WO2018131344A1 - 二次電池の製造方法 - Google Patents
二次電池の製造方法 Download PDFInfo
- Publication number
- WO2018131344A1 WO2018131344A1 PCT/JP2017/044064 JP2017044064W WO2018131344A1 WO 2018131344 A1 WO2018131344 A1 WO 2018131344A1 JP 2017044064 W JP2017044064 W JP 2017044064W WO 2018131344 A1 WO2018131344 A1 WO 2018131344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shape
- secondary battery
- manufacturing
- dimension
- piece
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for manufacturing a secondary battery.
- the present invention relates to a method for manufacturing a secondary battery characterized by the production of at least one of a positive electrode and a negative electrode.
- Secondary batteries are so-called “storage batteries” that can be repeatedly charged and discharged, and are used in various applications.
- secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.
- the secondary battery includes at least a positive electrode, a negative electrode, and a separator between them.
- the positive electrode is composed of a positive electrode material layer and a positive electrode current collector
- the negative electrode is composed of a negative electrode material layer and a negative electrode current collector.
- a secondary battery has a laminated structure in which electrode constituent layers composed of a positive electrode and a negative electrode sandwiching a separator are stacked on each other.
- the inventor of the present application has found that there is a problem to be overcome in the conventional method of manufacturing a secondary battery, and has found that it is necessary to take measures for that. Specifically, the present inventors have found that there are the following problems.
- an electrode material layer 20 containing an electrode active material is formed on the metal sheet material 10 serving as an electrode current collector to obtain an electrode precursor 30, and then the electrode precursor 30 is cut out.
- a plurality of electrodes 40 are obtained (see FIGS. 16A to 16C).
- the remainder after cutting out was relatively large (see FIG. 16C), and it could never be said that the production efficiency was high.
- the present invention has been made in view of such problems. That is, the main object of the present invention is to provide a method for manufacturing a secondary battery with higher manufacturing efficiency.
- the inventor of the present application tried to solve the above-mentioned problem by addressing in a new direction rather than responding on the extension of the prior art. As a result, the inventors have reached an invention of a method for manufacturing a secondary battery in which the main object is achieved.
- a method for manufacturing a secondary battery according to the present invention includes: Production of at least one of a positive electrode and a negative electrode Forming an electrode material layer on a metal sheet material to be an electrode current collector to obtain an electrode precursor, and forming a plurality of cuts from the electrode precursor to form an electrode,
- the plurality of cutout shapes include a pair shape composed of a “relatively small piece” and a “relatively large piece”.
- the production method of the present invention can produce a secondary battery with higher production efficiency. More specifically, the “residue after cutting” can be reduced when cutting a plurality of electrodes from the electrode precursor.
- the manufacturing method of the present invention can be applied to various battery manufacturing such as “manufacturing the same battery” and “manufacturing different batteries”, and has a relatively high degree of manufacturing freedom. For example, it is possible to more efficiently manufacture a secondary battery having “steps” caused by locally different height levels of the main surface.
- Sectional view schematically showing the electrode configuration layer The top view which showed typically the process aspect in the manufacturing method which concerns on one Embodiment of this invention
- step difference from which the height level of a main surface differs locally” using a small piece shape and a large piece shape as one Embodiment of this invention Schematic diagram for explaining “a dimensional relationship in which a cut-out dimension of a small piece and a minimum cut-out dimension of a large piece are substantially the same” as an embodiment of the present invention.
- step difference as one Embodiment of this invention.
- Schematic diagram for explaining “a dimensional relationship in which a cut-out dimension of a small piece is larger than a minimum cut-out dimension of a large piece” as an embodiment of the present invention Schematic diagram for explaining “a dimensional relationship in which the short dimension of the small piece is larger than the minimum short dimension of the large piece” as one embodiment of the present invention.
- Schematic diagram for explaining "a plurality of types of battery manufacturing aspects” as one embodiment of the present invention Schematic diagram for explaining “an aspect of“ step difference ”in manufacturing the same battery” as an embodiment of the present invention
- Schematic diagram for explaining “an aspect of“ step difference ”in manufacturing the same battery” as an embodiment of the present invention Schematic diagram for explaining “an aspect of“ step difference ”in manufacturing the same battery” as an embodiment of the present invention
- the schematic diagram for demonstrating "the change aspect of a pair shape" as one Embodiment of this invention Plan view schematically showing a process aspect in a conventional manufacturing method (prior art)
- the direction of “thickness” described directly or indirectly in this specification is based on the stacking direction of the electrode material constituting the secondary battery, that is, “thickness” is in the stacking direction of the positive electrode and the negative electrode. Corresponds to the dimensions.
- the “plan view” used in the present specification is based on a sketch when the object is viewed along the thickness direction.
- vertical direction and horizontal direction used directly or indirectly in the present specification correspond to the vertical direction and horizontal direction in the drawing, respectively. Unless otherwise specified, the same symbols or symbols indicate the same members or the same meaning. In a preferable aspect, it can be understood that the downward direction in the vertical direction (that is, the direction in which gravity works) corresponds to the “down direction” and the reverse direction corresponds to the “up direction”.
- a secondary battery is obtained.
- the “secondary battery” in the present specification refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery obtained by the manufacturing method of the present invention is not excessively bound by its name, and for example, “electric storage device” can also be included in the object.
- the secondary battery obtained by the manufacturing method of the present invention has an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated.
- FIG. 1 illustrates an electrode assembly. As shown in the drawing, the positive electrode 1 and the negative electrode 2 are stacked via a separator 3 to form an electrode constituent layer 5, and at least one electrode constituent layer 5 is laminated to form an electrode assembly 100 ′. Has been. In a secondary battery, such an electrode assembly is enclosed in an exterior body together with an electrolyte (for example, a nonaqueous electrolyte).
- an electrolyte for example, a nonaqueous electrolyte
- the positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector.
- a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material.
- each of the plurality of positive electrodes in the electrode assembly may be provided with a positive electrode material layer on both surfaces of the positive electrode current collector, or may be provided with a positive electrode material layer only on one surface of the positive electrode current collector.
- the positive electrode is preferably provided with a positive electrode material layer on both surfaces of the positive electrode current collector.
- the negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector.
- a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material.
- each of the plurality of negative electrodes in the electrode assembly may be provided with a negative electrode material layer on both surfaces of the negative electrode current collector, or may be provided with a negative electrode material layer only on one surface of the negative electrode current collector.
- the negative electrode is preferably provided with a negative electrode material layer on both sides of the negative electrode current collector.
- the electrode active materials contained in the positive electrode and the negative electrode are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged.
- the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions.
- the secondary battery obtained by the production method of the present invention corresponds to a so-called “lithium ion battery”, and the positive electrode and the negative electrode have layers capable of occluding and releasing lithium ions. .
- the positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction.
- the negative electrode active material of the negative electrode material layer is also composed of, for example, a granular material, and it is preferable that a binder is included for more sufficient contact between the particles and shape retention, and transmission of electrons that promote the battery reaction.
- the conductive support agent may be contained in the negative electrode material layer.
- the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
- the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
- the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
- the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery obtained by the production method of the present invention, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material.
- the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal.
- the positive electrode active material contained in a positive electrode material layer may be lithium cobaltate.
- the binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like.
- the conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
- the binder of the positive electrode material layer may be polyvinylidene fluoride
- the conductive additive of the positive electrode material layer may be carbon black.
- the binder and conductive support agent of a positive electrode material layer may be a combination of polyvinylidene fluoride and carbon black.
- the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
- Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
- graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector.
- Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
- the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
- Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
- a binary, ternary or higher alloy of a metal such as La and lithium.
- Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
- the negative electrode active material of a negative electrode material layer may be artificial graphite.
- the binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned.
- the binder contained in the negative electrode material layer may be styrene butadiene rubber.
- the conductive auxiliary agent that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
- Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
- the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer.
- the negative electrode active material and the binder in the negative electrode material layer may be a combination of artificial graphite and styrene butadiene rubber.
- the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
- a current collector may be a sheet-like metal member and may have a porous or perforated form.
- the current collector may be a metal foil, a punching metal, a net or an expanded metal.
- the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
- the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
- the separator used for the positive electrode and the negative electrode is a member provided from the viewpoint of preventing short circuit due to contact between the positive electrode and the negative electrode and maintaining the electrolyte.
- the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode.
- the separator is a porous or microporous insulating member and has a film form due to its small thickness.
- a polyolefin microporous film may be used as the separator.
- the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
- the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
- the surface of the separator may be covered with an inorganic particle coat layer, an adhesive layer, or the like.
- the surface of the separator may have adhesiveness.
- the separator is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, insulating inorganic particles or the like having the same function.
- an electrode assembly including an electrode constituent layer including a positive electrode, a negative electrode, and a separator is enclosed in an exterior together with an electrolyte.
- the electrolyte is preferably a “non-aqueous” electrolyte such as an organic electrolyte or an organic solvent (that is, the electrolyte is a non-aqueous electrolyte). preferable).
- the electrolyte metal ions released from the electrodes (positive electrode and negative electrode) exist, and therefore, the electrolyte assists the movement of the metal ions in the battery reaction.
- a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
- a solvent containing at least carbonate is preferable.
- Such carbonates may be cyclic carbonates and / or chain carbonates.
- examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
- chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
- DMC dimethyl carbonate
- DEC diethyl carbonate
- EMC ethyl methyl carbonate
- DPC dipropyl carbonate
- the combination of cyclic carbonate and chain carbonate may be used as a non-aqueous electrolyte, for example, the mixture of ethylene carbonate and diethyl carbonate is used.
- a Li salt such as LiPF 6 and / or LiBF 4 is preferably used as LiPF 6 and / or LiBF 4 is preferably used.
- the outer package of the secondary battery encloses the electrode assembly in which the electrode constituent layers including the positive electrode, the negative electrode, and the separator are laminated, but may be in a hard case form or a soft case form.
- the exterior body may be a hard case type corresponding to a so-called “metal can” or a soft case type corresponding to a “pouch” made of a so-called laminate film.
- the production method of the present invention is characterized by a method for producing an electrode.
- it has a feature in cutting out a plurality of electrodes when producing at least one of a positive electrode and a negative electrode.
- the electrode precursor layer 30 is formed by forming the electrode material layer 20 on the metal sheet material 10 serving as the electrode current collector. And a plurality of cuts from the electrode precursor 30 to form an electrode, and the plurality of cut-out shapes include a relatively small piece 42 and a relatively large piece.
- a pair consisting of shape 47 is included. That is, at least one (preferably at least two) pair of small pieces and large pieces are obtained from the electrode precursor in terms of a planar shape.
- the “paired shape” in the present invention means a combination of two adjacent shapes in a plan view in a broad sense, and is adjacent to each other in a plan view seen from above in the thickness direction in a narrow sense.
- the remaining after cutting can be reduced more effectively.
- the “waste part” that does not ultimately contribute to the production of the secondary battery can be reduced (particularly, the disposal of the electrode active material that does not eventually become a battery component can be reduced).
- the production efficiency is higher.
- the reduction of “waste part” leads to low-cost manufacturing of the secondary battery.
- a plurality of electrodes are cut out so as to include at least one paired shape consisting of “relatively small pieces” and “relatively large pieces”.
- the term “relatively large large piece” as used herein means a cutout shape having a relatively large area among the paired shapes in plan view.
- the “relatively small piece” means a cutout shape having a relatively small area among the above-described paired shapes in plan view.
- the area of the small piece shape in planar view may be 3/4 or less of the area of a large piece shape, for example, may be half or less.
- a plurality of electrode cutouts including a pair of "relatively small pieces” and “relatively large pieces” can be used for various batteries such as “manufacturing the same battery” and “manufacturing different batteries”.
- Applicable to manufacturing That is, in the cutting according to the present invention, the degree of freedom in manufacturing can be made relatively high while further reducing the remainder after cutting. For example, it is possible to more efficiently manufacture a “secondary battery having steps with locally different height levels on the main surface” as the same battery.
- the manufacturing method of the secondary battery After preparing and preparing the positive electrode, the negative electrode, the electrolytic solution, and the separator, respectively (may be procured from a commercial product if necessary), the secondary battery is integrated by combining them. Obtainable.
- a positive electrode material slurry is prepared.
- the positive electrode material slurry is an electrode material layer raw material containing at least a positive electrode active material and a binder.
- a positive electrode material slurry is applied to a metal sheet material (for example, aluminum foil) used as a positive electrode current collector, and subjected to rolling with a roll press.
- a positive electrode precursor that is, an electrode precursor is obtained.
- the metal sheet material preferably has a long strip shape, and the positive electrode material slurry is applied to such a long metal sheet.
- the area to be applied is not the entire area of the long metal sheet, but the peripheral portion in the width direction of the metal sheet material (more specifically, the end portion in the direction orthogonal to the direction in which the cutting is sequentially performed). Is preferably not applied.
- the obtained positive electrode precursor (especially a positive electrode precursor that is long in a band shape) is stored by being wound in a roll or the like as needed, or is appropriately transported until it is used in the next step. Then, in the next step, cutting out is performed to obtain a plurality of positive electrodes from the positive electrode precursor (if they are wound in a roll shape, they are expanded and cut out).
- the positive electrode precursor is subjected to mechanical cutting to cut out the positive electrode from the positive electrode precursor (particularly, “part where the positive electrode material slurry is applied”).
- mechanical cutting to cut out the positive electrode from the positive electrode precursor (particularly, “part where the positive electrode material slurry is applied”).
- a so-called “punching operation” may be performed.
- a plurality of desired positive electrodes can be obtained through the operations described above.
- the production of the negative electrode is the same as the production of the positive electrode.
- a negative electrode material slurry is prepared.
- the negative electrode material slurry is an electrode material layer raw material containing at least a negative electrode active material and a binder.
- the negative electrode material slurry is applied to a metal sheet material (for example, copper foil) used as a negative electrode current collector, and is subjected to rolling with a roll press.
- a negative electrode precursor that is, an electrode precursor is obtained.
- the metal sheet material preferably has a long strip shape, and the negative electrode material slurry is applied to such a long metal sheet material.
- the area to be applied is not the entire area of the long metal sheet material, but the peripheral portion in the width direction of the metal sheet material (more specifically, the end portion in the direction orthogonal to the direction in which cutting is performed sequentially), etc. It is preferable not to apply to. In one preferable aspect, it is preferable to apply the negative electrode material slurry in a similar long shape so as to be slightly smaller than the long metal sheet material.
- the obtained negative electrode precursor (particularly, a long negative electrode precursor) is stored by being rolled into a roll or the like as needed until it is used in the next step, or is appropriately transported. Then, in the next step, cutting is performed to obtain a plurality of negative electrodes from the negative electrode precursor (when the material is wound in a roll shape, it is expanded and cut out).
- the negative electrode is cut out from the negative electrode precursor (particularly, “part where the negative electrode material slurry is applied”) by subjecting the negative electrode precursor to mechanical cutting.
- a so-called “punching operation” may be performed.
- a plurality of desired negative electrodes can be obtained through the operations described above.
- An electrolyte that is responsible for ion transfer between the positive electrode and the negative electrode when the battery is used is prepared.
- a nonaqueous electrolyte is particularly prepared. Therefore, the raw material used as an electrolyte is mixed and a desired electrolyte is prepared.
- the electrolyte may be a conventional electrolyte used in a conventional secondary battery, and therefore, the electrolyte raw material is also used in the conventional manner for manufacturing a secondary battery. Good.
- the separator may be conventional, and therefore, a separator that is conventionally used as a secondary battery may be used.
- the secondary battery can be obtained by integrally combining the positive electrode, the negative electrode, the electrolytic solution, and the separator prepared and prepared as described above.
- a secondary battery can be obtained by stacking a plurality of positive electrodes and negative electrodes through a separator to form an electrode assembly and enclosing the electrode assembly together with an electrolyte in an exterior body.
- the separator may be a laminate of sheets cut into sheets, or may be stacked in a ninety-nine shape and cut off excess. Furthermore, you may laminate
- the present invention is characterized by the production of an electrode in the production of the secondary battery as described above. More specifically, in the production of at least one of the positive electrode and the negative electrode, the cut out from the electrode precursor includes a pair of “relatively small pieces” and “relatively large pieces”. Do. That is, a plurality of positive electrodes are cut out from the positive electrode precursor so as to include “a pair of relatively small pieces and relatively large pieces” and / or a plurality of negative electrodes are cut out. The shape is cut out from the negative electrode precursor so as to include a “paired shape consisting of a relatively small piece and a relatively large piece”.
- the “plurality of small pieces” and the “plurality of large pieces” are cut out so that each has a certain shape between a plurality of pairs.
- the cutting is performed so that the obtained plurality of electrodes are adjacent to each other along the longitudinal direction of the electrode precursor 30 (that is, the longitudinal direction of the metal sheet material 10).
- the plurality of paired shapes to be cut out form a row along the longitudinal direction of the electrode precursor 30 or the metal sheet material 10.
- the “relatively small piece shape 42” and the “relatively large piece shape 47” that form a pair have complementary shapes. . That is, it preferably has a planar shape such that the small piece 42 and the large piece 47 complement each other in plan view.
- “having a complementary shape” as used in the present invention has a shape in which portions facing each other in a plan view and a small piece outline substantially overlap each other. Means. More specifically, the “substantially overlapping shape” means that a small piece outline can be substantially included in the large piece outline portion of the outline portions facing each other in plan view.
- the positive electrode it is preferable to cut out from the positive electrode precursor so that the small piece 42 and the large piece 47 that form a pair with respect to the cut shape of the plurality of positive electrodes are complementary to each other.
- the negative electrode precursor it is preferable to cut out from the negative electrode precursor so that the small piece 42 and the large piece 47 which form a pair with respect to the cut shape of a plurality of negative electrodes are complementary to each other.
- the complementary relationship is continuous in the longitudinal direction of the electrode precursor 30 (that is, the longitudinal direction of the metal sheet material 10).
- Such a manufacturing method can increase the manufacturing efficiency not only in “manufacturing the same battery” but also in “manufacturing different batteries”, and contributes to an improvement in manufacturing freedom.
- a “secondary battery having steps with locally different height levels of the main surface” can be manufactured more efficiently.
- the “relatively small piece 42” forming a pair is rectangular, while the “relatively large piece 47” is non-rectangular. It has become. Further, when they have a complementary relationship, when the rectangular small piece 42 and the non-rectangular large piece 47 are combined in a plan view, another rectangular shape (a larger rectangular shape different from the small piece 42) is obtained. Shape).
- the term “rectangular shape” means a shape that is usually included in the concept of a rectangular shape such as a square shape and a rectangular shape when the cut shape in plan view (that is, the shape cut out as an electrode from the electrode precursor). Therefore, the “rectangular shape” indicates that the cut-out shape (electrode shape) in a plan view as viewed from above in the thickness direction is a substantially square or a substantially rectangular shape.
- the term “non-rectangular shape” as used in this specification refers to a shape that is not normally included in the concept of a rectangular shape such as a square shape and a rectangular shape, that is, a cut shape in plan view (ie, a shape cut out as an electrode from an electrode precursor).
- non-rectangular refers to a shape in which the cut-out shape (electrode shape) in plan view as viewed from above in the thickness direction is not square or rectangular, and in a narrow sense, electrode shape in plan view. Is based on a square / rectangular shape, but is partially cut away from it (preferably a shape in which the corners of the square / rectangular shape of the base are cut off).
- non-rectangular shape is based on a square / rectangular shape of an electrode in plan view, and is a square, rectangular, semicircular, semi-elliptical, or circular / elliptical one having a size smaller than the base shape. It may be a shape obtained by cutting out at least one portion or a combination shape thereof from the base shape (particularly a shape obtained by cutting out from a corner portion of the base shape).
- a plurality of electrodes are cut out so as to have a rectangular / non-rectangular relationship in this way, the remaining after cutting can be reduced more effectively.
- the paired cutout of “rectangular small piece” and “non-rectangular large piece” can increase the production efficiency not only in “production of the same battery” but also in “production of different batteries”. Can contribute to the improvement of the manufacturing freedom.
- a “secondary battery having steps with locally different height levels of the main surface” can be manufactured more efficiently.
- the “relatively small piece shape 42” is rectangular and the “relatively large piece 47” is non-rectangular so that the small piece 42 and the large piece 47 are complementary to each other. It may be a shape.
- the small piece 42 is a rectangle
- the large piece 47 is “a non-obtainable shape obtained by cutting a base rectangle into a small piece rectangle (especially a similar shape of the base). It may be “rectangular”.
- a “secondary battery having steps with locally different height levels of the main surface” as shown in FIG. 4 can be manufactured more efficiently.
- both the small piece 42 and the large piece 47 are in the sheet lateral direction of the metal sheet material 10 (that is, preferably in the direction perpendicular to the direction in which cutting is performed sequentially).
- the small piece 42 and the large piece 47 are easily configured to form a pair. That is, this results in reducing the “residue after cutting” when cutting from the electrode precursor.
- the “relatively small piece shape 42” and the “relatively large piece shape 47” that form a pair are formed of the same battery.
- Can be used in the manufacture of A plurality of positive electrodes and negative electrodes cut out from the electrode precursor are stacked together via a separator to form an electrode assembly 100 ′.
- the electrodes (positive electrode and / or negative electrode) of the constituent elements of the electrode assembly 100 ′ At least “a pair shape of the small piece 42 and the large piece 47” is used.
- an electrode assembly having an assembly step composed of a “relatively low level assembly low surface 160 ′” and a “relatively high level assembly high surface 180 ′”.
- a solid battery 100 ' can be obtained, and therefore, a secondary battery having a battery step composed of a relatively low level battery low surface and a relatively high level battery high surface is finally obtained. Obtainable.
- the small piece 42 is formed on the large piece laminate 47 ′ composed of the large piece 47. It is preferable to position a small piece laminate 42 ′ composed of: As a result, the electrode assembly 100 ′ (that is, the secondary battery finally) having a step can be more suitably obtained.
- the electrode assembly 100 ′ can use the assembly lower surface 160 ′ (that is, the battery lower surface in the secondary battery) as a “substrate placement surface”. In view of this point, configuring the electrode assembly 100 ′ using the small piece 42 and the large piece 47 for manufacturing the same battery according to the present invention can provide a secondary battery particularly suitable for the combined use with the substrate. It means you can do it.
- the installation space for the secondary battery needs to take into account the balance with other equipment elements such as circuit boards and various parts.
- the installation space of the secondary battery is more restricted by the casing and various elements accommodated therein, and the shape of the conventional secondary battery can sufficiently cope with it. It is gone.
- the secondary battery is often used together with an electronic circuit board typified by a board, for example, a printed board and a protective circuit board, in the housing.
- a board for example, a printed board and a protective circuit board
- the “secondary battery having a low battery surface” manufactured in “small piece” / “large piece” according to the present invention can be a battery particularly suitable for use in combination with a substrate.
- the assembly lower surface 160 ′ corresponding to the substrate placement surface has a substantially rectangular shape suitable for the substrate shape (see FIG. 4). That is, in the manufacturing method of the present invention, a secondary battery that can suitably use the battery lower surface due to the step as the substrate arrangement surface can be provided.
- the large piece laminate 47 ′ composed of the large pieces 47 is configured by laminating a large piece of positive electrode and negative electrode with a separator having the same shape interposed therebetween.
- a small piece laminate 42 ′ composed of small pieces 42 is configured by laminating a small piece of a positive electrode and a negative electrode with a separator having the same shape interposed therebetween. It is preferable that the large piece laminated body 47 ′ and the small piece laminated body 42 ′ are positioned so as not to protrude from each other in a superimposed state (so as not to protrude in a direction orthogonal to the stacking direction). In particular, as shown in FIG.
- a large piece laminate 47 ′ is provided so that a “relatively low level assembly low surface 160 ′” and a “relatively high level assembly high surface 180 ′” are suitably provided.
- the small piece laminate 42 ' are preferably laminated together.
- the so-called “double-sided positive electrode” the positive electrode in which the positive electrode material layer is provided on both sides of the positive electrode current collector
- the “relatively small piece” and the “relatively large piece” forming a pair of shapes may have a predetermined dimensional relationship with each other. That is, the small piece and the large piece may be paired so as to have a specific dimensional relationship.
- the outgoing direction dimension B and the minimum cutting direction may be substantially the same. That is, when the dimension of the small piece 42 along the direction in which the cutting is sequentially performed is compared with the smallest dimension among the dimensions of the large piece 47 along the direction in which the cutting is sequentially performed, they are substantially the same. It's okay.
- substantially the same means that one dimension and the other dimension are substantially the same as those skilled in the art recognize. For example, one dimension a and the other dimension b are 0.
- the electrode assembly 100 ′ having such a protrusion and having a step can be suitably manufactured. More specifically, an electrode assembly 100 ′ having an assembly step composed of “relatively low level assembly low surface 160 ′” and “relatively high level assembly high surface 180 ′” is provided. Therefore, it is possible to finally obtain a secondary battery that is more suitably provided with a battery lower surface caused by a step as a substrate arrangement surface.
- the small piece shape 42 and the large piece shape 47 are complementary to each other so that the “relatively small piece shape 42” is rectangular and the “relatively large piece 47” is non-rectangular.
- the small piece shape 42 and the large piece shape 47 are complementary to each other so that the “relatively small piece shape 42” is rectangular and the “relatively large piece 47” is non-rectangular.
- a three-dimensional three-dimensional electrode assembly 100 ′ as shown in FIG. 4 can be more easily obtained, and a secondary battery having a substrate arrangement surface can be finally obtained. That is, as shown in FIG.
- the longitudinal dimensions of both the small piece 42 and the large piece 47 are along the sheet lateral direction of the metal sheet material, and the rectangular small piece 42 and the non-rectangular large piece.
- the rectangular small piece shape 42 and the non-rectangular large piece shape 47 are more suitably combined as shown in FIG. As a result, a secondary battery having a desired substrate arrangement surface can be finally obtained.
- the maximum cut orthogonal dimension B of the large piece 47 is the maximum in the orthogonal direction.
- the cut orthogonal dimension A orthogonal direction of the small piece 42 is preferably smaller than the difference from the minimum cut orthogonal dimension B orthogonal minimum . That is, “the difference between the largest dimension and the smallest dimension among the dimensions of the large piece 47 along the direction orthogonal to the direction in which cutting is performed sequentially” and “similarly in the direction orthogonal to the direction in which cutting is performed sequentially. When comparing with the dimension of the small piece shape 42 along, it is preferable that the latter is smaller than the former.
- the maximum cut-out of the “nonrectangular” large piece 47 is cut out.
- the cut rectangular dimension A orthogonal direction of the “rectangular” small piece 42 is preferably smaller than the difference between the orthogonal dimension B orthogonal direction maximum and the minimum cut orthogonal dimension B orthogonal minimum .
- the small piece laminate 42 'and the large piece laminate 47' The position of the step resulting from the above (position on the surface orthogonal to the thickness direction) can be made more suitable for the substrate placement surface of the battery. That is, the battery can be manufactured so that the position of the step contributes effectively to the substrate placement surface.
- the electrode assembly 100 ′ is finally wrapped in an exterior body to be a secondary battery, and due to the exterior body, the step of the electrode assembly and the battery step may be misaligned (see FIG. 8). ). That is, in the electrode assembly and the secondary battery obtained by wrapping the electrode assembly with the exterior body, a difference occurs in the step position (more specifically, “step position in a plane orthogonal to the thickness direction”). Because of the difference in the step position, “the difference between the largest dimension and the smallest dimension among the large pieces along the direction orthogonal to the direction in which the cutting is performed sequentially” and “the direction in which the cutting is performed in the same manner” If the dimension of the small piece along the orthogonal direction is made the same, the battery low surface as the substrate placement surface is excessively restricted.
- a direction perpendicular to the direction in which cuts are performed in a similar manner rather than “the difference between the largest and minimum dimensions of large pieces along the direction orthogonal to the direction in which cuts are performed sequentially”.
- the lower surface of the battery as the substrate placement surface is excessively restricted means that the battery step is a “notched peripheral line”. It is meant that the effective area as the substrate placement surface is greatly reduced by being installed at a position that is farther away from the small piece stack.
- the small piece 42 and the large piece 47 are complementary to each other, the “relatively small piece 42” has a rectangular shape, and the “relatively large piece 47” has a non-rectangular shape.
- longitudinal dimension of the largest longitudinal dimension B lengthwise maximum and minimum longitudinal dimension B longitudinal smallest difference pieces form 42 than the large single form 47 in a plan view a
- the length is small.
- it may have a longitudinal dimension A longitudinal maximum longitudinal dimension B lengthwise maximum and minimum longitudinal dimension B longitudinal smallest difference pieces form 42 than the large single form 47 in plan view is smaller degree than 5mm below 0.5 mm.
- a three-dimensional three-dimensional electrode assembly 100 ′ as shown in FIG. 4 can be more suitably obtained, and a secondary battery having a substrate arrangement surface can be finally obtained. That is, as shown in FIG. 2, the longitudinal dimensions of both the small piece 42 and the large piece 47 are along the sheet lateral direction of the metal sheet material, and the rectangular small piece 42 and the non-rectangular large piece. In the case where a plurality of electrodes are cut out so that the shape 47 is complementary to each other, as shown in FIGS. 4 and 8B, the rectangular small piece 42 and the non-rectangular large piece 47 are formed. Are combined in a more suitable manner, and a secondary battery having a wider desired substrate arrangement surface can be obtained.
- the “relatively small piece” forming a pair shape is rectangular, while the “relatively large piece” is used for manufacturing different batteries.
- a plurality of positive electrodes and negative electrodes cut out from the electrode precursor are stacked together via a separator to form an electrode assembly.
- the small piece shape and the large piece shape are respectively used for manufacturing separate batteries.
- an electrode assembly consisting essentially only of the small piece 42 is formed and a secondary battery in which the electrode assembly is enclosed in an exterior body is manufactured, while an electrode assembly consisting essentially of only the large piece 47 is constituted.
- the secondary battery may be manufactured by enclosing it in an outer package.
- the separate use of the paired shape of the small piece 42 and the large piece 47 in the manufacture of different secondary batteries allows at least two types of batteries to be obtained by cutting out the same process, which is preferable in terms of mass production of a plurality of types of batteries. .
- it is possible to mass-produce batteries having different shapes from each other by further reducing the remainder after cutting it is possible to manufacture batteries that are desirable at least in terms of cost.
- the manufacturing method of the present invention can use a pair of small and large pieces for manufacturing the same battery as described above, it is possible to manufacture separate batteries or the same battery. This means that the present invention has a relatively high degree of manufacturing freedom.
- the small pieces and the large pieces are “paired”. It is easy to make the electrode assemblies obtained individually from them substantially the same thickness.
- a secondary battery suitable as an element accommodated in the same housing can be obtained.
- a plurality of secondary batteries may be mounted on a case of a digital device such as a notebook computer, and the secondary battery used in the same case is composed of a “small piece 42”.
- the secondary battery and the secondary battery composed of the “large piece 47” can be manufactured in parallel with each other.
- the “relatively small piece” and “relatively large piece” forming a pair of shapes have a predetermined dimensional relationship with each other. It may have nature. In other words, the small piece shape and the large piece shape may be paired so as to have a specific dimensional relationship.
- the cutting dimension A cutting direction pieces shaped 42, the minimum of a large piece form 47
- the cutting direction dimension B may be larger than the minimum cutting direction . That is, when comparing the size of the small piece 42 along the direction in which the cutting is sequentially performed and the size of the large piece 47 along the direction in which the cutting is sequentially performed, the former is larger than the latter. It may be. As shown in FIG. 10, when the “relatively small piece 42” is rectangular and the “relatively large piece 47” is non-rectangular, the “rectangular” piece 42 is cut out.
- the directional dimension A cutting direction may be larger than the minimum cutting direction dimension B of the “non-rectangular” large piece 47 and the cutting direction minimum .
- the electrode assemblies are separately configured from the small piece shape 42 and the large piece shape 47 obtained by such cutting, it is possible to obtain a secondary battery having two different planar sizes, the large piece electrode and the small piece electrode.
- the small piece laminate 42 ′ protrudes from the large piece laminate 47 ′ (direction perpendicular to the stacking direction). It is not desirable.
- a condition cutting dimension A cutting direction pieces shaped, a large dimensional relationship than the minimum cutting dimension B cutting direction minimum large piece form, particularly suited to "different cell manufacturing" I can say that.
- the short dimension A shorter large pieces form pieces shaped 42 in a plan view 47 minimum short dimension B may be larger than the short minimum .
- a “rectangular” secondary battery composed of small pieces 42, a “non-rectangular” secondary battery composed of large pieces 47, and two types of batteries can be obtained in parallel.
- Such two types of secondary batteries can be made to have substantially the same thickness due to the “pair” of the small piece shape 42 and the large piece shape 47, and therefore, as a secondary battery housed in the same housing. Particularly preferred.
- the present invention can be embodied in various forms. For example, the following modes can be cited.
- each of the plurality of electrodes it is preferable to cut out each of the plurality of electrodes so that the current collector tab portion is included. Specifically, as shown in FIG. 2 and FIG. 3, the metal sheet material 10 not provided with the electrode material layer 20 is cut out so that the region is included in the cut shape, thereby each of the plurality of electrodes. It is preferable to provide current collector tab portions 42a and 47a. In such a case, it is particularly preferable to position the current collector tab portion at the same location for each of the small pieces and the large pieces among a plurality of pieces.
- the position of the current collector tab portion (so-called “tab”) between the plurality of small pieces is preferably the same part of the cut shape, and the current collector tab portion (so-called “tab” between the plurality of large pieces is used. It is preferable that the position of “)” be the same part of the cutout shape. In the case of production of the positive electrode, for each of the small piece shape and the large piece shape, it is preferable that the positions of the positive electrode current collector tab portions (so-called “positive electrode tabs”) be the same in the cut shape between the plurality of positive electrodes.
- negative electrode tabs the positions of the negative electrode current collector tab portions (so-called “negative electrode tabs”) be the same in the cut-out shape between the plurality of negative electrodes for each of the small pieces and the large pieces.
- the current collector tab portion 42 a is positioned on the same side between the plurality of small pieces 42, and the current collector is arranged on the same side between the plurality of large pieces 47.
- the body tab 47a is cut out so as to be positioned.
- the body tab portions 42a and 47a are cut out in a form protruding in the short direction of the metal sheet material 10 (that is, the short direction of the electrode precursor 30).
- the small piece and the large piece can be used for separate battery production, and a plurality of types of batteries can be obtained.
- a plurality of types of batteries can be obtained.
- three types of secondary batteries having different main surface shapes can be obtained.
- two small pieces 42 are cut out for one large piece shape 47.
- "Secondary battery composed of assembly” "Secondary battery composed essentially of electrode assembly consisting only of first sub-piece 42A” and “Electrode assembly consisting essentially of second sub-piece 42B”
- a secondary battery comprising three types of batteries.
- Such three types of secondary batteries can be easily made to have substantially the same thickness due to the “paired shape”, and therefore are particularly preferable as secondary batteries housed in the same casing.
- the “step” can be further increased. . That is, as shown in FIG. 4, a secondary battery having a higher “step” can be obtained as compared with a mode in which one small piece 42 is positioned at the same position of the large piece laminate 47 ′.
- the first sub small piece 42A and the second sub small piece 42B of the two small pieces 42 are preferably substantially the same in plan view.
- the “step” can be further reduced. That is, as shown in FIG. 4, a secondary battery having a lower “step” can be obtained as compared with a mode in which one small piece 42 is positioned at the same position of the large piece laminate 47 ′.
- the manufacturing method of the present invention can change the height of the step and / or the number of installations as appropriate, and also has a high degree of design freedom.
- the main surface of the battery that particularly affects the overall shape of the secondary battery can be easily determined by the shape of the large piece of “paired shape”. it can.
- a secondary battery can be obtained in which the large surface 47 having a specific shape as shown in the drawing is used as the main surface.
- the battery space in the housing can be restricted in consideration of other accommodating elements such as the circuit board and various components, and the shape of the secondary battery can be appropriately changed according to such restriction. is doing. That is, it can be said that the present invention particularly contributes to the manufacture of a battery suitable for housing various housings such as mobile devices.
- the secondary battery obtained by the production method of the present invention can be used in various fields where power storage is assumed.
- secondary batteries are used in the electrical / information / communication field where mobile devices are used (for example, mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers and electronic paper).
- Mobile equipment household / small industrial applications (eg, power tools, golf carts, household / nursing / industrial robots), large industrial applications (eg, forklifts, elevators, bay harbor cranes), transportation System fields (for example, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.), power system applications (for example, various power generation, road conditioners, smart grids, general home-installed energy storage systems) ), IoT fields, and space and deep sea applications (eg, Chu spacecraft, can be used, such as in the field), such as diving research vessel.
- industrial applications eg, power tools, golf carts, household / nursing / industrial robots
- large industrial applications eg, forklifts, elevators, bay harbor cranes
- transportation System fields for example, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.
- power system applications for example, various power generation, road conditioners, smart grids, general home-installed energy storage systems
- IoT fields
- Electrode structure layer 10 Metal sheet material 20 Electrode material layer 30 Electrode precursor 42 Small piece shape 42a Small piece shape collector tab part 42A First sub small piece shape 42B Second sub small piece shape 47 Large piece Type 47a Large piece of current collector tab 100 'Electrode assembly 160' Assembly lower surface 180 'Assembly higher surface
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本発明では、より高い製造効率を有する二次電池の製造方法が提供される。本発明の製造方法では、正極および負極の少なくとも一方の電極の作製が、電極集電体となる金属シート材に電極材層を形成して電極前駆体を得ること、および、電極前駆体からの切出しを行って複数の電極を形成することを含んで成り、複数の電極の切出しの形状としては、相対的に小さい小片形と相対的に大きい大片形とから成る対形状が含まれるようにする。
Description
本発明は二次電池の製造方法に関する。特に、正極および負極の少なくとも一方の電極の作製に特徴を有する二次電池の製造方法に関する。
二次電池は、いわゆる“蓄電池”ゆえ充電・放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。
二次電池は、正極、負極およびそれらの間のセパレータから少なくとも構成されている。正極は正極材層および正極集電体から構成され、負極は負極材層および負極集電体から構成されている。二次電池は、セパレータを挟み込んだ正極および負極から成る電極構成層が互いに積み重なった積層構造を有している。
本願発明者は、従前の二次電池の製法では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。
正極および負極のそれぞれの作製では、電極集電体となる金属シート材10に電極活物質を含む電極材層20を形成して電極前駆体30を得た後、かかる電極前駆体30から切出しを行って複数の電極40を得る(図16(a)~(c)参照)。ここで、電極前駆体30から複数の電極40を切り出すに際しては、切り出した後の残余分が比較的大きくなり(図16(c)参照)、製造効率が高いとは決していえなかった。
本発明はかかる課題に鑑みて為されたものである。即ち、本発明の主たる目的は、製造効率がより高い二次電池の製造方法を提供することである。
本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された二次電池の製造方法の発明に至った。
本発明に係る二次電池の製造方法は、
正極および負極の少なくとも一方の電極の作製が、
電極集電体となる金属シート材に電極材層を形成して電極前駆体を得ること、および
電極前駆体から複数個の切出しを行って電極を形成すること
を含んで成り、
複数個の切出しの形状として、“相対的に小さい小片形”と“相対的に大きい大片形”とから成る対形状が含まれることを特徴とする。
正極および負極の少なくとも一方の電極の作製が、
電極集電体となる金属シート材に電極材層を形成して電極前駆体を得ること、および
電極前駆体から複数個の切出しを行って電極を形成すること
を含んで成り、
複数個の切出しの形状として、“相対的に小さい小片形”と“相対的に大きい大片形”とから成る対形状が含まれることを特徴とする。
本発明の製造方法は、より高い製造効率で二次電池を製造することができる。より具体的には、電極前駆体からの複数の電極の切出しに際して“切出し後の残余分”を減じることができる。
また、本発明の製造方法は、「同一電池の製造」および「互いに異なる電池の製造」などの種々の電池製造に適用でき、製造自由度が比較的高い。例えば、主面の高さレベルが局所的に異なることでもたらされる“段差”を備えた二次電池などをより効率良く製造できる。
以下では、本発明の一実施形態に係る二次電池の製造方法をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
本明細書で直接的または間接的に説明される“厚み”の方向は、二次電池を構成する電極材の積層方向に基づいており、即ち、“厚み”は正極と負極との積層方向における寸法に相当する。本明細書で用いる「平面視」とは、かかる厚みの方向に沿って対象物をみた場合の見取図に基づいている。
また、本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。
[本発明で製造される二次電池の構成]
本発明の製造方法では二次電池が得られる。本明細書でいう「二次電池」とは、充電・放電の繰り返しが可能な電池のことを指している。従って、本発明の製造方法で得られる二次電池は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども対象に含まれ得る。
本発明の製造方法では二次電池が得られる。本明細書でいう「二次電池」とは、充電・放電の繰り返しが可能な電池のことを指している。従って、本発明の製造方法で得られる二次電池は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども対象に含まれ得る。
本発明の製造方法で得られる二次電池は、正極、負極及びセパレータを含む電極構成層が積層した電極組立体を有して成る。図1には電極組立体を例示している。図示されるように、正極1と負極2とはセパレータ3を介して積み重なって電極構成層5を成しており、かかる電極構成層5が少なくとも1つ以上積層して電極組立体100’が構成されている。二次電池ではこのような電極組立体が電解質(例えば非水電解質)と共に外装体に封入されている。
正極は、少なくとも正極材層および正極集電体から構成されている。正極では正極集電体の少なくとも片面に正極材層が設けられており、正極材層には電極活物質として正極活物質が含まれている。例えば、電極組立体における複数の正極は、それぞれ、正極集電体の両面に正極材層が設けられていてよいし、あるいは、正極集電体の片面にのみ正極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば正極は正極集電体の両面に正極材層が設けられていることが好ましい。
負極は、少なくとも負極材層および負極集電体から構成されている。負極では負極集電体の少なくとも片面に負極材層が設けられており、負極材層には電極活物質として負極活物質が含まれている。例えば、電極組立体における複数の負極は、それぞれ、負極集電体の両面に負極材層が設けられていてよいし、あるいは、負極集電体の片面にのみ負極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば負極は負極集電体の両面に負極材層が設けられていることが好ましい。
正極および負極に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていることが好ましい。充放電にリチウムイオンが関与する場合、本発明の製造方法で得られる二次電池は、いわゆる“リチウムイオン電池”に相当し、正極および負極がリチウムイオンを吸蔵放出可能な層を有している。
正極材層の正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質もまた例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。
正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本発明の製造方法で得られる二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。あくまでも例示にすぎないが、本発明の製造方法で得られる二次電池では、正極材層に含まれる正極活物質がコバルト酸リチウムとなっていてよい。
正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。例えば、正極材層のバインダーはポリフッ化ビニリデンであってよく、また、正極材層の導電助剤はカーボンブラックであってよい。あくまでも例示にすぎないが、正極材層のバインダーおよび導電助剤は、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっていてよい。
負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。
負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。あくまでも例示にすぎないが、本発明の製造方法で得られる二次電池では、負極材層の負極活物質が人造黒鉛となっていてよい。
負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば、負極材層に含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。
あくまでも例示にすぎないが、負極材層における負極活物質およびバインダーは人造黒鉛とスチレンブタジエンゴムとの組合せになっていてよい。
正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。
正極および負極に用いられるセパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極と間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面が無機粒子コート層や接着層等により覆われていてもよい。セパレータの表面が接着性を有していてもよい。なお、本発明において、セパレータは、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。
本発明の製造方法で得られる二次電池では、正極、負極およびセパレータを含む電極構成層から成る電極組立体が電解質と共に外装に封入されている。正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質・有機溶媒などの“非水系”の電解質であることが好ましい(すなわち、電解質が非水電解質となっていることが好ましい)。電解質では電極(正極・負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。
非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。また、具体的な非水電解質の溶質としては、例えば、LiPF6および/またはLiBF4などのLi塩が好ましく用いられる。
二次電池の外装体は、正極、負極及びセパレータを含む電極構成層が積層した電極組立体を包み込むものであるが、ハードケースの形態であってよく、あるいは、ソフトケースの形態であってもよい。具体的には、外装体は、いわゆる“金属缶”に相当するハードケース型であってよく、あるいは、いわゆるラミネートフィルムから成る“パウチ”に相当するソフトケース型であってもよい。
[本発明の製造方法]
本発明の製造方法は、電極の作製法に特徴を有している。特に、正極および負極の少なくとも一方の電極の作製時における複数の電極の切出しに特徴を有している。具体的には、正極および負極の少なくとも一方の電極の作製が、図2および図3に示すように、電極集電体となる金属シート材10に電極材層20を形成して電極前駆体30を得ること、および、電極前駆体30から複数個の切出しを行って電極を形成することを含んで成り、かかる複数個の切出しの形状として、相対的に小さい小片形42と相対的に大きい大片形47とから成る対形状を含む。すなわち、電極前駆体から平面形状の点で小形片と大形片とからなる対片を少なくとも1つ(好ましくは少なくとも2つ)得る。
本発明の製造方法は、電極の作製法に特徴を有している。特に、正極および負極の少なくとも一方の電極の作製時における複数の電極の切出しに特徴を有している。具体的には、正極および負極の少なくとも一方の電極の作製が、図2および図3に示すように、電極集電体となる金属シート材10に電極材層20を形成して電極前駆体30を得ること、および、電極前駆体30から複数個の切出しを行って電極を形成することを含んで成り、かかる複数個の切出しの形状として、相対的に小さい小片形42と相対的に大きい大片形47とから成る対形状を含む。すなわち、電極前駆体から平面形状の点で小形片と大形片とからなる対片を少なくとも1つ(好ましくは少なくとも2つ)得る。
本発明にいう「対形状」とは、広義には、平面視における隣接する2つの形状の組合せのことを意味しており、狭義には、厚み方向にて上側から見た平面視において互いに隣接する相対的に小さい形状(“小片形”)と相対的に大きい形状(“大片形”)との組合せ(“対”)を意味している。よって、図2および図3に示す平面視における複数の切出し形状のうちで互いに横並びに位置付けられる(好ましくは、切出しが逐次行われる方向に沿って互いに隣接する)大・小の2つの形状の組合せが「対形状」に相当する。
大・小の2つの形状から成る対形状を含むように複数個の電極切出しを行うと、切出し後の残余分をより効果的に減じることができる。これは、二次電池製造に最終的に寄与しない“無駄部分”を少なくできる(特に、最終的に電池構成要素にならない電極活物質の廃棄を少なくできる)ことを意味しており、二次電池の製造効率がより高くなる。また、“無駄部分”の低減は二次電池の低コスト製造にもつながる。
特に、本発明では「相対的に小さい小片形」と「相対的に大きい大片形」とから少なくとも成る対形状を少なくとも1つ含むように複数個の電極切出しを行う。ここでいう「相対的に大きい大片形」とは、平面視における上記対形状のうちで面積が相対的に大きい切り出し形状のことを意味している。同様にして「相対的に小さい小片形」とは、平面視における上記対形状のうちで面積が相対的に小さい切り出し形状のことを意味している。あくまでも例示にすぎないが、平面視における小片形の面積が大片形の面積の3/4以下であってよく、例えば半分以下であってもよい。
「相対的に小さい小片形」と「相対的に大きい大片形」とから成る対形状を含む複数個の電極切出しは、“同一電池の製造”および“互いに異なる電池の製造”などの種々の電池製造に適用できる。つまり、本発明による切出しでは、切出し後の残余分をより減じつつも、製造自由度を比較的高くすることができる。例えば、同一電池として「主面の高さレベルが局所的に異なる段差を備えた二次電池」をより効率良く製造できる。
まず、かかる本発明の製造方法の前提となる二次電池の一般的な製法について説明する。二次電池の製法では、正極、負極、電解液およびセパレータをそれぞれに作製・調製した後(必要に応じて市販品から調達してもよい)、それらを一体化して組み合わせることで二次電池を得ることができる。
(正極の作製)
正極の作製では、まず、正極材スラリーを調製する。正極材スラリーは、正極活物質およびバインダーを少なくとも含む電極材層原料である。かかる正極材スラリーを正極集電体として用いる金属シート材(例えば、アルミニウム箔)に塗布し、ロールプレス機で圧延に付す。これにより、正極前駆体、すなわち、電極前駆体が得られる。特に、金属シート材は、帯状に長い形状を有していることが好ましく、そのような長尺状の金属シートに対して正極材スラリーを塗布する。塗布するエリアは、長尺状の金属シートの全領域ではなく、金属シート材の両幅方向の周縁部分(より具体的には、切出しが逐次行われる方向に直交する方向における端部分)などには塗布しないことが好ましい。ある1つの好適な態様では、長尺状の金属シート材よりもひとまわり小さくなるように正極材スラリーを同様の長尺状に塗布することが好ましい。得られる正極前駆体(特に帯状に長い正極前駆体)は、次工程に供されるまで、必要に応じてロール状に巻かれるなどして保管されたり、適宜運搬などに付されたりする。そして、次工程では、正極前駆体から複数の正極を得るべく切り出しが行われる(ロール状に巻かれていた場合では展開して切り出しが行われる)。例えば、正極前駆体を機械的な切断に付すことによって正極前駆体(特に「正極材スラリーが塗布された部分」)から正極の切出しを行う。あくまでも例示にすぎないが、いわゆる“打ち抜き操作”を行ってよい。以上のような操作を経ることによって、所望の正極を複数得ることができる。
正極の作製では、まず、正極材スラリーを調製する。正極材スラリーは、正極活物質およびバインダーを少なくとも含む電極材層原料である。かかる正極材スラリーを正極集電体として用いる金属シート材(例えば、アルミニウム箔)に塗布し、ロールプレス機で圧延に付す。これにより、正極前駆体、すなわち、電極前駆体が得られる。特に、金属シート材は、帯状に長い形状を有していることが好ましく、そのような長尺状の金属シートに対して正極材スラリーを塗布する。塗布するエリアは、長尺状の金属シートの全領域ではなく、金属シート材の両幅方向の周縁部分(より具体的には、切出しが逐次行われる方向に直交する方向における端部分)などには塗布しないことが好ましい。ある1つの好適な態様では、長尺状の金属シート材よりもひとまわり小さくなるように正極材スラリーを同様の長尺状に塗布することが好ましい。得られる正極前駆体(特に帯状に長い正極前駆体)は、次工程に供されるまで、必要に応じてロール状に巻かれるなどして保管されたり、適宜運搬などに付されたりする。そして、次工程では、正極前駆体から複数の正極を得るべく切り出しが行われる(ロール状に巻かれていた場合では展開して切り出しが行われる)。例えば、正極前駆体を機械的な切断に付すことによって正極前駆体(特に「正極材スラリーが塗布された部分」)から正極の切出しを行う。あくまでも例示にすぎないが、いわゆる“打ち抜き操作”を行ってよい。以上のような操作を経ることによって、所望の正極を複数得ることができる。
(負極の作製)
負極の作製は、正極の作製と同様である。負極の作製では、まず、負極材スラリーを調製する。負極材スラリーは、負極活物質およびバインダーを少なくとも含む電極材層原料である。かかる負極材スラリーを負極集電体として用いる金属シート材(例えば銅箔)に塗布し、ロールプレス機で圧延に付す。これにより、負極前駆体、すなわち、電極前駆体が得られる。特に、金属シート材は、帯状に長い形状を有していることが好ましく、そのような長尺状の金属シート材に対して負極材スラリーを塗布する。塗布するエリアは、長尺状の金属シート材の全領域ではなく、金属シート材の両幅方向の周縁部分(より具体的には、切出しが逐次行われる方向に直交する方向における端部分)などには塗布しないことが好ましい。ある1つの好適な態様では、長尺状の金属シート材よりもひとまわり小さくなるように負極材スラリーを同様の長尺状に塗布することが好ましい。得られる負極前駆体(特に帯状に長い負極前駆体)は、次工程に供されるまで、必要に応じてロール状に丸められるなどして保管されたり、適宜運搬などに付されたりする。そして、次工程では、負極前駆体から複数の負極を得るべく切り出しが行われる(ロール状に巻かれていた場合では展開して切り出しが行われる)。例えば、負極前駆体を機械的な切断に付すことによって負極前駆体(特に「負極材スラリーが塗布された部分」)から負極の切出しを行う。あくまでも例示にすぎないが、いわゆる“打ち抜き操作”を行ってよい。以上のような操作を経ることによって、所望の負極を複数得ることができる。
負極の作製は、正極の作製と同様である。負極の作製では、まず、負極材スラリーを調製する。負極材スラリーは、負極活物質およびバインダーを少なくとも含む電極材層原料である。かかる負極材スラリーを負極集電体として用いる金属シート材(例えば銅箔)に塗布し、ロールプレス機で圧延に付す。これにより、負極前駆体、すなわち、電極前駆体が得られる。特に、金属シート材は、帯状に長い形状を有していることが好ましく、そのような長尺状の金属シート材に対して負極材スラリーを塗布する。塗布するエリアは、長尺状の金属シート材の全領域ではなく、金属シート材の両幅方向の周縁部分(より具体的には、切出しが逐次行われる方向に直交する方向における端部分)などには塗布しないことが好ましい。ある1つの好適な態様では、長尺状の金属シート材よりもひとまわり小さくなるように負極材スラリーを同様の長尺状に塗布することが好ましい。得られる負極前駆体(特に帯状に長い負極前駆体)は、次工程に供されるまで、必要に応じてロール状に丸められるなどして保管されたり、適宜運搬などに付されたりする。そして、次工程では、負極前駆体から複数の負極を得るべく切り出しが行われる(ロール状に巻かれていた場合では展開して切り出しが行われる)。例えば、負極前駆体を機械的な切断に付すことによって負極前駆体(特に「負極材スラリーが塗布された部分」)から負極の切出しを行う。あくまでも例示にすぎないが、いわゆる“打ち抜き操作”を行ってよい。以上のような操作を経ることによって、所望の負極を複数得ることができる。
(電解質の調製)
電池使用時にて正極・負極間のイオン移動を担うことになる電解質を調製する。リチウムイオン電池の場合、特に非水電解質を調製する。よって、電解質となる原料を混合して所望の電解質を調製する。本発明の製造方法では、電解質は常套の二次電池に使用される常套的な電解質であってよく、それゆえ、その電解質原料も二次電池の製造に常套的に使用されるものを用いてよい。
電池使用時にて正極・負極間のイオン移動を担うことになる電解質を調製する。リチウムイオン電池の場合、特に非水電解質を調製する。よって、電解質となる原料を混合して所望の電解質を調製する。本発明の製造方法では、電解質は常套の二次電池に使用される常套的な電解質であってよく、それゆえ、その電解質原料も二次電池の製造に常套的に使用されるものを用いてよい。
(セパレータの準備)
本発明の製造方法において、セパレータは常套的なものであってよく、それゆえ、二次電池として常套的に使用されるものを用いてよい。
本発明の製造方法において、セパレータは常套的なものであってよく、それゆえ、二次電池として常套的に使用されるものを用いてよい。
二次電池は、以上のように作製・調製された正極、負極、電解液およびセパレータを一体的に組み合わせることによって得ることができる。特に、正極と負極とはセパレータを介して複数積み重ねて電極組立体を形成し、かかる電極組立体を電解質と共に外装体に封入することによって二次電池を得ることができる。なお、セパレータは枚葉にカットしたものを積層してよいし、あるいは、九十九状に積層して余剰分をカットしたものでもよい。更には電極をセパレータで個装したものを積層してもよい。
(本発明の特徴)
本発明は、上述の如くの二次電池の製造につき、電極の作製に特徴を有している。より具体的には、正極および負極の少なくとも一方の電極の作製において電極前駆体からの切出しを“相対的に小さい小片形”と“相対的に大きい大片形”とから成る対形状を含むように行う。つまり、複数の正極の切出し形状として「相対的に小さい小片形と相対的に大きい大片形とから成る対形状」を含むように正極前駆体から切り出しを行い、および/または、複数の負極の切出し形状として「相対的に小さい小片形と相対的に大きい大片形とから成る対形状」を含むように負極前駆体から切り出しを行う。好ましくは、“複数の小片形”および“複数の大片形”の各々が複数の対形状の間で互いに一定形状を有するように切出しが行われる。なお、図2および図3に示すように、切り出しは、得られる複数の電極が電極前駆体30の長手方向(すなわち、金属シート材10の長手方向)に沿って互いに隣接するように行うことが好ましい。換言すれば、切り出される複数の対形状は電極前駆体30または金属シート材10の長手方向に沿って列を成す態様が好ましい。
本発明は、上述の如くの二次電池の製造につき、電極の作製に特徴を有している。より具体的には、正極および負極の少なくとも一方の電極の作製において電極前駆体からの切出しを“相対的に小さい小片形”と“相対的に大きい大片形”とから成る対形状を含むように行う。つまり、複数の正極の切出し形状として「相対的に小さい小片形と相対的に大きい大片形とから成る対形状」を含むように正極前駆体から切り出しを行い、および/または、複数の負極の切出し形状として「相対的に小さい小片形と相対的に大きい大片形とから成る対形状」を含むように負極前駆体から切り出しを行う。好ましくは、“複数の小片形”および“複数の大片形”の各々が複数の対形状の間で互いに一定形状を有するように切出しが行われる。なお、図2および図3に示すように、切り出しは、得られる複数の電極が電極前駆体30の長手方向(すなわち、金属シート材10の長手方向)に沿って互いに隣接するように行うことが好ましい。換言すれば、切り出される複数の対形状は電極前駆体30または金属シート材10の長手方向に沿って列を成す態様が好ましい。
本発明の製造方法では、図2および図3に示すように、対形状を成す「相対的に小さい小片形42」と「相対的に大きい大片形47」とが相補的形状を有することが好ましい。つまり、好ましくは平面視において小片形42と大片形47とが互いに補うような平面形状を有している。図2および図3を参照すると分かるように、本発明でいう「相補的形状を有する」とは、平面視における小片形の輪郭と大片形の輪郭において相互に向かい合う部分が略重なり合う形状を有することを意味している。より具体的にいえば、“略重なり合う形状”とは、平面視の相互に向かい合う輪郭部分について大片形の輪郭部に小片形の輪郭が実質含まれ得ることを意味している。
正極の作製の場合、複数の正極の切出し形状について対を成す小片形42と大片形47とが互いに相補的となるように正極前駆体から切り出すことが好ましい。同様にして、負極の作製の場合、複数の負極の切出し形状について対を成す小片形42と大片形47とが互いに相補的となるように負極前駆体から切り出すことが好ましい。双方の場合とも、電極前駆体30の長手方向(すなわち、金属シート材10の長手方向)において相補的な関係が連続する態様となることが好ましい。このように相補的な関係性を維持して複数個の電極切出しを行うと、切出し後の残余分をより効果的に減じることができる。また、かかる製造方法は、“同一電池の製造”のみならず、“互いに異なる電池の製造”においても同様に製造効率を上げることができ、製造自由度の向上にも寄与する。同一電池の製造についていえば、特に「主面の高さレベルが局所的に異なる段差を備えた二次電池」をより効率的に製造できる。
ある好適な態様では、図2および図3に示すように、対形状を成す「相対的に小さい小片形42」が矩形状である一方、「相対的に大きい大片形47」とが非矩形状となっている。また、それらが相補的な関係を有する場合、矩形状の小片形42と非矩形状の大片形47とを平面視上で組み合わせると、別の矩形状(小片形42とは別のより大きい矩形状)を成し得るものであってよい。
本明細書でいう「矩形状」とは、平面視における切出し形状(即ち、電極前駆体から電極として切り出される形状)が正方形および長方形といった矩形状の概念に通常含まれる形状を意味している。従って、「矩形状」は、厚み方向にて上側から見た平面視の切出し形状(電極形状)が略正方形または略長方形を指している。一方、本明細書でいう「非矩形状」とは、平面視における切出し形状(即ち、電極前駆体から電極として切り出される形状)が正方形および長方形といった矩形状の概念に通常含まれるものでない形状を指しており、特にそのような正方形・長方形から部分的に一部欠いた形状のことを指している。従って、広義には、「非矩形状」は、厚み方向にて上側から見た平面視の切出し形状(電極形状)が正方形・長方形でない形状を指しており、狭義には、平面視の電極形状が正方形・長方形をベースにしつつも、それから部分的に一部切欠いた形状(好ましくはベースの正方形・長方形のコーナー部分が切欠かれた形状)となっていることを指している。例示すると、「非矩形状」は、平面視における電極形状が正方形・長方形をベースとし、かかるベース形状よりも小さい平面視サイズの正方形、長方形、半円形、半楕円形、円形・楕円形の一部またはそれらの組合せ形状を当該ベース形状から少なくとも1つ切り欠いて得られる形状(特にベース形状のコーナー部分から切り欠いて得られる形状)であってよい。
このように矩形・非矩形の関係を有するように複数個の電極切出しを行うと、切出し後の残余分をより効果的に減じることができる。また、“矩形の小片体”と“非矩形の大片体”との対形状の切出しは、“同一電池の製造”のみならず、“互いに異なる電池の製造”においても同様に製造効率を上げることができ、製造自由度の向上に寄与し得る。同一電池の製造についていえば、特に「主面の高さレベルが局所的に異なる段差を備えた二次電池」をより効率的に製造できる。
本発明の製造方法では、小片形42と大片形47とが互いに相補的となるように「相対的に小さい小片形42」が矩形状となり、「相対的に大きい大片形47」とが非矩形状となってよい。かかる場合、図2に示すように、例えば小片形42が長方形であり、大片形47が「ベースとなる矩形から小片形の長方形(特にいえばそのベースの相似形)を切り欠いて得られる非矩形」となっていてよい。そのような対形状で切り出しを行うと、図4に示される如くの「主面の高さレベルが局所的に異なる段差を備えた二次電池」をより効率的に製造することができる。
図2および図3に示す態様では、小片形42と大片形47との双方の長手寸法が金属シート材10のシート短手方向(すなわち、好ましくは切出しが逐次行われる方向に直交する方向)に沿っている。このような態様は、あくまでも例示的なものであるが、小片形42と大片形47とを対を成すように構成し易いといえる。つまり、これは、電極前駆体からの切出しに際して“切出し後の残余分”を減じることに結果として資する。
図4に示す電極組立体100’の態様から分かるように、本発明の製造方法では、対形状を成す“相対的に小さい小片形42”および“相対的に大きい大片形47”とを同一電池の製造に用いることができる。電極前駆体から切り出された複数の正極と負極とはセパレータを介して複数積み重ねて電極組立体100’を形成するが、その電極組立体100’の構成要素の電極(正極および/または負極)について「小片形42および大片形47の対形状」を少なくとも用いる。
同一電池の製造に対して小片形および大片形の対形状を用いることは、効率的な製造の点で好ましい。特に、切出し後の残余分をより減じて同一電池を量産できるので、コスト的に少なくとも望ましい。図4に示す態様から分かるように、同一電池の製造に小片形42および大片形47を用いると、「主面の高さレベルが局所的に異なる段差を備えた二次電池」を製造することができる。例えば、図4に示す電極組立体100’の態様に示すように、“相対的に低い低面”と“相対的に高い高面”とに起因して段差を有する二次電池を製造できる。より具体的には、図示するように「相対的に低いレベルの組立体低面160’」と「相対的に高いレベルの組立体高面180’」とから構成された組立体段差を有する電極組立体100’を得ることができ、それゆえ、同様に相対的に低いレベルの電池低面と相対的に高いレベルの電池高面とから構成された電池段差を備えた二次電池を最終的に得ることができる。
同一電池の製造に小片形42および大片形47を用いて電極組立体100’を構成する場合、図4に示すように、大片形47から構成される大片積層体47’の上に小片形42から構成される小片積層体42’を位置付けることが好ましい。これにより、段差を備えた電極組立体100’(即ち、最終的には二次電池)をより好適に得ることができる。かかる電極組立体100’は、組立体低面160’(即ち、二次電池における電池低面)を“基板配置面”として利用できる。この点に鑑みると、本発明に従って同一電池製造に小片形42および大片形47を用いて電極組立体100’を構成することは、基板との併用設置に特に好適な二次電池を得ることができることを意味している。
筐体内では二次電池の設置スペースは回路基板および各種部品などの他の機器要素との兼ね合いを考慮する必要がある。特に、近年のニーズの多様化に伴って、筐体およびその内部に収める種々の要素によって二次電池の設置スペースがより制限を受ける傾向があり、従前の二次電池の形状では十分に対応できなくなってきている。特に、二次電池は、筐体内において基板、例えば、プリント基板および保護回路基板などに代表される電子回路基板と共に使用されることが多い。かかる基板と二次電池との併用設置には、設置スペースの有効活用および/またはデットスペースの低減の観点から二次電池の形状を凹凸状にすることが考えられるが、凹凸状というだけでは、必ずしも効率的な併用設置にならない。この点、本発明に従って“小片形”/“大片形”で製造される「電池低面を有する二次電池」は、基板との併用設置に特に好適な電池となり得る。例えば、基板配置面に相当する組立体低面160’は、基板形状に好適な略矩形状となっている(図4参照)。つまり、本発明の製造方法では、段差に起因した電池低面を基板配置面として好適に利用できる二次電池を供すことができる。
図4に示す態様でいえば、大片形47から成る大片積層体47’は、大片形の正極および負極を、それと同様な形状を有するセパレータを介在させて積層させることで構成される。同様にして、小片形42から成る小片積層体42’は、小片形の正極および負極を、それと同様な形状を有するセパレータを介在させて積層させることで構成される。大片積層体47’と小片積層体42’とは、重ね合わせた状態で互いにはみ出さないように(積層方向と直交する方向にはみ出さないように)位置付けられることが好ましい。特に、図4に示すように「相対的に低いレベルの組立体低面160’」と「相対的に高いレベルの組立体高面180’」とが好適に供されるように大片積層体47’と小片積層体42’とを相互に積層配置させることが好ましい。また、大片積層体47’の“基板配置面”となる露出する電極についていえば、いわゆる“両面正極”(正極集電体の両面に正極材層が設けられた正極)が位置付けられないことが望まれる。
本発明の製造方法では、対形状を成す「相対的に小さい小片形」および「相対的に大きい大片形」は、互いに所定の寸法関係性を有するものであってよい。つまり、小片形と大片形とはある特定の寸法関係を有するように対形状を成していてよい。
例えば、図5に示すように、平面視において複数個の切出しが逐次行われる方向の寸法を切出方向寸法とすると、小片形42の切出方向寸法A切出方向と大片形47の最小切出方向寸法B切出方向最小とが実質的に同一であってよい。つまり、切出しが逐次行われる方向に沿う小片形42の寸法と、同様に切出しが逐次行われる方向に沿う大片形47の寸法のうち最小となる寸法とを比べた場合、互いに略同じとなっていてよい。本明細書においていう「略同じ」とは、一方の寸法と他方の寸法とが当業者の認識として凡そ同じであることを意味しており、例えば一方の寸法aと他方の寸法bとが0.90b≦a≦1.10b、好ましくは0.95b≦a≦1.05bの関係を有していることを意味している。図5に示すように「相対的に小さい小片形42」が矩形状となり、「相対的に大きい大片形47」とが非矩形状となる場合、“矩形状”の小片形42の切出方向寸法A切出方向と、“非矩形状”の大片形47の最小切出方向寸法B切出方向最小とが実質的に同一であってよい。このような切出し条件で得られた小片形42・大片形47からそれぞれ小片積層体42’および大片積層体47’を得ると、図4に示すように、小片積層体42’を大片積層体47’からはみ出さずに(積層方向と直交する方向にはみ出さないように)位置付けることができる。つまり、そのようなはみ出しがなく、段差を有する電極組立体100’を好適に作製することができる。より具体的には、「相対的に低いレベルの組立体低面160’」と「相対的に高いレベルの組立体高面180’」とから構成された組立体段差を有する電極組立体100’をより好適に得ることができ、それゆえ、段差に起因した電池低面を基板配置面としてより好適に備えた二次電池を最終的に得ることができる。
ここで、図6に示す如く小片形42と大片形47とが互いに相補的関係で「相対的に小さい小片形42」が矩形状となり、「相対的に大きい大片形47」とが非矩形状となるように複数個の電極切出しを行う場合に特化していうと、平面視にて小片形42の短手寸法A短手と大片形47の最小短手寸法B短手最小とが実質的に同一であってよい。かかる場合、特に図4に示すような三次元立体形状の電極組立体100’をより好適に得やすくなり、基板配置面を備えた二次電池を最終的に得ることができる。つまり、図2に示すように、小片形42と大片形47との双方の長手寸法が金属シート材のシート短手方向に沿っており、かつ、矩形状の小片形42と非矩形状の大片形47とが互いに相補的な関係となるように複数個の電極切出しが行われる場合では、図4に示される如く矩形状の小片形42と非矩形状の大片形47とがより好適に組み合わされることで、所望の基板配置面を備えた二次電池を最終的に得ることができる。
また、図7に示すように、平面視にて複数個の切出しが逐次行われる方向と直交する方向の寸法を切出直交寸法とすると、大片形47の最大切出直交寸法B直交方向最大と最小切出直交寸法B直交方向最小との差よりも小片形42の切出直交寸法A直交方向が小さいことが好ましい。つまり、「切出しが逐次行われる方向と直交する方向に沿う大片形47の寸法のうち最大となる寸法と最小となる寸法との差」と「同様に切出しが逐次行われる方向と直交する方向に沿う小片形42の寸法」とを比べた場合、後者が前者よりも小さいことが好ましい。図7に示す如く「相対的に小さい小片形42」が矩形状となり、「相対的に大きい大片形47」とが非矩形状となる場合、“非矩形状”の大片形47の最大切出直交寸法B直交方向最大と最小切出直交寸法B直交方向最小との差よりも、“矩形状”の小片形42の切出直交寸法A直交方向が小さいことが好ましい。このような切出し条件で得られた小片形42・大片形47からそれぞれ小片積層体42’および大片積層体47’を構成すると(図4参照)、小片積層体42’と大片積層体47’とに起因する段差の位置(厚み方向に直交する面での位置)を電池の基板配置面にとってより好適にすることができる。つまり、段差の位置が基板配置面に対して有効に寄与するように電池製造を行うことができる。
電極組立体100’は、最終的には外装体に包まれて二次電池とされるところ、外装体に起因して電極組立体の段差と電池段差とは位置ずれが生じ得る(図8参照)。つまり、電極組立体とそれを外装体で包み込んで得られる二次電池とでは、段差位置(より具体的には「厚み方向に直交する面における段差位置」)にずれが生じる。かかる段差位置のずれゆえ、「切出しが逐次行われる方向と直交する方向に沿う大片形の寸法のうち最大となる寸法と最小となる寸法との差」と「同様に切出しが逐次行われる方向と直交する方向に沿う小片形の寸法」とを仮に同じにした場合、基板配置面としての電池低面が過度に制限を受けることになる。これは、図8(A)に示す如く、電極組立体において基板配置面として利用できる面が二次電池とした場合に外装体の存在で過度に減じられることを実質的に意味している。この点、「切出しが逐次行われる方向と直交する方向に沿う大片形の寸法のうち最大となる寸法と最小となる寸法との差」よりも「同様に切出しが逐次行われる方向と直交する方向に沿う小片形の寸法」を小さくしておけば、図8(B)に示す如く、外装体が存在したとしても基板配置面としての電池低面が過度に制限されなくなり、段差に起因した電池低面を基板配置面としてより広く供すことができる。図8(A)および8(B)に示す模式図から分かるように、ここでいう「基板配置面としての電池低面が過度に制限を受ける」とは、電池段差が“切欠周縁ライン”を超えて小片積層体からより離れる位置に設置されることで、基板配置面としての有効面積がより大きく減じられることを意味している。
なお、図9に示す如く小片形42と大片形47とが互いに相補的関係で「相対的に小さい小片形42」が矩形状となり、「相対的に大きい大片形47」とが非矩形状となるように複数個の電極切出しを行う場合に特化していうと、平面視にて大片形47の最大長手寸法B長手最大と最小長手寸法B長手最小との差よりも小片形42の長手寸法A長手が小さいことが好ましい。例えば、平面視にて大片形47の最大長手寸法B長手最大と最小長手寸法B長手最小との差よりも小片形42の長手寸法A長手が0.5mm以上5mm以下程度小さくなっていてよい。かかる場合、特に図4に示すような三次元立体形状の電極組立体100’をより好適に得ることができ、基板配置面を備えた二次電池を最終的に得ることができる。つまり、図2に示すように、小片形42と大片形47との双方の長手寸法が金属シート材のシート短手方向に沿っており、かつ、矩形状の小片形42と非矩形状の大片形47とが互いに相補的な関係となるように複数個の電極切出しが行われる場合では、図4および図8(B)に示すように矩形状の小片形42と非矩形状の大片形47とがより好適に組み合わされ、所望の基板配置面をより広く備えた二次電池が得られる。
別のある好適な態様では、対形状を成す「相対的に小さい小片形」が矩形状である一方、「相対的に大きい大片形」とを互いに異なる電池の製造に対して用いる。電極前駆体からの切り出された複数の正極と負極とはセパレータを介して複数積み重ねて電極組立体を形成するが、小片形と大片形とをそれぞれ別個の電池製造に用いる。例えば、実質的に小片形42のみから成る電極組立体を構成し、それを外装体に封入してある二次電池を製造する一方、実質的に大片形47のみから成る電極組立体を構成し、それを外装体に封入して別の二次電池を製造してよい。
互いに異なる二次電池の製造に小片形42および大片形47の対形状を別個に用いることは、同工程の切り出しで少なくとも2種類の電池を得ることができ、複数種の電池量産の点で好ましい。特に、切出し後の残余分をより減じて互いに別形状の電池を量産できるので、少なくともコスト的に望ましい電池製造を行うことができる。また、本発明の製造方法は、上述したように同一電池の製造に小片形・大片形の対形状を用いることもできるので、そのように別個の電池製造も同一電池の製造もできるということは、本発明が比較的高い製造自由度を有することを意味している。
互いに異なる二次電池の製造において小片形および大片形をそれぞれ別個に用いる場合(特に、それらが2種の電池製造に個別に用いられる場合)、小片形と大片形とは“対形状”ゆえ、それらから個々に得られる電極組立体の厚みを実質的に同じにし易い。これは、同じ筐体に収容する要素として好適な二次電池となり得ることを意味している。例えば、ノートパソコンなどのデジタル機器の筐体には複数の二次電池が搭載されることがあるが、そのような同一筐体内に使用する二次電池として、“小片形42”から構成された二次電池と“大片形47”から構成された二次電池とを互いに並列的に製造できる。
“同一電池の製造”と同様、“互いに異なる電池の製造”であっても、対形状を成す「相対的に小さい小片形」および「相対的に大きい大片形」は、それぞれ互いに所定の寸法関係性を有するものであってよい。つまり、小片形と大片形とはある特定の寸法関係を有するように対形状を成してよい。
例えば、図10に示すように、平面視において複数個の切出しが逐次行われる方向の寸法を切出方向寸法とすると、小片形42の切出方向寸法A切出方向が、大片形47の最小切出方向寸法B切出方向最小よりも大きくなっていてよい。つまり、切出しが逐次行われる方向に沿う小片形42の寸法と、同様に切出しが逐次行われる方向に沿う大片形47の寸法のうち最小となる寸法とを比べた場合、前者が後者よりも大きくなっていてよい。図10に示すように「相対的に小さい小片形42」が矩形状となり、かつ「相対的に大きい大片形47」とが非矩形状となる場合、“矩形状”の小片形42の切出方向寸法A切出方向が、“非矩形状”の大片形47の最小切出方向寸法B切出方向最小よりも大きくてよい。このような切出しで得られた小片形42と大片形47とからそれぞれ別個に電極組合体を構成すると、大片電極と小片電極と2種の異なる平面サイズの二次電池を得ることができる。なお、そのような小片形42と大片形47とを仮に図4に示す如く同一電池に用いた場合を想定すると、小片積層体42’が大片積層体47’からはみ出す(積層方向と直交する方向にはみ出す)ことになるので、それは望ましいといえない。換言すれば、小片形の切出方向寸法A切出方向が、大片形の最小切出方向寸法B切出方向最小よりも大きい寸法関係は、“互いに異なる電池の製造”に特に適した条件といえる。
ここで、図11に示す如く互いに相補的関係で小片形42と大片形47との電極切出しを行う場合に特化していうと、平面視にて小片形42の短手寸法A短手が大片形47の最小短手寸法B短手最小よりも大きくてよい。かかる場合、小片形42から成る“矩形”の二次電池と、大片形47から成る“非矩形”の二次電池と2種の電池を並列的に得ることができる。かかる2種の二次電池は、小片形42と大片形47との“対”に起因して、実質的に同じ厚みにすることができ、それゆえ、同じ筐体に収容する二次電池として特に好ましい。
本発明は種々の態様でもって具現化され得る。これにつき例えば以下の態様を挙げることができる。
(集電体のタブ部の設置)
本発明の製造方法は、複数の電極のそれぞれの切出しを集電体タブ部が含まれるように行うことが好ましい。具体的には、図2および図3に示すように、電極材層20が設けられていない金属シート材10の領域が切出し形状に含まれるように切出しを行い、それによって、複数の電極のそれぞれに集電体タブ部42a,47aを設けることが好ましい。かかる場合、特に、複数個の間では集電体タブ部の位置を小片形および大片形の各々について同一箇所に位置付けることが好ましい。つまり、複数の小片形間で集電体タブ部(いわゆる“タブ”)の位置を切出し形状の同一箇所にすることが好ましく、かつ、複数の大片形間で集電体タブ部(いわゆる“タブ”)の位置を切出し形状の同一箇所にすることが好ましい。正極の作製の場合では小片形および大片形の各々についていえば、複数の正極間で正極集電体タブ部(いわゆる“正極タブ”)の位置を切出し形状の同一箇所にすることが好ましい。負極の作製の場合でも同様であって、小片形および大片形の各々について複数の負極間で負極集電体タブ部(いわゆる“負極タブ”)の位置を切出し形状の同一箇所にすることが好ましい。
本発明の製造方法は、複数の電極のそれぞれの切出しを集電体タブ部が含まれるように行うことが好ましい。具体的には、図2および図3に示すように、電極材層20が設けられていない金属シート材10の領域が切出し形状に含まれるように切出しを行い、それによって、複数の電極のそれぞれに集電体タブ部42a,47aを設けることが好ましい。かかる場合、特に、複数個の間では集電体タブ部の位置を小片形および大片形の各々について同一箇所に位置付けることが好ましい。つまり、複数の小片形間で集電体タブ部(いわゆる“タブ”)の位置を切出し形状の同一箇所にすることが好ましく、かつ、複数の大片形間で集電体タブ部(いわゆる“タブ”)の位置を切出し形状の同一箇所にすることが好ましい。正極の作製の場合では小片形および大片形の各々についていえば、複数の正極間で正極集電体タブ部(いわゆる“正極タブ”)の位置を切出し形状の同一箇所にすることが好ましい。負極の作製の場合でも同様であって、小片形および大片形の各々について複数の負極間で負極集電体タブ部(いわゆる“負極タブ”)の位置を切出し形状の同一箇所にすることが好ましい。
例えば、図2および図3に示す態様では、複数の小片形42間のそれぞれの同一辺に集電体タブ部42aが位置付けられ、かつ、複数の大片形47間のそれぞれの同一辺に集電体タブ部47aが位置付けられるように切り出されている。特に、図示する態様では、金属シート材10の両幅方向の周縁部分に「電極材層20が設けられていない金属シート材領域(いわゆる“未塗工領域”)」が存在するので、集電体タブ部42a,47aが金属シート材10の短手方向(すなわち、電極前駆体30の短手方向)に突出する形態で切出しが行われる。
このような「電極材層20が設けられていない金属シート材10の領域」を含めた切出しでは、集電体タブ部まで考慮して効率の良い電極切り出しを行うことができるので、電極作製の効率をより高くできる。
(複数種の電池製造の態様)
上述したように“互いに異なる電池の製造”では、小片形と大片形とをそれぞれ別個の電池製造に用いることができ、複数種の電池を得ることができる。例えば、図12に示される“対形状”で切り出しを行うと、主面形状が異なる3種の二次電池を得ることができる。
上述したように“互いに異なる電池の製造”では、小片形と大片形とをそれぞれ別個の電池製造に用いることができ、複数種の電池を得ることができる。例えば、図12に示される“対形状”で切り出しを行うと、主面形状が異なる3種の二次電池を得ることができる。
具体的には、図12に示す態様では、1つの大片形47に対して2つの小片形42(サブ小片形42Aおよびサブ小片形42B)が切り出されるので、「大片形47のみから実質成る電極組立体から構成された二次電池」、「第1のサブ小片形42Aのみから実質成る電極組立体から構成された二次電池」および「第2のサブ小片形42Bのみから実質成る電極組立体から構成された二次電池」と3種の電池を得ることができる。かかる3種の二次電池は、“対形状”に起因して、実質的に同じ厚みにすることが容易であり、それゆえ、同じ筐体に収納する二次電池として特に好ましい。
(同一電池製造における“段差”の変更態様)
“同一電池の製造”では、上述したように大片積層体47’の上に小片積層体42’を位置付けるので、段差を備えた二次電池をより好適に得ることができる。本発明の製造方法は、段差の高さをより高くしたり、より低くしたり、あるいは、段差を複数箇所に設けたりすることが容易である。
“同一電池の製造”では、上述したように大片積層体47’の上に小片積層体42’を位置付けるので、段差を備えた二次電池をより好適に得ることができる。本発明の製造方法は、段差の高さをより高くしたり、より低くしたり、あるいは、段差を複数箇所に設けたりすることが容易である。
例えば、図13に示す態様では、“対形状”における2つの小片形42(サブ小片形42A,42B)を大片積層体47’の同じ箇所に位置付けるので、“段差”をより高くすることができる。つまり、図4に示す如く1つの小片形42を大片積層体47’の同じ箇所に位置付ける態様と比べると、より高い“段差”を備えた二次電池を得ることができる。2つの小片形42を大片積層体47’の同じ箇所に位置付ける態様では、図13の態様から分かるように、2つの小片形42の第1のサブ小片形42Aと第2のサブ小片形42Bとの平面視形状が互いに略同じとなっていることが好ましい。
一方、図14に示す態様では、“対形状”における1つの小片形42を大片積層体47’の2箇所に振り分けて位置付けるので、“段差”をより低くすることができる。つまり、図4に示す如く1つの小片形42を大片積層体47’の同じ箇所に位置付ける態様と比べると、より低い“段差”を備えた二次電池を得ることができる。なお、図14に示す如く小片形42を大片積層体47’の2箇所に振り分けて位置付けることは、結果として2箇所に段差を備えた二次電池を製造できることを意味している。
このように、本発明の製造方法は、段差の高さおよび/または設置個数などを適宜変更することができ、その点でも設計自由度が高いといえる。
(対形状の変更態様)
更に、“対形状”を用いて同一電池の製造を行う本発明では、二次電池の全体形状に特に影響を及ぼす電池主面を“対形状”の大片形の形状によって容易に決定付けることができる。例えば図15(A)および15(B)に示す態様では、それぞれ、図示するような特異形状の大片形47を主面とした二次電池を得ることができる。これは、筐体内の電池スペースが回路基板および各種部品などの他の収容要素との兼ね合いで制限を受け得るところ、そのような制限に応じて二次電池の形状を適宜変えることができることを意味している。つまり、本発明は、モバイル機器などの種々の筐体収容に適した電池の製造に特に資するといえる。
更に、“対形状”を用いて同一電池の製造を行う本発明では、二次電池の全体形状に特に影響を及ぼす電池主面を“対形状”の大片形の形状によって容易に決定付けることができる。例えば図15(A)および15(B)に示す態様では、それぞれ、図示するような特異形状の大片形47を主面とした二次電池を得ることができる。これは、筐体内の電池スペースが回路基板および各種部品などの他の収容要素との兼ね合いで制限を受け得るところ、そのような制限に応じて二次電池の形状を適宜変えることができることを意味している。つまり、本発明は、モバイル機器などの種々の筐体収容に適した電池の製造に特に資するといえる。
以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。
例えば、上記では主として打ち抜き操作を行って複数の電極を切り出す態様について言及したが、本発明は必ずしもそれに限定されない。例えば、スクリーン印刷などの手法によって複数の電極を得る場合であっても、上記で説明した如くの小片形・大片形の対形状の電極形状とすることで同様の効果を得ることができる。
本発明の製造方法で得られる二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコン、デジタルカメラ、活動量計、アームコンピューターおよび電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、IoT分野、ならびに、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
1 正極
2 負極
3 セパレータ
5 電極構成層
10 金属シート材
20 電極材層
30 電極前駆体
42 小片形
42a 小片形の集電体タブ部
42A 第1のサブ小片形
42B 第2のサブ小片形
47 大片形
47a 大片形の集電体タブ部
100’ 電極組立体
160’ 組立体低面
180’ 組立体高面
2 負極
3 セパレータ
5 電極構成層
10 金属シート材
20 電極材層
30 電極前駆体
42 小片形
42a 小片形の集電体タブ部
42A 第1のサブ小片形
42B 第2のサブ小片形
47 大片形
47a 大片形の集電体タブ部
100’ 電極組立体
160’ 組立体低面
180’ 組立体高面
Claims (15)
- 二次電池を製造するための方法であって、
正極および負極の少なくとも一方の電極の作製が、
電極集電体となる金属シート材に電極材層を形成して電極前駆体を得ること、および
前記電極前駆体から複数個の切出しを行って電極を形成すること
を含んで成り、
前記複数個の切出しの形状として、相対的に小さい小片形と相対的に大きい大片形とから成る対形状を含む、二次電池の製造方法。 - 前記小片形と前記大片形とが互いに相補的形状を有する、請求項1に記載の二次電池の製造方法。
- 前記小片形が矩形状である一方、前記大片形が非矩形状となる、請求項1または2に記載の二次電池の製造方法。
- 前記小片形と前記大片形とを同一電池の製造に用いる、請求項1~3のいずれかに記載の二次電池の製造方法。
- 前記大片形から構成される大片積層体の上に前記小片形から構成される小片積層体を位置付ける、請求項4に記載の二次電池の製造方法。
- 平面視において前記複数個の切出しが逐次行われる方向の寸法を切出方向寸法とすると、前記小片形の切出方向寸法と前記大片形の最小切出方向寸法とが実質的に同一である、請求項4または5に記載の二次電池の製造方法。
- 前記平面視において前記小片形の短手寸法と前記大片形の最小短手寸法とが実質的に同一である、請求項6に記載の二次電池の製造方法。
- 平面視において前記複数個の切出しが逐次行われる方向と直交する方向の寸法を切出直交寸法とすると、前記大片形の最大切出直交寸法と最小切出直交寸法との差よりも前記小片形の切出直交寸法が小さい、請求項4~7のいずれかに記載の二次電池の製造方法。
- 前記平面視において前記大片形の最大長手寸法と最小長手寸法との差よりも前記小片形の長手寸法が小さい、請求項8に記載の二次電池の製造方法。
- 前記小片形と前記大片形とを互いに異なる電池の製造に用いる、請求項1~3のいずれかに記載の二次電池の製造方法。
- 平面視において前記複数個の切出しが逐次行われる方向の寸法を切出方向寸法とすると、前記小片形の切出方向寸法が、前記大片形の最小切出方向寸法よりも大きい、請求項10に記載の二次電池の製造方法。
- 前記平面視において前記小片形の短手寸法が、前記大片形の最小短手寸法よりも大きい、請求項11に記載の二次電池の製造方法。
- 前記小片形と前記大片形との双方の長手寸法が前記金属シート材のシート短手方向に沿っている、請求項1~12のいずれかに記載の二次電池の製造方法。
- 前記電極材層が設けられていない前記金属シート材の領域を前記切出しの形状に含めることによって前記複数個のそれぞれに集電体タブ部を設けており、
前記複数個の間では前記集電体タブ部の位置を前記小片形および前記大片形の各々について同一箇所に位置付ける、請求項1~13のいずれかに記載の二次電池の製造方法。 - 前記正極および前記負極が、リチウムイオンを吸蔵放出可能な層を有することを特徴とする、請求項1~14のいずれかに記載の二次電池の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-004473 | 2017-01-13 | ||
JP2017004473 | 2017-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018131344A1 true WO2018131344A1 (ja) | 2018-07-19 |
Family
ID=62839958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044064 WO2018131344A1 (ja) | 2017-01-13 | 2017-12-07 | 二次電池の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018131344A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6148655U (ja) * | 1984-08-31 | 1986-04-01 | ||
JP2002260740A (ja) * | 2001-03-05 | 2002-09-13 | Matsushita Electric Ind Co Ltd | 非水電解質電池およびその製造方法 |
JP2005109199A (ja) * | 2003-09-30 | 2005-04-21 | Kanebo Ltd | フィルム型蓄電装置 |
JP2008123955A (ja) * | 2006-11-15 | 2008-05-29 | Toyota Motor Corp | 集電体の製造方法及び蓄電装置の製造方法 |
JP2014522558A (ja) * | 2012-05-29 | 2014-09-04 | エルジー・ケム・リミテッド | コーナー部の形状が多様な段差を有する電極組立体、これを含む電池セル、電池パック及びデバイス |
JP2016501423A (ja) * | 2013-02-13 | 2016-01-18 | エルジー・ケム・リミテッド | 非定型構造の電池セル |
JP2016506606A (ja) * | 2013-03-04 | 2016-03-03 | エルジー・ケム・リミテッド | 欠落部が形成された電池セル及びそれを含む電池パック |
WO2017208537A1 (ja) * | 2016-05-31 | 2017-12-07 | 株式会社村田製作所 | 二次電池の製造方法 |
-
2017
- 2017-12-07 WO PCT/JP2017/044064 patent/WO2018131344A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6148655U (ja) * | 1984-08-31 | 1986-04-01 | ||
JP2002260740A (ja) * | 2001-03-05 | 2002-09-13 | Matsushita Electric Ind Co Ltd | 非水電解質電池およびその製造方法 |
JP2005109199A (ja) * | 2003-09-30 | 2005-04-21 | Kanebo Ltd | フィルム型蓄電装置 |
JP2008123955A (ja) * | 2006-11-15 | 2008-05-29 | Toyota Motor Corp | 集電体の製造方法及び蓄電装置の製造方法 |
JP2014522558A (ja) * | 2012-05-29 | 2014-09-04 | エルジー・ケム・リミテッド | コーナー部の形状が多様な段差を有する電極組立体、これを含む電池セル、電池パック及びデバイス |
JP2016501423A (ja) * | 2013-02-13 | 2016-01-18 | エルジー・ケム・リミテッド | 非定型構造の電池セル |
JP2016506606A (ja) * | 2013-03-04 | 2016-03-03 | エルジー・ケム・リミテッド | 欠落部が形成された電池セル及びそれを含む電池パック |
WO2017208537A1 (ja) * | 2016-05-31 | 2017-12-07 | 株式会社村田製作所 | 二次電池の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11811022B2 (en) | Secondary battery | |
CN110326148B (zh) | 二次电池及其制造方法 | |
WO2017209052A1 (ja) | 二次電池 | |
US11437653B2 (en) | Laminated secondary battery and manufacturing method of the same, and device | |
US10998600B2 (en) | Laminated secondary battery and manufacturing method of the same, and device | |
JP6879358B2 (ja) | 二次電池 | |
US11329273B2 (en) | Method for manufacturing secondary battery | |
WO2018180019A1 (ja) | 二次電池の製造方法および製造装置 | |
US20190074535A1 (en) | Secondary battery | |
US20190296399A1 (en) | Secondary battery | |
WO2018180020A1 (ja) | 二次電池の製造方法および製造装置 | |
WO2018155210A1 (ja) | 二次電池および二次電池の製造方法 | |
JP7031671B2 (ja) | 二次電池の製造方法 | |
WO2018131344A1 (ja) | 二次電池の製造方法 | |
WO2018163775A1 (ja) | 二次電池の製造方法 | |
WO2017208534A1 (ja) | 二次電池 | |
WO2017208531A1 (ja) | 二次電池 | |
WO2022009997A1 (ja) | 二次電池 | |
JP7115554B2 (ja) | 二次電池 | |
WO2018154987A1 (ja) | 二次電池およびその製造方法 | |
JP2019145202A (ja) | 二次電池 | |
WO2018116623A1 (ja) | 二次電池および電池組合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17891295 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17891295 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |