負極側引出し部の少なくとも一方が、外部端子と電気的に接続されるように構成されている、二次電池。
  2.  前記正極側引出し部が単一の正極側の前記外部端子と電気的に接続され、および前記負極側引出し部が単一の負極側の前記外部端子と電気的に接続されるように構成されている、請求項1に記載の二次電池。
  3.  少なくとも1つの前記正極が、平面視にて前記正極側接続タブと前記正極側引出しタブをそれぞれ備えており、および少なくとも1つの前記負極が、平面視にて前記負極側接続タブと前記負極側引出しタブをそれぞれ備えている、請求項1又は2に記載の二次電池。
  4.  前記正極側接続部および前記負極側接続部、並びに前記正極側引出し部および前記負極側引出し部が、前記外装体内の一方の側のみにそれぞれ配置されるように構成されている、請求項1~3のいずれかに記載の二次電池。
  5.  前記外装体は、相互に連続しかつ上面の高さが相互に異なる少なくとも2つの段部を備え、相対的に高さが低い低段部の上面と該低段部に連続する相対的に高さが高い高段部の上面との間に段差面が形成されている、請求項1~4のいずれかに記載の二次電池。
  6.  前記段差面が前記高段部の側面を成している、請求項5に記載の二次電池。
  7.  前記低段部の前記上面が、前記段差面の延在方向に対して異なる方向に延在するように前記段差面と連続する、請求項5又は6に記載の二次電池。
  8.  前記外部端子が、前記低段部の側面に露出するように構成されている、請求項5~7のいずれかに記載の二次電池。
  9.  前記電極組立体が、前記正極、前記負極および前記セパレータを含む複数の電極ユニットを平面状に積層した平面積層構造を有する、請求項1~8のいずれかに記載の二次電池。
  10.  前記電極組立体が、前記正極、前記負極および前記セパレータを含む電極ユニットをロール状に巻回した巻回構造を有する、請求項1~9のいずれかに記載の二次電池。
  11.  前記電極組立体が、前記平面積層構造と前記巻回構造との組合せから成っている、請求項9に従属する請求項10に記載の二次電池。
  12.  前記低段部の前記上面上に、基板を配置可能と成っており、
     前記外部端子は、配線を介して前記低段部の前記上面上に配置された前記基板と電気的に接続可能に構成されている、請求項1~11のいずれかに記載の二次電池。
  13.  前記基板がリジッド基板またはフレキシブル基板である、請求項12に記載の二次電池。
  14.  前記基板が保護回路基板である、請求項12又は13に記載の二次電池。
  15.  前記正極および前記負極がリチウムイオンを吸蔵放出可能な層を有する、請求項1~14のいずれかに記載の二次電池。
  16.  請求項1~15のいずれかに記載の前記二次電池;および
     前記低段部の前記上面上に配置された前記基板を含む、デバイス。
  17.  前記デバイスがモバイル機器である、請求項16に記載のデバイス。
PCT/JP2017/045558 2017-01-12 2017-12-19 二次電池 WO2018131398A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780081680.6A CN110121797B (zh) 2017-01-12 2017-12-19 二次电池
JP2018561883A JP6828751B2 (ja) 2017-01-12 2017-12-19 二次電池
US16/434,353 US11411241B2 (en) 2017-01-12 2019-06-07 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017003629 2017-01-12
JP2017-003629 2017-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/434,353 Continuation US11411241B2 (en) 2017-01-12 2019-06-07 Secondary battery

Publications (1)

Publication Number Publication Date
WO2018131398A1 true WO2018131398A1 (ja) 2018-07-19

Family

ID=62839995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045558 WO2018131398A1 (ja) 2017-01-12 2017-12-19 二次電池

Country Status (4)

Country Link
US (1) US11411241B2 (ja)
JP (1) JP6828751B2 (ja)
CN (1) CN110121797B (ja)
WO (1) WO2018131398A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113206285B (zh) * 2021-03-29 2022-12-09 东莞新能德科技有限公司 电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066170A (ja) * 2006-09-08 2008-03-21 Nec Tokin Corp 積層型電池の製造方法
JP2014521197A (ja) * 2011-07-13 2014-08-25 エルジー・ケム・リミテッド 連結信頼性の向上した電池モジュール及びこれを備えた中大型電池パック
JP2014526133A (ja) * 2012-05-31 2014-10-02 エルジー・ケム・リミテッド 段差を有する電極組立体、それを含む電池セル、電池パック及びデバイス
JP2015115261A (ja) * 2013-12-13 2015-06-22 三洋電機株式会社 密閉型電池
JP2015518256A (ja) * 2012-05-07 2015-06-25 エルジー ケム. エルティーディ. 非定型構造の電池セル及びそれを含む電池モジュール
JP2016502743A (ja) * 2013-02-13 2016-01-28 エルジー・ケム・リミテッド 安全性が向上した新規な構造の電池セル

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971893B2 (ja) * 1989-07-28 1999-11-08 旭光学工業株式会社 組電池装置
JP3611765B2 (ja) * 1999-12-09 2005-01-19 シャープ株式会社 二次電池及びそれを用いた電子機器
WO2005013408A1 (ja) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. リチウムイオン二次電池
CN101529613B (zh) * 2006-08-21 2012-06-13 株式会社Lg化学 具有改进的安全性及优良制造工艺特性的袋形二次电池
US8574753B2 (en) * 2009-08-27 2013-11-05 Kabushiki Kaisha Toshiba Battery comprising a conductive nipping member
CN103875120B (zh) * 2011-09-30 2016-05-25 株式会社村田制作所 电池收纳结构体
JP5909985B2 (ja) * 2011-10-17 2016-04-27 ソニー株式会社 電池および電池の製造方法ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
KR20130113301A (ko) * 2012-04-05 2013-10-15 주식회사 엘지화학 계단 구조의 전지셀
KR20130118716A (ko) * 2012-04-20 2013-10-30 주식회사 엘지화학 전극 조립체, 이를 포함하는 전지셀 및 디바이스
EP2849246A4 (en) * 2012-05-07 2016-03-02 Lg Chemical Ltd BATTERY PACK WITH AMORPHOUS STRUCTURE
KR20130132231A (ko) 2012-05-25 2013-12-04 주식회사 엘지화학 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
KR101387424B1 (ko) * 2012-11-22 2014-04-25 주식회사 엘지화학 전폭의 길이가 동일하고 전장의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR101385732B1 (ko) * 2012-11-22 2014-04-17 주식회사 엘지화학 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR101482837B1 (ko) * 2013-02-08 2015-01-20 주식회사 엘지화학 스텝 유닛셀을 포함하는 단차를 갖는 전극 조립체
KR101573691B1 (ko) 2013-03-04 2015-12-03 주식회사 엘지화학 결락부가 형성된 전지셀 및 이를 포함하는 전지팩
KR101572836B1 (ko) * 2013-03-04 2015-12-01 주식회사 엘지화학 단차 구조를 포함하는 전지셀
KR101870314B1 (ko) * 2015-04-16 2018-06-22 주식회사 엘지화학 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066170A (ja) * 2006-09-08 2008-03-21 Nec Tokin Corp 積層型電池の製造方法
JP2014521197A (ja) * 2011-07-13 2014-08-25 エルジー・ケム・リミテッド 連結信頼性の向上した電池モジュール及びこれを備えた中大型電池パック
JP2015518256A (ja) * 2012-05-07 2015-06-25 エルジー ケム. エルティーディ. 非定型構造の電池セル及びそれを含む電池モジュール
JP2014526133A (ja) * 2012-05-31 2014-10-02 エルジー・ケム・リミテッド 段差を有する電極組立体、それを含む電池セル、電池パック及びデバイス
JP2016502743A (ja) * 2013-02-13 2016-01-28 エルジー・ケム・リミテッド 安全性が向上した新規な構造の電池セル
JP2015115261A (ja) * 2013-12-13 2015-06-22 三洋電機株式会社 密閉型電池

Also Published As

Publication number Publication date
CN110121797A (zh) 2019-08-13
JP6828751B2 (ja) 2021-02-10
US11411241B2 (en) 2022-08-09
CN110121797B (zh) 2022-06-24
JPWO2018131398A1 (ja) 2019-06-27
US20190305353A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
WO2017209052A1 (ja) 二次電池
WO2018154989A1 (ja) 二次電池およびその製造方法
US11437653B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
WO2018180152A1 (ja) 二次電池
US11417912B2 (en) Secondary battery and method of manufacturing the same
WO2018155210A1 (ja) 二次電池および二次電池の製造方法
US11411241B2 (en) Secondary battery
US11387493B2 (en) Secondary battery
JP6885410B2 (ja) 二次電池
US20190334210A1 (en) Secondary battery
WO2018163775A1 (ja) 二次電池の製造方法
WO2018154987A1 (ja) 二次電池およびその製造方法
WO2017208534A1 (ja) 二次電池
US11929467B2 (en) Secondary battery
WO2018105277A1 (ja) 二次電池
JP2018206490A (ja) 二次電池およびその製造方法
WO2022044672A1 (ja) 二次電池およびその製造方法
JP2018181705A (ja) 二次電池およびその製造方法
WO2018100846A1 (ja) 二次電池およびデバイス
WO2017208532A1 (ja) 二次電池
WO2017208683A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891466

Country of ref document: EP

Kind code of ref document: A1