WO2018131277A1 - セメントキルン排ガスの水銀低減方法及びその装置 - Google Patents

セメントキルン排ガスの水銀低減方法及びその装置 Download PDF

Info

Publication number
WO2018131277A1
WO2018131277A1 PCT/JP2017/040706 JP2017040706W WO2018131277A1 WO 2018131277 A1 WO2018131277 A1 WO 2018131277A1 JP 2017040706 W JP2017040706 W JP 2017040706W WO 2018131277 A1 WO2018131277 A1 WO 2018131277A1
Authority
WO
WIPO (PCT)
Prior art keywords
mercury
cement
raw material
cement kiln
exhaust gas
Prior art date
Application number
PCT/JP2017/040706
Other languages
English (en)
French (fr)
Inventor
山本 泰史
Original Assignee
太平洋エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋エンジニアリング株式会社 filed Critical 太平洋エンジニアリング株式会社
Priority to CN201780004091.8A priority Critical patent/CN108575090A/zh
Priority to JP2018517355A priority patent/JP6986511B2/ja
Priority to US15/768,795 priority patent/US11179672B2/en
Priority to KR1020187010225A priority patent/KR102416754B1/ko
Publication of WO2018131277A1 publication Critical patent/WO2018131277A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • C04B7/367Avoiding or minimising carbon dioxide emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D2017/009Cyclone for separating fines from gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method and an apparatus for reducing the amount of mercury contained in cement kiln exhaust gas by recovering mercury in the cement kiln exhaust gas together with raw material dust (hereinafter referred to as “cement kiln dust”).
  • cement raw fuel and recycled resources contain mercury
  • the combustion exhaust gas of cement kilns that use these as raw materials contains trace amounts of metallic mercury (Hg) and mercury compounds.
  • Patent Document 1 in order to remove mercury and the like contained in the cement kiln exhaust gas and reuse the dust collection dust from which the mercury etc. has been removed as a cement raw material, the cement kiln dust is collected and the exhaust gas from the clinker cooler is used. There has been proposed a method for recovering mercury volatilized by heating.
  • Patent Document 2 discloses a method in which cement kiln dust is indirectly heated with an external heat kiln, and mercury contained in dust is volatilized and recovered.
  • this indirect heating method the cement kiln dust is not heated with an air stream, so the mercury recovery device can be reduced in size, but the amount of heat required to volatilize mercury increases because the dust is not directly heated.
  • Equipment costs and operating costs increase.
  • Patent Document 3 discloses a mixing apparatus that heats cement kiln dust with sensible heat such as cement raw material while mixing with cement raw material separated from a preheater of the cement baking apparatus, and mixing heating.
  • a mercury recovery system including a mercury recovery device that recovers volatilized mercury has been proposed. According to this system, etc., the cement raw material in the cement baking apparatus is used to volatilize mercury, and the enlargement of the mercury recovery apparatus is avoided, thereby reducing energy consumption and reducing operating costs and equipment costs. be able to.
  • Japanese Unexamined Patent Publication No. 2011-88770 Japanese Unexamined Patent Publication No. 2003-245642 Japanese Unexamined Patent Publication No. 2014-58699
  • Patent Document 3 Although the system described in Patent Document 3 is effective, an apparatus provided with a vibrating fluidized bed classifier that fluidizes a mixture of cement kiln dust and cement raw material and separates the mixture into coarse powder and gas containing fine powder is provided. There was room for improvement, such as a more complicated configuration.
  • the present invention provides a cement kiln by simplifying the equipment configuration and reducing equipment costs and operating costs when recovering mercury from cement kiln dust using a cement raw material separated from a preheater of a cement firing device.
  • the object is to efficiently reduce the amount of mercury contained in the exhaust gas at low cost.
  • the present invention is a method for reducing mercury in cement kiln exhaust gas, wherein the cement kiln dust contained in the combustion exhaust gas of the cement kiln is replaced with the uppermost cyclone and the lowermost cyclone of the preheater for preheating the cement raw material. Heated by sensible heat of the cement raw material while mixing with the cement raw material separated from the cyclone removed, recovering mercury volatilized from the cement kiln dust by the mixed heating, the cement kiln dust and the cement after the mixed heating The mixture of raw materials is returned to a cyclone located at a lower stage than the cyclone separated from the cement raw material.
  • the cement kiln dust is mixed using the cement raw material separated from the cyclone excluding the uppermost cyclone and the lowermost cyclone of the preheater having a suitable raw material temperature for volatilizing the mercury contained in the cement kiln dust.
  • Heat is recovered from the mixture of cement kiln dust and cement raw material after mixing and heating with a cyclone located in the lower stage, so that the amount of mercury contained in the cement kiln exhaust gas can be efficiently reduced while suppressing heat loss.
  • the mixture after mixing and heating is returned to the cyclone at a lower stage than the cyclone in which the cement raw material is separated, the cost required for transporting the cement raw material and the mixture can be reduced. Furthermore, since it is not necessary to perform classification before collecting mercury, the operating cost can be reduced.
  • chlorine can be added to the cement kiln dust, the mercury contained in the cement kiln dust can be salified to lower the boiling point, and mercury can be recovered more efficiently.
  • activated carbon is added to the exhaust gas of the preheater as a mercury adsorbent, and the mercury contained in the exhaust gas is recovered as the cement kiln dust, thereby efficiently recovering mercury using activated carbon. can do.
  • the present invention also relates to a mercury reduction device for cement kiln exhaust gas, in which cement kiln dust contained in the combustion exhaust gas from the cement kiln is separated from the cyclone excluding the uppermost cyclone and the lowermost cyclone of the preheater for preheating the cement raw material.
  • a mixing and heating device for heating by sensible heat of the cement raw material while mixing with the cement raw material, a mercury recovery device for recovering mercury volatilized from the cement kiln dust by the mixed heating, and the exhaust discharged from the mixing and heating device
  • a supply device for supplying a mixture of the cement kiln dust and the cement raw material to a cyclone located below the cyclone from which the cement raw material is separated.
  • the amount of mercury contained in the cement kiln exhaust gas can be efficiently reduced with a simple configuration.
  • the mixture after mixing and heating is returned to the cyclone at a lower stage than the cyclone in which the cement raw material is separated, the cost required for the cement raw material and the apparatus for conveying the mixture can be reduced.
  • the device configuration can be simplified and the cost can be reduced.
  • thermometer for measuring the temperature of the mixture of the cement kiln dust and the cement raw material discharged from the mixing heating device, and the fractionation of the cement raw material based on the measurement result of the thermometer
  • a chlorine addition device for adding chlorine to the cement kiln dust can be provided.
  • mercury contained in cement kiln dust can be salified to lower the boiling point, and mercury can be recovered more efficiently.
  • activated carbon is introduced as a mercury adsorbent, and a dust collector for recovering mercury contained in the exhaust gas of the preheater as the cement kiln dust can be provided. Mercury can be recovered.
  • the amount of mercury contained in the cement kiln exhaust gas can be reduced by efficiently recovering mercury from the cement kiln dust at a low cost.
  • FIG. 1 is an overall configuration diagram showing an embodiment of a mercury reduction device for cement kiln exhaust gas according to the present invention.
  • FIG. 1 shows an embodiment of a mercury reduction device for cement kiln exhaust gas according to the present invention.
  • This mercury reduction device 11 includes a cement kiln 2, a clinker cooler 3, a preheater 4, a calcining furnace 5, and the like. Attached to the cement baking apparatus 1.
  • a cement kiln dust (hereinafter abbreviated as “kiln dust”) D1 is an upstream side of the chimney 7 where the exhaust gas G1 discharged from the uppermost cyclone 4D of the preheater 4 passes through a cement raw material drying and grinding device or the like (not shown). It reaches the dust collector 6 provided in the dust collector 6 and is obtained by removing the dust with this dust collector 6.
  • a mercury adsorbent charging device 8 for charging a mercury adsorbent such as activated carbon into the flow path of the exhaust gas G1 is provided in the front stage of the dust collector 6.
  • the mercury reduction device 11 is discharged from the cyclone 13, an air transporter 12 that conveys the kiln dust D 1 collected by the dust collector 6 to the vicinity of the preheater 4, a cyclone 13 that collects the coarse powder D 2 from the kiln dust D 1 that has been conveyed.
  • the dust collector 14 that collects dust dust D4 by removing dust from the gas G2 containing the fine powder D3, the quantitative feeder 15 that supplies the coarse powder D2 and dust dust D4 to the mixing and heating device 19, and the exhaust gas G3 of the dust collector 14 are discharged into the atmosphere.
  • the mixing and heating device 19 also serves as a transport device, and conveys the supplied coarse powder D2, dust collection dust D4, and cement raw material R2 while mixing and stirring, so that the temperature of the mixture (mercury removal dust D5 and D6) is increased. It is provided to homogenize and volatilize mercury.
  • this mixing and heating device 19 is disposed between the third cyclone 4C and the second cyclone 4B, and conveys the cement raw material R2 and the mercury removing dusts D5 and D6 using potential energy. It is preferable.
  • the mercury recovery device 21 exchanges heat between the high-temperature dust collector 22 for removing dust from the exhaust gas G4 from the mixing and heating device 19 and the exhaust gas G5 of the high-temperature dust collector 22 between the cooling water W, thereby removing volatile mercury contained in the exhaust gas G5.
  • a flow rate adjusting valve 27 for adjusting the flow rate of the exhaust gas G7.
  • the cement raw material R2 is the cement raw material R1 charged into the preheater 4 having a temperature of 450 ° C. to less than 810 ° C. preheated by the uppermost cyclone 4D and the third cyclone 4C of the preheater 4 and is separated.
  • the amount of the raw material R2 can be adjusted by a flow rate adjusting gate 18 disposed between the preheater 4C and the mixing and heating device 19.
  • the dust collected from the exhaust gas G1 discharged from the uppermost cyclone 4D of the preheater 4 by the dust collector 6 and obtained from the coarse dust D2 and dust collected D4 as kiln dust obtained through the cyclone 13 and the like, and the third cyclone 4C of the preheater 4 are separated.
  • the taken cement raw material R2 is introduced into the mixing and heating device 19, and these are mixed and stirred for 5 to 30 minutes to heat the coarse powder D2 and the dust collection dust D4 to 400 ° C. or more, which is the boiling point of mercury. Mercury contained in the dust dust D4 is volatilized.
  • the mercury removal dust D5 discharged from the mixing and heating device 19 is returned to the second cyclone 4B located below the cyclone 4C from which the cement raw material R2 has been separated in order to be used as a cement raw material.
  • the exhaust gas G4 of the mixing and heating device 19 is introduced into the high temperature dust collector 22, collects the mercury removal dust D6 contained in the exhaust gas G4, and returns it to the second cyclone 4B together with the mercury removal dust D5.
  • the exhaust gas G5 of the high-temperature dust collector 22 is introduced into the heat exchanger 24, and heat exchange with the cooling water W is indirectly performed to condense volatile mercury contained in the exhaust gas G5.
  • the exhaust gas G6 and the condensed mercury Hg from the heat exchanger 24 are introduced into the mercury recovery tank 25, the condensed mercury Hg is stored in the mercury recovery tank 25, and the exhaust gas G7 is stored in the gas-liquid separator 26, the flow control valve 26, and the dust collector. 14 and the fan 16 to the atmosphere.
  • the third material having a raw material temperature of about 450 ° C. to 810 ° C. suitable for volatilizing mercury contained in the coarse powder D2 and the dust collection dust D4 (kiln dust).
  • the coarse powder D2 and the dust collection dust D4 are mixed and heated using the cement raw material R2 separated from the cyclone 4C, and the second powder positioned in the lower stage from the mixture of the coarse powder D2, the dust collection dust D4 and the cement raw material R2 after the mixing heating. Since heat is recovered by the cyclone 4B, mercury can be efficiently recovered from the cement kiln dust while suppressing heat loss. Further, since only the mixing and heating device 19 and the pre- and post-sorting and supply devices are provided, and it is not necessary to separately provide a classification device in front of the conventional mercury reduction device 11, the device configuration is simplified and the device and The operating cost can also be reduced.
  • the cement raw material R2 is separated from the third cyclone 4C of the preheater 4 and the mercury removal dust D5, D6 is returned to the second cyclone 4B.
  • the mercury removal dust D5 may be the lowest cyclone 4A.
  • the cyclone for separating the cement raw material R2 may be the second cyclone 4B, and the mercury removal dust can be returned to the lowermost cyclone 4A.
  • the uppermost cyclone 4D of the preheater 4 is removed because the cement raw material separated from the uppermost cyclone 4D is sufficient to volatilize the mercury contained in the coarse powder D2 and the dust collection dust D4. This is because a large amount of heat cannot be obtained.
  • the reason why the lowermost cyclone 4A is excluded is that the raw material in the lowermost cyclone 4A has a great influence on cement firing because decarboxylation is completed, and heat loss increases. From the above, it is preferable to use the cement raw material R2 of about 450 ° C. to 810 ° C. separated from the second cyclone 4B or the third cyclone 4C.
  • thermometers for measuring the temperatures of the dusts D5 and D6 at the mercury removal dust D5 outlet of the mixing and heating device 19 and the mercury removal dust D6 outlet of the high-temperature dust collector 22 respectively.
  • the amount of the cement raw material R2 to be fractioned from the third cyclone 4C can be adjusted by the flow rate adjusting gate 18 in accordance with the indicated values of these thermometers. Thereby, the bad influence to the cement baking apparatus accompanying the fractionation of cement raw material R2 can be suppressed to the minimum.
  • the boiling point of the mercury can be lowered and the operation cost can be reduced.
  • the coarse powder D2 collected by the cyclone 13 does not necessarily need to be supplied to the mixing heating device 19 and processed. You may use as it is as a part.
  • the cement raw material R2 having a raw material temperature of about 450 ° C. to 810 ° C. is separated from other than the uppermost and lowermost cyclones, and the cement raw material R2 is separated.
  • a mercury adsorbent such as activated carbon
  • mercury contained in the exhaust gas G1 is captured as kiln dust D1 in the dust collector 6 and the mercury is discharged from the chimney 7 together with the exhaust gas G1.
  • the kiln dust D1 (D2 and D4) is heat-treated in the mercury reduction device 11 to collect mercury, whereby the amount of mercury released into the atmosphere can be controlled.

Abstract

【課題】セメントキルン排ガスに含まれる水銀の量を低コストで効率よく低減する。 【解決手段】セメントキルンの燃焼排ガスG1に含まれるセメントキルンダストD2、D4を、セメント原料R1を予熱するプレヒータ4の最上段サイクロン4D及び最下段サイクロン4Aを除くサイクロン4C(又は4B)から分取したセメント原料R2と混合しながらセメント原料R2の顕熱によって加熱する混合加熱装置19と、混合加熱によってセメントキルンダストD2、D4から揮発した水銀Hgを回収する水銀回収装置21と、混合加熱装置19から排出される水銀除去ダストD5、D6をセメント原料R2が分取されるサイクロン4C(又は4B)よりも下段に位置するサイクロン4B(又は4A)に供給する供給装置とを備えるセメントキルン排ガスの水銀低減装置11。

Description

セメントキルン排ガスの水銀低減方法及びその装置
 本発明は、セメントキルン排ガス中の水銀を原料ダスト(以下「セメントキルンダスト」という)と共に回収することで、セメントキルン排ガスに含まれる水銀の量を低減する方法及び装置に関する。
 セメントの原燃料や、リサイクル資源には水銀が含まれているため、これらを原料等として使用するセメントキルンの燃焼排ガスには、極微量の金属水銀(Hg)及び水銀化合物が含まれている。
 そこで、特許文献1には、セメントキルン排ガスに含まれる水銀等を除去し、水銀等を除去した集塵ダストをセメント原料に再利用するため、セメントキルンダストを集塵してクリンカクーラーの排ガスを用いて加熱し、加熱によって揮発した水銀を回収する方法が提案されている。
 しかし、上記特許文献1に記載の気流加熱方式では、揮発した水銀と、集塵ダストを加熱するために用いられた排ガスの両方が水銀回収装置に導入されるため、水銀回収装置が大型化し、設備コスト及び運転コストが高くなるという問題があった。
 一方、特許文献2には、セメントキルンダストを外熱キルンで間接的に加熱し、ダストに含まれる水銀を揮発させて回収する方法が開示されている。この間接加熱方式では、セメントキルンダストを気流で加熱しないため、水銀回収装置を小型化することができるが、ダストを直接加熱しない分、水銀を揮発させるために要する熱量が多くなり、加熱装置の設備コストや運転コストが高くなる。
 上記の問題点に鑑み、特許文献3には、セメントキルンダストを、セメント焼成装置のプレヒータから分取したセメント原料等と混合しながらセメント原料等の顕熱によって加熱する混合装置と、混合加熱によって揮発した水銀を回収する水銀回収装置とを備える水銀回収システム等が提案されている。このシステム等によれば、水銀を揮発させるためにセメント焼成装置におけるセメント原料を利用すると共に、水銀回収装置の大型化を回避することで、消費エネルギーを低減し、運転コスト及び設備コストを低減することができる。
日本特開2011-88770号公報 日本特開2003-245642号公報 日本特開2014-58699号公報
 上記特許文献3に記載のシステム等は有効であるが、セメントキルンダストとセメント原料の混合物を流動化させ、粗粉と、微粉を含むガスとに分離する振動流動層式分級機を設けると装置構成が複雑化するなど、改善の余地があった。
 そこで、本発明は、セメント焼成装置のプレヒータから分取したセメント原料を利用してセメントキルンダストから水銀を回収するにあたり、装置構成を簡略化し、設備コスト及び運転コストを低減することで、セメントキルン排ガスに含まれる水銀の量を低コストで効率よく低減することを目的とする。
 上記目的を達成するため、本発明は、セメントキルン排ガスの水銀低減方法であって、セメントキルンの燃焼排ガスに含まれるセメントキルンダストを、セメント原料を予熱するプレヒータの最上段サイクロン及び最下段サイクロンを除くサイクロンから分取したセメント原料と混合しながら該セメント原料の顕熱によって加熱し、該混合加熱によって前記セメントキルンダストから揮発した水銀を回収し、前記混合加熱後の前記セメントキルンダストと前記セメント原料の混合物を前記セメント原料を分取したサイクロンよりも下段に位置するサイクロンに戻すことを特徴とする。
 本発明によれば、セメントキルンダストに含まれる水銀を揮発させるにあたって好適な原料温度を有する、プレヒータの最上段サイクロン及び最下段サイクロンを除くサイクロンから分取したセメント原料を用いてセメントキルンダストを混合加熱し、混合加熱後のセメントキルンダストとセメント原料の混合物から下段に位置するサイクロンで熱回収するため、熱損失を抑えながら、セメントキルン排ガスに含まれる水銀の量を効率よく低減することができる。また、セメント原料を分取したサイクロンよりも下段のサイクロンに混合加熱後の混合物を戻すため、セメント原料や混合物の搬送に要するコストを低減することができる。さらに、水銀を回収する前に分級を行う必要がないため、運転コストを低減することもできる。
 上記セメントキルン排ガスの水銀低減方法において、前記混合加熱装置から排出されるセメントキルンダストとセメント原料の混合物の温度を計測し、該計測結果に基づいて前記セメント原料の分取量を制御することで、セメント原料の分取によるセメント焼成装置への影響を最小限に抑えることができる。
 上記セメントキルン排ガスの水銀低減方法において、前記セメントキルンダストに塩素を添加し、セメントキルンダストに含まれる水銀を塩化して沸点を下げ、さらに効率よく水銀を回収することができる。
 上記セメントキルン排ガスの水銀低減方法において、水銀吸着材として活性炭を前記プレヒータの排ガスに添加し、該排ガスに含まれる水銀を前記セメントキルンダストとして回収することで、活性炭を用いて効率よく水銀を回収することができる。
 また、本発明は、セメントキルン排ガスの水銀低減装置であって、セメントキルンの燃焼排ガスに含まれるセメントキルンダストを、セメント原料を予熱するプレヒータの最上段サイクロン及び最下段サイクロンを除くサイクロンから分取したセメント原料と混合しながら該セメント原料の顕熱によって加熱する混合加熱装置と、該混合加熱によって前記セメントキルンダストから揮発した水銀を回収する水銀回収装置と、前記混合加熱装置から排出される前記セメントキルンダストと前記セメント原料の混合物を前記セメント原料が分取されるサイクロンよりも下段に位置するサイクロンに供給する供給装置とを備えることを特徴とする。
 本発明によれば、上記発明と同様に、簡単な構成でセメントキルン排ガスに含まれる水銀の量を効率よく低減することができる。また、セメント原料を分取したサイクロンよりも下段のサイクロンに混合加熱後の混合物を戻すため、セメント原料や混合物を搬送する装置に要するコストを低減することができる。さらに、水銀回収装置の前段に分級装置を別途設ける必要がないため、装置構成を簡略化してコストを低減することもできる。
 上記セメントキルン排ガスの水銀低減装置において、前記混合加熱装置から排出されるセメントキルンダストとセメント原料の混合物の温度を計測する温度計と、該温度計の計測結果に基づいて前記セメント原料の分取量を制御する制御装置とを備えることで、セメント原料の分取によるセメント焼成装置への影響を最小限に抑えることができる。
 上記セメントキルン排ガスの水銀低減装置において、前記セメントキルンダストに塩素を添加する塩素添加装置を設けることができる。これにより、セメントキルンダストに含まれる水銀を塩化して沸点を下げ、さらに効率よく水銀を回収することもできる。
 上記セメントキルン排ガスの水銀低減装置において、水銀吸着材として活性炭が投入され、前記プレヒータの排ガスに含まれる水銀を前記セメントキルンダストとして回収する集塵機を設けることができ、活性炭を用いて効率よく排ガスから水銀を回収することができる。
 以上のように、本発明によれば、セメントキルンダストから低コストで効率よく水銀を回収することで、セメントキルン排ガスに含まれる水銀の量を低減することができる。
本発明に係るセメントキルン排ガスの水銀低減装置の一実施の形態を示す全体構成図である。
 次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。
 図1は、本発明に係るセメントキルン排ガスの水銀低減装置の一実施の形態を示し、この水銀低減装置11は、セメントキルン2、クリンカクーラ3、プレヒータ4及び仮焼炉5等を備える通常のセメント焼成装置1に付設される。セメントキルンダスト(以下、適宜「キルンダスト」と略称する。)D1は、プレヒータ4の最上段サイクロン4Dから排出された排ガスG1がセメント原料乾燥粉砕装置等(不図示)を介して煙突7の上流側に設けられた集塵機6に達し、この集塵機6で除塵して得られるものである。また、この集塵機6の前段には、排ガスG1の流路に活性炭等の水銀吸着材を投入する水銀吸着材投入装置8が設けられる。
 水銀低減装置11は、集塵機6で回収されたキルンダストD1をプレヒータ4の近傍まで搬送する空気輸送機12と、搬送されたキルンダストD1から粗粉D2を回収するサイクロン13と、サイクロン13から排出された微粉D3を含むガスG2から除塵して集塵ダストD4を回収する集塵機14と、粗粉D2と集塵ダストD4を混合加熱装置19に供給する定量供給機15と、集塵機14の排ガスG3を大気に放出するファン16と、定量供給機15から供給された粗粉D2及び集塵ダストD4をプレヒータ4の第3サイクロン4Cから分取したセメント原料R2と混合しながらセメント原料R2の顕熱によって加熱する混合加熱装置19と、混合加熱によって粗粉D2及び集塵ダストD4から揮発した水銀を回収する水銀回収装置21と、混合加熱装置19から排出される水銀除去ダストD5、D6を第2サイクロン4Bに戻す供給装置(不図示)とで構成される。
 混合加熱装置19は、輸送機も兼ねており、供給された粗粉D2、集塵ダストD4及びセメント原料R2を混合撹拌しながら搬送することで、混合物(水銀除去ダストD5及びD6)の温度を均一化して水銀を揮発させるために設けられる。図1の記載とは異なるが、この混合加熱装置19を、第3サイクロン4Cと第2サイクロン4Bの間に配置し、セメント原料R2及び水銀除去ダストD5、D6を位置エネルギーを利用して搬送することが好ましい。
 水銀回収装置21は、混合加熱装置19からの排ガスG4から除塵するための高温集塵機22と、高温集塵機22の排ガスG5を冷却水Wの間で熱交換することで排ガスG5に含まれる揮発水銀を凝縮させる熱交換器24と、熱交換器24から供給された水銀Hgを貯留する水銀回収タンク25と、水銀回収タンク25の排ガスG7に含まれる水銀を水銀回収タンク25へ戻す気液分離器26と、排ガスG7の流量を調整する流量調整バルブ27とからなる。
 セメント原料R2は、プレヒータ4に投入されるセメント原料R1が、プレヒータ4の最上段サイクロン4D及び第3サイクロン4Cで予熱された450℃~810℃未満の温度を有するものであり、分取するセメント原料R2の量は、プレヒータ4Cと混合加熱装置19の間に配置される流量調節ゲート18によって調節することができる。
 次に、上記構成を有するセメントキルン排ガスの水銀低減装置11を用いた本発明に係るセメントキルン排ガスの水銀低減方法について図1を参照しながら説明する。
 プレヒータ4の最上段サイクロン4Dから排出される排ガスG1から集塵機6で除塵し、サイクロン13等を経て得た、キルンダストとしての粗粉D2及び集塵ダストD4と、プレヒータ4の第3サイクロン4Cから分取したセメント原料R2を混合加熱装置19に導入し、これらを5~30分間混合撹拌して粗粉D2及び集塵ダストD4を水銀の沸点である400度以上まで加熱し、粗粉D2及び集塵ダストD4に含まれる水銀を揮発させる。
 混合加熱装置19から排出される水銀除去ダストD5は、セメント原料として利用するため、セメント原料R2を分取したサイクロン4Cよりも下方に位置する第2サイクロン4Bへ戻す。一方、混合加熱装置19の排ガスG4は、高温集塵機22へ導入し、排ガスG4に含まれる水銀除去ダストD6を回収して水銀除去ダストD5と共に第2サイクロン4Bへ戻す。
 次に、高温集塵機22の排ガスG5を熱交換器24に導入し、冷却水Wと間接的に熱交換させることで排ガスG5に含まれる揮発水銀を凝縮させる。熱交換器24の排ガスG6及び凝縮した水銀Hgは、水銀回収タンク25に導入され、凝縮した水銀Hgが水銀回収タンク25に貯留され、排ガスG7が気液分離器26、流量調節バルブ26、集塵機14及びファン16を経由して大気へ放出される。
 以上のように、本実施の形態によれば、粗粉D2及び集塵ダストD4(キルンダスト)に含まれる水銀を揮発させるにあたって好適な450℃~810℃程度℃程度の原料温度を有する、第3サイクロン4Cから分取したセメント原料R2を用いて粗粉D2及び集塵ダストD4を混合加熱し、混合加熱後の粗粉D2及び集塵ダストD4とセメント原料R2の混合物から下段に位置する第2サイクロン4Bで熱回収するため、熱損失を抑えながら、セメントキルンダストから効率よく水銀を回収することができる。また、混合加熱装置19とその前後の分取、供給装置等を備えるだけで、従来のような水銀低減装置11の前段に分級装置を別途設ける必要もないため、装置構成を簡略化して装置及び運転コストを低減することもできる。
 尚、上記実施の形態においては、プレヒータ4の第3サイクロン4Cからセメント原料R2を分取すると共に、水銀除去ダストD5、D6を第2サイクロン4Bに戻す場合について説明したが、水銀除去ダストD5、D6を戻すサイクロンは最下段サイクロン4Aでもよい。また、セメント原料R2を分取するサイクロンは第2サイクロン4Bでもよく、水銀除去ダストを最下段サイクロン4Aに戻すことができる。
 セメント原料を分取するにあたってプレヒータ4の最上段サイクロン4Dを除いたのは、最上段サイクロン4Dから分取したセメント原料では、粗粉D2及び集塵ダストD4に含まれる水銀を揮発させるのに充分な熱量を得られないからである。また、最下段サイクロン4Aを除いたのは、最下段サイクロン4A内の原料は脱炭酸が完了しているためにセメント焼成に与える影響が大きく、熱損失が大きくなるためである。以上より、第2サイクロン4Bや第3サイクロン4Cから分取した450℃~810℃程度のセメント原料R2を用いることが好適である。
 また、水銀除去ダストD5、D6を戻す位置をセメント原料R2を分取したサイクロンより下段にしたのは、設備点数の増加や、分取した水銀除去ダストD5、D6を持ち上げることによる搬送コストの増加を考慮したためである。
 上記構成に加え、混合加熱装置19の水銀除去ダストD5の排出口や、高温集塵機22の水銀除去ダストD6の排出口の各々にこれらのダストD5、D6の温度を計測する温度計(不図示)を配置し、これらの温度計の指示値に従って第3サイクロン4Cから分取するセメント原料R2の量を流量調節ゲート18によって調節することもできる。これにより、セメント原料R2の分取に伴うセメント焼成装置への悪影響を最小限に抑えることができる。
 また、粗粉D2及び集塵ダストD4に塩素分を添加し、粗粉D2及び集塵ダストD4に含まれる水銀を塩化することで、水銀の沸点を下げて運転コストを低減することもできる。
 尚、キルンダストD1の微粉分である集塵ダストD4に水銀が偏在するため、サイクロン13で回収された粗粉D2は、必ずしも混合加熱装置19に供給して処理する必要はなく、セメント原料R1の一部としてそのまま利用してもよい。
 また、プレヒータ4が5段や6段のサイクロンからなる場合にも、最上段及び最下段サイクロン以外から450℃~810℃程度の原料温度を有するセメント原料R2を分取し、セメント原料R2が分取されるサイクロンよりも下段に位置するサイクロンに混合加熱装置から排出される混合物を戻すことで、上記実施の形態と同様の作用効果を得ることができる。
 さらに、セメントキルン排ガスG1の流路に活性炭等の水銀吸着材を投入することで、集塵機6において排ガスG1に含まれる水銀をキルンダストD1として捕捉して排ガスG1と共に煙突7から水銀が排出されるのを防止すると同時に、このキルンダストD1(D2及びD4)を水銀低減装置11において加熱処理して水銀を回収することで、大気に放出される水銀の量を制御することが可能となる。
1 セメント焼成装置
2  セメントキルン
3  クリンカクーラ
4  プレヒータ
4A  最下段サイクロン
4B  第2サイクロン
4C  第3サイクロン
4D  最上段サイクロン
5 仮焼炉
6 集塵機
7 煙突
8 水銀吸着材投入装置
11 セメントキルン排ガスの水銀低減装置
12 空気輸送機
13 サイクロン
14 集塵機
15 定量供給機
16 ファン
18 流量調節ゲート
19 混合加熱装置
21 水銀回収装置
22 高温集塵機
24 熱交換器
25 水銀回収タンク
26 気液分離器
27 流量調整バルブ
D1 キルンダスト
D2 粗粉
D3 微粉
D4 集塵ダスト
D5、D6 水銀除去ダスト
G1 セメントキルン排ガス
G2~G7 排ガス
R1、R2 セメント原料
W 冷却水

Claims (8)

  1.  セメントキルンの燃焼排ガスに含まれるセメントキルンダストを、セメント原料を予熱するプレヒータの最上段サイクロン及び最下段サイクロンを除くサイクロンから分取したセメント原料と混合しながら該セメント原料の顕熱によって加熱し、
     該混合加熱によって前記セメントキルンダストから揮発した水銀を回収し、
     前記混合加熱後の前記セメントキルンダストと前記セメント原料の混合物を前記セメント原料を分取したサイクロンよりも下段に位置するサイクロンに戻すことを特徴とするセメントキルン排ガスの水銀低減方法。
  2.  前記混合加熱装置から排出されるセメントキルンダストとセメント原料の混合物の温度を計測し、
     該計測結果に基づいて前記セメント原料の分取量を制御することを特徴とする請求項1に記載のセメントキルン排ガスの水銀低減方法。
  3.  前記セメントキルンダストに塩素を添加することを特徴とする請求項1又は2に記載のセメントキルン排ガスの水銀低減方法。
  4.  水銀吸着材として活性炭を前記プレヒータの排ガスに添加し、該排ガスに含まれる水銀を前記セメントキルンダストとして回収することを特徴とする請求項1、2又は3に記載のセメントキルン排ガスの水銀低減方法。
  5.  セメントキルンの燃焼排ガスに含まれるセメントキルンダストを、セメント原料を予熱するプレヒータの最上段サイクロン及び最下段サイクロンを除くサイクロンから分取したセメント原料と混合しながら該セメント原料の顕熱によって加熱する混合加熱装置と、
     該混合加熱によって前記セメントキルンダストから揮発した水銀を回収する水銀回収装置と、
     前記混合加熱装置から排出される前記セメントキルンダストと前記セメント原料の混合物を前記セメント原料が分取されるサイクロンよりも下段に位置するサイクロンに供給する供給装置とを備えることを特徴とするセメントキルン排ガスの水銀低減装置。
  6.  前記混合加熱装置から排出されるセメントキルンダストとセメント原料の混合物の温度を計測する温度計と、
     該温度計の計測結果に基づいて前記セメント原料の分取量を制御する制御装置とを備えることを特徴とする請求項5に記載のセメントキルン排ガスの水銀低減装置。
  7.  前記セメントキルンダストに塩素を添加する塩素添加装置を備えることを特徴とする請求項5又は6に記載のセメントキルン排ガスの水銀低減装置。
  8.  水銀吸着材として活性炭が投入され、前記プレヒータの排ガスに含まれる水銀を前記セメントキルンダストとして回収する集塵機を備えることを特徴とする請求項5、6又は7に記載のセメントキルン排ガスの水銀低減装置。
PCT/JP2017/040706 2017-01-11 2017-11-13 セメントキルン排ガスの水銀低減方法及びその装置 WO2018131277A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780004091.8A CN108575090A (zh) 2017-01-11 2017-11-13 水泥窑排气的汞减少方法及其装置
JP2018517355A JP6986511B2 (ja) 2017-01-11 2017-11-13 セメントキルン排ガスの水銀低減方法及びその装置
US15/768,795 US11179672B2 (en) 2017-01-11 2017-11-13 Method and apparatus for reducing mercury content of cement kiln exhaust gas
KR1020187010225A KR102416754B1 (ko) 2017-01-11 2017-11-13 시멘트 킬른 배기 가스의 수은 저감 방법 및 그 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017002473 2017-01-11
JP2017-002473 2017-01-11

Publications (1)

Publication Number Publication Date
WO2018131277A1 true WO2018131277A1 (ja) 2018-07-19

Family

ID=62839327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040706 WO2018131277A1 (ja) 2017-01-11 2017-11-13 セメントキルン排ガスの水銀低減方法及びその装置

Country Status (5)

Country Link
US (1) US11179672B2 (ja)
JP (1) JP6986511B2 (ja)
KR (1) KR102416754B1 (ja)
CN (1) CN108575090A (ja)
WO (1) WO2018131277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747847A1 (de) 2019-06-05 2020-12-09 Steinmüller Engineering GmbH Quecksilberabscheidung bei der herstellung von zementklinker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739178A (zh) * 2022-04-18 2022-07-12 徐荣 一种垃圾焚烧飞灰无害化处理的装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207658A (ja) * 2010-03-30 2011-10-20 Taiheiyo Cement Corp セメントキルン排ガスの処理装置及び処理方法
JP2013112579A (ja) * 2011-11-30 2013-06-10 Taiheiyo Cement Corp セメントキルン排ガスの処理システム及びその運転方法
JP2014058699A (ja) * 2012-09-14 2014-04-03 Taiheiyo Cement Corp セメントキルンダストからの水銀回収システム及び回収方法
JP2015188856A (ja) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 排ガス処理方法及び処理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355531A (ja) 2001-03-27 2002-12-10 Taiheiyo Cement Corp セメント製造排ガスの処理方法
JP2003245642A (ja) 2001-12-19 2003-09-02 Taiheiyo Cement Corp 重金属含有物質の無害化方法及び加熱炉
JP4615443B2 (ja) 2003-07-10 2011-01-19 太平洋セメント株式会社 燃焼排ガス処理装置及び処理方法
DE102004003068A1 (de) * 2004-01-21 2005-08-11 Khd Humboldt Wedag Ag Zementklinkerherstellung mit Teilstromabzug schadstoffhaltigen Drehofenabgases
JP4426923B2 (ja) * 2004-08-05 2010-03-03 太平洋セメント株式会社 セメントキルンの排ガスの処理方法
JP2006096615A (ja) 2004-09-29 2006-04-13 Taiheiyo Cement Corp セメントキルンの排ガスの処理方法
KR101207958B1 (ko) * 2005-01-06 2012-12-04 가부시키가이샤 닛폰 쇼쿠바이 시멘트 킬른 연소 배기 가스 처리 장치 및 처리 방법
JP2007039296A (ja) 2005-08-05 2007-02-15 Taiheiyo Cement Corp セメント製造装置の排ガスの処理方法及び処理システム
CN101583578A (zh) * 2006-12-05 2009-11-18 太平洋水泥株式会社 煤灰的处理方法及处理装置
ES2708947T3 (es) * 2009-01-22 2019-04-12 Taiheiyo Cement Corp Aparato de eliminación de metales pesados y sistema de producción de cemento
JP2010227900A (ja) 2009-03-30 2010-10-14 Taiheiyo Cement Corp セメントキルン排ガスの処理装置及び処理方法
JP4812870B2 (ja) 2009-10-21 2011-11-09 太平洋セメント株式会社 セメントキルン排ガスの処理装置及び処理方法
JP2014117675A (ja) 2012-12-18 2014-06-30 Sumitomo Osaka Cement Co Ltd 排ガスの処理方法および排ガス処理装置
DK3219688T3 (en) * 2016-03-18 2018-05-28 Suedbayerisches Portland Zementwerk Gebr Wiesboeck & Co Gmbh Cement clinker line and method for operating a cement clinker line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207658A (ja) * 2010-03-30 2011-10-20 Taiheiyo Cement Corp セメントキルン排ガスの処理装置及び処理方法
JP2013112579A (ja) * 2011-11-30 2013-06-10 Taiheiyo Cement Corp セメントキルン排ガスの処理システム及びその運転方法
JP2014058699A (ja) * 2012-09-14 2014-04-03 Taiheiyo Cement Corp セメントキルンダストからの水銀回収システム及び回収方法
JP2015188856A (ja) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 排ガス処理方法及び処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747847A1 (de) 2019-06-05 2020-12-09 Steinmüller Engineering GmbH Quecksilberabscheidung bei der herstellung von zementklinker

Also Published As

Publication number Publication date
US20200261845A1 (en) 2020-08-20
JP6986511B2 (ja) 2021-12-22
KR20190104862A (ko) 2019-09-11
KR102416754B1 (ko) 2022-07-05
US11179672B2 (en) 2021-11-23
CN108575090A (zh) 2018-09-25
JPWO2018131277A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP4823596B2 (ja) セメント焼成設備における排ガスの処理方法及び処理装置
JP4527139B2 (ja) 水銀除去装置及びセメント製造システム
JP5407262B2 (ja) セメント焼成設備の排ガス処理方法および処理システム
JP4812870B2 (ja) セメントキルン排ガスの処理装置及び処理方法
JP2007518661A (ja) 有害物質を含む回転炉の排ガス流の一部を取り出すセメントクリンカーの製造方法
JP4689514B2 (ja) セメント焼成設備における排ガスの処理方法及び処理装置
JPH09227184A (ja) セメントキルン排ガス処理方法及びその装置
JP5496734B2 (ja) セメントキルン排ガスの処理装置及び処理方法
JP4230371B2 (ja) セメント製造装置の排ガスの処理方法
WO2018131277A1 (ja) セメントキルン排ガスの水銀低減方法及びその装置
WO2010084594A1 (ja) 重金属除去装置及びセメント製造システム
JP2015017004A (ja) セメントキルン排ガスの処理装置及び処理方法
JP6020024B2 (ja) セメント製造設備からの排ガス中の重金属低減方法
JP5911102B2 (ja) セメントキルンダストからの水銀回収方法
JP6392139B2 (ja) 水銀回収システム
JP6446249B2 (ja) 水銀回収システム及び水銀回収方法
JP2000264687A (ja) セメントキルン排ガスの処理方法及びその装置
JP6260404B2 (ja) 排ガス処理方法及び処理装置
JP6263397B2 (ja) 水銀回収装置及び水銀回収方法
JP6249703B2 (ja) セメント焼成装置及び含水有機廃棄物の処理方法
JP5287881B2 (ja) セメント焼成設備における排ガスの処理方法及び処理装置
JPH1160297A (ja) セメントキルンの排ガス処理方法
JP6366186B2 (ja) 水銀回収装置及び水銀回収方法
JP2015178060A (ja) 排ガス処理方法及び処理装置
JP6370237B2 (ja) 水銀回収システム及び水銀回収方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517355

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010225

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891153

Country of ref document: EP

Kind code of ref document: A1