WO2018128461A1 - 작업성이 향상된 카본나노튜브 분산액 및 그 제조방법 - Google Patents

작업성이 향상된 카본나노튜브 분산액 및 그 제조방법 Download PDF

Info

Publication number
WO2018128461A1
WO2018128461A1 PCT/KR2018/000251 KR2018000251W WO2018128461A1 WO 2018128461 A1 WO2018128461 A1 WO 2018128461A1 KR 2018000251 W KR2018000251 W KR 2018000251W WO 2018128461 A1 WO2018128461 A1 WO 2018128461A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
dispersion
carbon nanotube
carbon
nanotube dispersion
Prior art date
Application number
PCT/KR2018/000251
Other languages
English (en)
French (fr)
Inventor
윤재근
조동현
김성진
강경연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/331,796 priority Critical patent/US11267710B2/en
Priority to EP18736525.9A priority patent/EP3466875B1/en
Priority to CN201880002387.0A priority patent/CN109311672B/zh
Publication of WO2018128461A1 publication Critical patent/WO2018128461A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/176Cutting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/26Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the present invention relates to a carbon nanotube dispersion having improved dispersibility and a method of manufacturing the same.
  • Carbon nanotubes exhibit non-conductor, conductor or semiconducting properties according to their unique chirality, and the carbon atoms are connected by strong covalent bonds, so that their tensile strength is about 100 times greater than steel, and they have excellent flexibility and elasticity. It is also chemically stable, and because of its size and specific properties, it is industrially important in the manufacture of composites and has high utility in the field of electronic materials, energy materials and many other fields.
  • the carbon nanotubes may be applied to electrodes of an electrochemical storage device such as a secondary battery, a fuel cell or a super capacitor, an electromagnetic shield, a field emission display, or a gas sensor.
  • the carbon nanotubes are easily released and the initial viscosity is rapidly increased, thereby making it impossible to disperse the carbon nanotubes.
  • An object of the present invention is to provide a method for producing carbon nanotubes having improved dispersibility in a dispersion medium.
  • Another object of the present invention is to provide a carbon nanotube dispersion having improved viscosity and controlled workability.
  • Wettability index (mass of absorbed solvent / carbon nanotube mass)
  • the mass of the solvent absorbed is the mass of the solvent absorbed by carbon nanotubes at the maximum temperature.
  • the viscosity of the dispersion may be 40,000 cP or less.
  • the dispersion is in water, methanol, ethanol, propanol, acetone, dimethyl formamide (DMF), dimethyl acetamide, dimethyl sulfoxide (DMSO) and N-methylpyrrolidone (NMP) It may comprise one or more dispersion media of choice.
  • the present invention also comprises the steps of dry grinding the carbon nanotubes in a milling apparatus comprising a ball of metal or ceramic material; And dispersing the pulverized carbon nanotubes in a solvent.
  • the wettability index of the carbon nanotubes after the grinding step may be reduced by at least 3 compared to the wettability index of the carbon nanotubes before grinding.
  • the carbon nanotubes may have a bulk density of 10 to 250 kg / m 3 , a BET specific surface area of 100 to 300 m 2 / g, and a length of 5 to 100 ⁇ m before grinding.
  • the pulverized carbon nanotubes may have a length of 0.2 ⁇ 10 ⁇ m.
  • the ball of the metal or ceramic material ( ⁇ ) is a diameter of 1 mm to 10 mm or a mixture of two or more kinds of balls having different diameters in the diameter range It may be milling.
  • the milling device may be selected from a ball mill, a planetary ball mill and an attention mill.
  • the length of the carbon nanotubes may be reduced to 1/10 or less after the grinding step.
  • the specific surface area of the carbon nanotubes after the grinding step may be increased by 5% ⁇ 100%.
  • the bulk density of the carbon nanotubes after the crushing step may increase 5% ⁇ 1000%.
  • the milling speed may be adjusted at 100rpm ⁇ 1,200rpm.
  • the grinding process may be performed for 5 minutes to 24 hours.
  • the present invention is to dry and pulverize the carbon nanotubes before the dispersion process in advance, and to control the wettability of the carbon nanotubes to the dispersion solvent to suppress the increase in viscosity during the dispersion process and to produce carbon nanotubes with improved dispersibility to the solvent.
  • the method according to the invention can be used to easily predict to some extent the maximum content that can be dispersed in a solvent.
  • 1 is a graph showing a change in viscosity of a dispersion according to the number of dispersion treatments.
  • FIG. 2 is a graph showing the relationship between the wettability index of carbon nanotubes and the maximum dispersion concentration in a dispersion solvent.
  • Carbon nanotubes can exhibit conductor or semiconductor properties, and are also used in various applications because of their excellent mechanical properties such as tensile strength.
  • One of the most important technologies for the application of such carbon nanotubes is carbon nanotube dispersion technology.
  • Carbon nanotubes vary slightly depending on the dispersion equipment used, but in general, the size of the carbon nanotube particles decreases during the dispersing process, the individual carbon nanotube strands are released, and the viscosity increases greatly. Higher viscosities reduce the efficiency of the distributed equipment and, in some situations, may make it no longer operational. When producing high concentrations of solution, this becomes a bigger obstacle, which can greatly limit the field of application. This phenomenon occurs at a higher speed in the bundle-type carbon nanotubes, which are currently widely used, which is an obstacle to the application of carbon nanotubes.
  • the present invention to solve the above problems,
  • the carbon nanotubes are cut by a milling apparatus including a ball made of metal or ceramic material, and carbon nanotubes having a wettability index of 14 or less for carbon nanotubes are dispersed at least 2% by weight based on the total weight of the dispersion.
  • a carbon nanotube dispersion and a method of manufacturing the same.
  • the present invention can change the number, length, surface, etc. of the carbon nanotube strands by grinding and cutting the carbon nanotubes in advance before dispersing the carbon nanotubes in the dispersion medium, thereby controlling the wettability index for the solvent. Workability can be improved.
  • the wettability index is defined as the maximum mass of a solvent that is absorbed by a certain mass of carbon nanotubes and does not flow to the outside.
  • the carbon is added to the vessel having a predetermined amount of carbon nanotubes at room temperature while the solvent is added little by little. It means the numerical value calculated by following formula 1 by measuring the mass immediately before a nanotube starts to flow out without absorbing a solvent anymore.
  • Wettability index (mass of absorbed solvent / carbon nanotube mass)
  • the carbon nanotubes pre-milled by high-speed milling have a significantly lower wettability index than the carbon nanotubes before milling, so that the dispersion in the dispersion solvent can be significantly increased.
  • the wettability index may be 14 or less, preferably 12 or less, more preferably 10 or less, and may be the same in other solvents than NMP. It is desirable to show similar values.
  • the dispersion medium is any one selected from the group consisting of water, methanol, ethanol, propanol, acetone, dimethyl formamide (DMF), dimethyl acetamide, dimethyl sulfoxide (DMSO) and N-methylpyrrolidone (NMP). One or two or more of these mixed solvents may be used.
  • the maximum dispersion concentration of the carbon nanotubes may be 2% by weight or more.
  • Dispersion concentration means the weight percent of carbon nanotubes in the total weight of the dispersion including the carbon nanotubes dispersed in the dispersion medium.
  • the carbon nanotube dispersion according to the present invention may include carbon nanotubes within 10% by weight based on the total weight of the dispersion, but is not limited thereto.
  • the viscosity of the dispersion may be 40,000 cP or less, preferably 20,000 cP or less, more preferably 10,000 cP or less. Although it may mean that the viscosity of the final dispersion of the dispersion and the viscosity of the dispersion in the process, the viscosity of the final dispersion may be less than the viscosity of the dispersion in the process.
  • the wettability index of the carbon nanotubes after the milling step may be reduced by 3 or more, and preferably 4 or more, compared to the wettability index of the carbon nanotubes before milling.
  • the wettability index and the maximum dispersion concentration of the carbon nanotubes may satisfy the relational expression of Equation 2 below.
  • X is the wettability index of the carbon nanotube, X ⁇ 14,
  • Y is the maximum dispersion concentration of carbon nanotubes.
  • the wettability index by measuring the wettability index, it may be easier to determine the dispersible concentration. For example, by measuring the wettability index of a small amount of carbon nanotubes without directly mixing a large amount of carbon nanotubes in a dispersion solvent, the maximum mixable concentration of the pulverized carbon nanotubes can be predicted.
  • the carbon nanotubes may have a bulk density of 10 to 250 kg / m 3 before grinding, a BET specific surface area of 100 to 300 m 2 / g, and a length of 5 to 100 ⁇ m.
  • the carbon nanotubes having such physical properties may be excellent in improving the wettability index.
  • it may be an entangled or bundled, multi-walled or single-walled carbon nanotubes, but preferably a bundled multi-walled carbon nanotubes.
  • the average length of the carbon nanotubes pulverized and cut in the milling device may be 0.2 ⁇ 10 ⁇ m.
  • the average length of the carbon nanotubes before the grinding and cutting may be 5 to 100 ⁇ m, and may be reduced by 1/10 or more with respect to the initial carbon nanotube length after the grinding and cutting process. By reducing the length of the carbon nanotubes 1/10 or more, it helps to improve the workability of the carbon nanotube dispersion.
  • the workability of the carbon nanotube dispersion depends mainly on the viscosity of the dispersion, which is mainly influenced by the number and length of carbon nanotube strands included in the dispersion, and the interaction of the carbon nanotube with the dispersant and the solvent.
  • the viscosity may increase greatly and workability may decrease.
  • 1 is a graph showing a change in viscosity of a dispersion according to the number of dispersion treatments. This deterioration of workability can easily lead to carbon nanotube strands, which can be more severe in relatively long bundle carbon nanotubes.
  • the carbon nanotubes subjected to the grinding and cutting process may not only reduce the length but also increase the density significantly.
  • This increase in density can improve transport efficiency and workability, as well as effects such as improved dispersibility in the solvent and reduced viscosity of the dispersion.
  • the bulk density of the carbon nanotubes before the grinding and cutting process may be 10 ⁇ 250 kg / m 3 , or may be 10 ⁇ 100 kg / m 3 .
  • the bulk density may be significantly increased due to the decrease in the length of the carbon nanotubes and the unwinding of the carbon nanotube strands.
  • the bulk density is 5% to 1000 within the range of 50 to 400 kg / m 3. % May increase, for example, 10% to 500%, or 50% to 300%.
  • the specific surface area of the carbon nanotubes prior to the grinding and cutting process may be 100 ⁇ 300 m 2 / g, or 150 m 2 / g ⁇ 300 m 2 / g.
  • the specific surface area (BET specific surface area) of the carbon nanotubes may increase due to a decrease in the unwinding diameter of the strands and mechanical defects, for example, 5% to 100%. Increasing the BET specific surface area in this range can contribute to an improvement in the wettability index.
  • the carbon nanotubes may be a bundle type (entangle) or entangle (entangle) type, and in the case of the bundle type in the grinding and cutting process it may be easier to control the unwinding and length of the strands.
  • 'bundle' used in the present invention refers to a bundle or rope form in which a plurality of carbon nanotubes are arranged or entangled side by side, unless otherwise stated.
  • 'Non-bundle' or 'entangled' type means a shape without a constant shape, such as a bundle or rope shape.
  • Such bundle-type carbon nanotubes basically have a shape in which a plurality of carbon nanotube strands are bundled together to form a bundle, and the plurality of strands may have a straight, curved or mixed form.
  • the bundle of carbon nanotubes may also have a linear, curved or mixed form thereof.
  • the carbon nanotube bundles also gather together to form carbon nanotube particles ranging from as small as tens of micrometers to as large as several mm.
  • the bundle of carbon nanotubes in the bundle may have a length of 5 ⁇ m to 100 ⁇ m and a thickness of 0.1 ⁇ m to 20 ⁇ m.
  • an average diameter of the said carbon nanotube strand what is 1 nm-40 nm can be used, for example.
  • the carbon nanotubes having such physical properties may be excellent in improving the wettability index.
  • the present invention by controlling the wettability index together with the length control of the carbon nanotubes, it is possible to prepare for the case where the dispersibility may be changed by various variables that may be changed by the grinding process in addition to the length. Can be done. For example, it is possible to estimate approximate possible dispersion concentrations without evaluating physical properties such as length, density and BET specific surface area, thereby improving process efficiency.
  • the milling device used in the grinding and cutting process may be any milling device using a ball of metal or ceramic material, for example, a ball mill (jar mill) , Planetary ball mills, attrition mills, and the like can be used.
  • a ball mill jar mill
  • Planetary ball mills Planetary ball mills
  • attrition mills and the like can be used.
  • the ball used may be a metal or ceramic material, for example, a metal containing tungsten (W), titanium (Ti) or an alloy containing them, or zirconia. Ceramic materials such as (ZrO 2 ), alumina (Al 2 O 3 ), silica (SiO 2 ), and the like may be used, but are not limited thereto. If necessary, two or more balls of materials may be mixed and used.
  • the diameter of the ball (ball) of the metal or ceramic material ( ⁇ ) is 1 mm to 10 mm, preferably 1 mm to 8 mm, or 1 mm or less than 1 mm to 6 mm or the diameter of the ball It can be used to mix two types of balls having different diameters in the range of. If balls of different diameters are mixed, balls of 1 mm to 3 mm or less and balls of 3 mm or more and 10 mm or less can be used. Their mixing ratio may be 90:10 to 10:90 or 70:30 to 30:70 or 60:40 to 40:60 by weight.
  • the shape of the ball is generally spherical, but is not limited thereto, and a ball other than a spherical shape such as a cylinder may be used.
  • a ball other than a spherical shape such as a cylinder may be used.
  • the ball and the carbon nanotubes may be added in a weight ratio of 1:10 to 1: 200, or in a weight ratio of 1:50 to 150 or 1: 100 to 1: 150.
  • carbon nanotubes having an appropriate length can be obtained. If the ball is excessively excessive compared to carbon nanotubes, deformation of the length or form of carbon nanotubes may occur excessively, thereby deteriorating physical properties of the carbon nanotubes. In addition, abrasion of the container walls and balls may be more severe, resulting in increased maintenance costs. On the other hand, when the carbon nanotubes are excessively excessive, grinding and cutting may not occur efficiently.
  • the weight ratio can be tuned according to the physical properties of the carbon nanotubes, such as the size of the ball used and the manufacturing conditions such as rpm and the bulk density of the carbon nanotubes used.
  • the rpm may be appropriately adjusted to increase or decrease step by step.
  • the milling process may be effective to improve the wettability index for 5 minutes to 24 hours, but may be appropriately adjusted according to the rpm, the milling device and the content of carbon nanotubes. For example, it may be preferable to perform 10 minutes to 10 hours in a ball mill, or 10 minutes to 3 hours in an attribution mill. Also, for example, milling can be performed for 60 to 90 minutes at 400 to 600 rpm using a ball having a diameter of 1 to 3 mm, and milling for 90 to 120 minutes at 200 to 400 rpm using a mixture of balls having a diameter of 1 to 3 mm and 4 to 6 mm. can do.
  • the present invention by including dry grinding the carbon nanotubes in advance using a milling apparatus before the process of dispersing the carbon nanotubes in the liquid dispersion medium, it is possible to suppress the increase in viscosity of the dispersion during the dispersion process. In addition, the viscosity of the resulting dispersion can also be reduced. It is possible to provide a dispersion comprising a higher content of carbon nanotubes without further using other additives such as dispersants.
  • the density of the carbon nanotubes is significantly increased by the pulverization and cutting process, so that the blowing property of the carbon nanotubes in the manufacturing process can be significantly reduced, and thus, the carbon nanotubes can be manufactured safely in a more comfortable environment.
  • defects due to inflow into manufactured goods and devices may be reduced by flying, and transportation efficiency and storage may be improved by reducing the storage volume due to a decrease in the apparent density of carbon nanotubes. A more efficient manufacturing process can be provided.
  • the method for dispersing the carbon nanotubes prepared by the method according to the present invention in a liquid dispersion medium may be any method and is not particularly limited.
  • the carbon nanotube dispersion prepared by the manufacturing method according to the present invention is more suitable for the production of electrodes, electromagnetic shields, field emission displays, gas sensors, etc. of electrochemical storage devices such as secondary batteries, fuel cells or super capacitors. It can be usefully used.
  • the physical property measurement method used in the Example is as follows, and all physical properties were measured at normal temperature.
  • the carbon nanotube powder was freely dropped in a 100cc cylindrical container, and the portion of the powder that was popped out was scraped off to determine the mass of the powder contained therein, and then divided by the volume of the container to obtain a bulk density.
  • the powder is placed in a measuring cell of a powder resistance measuring instrument, which is generally used for measuring powder resistance, and applied under pressure.
  • a pressure-resistance curve is obtained using five measuring points around a density of 1 g / cc, and from this curve, a density of 1 g / cc Powder resistance at.
  • Wettability index (mass of absorbed solvent / carbon nanotube mass)
  • the mass of the solvent absorbed is the mass of the solvent absorbed by carbon nanotubes at the maximum temperature.
  • Attrition mills KMtech, KMA-3) containing 2mm diameter zirconia balls are bundled carbon nanoparticles with a bulk density of about 40 kg / m 3 , a BET specific surface area of 185 m 2 / g and an average length of 30 ⁇ m.
  • the bulk density, wettability index and powder resistance were measured and shown in Table 1.
  • the length of the pulverized carbon nanotubes was 0.2 ⁇ 10 ⁇ m, BET specific surface area was found to be 200 ⁇ 280 m 2 / g.
  • the maximum concentration and viscosity dispersible in NMP were measured.
  • the maximum concentration was the highest concentration of the solution that the equipment can operate, where the concentration is the weight percent of carbon nanotubes based on the total weight of the dispersion. to be.
  • Viscosity was based on 4 weight percent dispersion in NMP.
  • Example 1 Processing time (min) Bulk density (kg / m 3 ) Wetting Index (NMP / CNT) Powder Resistance @ 1g / cc ( ⁇ cm) Maximum concentration (% by weight) Viscosity (cP) (in NMP, 4%) Comparative Example 1 - 39.9 15.6 0.0169 1.5 No dispersion Example 1-1 10 65.1 12.5 0.0206 4 26000 Example 1-2 15 68.7 11.5 0.0222 4.5 8000 Example 1-3 20 71.7 11.3 0.0229 5 7500 Example 1-4 60 83.7 6.5 0.0542 > 5 950 Example 1-5 80 97.7 5.6 0.0566 > 5 330
  • Attrition mills containing zirconia balls of 3 mm diameter and 5 mm diameter were used for bundles of carbon nanotubes with a bulk density of about 40 kg / m 3 , BET specific surface area of 185 m 2 / g and a length of 30 ⁇ m at 300 rpm.
  • the bulk density, wettability index and powder resistance were measured and shown in Table 2.
  • the length of the pulverized carbon nanotubes was 0.2 ⁇ 10 ⁇ m, BET specific surface area was found to be 260 ⁇ 280 m 2 / g.
  • the maximum concentration and viscosity dispersible in NMP were measured.
  • the maximum concentration is the weight percent of carbon nanotubes based on the total weight of the dispersion.
  • Table 3 shows the wettability index of the nanotubes and the maximum concentration dispersible in NMP.
  • FIG. 2 is a graph showing the relationship between wettability index and maximum concentration based on the data in Table 3.
  • FIG. As shown in Table 3 and Figure 2 it can be seen that the wettability index and the maximum concentration satisfy the following formula 3.
  • X is the wettability index of carbon nanotubes
  • Y is the maximum dispersion concentration of carbon nanotubes.
  • Table 4 shows the wettability index and the maximum concentration dispersible in NMP of the carbon nanotubes that were not milled.
  • the carbon nanotubes used in Comparative Example 2 were pulverized for 20 minutes using a jet mill (KMtech), and the wettability index and the maximum concentration dispersible in NMP were measured and shown in Table 5.
  • the carbon nanotubes which are not milled or treated with jet mills, have high wettability indexes and a very low maximum dispersible concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 카본나노튜브를 건식 분쇄하여 카본나노튜브의 젖음성 지수를 조절함으로써, 분산용매에 첨가 가능한 카본나노튜브의 최대농도를 증대시키고, 카본나노튜브 분산액의 작업성을 향상시킬 수 있다. 또한, 이를 이용하여 분산용매에 첨가 가능한 카본나노튜브의 최대농도를 보다 용이하게 예측할 수 있다.

Description

작업성이 향상된 카본나노튜브 분산액 및 그 제조방법
본 출원은 2017년 1월 5일에 출원된 한국 특허 출원 10-2017-0001673호에 기초한 우선권의 이익을 주장하며, 해당 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 분산성이 향상된 카본나노튜브 분산액 및 그 제조방법에 관한 것이다.
카본나노튜브는 특유의 나선성(chirality)에 따라 부도체, 전도체 또는 반도체 성질을 나타내며, 탄소 원자들이 강력한 공유결합으로 연결되어 있어 인장강도가 강철 보다 대략 100 배 이상 크고, 유연성과 탄성 등이 뛰어나며, 화학적으로도 안정한 특성을 가지며, 이러한 크기 및 특정 물성으로 인해 복합재의 제조에서 산업적으로 중요하고, 전자 소재 분야, 에너지 소재 분야 및 기타 여러 분야에서 높은 활용성을 갖고 있다. 예를 들어, 상기 카본나노튜브는 이차 전지, 연료 전지 또는 슈퍼 커패시터(super capacitor)와 같은 전기 화학적 저장 장치의 전극, 전자파 차폐체, 전계 방출 디스플레이, 또는 기체 센서 등에 적용될 수 있다.
그러나 벌크 카본나노튜브의 낮은 밀도 및 수십~수백 마이크로의 분말 형태로 인한 처리과정에서의 흩날림으로 인해 인체에 대한 유해성 및 전기 제품의 오작동을 발생할 수 있으며, 또한 혼합하고자 하는 펠렛 및 분말 형태의 고분자와의 큰 겉보기 밀도 차이로 인해 분산의 어려움이 있는 실정이다.
또한, 카본나노튜브가 높은 전기 도전성 및 열 전도성을 효율적으로 발휘시키기 위해서는 그 길이가 길 수록 네트워크가 잘 형성되어 유리하지만, 너무 길면 필러로서 이용했을 경우 매트릭스 점도가 급상승한다는 문제점이 있다.
특히, 번들형 카본나노튜브를 용매에 분산하는 경우 카본나노튜브가 쉽게 풀려서 초기 점도가 급격히 상승하게 되어 분산 작업이 불가능해진다는 문제점이 있다.
이에 카본나노튜브의 길이를 미리 조절하여 분산 점도를 감소시키고자 하는 시도가 있다. 일반적으로 건식 또는 습식 분쇄 공정을 사용하는데, 습식 분쇄의 경우에는 처리 용매 존재 하에 분쇄 공정이 실시되므로 사용된 용매를 제거하는 추가의 공정이 필요하다. 또한 건식 분쇄의 경우에는 첨가제를 함께 사용하기 때문에 첨가제가 불순물로 작용하므로 이를 제거해야 하는 번거로움이 있다.
이에 보다 간단한 공정으로 분산용매에 대한 카본나노튜브의 분산성을 향상시키고 카본나노튜브 분산액 제조시의 작업성을 향상시킬 수 있는 방법이 필요하다.
본 발명의 과제는, 분산 매질에 대한 분산성이 향상된 카본나노튜브의 제조방법을 제공하는 것이다.
본 발명의 다른 과제는 점도가 제어되어 작업성이 향상된 카본나노튜브 분산액을 제공하는 것이다.
본 발명의 과제를 해결하기 위해,
하기 식 1로 정의되는 젖음성 지수가 14 이하인 카본나노튜브가 분산액 총 중량을 기준으로 2 중량% 이상 분산되어 있는 카본나노튜브 분산액을 제공한다.
[식 1]
젖음성 지수 = (흡수된 용매의 질량/카본나노튜브 질량)
상기 식 1에 있어서,
흡수된 용매의 질량은 상온에서 카본나노튜브가 최대로 흡수한 용매의 질량이다.
일 실시예에 따르면, 상기 분산액의 점도는 40,000 cP 이하 일 수 있다.
일 실시예에 따르면, 상기 분산액은 물, 메탄올, 에탄올, 프로판올, 아세톤, 디메틸 포름아미드(DMF), 디메틸 아세트아미드, 디메틸설폭사이드(dimethyl sulfoxide, DMSO) 및 N-메틸피롤리돈(NMP) 중에서 선택되는 1종 이상의 분산 매질을 포함할 수 있다.
본 발명은 또한, 금속 또는 세라믹 재질(材質)의 볼(ball)을 포함하는 밀링 장치에서 카본나노튜브를 건식 분쇄하는 단계; 및 분쇄된 카본나노튜브를 용매에 분산하는 단계를 포함하는, 상기 카본나노튜브 분산액 제조방법을 제공한다.
일 실시예에 따르면, 상기 분쇄 단계 이후의 카본나노튜브의 젖음성 지수가 분쇄 전 카본나노튜브의 젖음성 지수에 비해 3 이상 감소하는 것일 수 있다.
일 실시예에 따르면, 상기 카본나노튜브는 분쇄 전 벌크밀도가 10 ~ 250 kg/m3, BET 비표면적이 100 ~ 300 m2/g, 길이가 5 ~ 100㎛일 수 있다.
일 실시예에 따르면, 상기 분쇄된 카본나노튜브는 길이가 0.2 ~ 10㎛ 일 수 있다. 일 실시예에 따르면, 상기 금속 또는 세라믹 재질(材質)의 볼(ball)의 직경이 1 mm ~ 10 mm 인 1종의 볼 또는 상기 직경의 범위에서 서로 다른 직경을 갖는 2종 이상의 볼을 혼합하여 밀링하는 것일 수 있다.
일 실시예에 따르면, 상기 밀링 장치가 볼밀, 플라너터리 볼밀 및 어트리션 밀 중에서 선택되는 것일 수 있다.
일 실시예에 따르면, 상기 분쇄 단계 이후 카본나노튜브의 길이가 1/10 이하로 감소되는 것일 수 있다
일 실시예에 따르면, 상기 분쇄 단계 이후 카본나노튜브의 비표면적이 5% ~ 100% 증가할 수 있다.
일 실시예에 따르면, 상기 분쇄 단계 이후 카본나노튜브의 벌크밀도가 5% ~ 1000% 증가할 수 있다.
일 실시예에 따르면, 상기 밀링 장치에 의한 분쇄 공정에 있어서, 상기 밀링 속도가 100rpm ~ 1,200rpm에서 조절되는 것일 수 있다.
일 실시예에 따르면, 상기 분쇄 공정은 5분 ~ 24시간 동안 수행되는 것일 수 있다.
본 발명은 카본나노튜브를 본 분산 공정 전에 미리 건식 분쇄 및 절단하고 분산용매에 대한 카본나노튜브의 젖음성을 조절함으로써 분산 공정 중의 점도 상승을 억제하고 용매에 대한 분산성이 향상된 카본나노튜브를 제조할 수 있다. 또한 분산제와 같은 다른 첨가제 없이 용매에 분산 가능한 카본나노튜브의 함량을 증대시킬 수 있다. 뿐만 아니라 본 발명에 따른 방법은 용매에 분산될 수 있는 최대 함량을 어느 정도 용이하게 예측하는데 이용할 수 있다.
도 1은 분산 처리 회수에 따른 분산액의 점도 변화를 보여주는 그래프이다.
도 2는 카본나노튜브의 젖음성 지수와 분산용매에서의 최대 분산농도의 관계를 나타내는 그래프이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미 로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
카본나노튜브는 전도체 또는 반도체 성질을 나타낼 수 있고, 인장강도 등의 기계적 특성 또한 우수하여 다양한 응용분야에 사용되고 있다. 이러한 카본나노튜브의 응용을 위해 가장 중요한 기술 중 하나는 카본나노튜브 분산 기술이다.
카본나노튜브는 사용하는 분산 장비에 따라 조금씩 다르나 일반적으로 분산 과정에서 카본나노튜브 입자의 크기가 감소하고 개별 카본나노튜브 가닥이 풀려 나오며 점도가 크게 상승하게 된다. 점도가 높아지면 분산 장비의 효율이 감소하고 상황에 따라서는 장비를 더 이상 가동시키지 못할 수 있다. 고농도의 용액을 제조할 때 이는 더욱 큰 장애물이 되어, 응용 분야를 크게 제한하는 요인이 될 수 있다. 이러한 현상은 현재 주로 널리 사용되는 번들형 카본나노튜브에서 더욱 빠른 속도로 일어나, 카본나노튜브의 응용에 장애물이 되고 있다.
본 발명은 상기와 같은 과제를 해결하기 위해,
금속 또는 세라믹 재질(材質)의 볼(ball)을 포함하는 밀링 장치로 카본나노튜브를 절단하여 카본나노튜브의 용매에 대한 젖음성 지수가 14 이하인 카본나노튜브가 분산액 총중량을 기준으로 2중량% 이상 분산되어 있는 카본나노튜브 분산액 및 그 제조방법을 제공한다.
본 발명은 카본나노튜브를 분산 매질에 분산시키기 전 카본나노튜브를 미리 분쇄 및 절단 시킴으로써, 카본나노튜브 가닥의 개수, 길이, 표면 등을 변화시킬 수 있으며, 이에 의해 용매에 대한 젖음성 지수를 조절함으로써 작업성을 향상시킬 수 있다.
이때, 젖음성 지수란, 일정 질량의 카본나노튜브가 흡수하여 외부로 흘려 보내지 않는 용매의 최대 질량으로 정의되며, 구체적으로, 상온에서 일정량의 카본나노튜브를 구비하는 용기에 용매를 조금씩 첨가하면서 상기 카본나노튜브가 용매를 더 이상 흡수하지 않고 흘러나오기 시작하는 직전의 질량을 측정하여, 하기 식 1로 계산되는 수치를 의미한다.
[식 1]
젖음성 지수 = (흡수된 용매의 질량/카본나노튜브 질량)
카본나노튜브의 젖음성 지수가 작을수록 카본나노튜브가 용매를 흡수하는 양이 적음을 의미하며, 이 지수가 낮을수록 분산시의 점도 상승이 억제되어 카본나노튜브의 분산성이 향상될 수 있다. 본 발명에 따르면, 고속 밀링에 의해 미리 분쇄된 카본나노튜브는 분쇄되기 전의 카본나노튜브에 비해 젖음성 지수가 현저히 낮아지며, 따라서 분산용매에서의 분산도가 현저히 상승될 수 있다.
예를 들면, 분산 매질이 N-메틸피롤리돈(NMP)인 경우에 젖음성 지수가 14 이하, 바람직하게는 12 이하, 보다 바람직하게는 10 이하가 바람직할 수 있으며, NMP이외에 다른 용매에서도 동일 또는 유사한 수치를 나타내는 것이 바람직하다.
상기 분산매질은 물, 메탄올, 에탄올, 프로판올, 아세톤, 디메틸 포름아미드(DMF), 디메틸 아세트아미드, 디메틸설폭사이드(dimethyl sulfoxide, DMSO) 및 N-메틸피롤리돈(NMP)으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합용매를 사용할 수 있다.
또한, 상기 범위를 만족하는 젖음성 지수에서는 카본나노튜브의 최대 분산 농도가 2 중량% 이상 일 수 있다. 분산 농도는 분산 매질에 분산된 카본나노튜브를 포함하는 분산액 총 중량 중 카본나노튜브의 중량%를 의미한다.
본 발명에 따른 카본나노튜브 분산액은 분산액 총 중량에 대해 카본나노튜브를 10중량% 이내로 포함할 수 있으나, 이에 한정되는 것은 아니다.
이때, 분산액의 점도는 40,000cP 이하, 바람직하게는 20,000cP 이하, 보다 바람직하게는 10,000cP 이하일 수 있다. 상기 분산액의 최종 분산액의 점도 및 공정 중의 분산액의 점도를 포괄하여 의미하는 것일 수 있으나, 최종 분산액의 점도는 공정 중의 분산액의 점도보다 작을 수 있다.
일 실시예에 따르면, 상기 분쇄 단계 이후의 카본나노튜브의 젖음성 지수는 분쇄 전 카본나노튜브의 젖음성 지수에 비해 3 이상 감소될 수 있으며, 바람직하게는 4 이상 감소될 수 있다.
바람직하게는, 상기 카본나노튜브의 젖음성 지수과 최대 분산 농도는 하기 식 2의 관계식을 만족할 수 있다.
[식 2]
1+3.75/{1+e^[(X-9)/1.005)]}≤Y≤2.2+3.75/{1+e^[(X-9)/1.005)]}
상기 식 2에 있어서,
X는 카본나노튜브의 젖음성 지수이되, X≤14이고,
Y는 카본나노튜브의 최대 분산 농도이다.
본 발명의 다른 양태에 따르면, 상기 젖음성 지수를 측정함으로써, 분산 가능한 농도를 판단하는 것이 보다 용이해질 수 있다. 예를 들면, 분산용매에 많은 양의 카본나노튜브를 직접 혼합하지 않고 적은 양의 카본나노튜브의 젖음성 지수를 측정하는 것 만으로도 분쇄된 카본나노튜브의 혼합가능한 최대 농도를 예측할 수 있다.
일 실시예에 따르면, 카본나노튜브는 분쇄 전 벌크밀도가 10 ~ 250 kg/m3, BET 비표면적이 100 ~ 300 m2/g, 길이가 5 ~ 100㎛ 인 것일 수 있다. 이러한 물성의 카본나노튜브가 젖음성 지수 개선 효과가 뛰어날 수 있다. 또한, 인탱글형 또는 번들형, 다중벽 또는 단일벽 카본나노튜브일 수 있으나, 바람직하게는 번들형 다중벽 카본나노튜브 일 수 있다.
상기 밀링 장치에서 분쇄 및 절단된 카본나노튜브의 평균길이는 0.2 ~ 10μm일 수 있다. 또는, 상기 분쇄 및 절단되기 전의 카본나노튜브의 평균길이는 5 ~ 100 μm 일 수 있으며, 분쇄 및 절단 공정 이후 최초 카본나노튜브 길이에 대해 1/10 이상 감소될 수 있다. 카본나노튜브의 길이가 1/10 이상 감소함으로써 카본나노튜브 분산액의 작업성 향상에 도움이 된다.
카본나노튜브 분산액의 작업성은 주로 분산액의 점도에 좌우되는데, 이 점도는 분산액에 포함된 카본나노튜브 가닥의 개수와 그 길이, 카본나노튜브와 분산제, 용매의 상호작용에 주로 영향을 받는다. 일반적으로 분산 초기 단계에서 긴 카본나노튜브의 가닥이 풀려나오면서 점도가 크게 상승하여 작업성이 저하될 수 있다. 도 1은 분산 처리 회수에 따른 분산액의 점도 변화를 보여주는 그래프이다. 이런 작업성 저하는 쉽게 카본나노튜브 가닥이 풀려나오며, 그 길이도 상대적으로 긴 번들형 카본나노튜브에서 더 심하게 나타날 수 있다.
도 1에 따르면, 본 발명에 따른 분쇄 방법을 통해 카본나노튜브를 미리 처리해 두면 분산 공정 중의 점도 상승을 억제할 수 있으며, 또한 최종적인 점도 또한 낮아짐을 알 수 있다. 따라서, 분쇄를 통해 미리 길이를 감소시켜 둔다면, 즉, 미리 분쇄 및 절단하여 투입하는 방법으로부터, 분산 도중의 점도 상승을 현저히 감소시킬 수 있어 작업성이 개선될 뿐만 아니라, 최종적으로 생성되는 분산액의 점도 또한 감소함으로써, 더욱 높은 농도의 카본나노튜브를 포함하는 카본나노튜브 분산액을 제공할 수 있다.
또한, 상기 분쇄 및 절단 공정을 거친 카본나노튜브는 길이가 감소될 뿐만 아니라 밀도가 현저히 증가될 수 있다. 이러한 밀도의 증가는 용매에서의 분산성 향상 및 분산액의 점도 감소와 같은 효과뿐만 아니라, 운송 효율 및 작업성을 개선시킬 수 있다. 또한 밀도가 높아져 날림 특성이 감소하여 제조환경 및 안정성이 향상 될 수 있으며, 날림에 의한 불순물 투입 등이 감소하여 불량률이 저하될 수 있는 효과를 더 얻을 수 있다.
일 실시예에 따르면, 분쇄 및 절단 공정 전의 카본나노튜브의 벌크 밀도는 10 ~ 250 kg/m3일 수 있고, 또는 10 ~ 100 kg/m3 일 수 있다.
분쇄 및 절단 공정 이후 카본나노튜브의 길이의 감소 및 카본나노튜브 가닥의 풀림 등에 의해 벌크밀도가 현저히 상승할 수 있으며, 바람직하게는, 벌크밀도가 50 ~ 400kg/m3 범위 내에서 5% ~ 1000% 증가할 수 있으며, 예를 들면, 10% ~ 500%, 또는 50% ~ 300% 증가할 수 있다. 상기와 같이 카본나노튜브의 벌크 밀도가 증가됨으로써, 분산액의 점도가 서서히 증가하므로 분산이 보다 용이해질 수 있을 뿐만 아니라, 보다 고 고형분의 카본나노튜브를 분산시킬 수 있다.
일 실시예에 따르면, 분쇄 및 절단 공정을 거치기 전의 카본나노튜브의 비표면적은 100 ~ 300 m2/g 일 수 있으며, 또는 150 m2/g ~ 300 m2/g 일 수 있다.
상기 분쇄 및 절단 공정시 가닥의 풀림 직경의 감소 및 기계적 결함 등에 의해 카본나노튜브의 비표면적(BET 비표면적)이 증가할 수 있으며, 예를 들면, 5% ~ 100% 증가할 수 있다. 이 범위의 BET 비표면적의 증가는 젖음성 지수 개선에 기여할 수 있다.
일 실시예에 따르면, 상기 카본나노튜브는 번들(bundle)형 또는 인탱글(entangle)형일 수 있으며, 분쇄 및 절단공정에 있어 번들형일 경우에 가닥의 풀림 및 길이의 제어가 보다 용이할 수 있다.
본 발명에서 사용하는 용어 '번들(bundle)'이란 달리 언급되지 않는 한, 복수개의 카본나노튜브가 나란하게 배열 또는 뒤엉켜 있는, 번들(bundle) 혹은 로프(rope) 형태를 지칭한다. '비 번들(non-bundle 또는 entangled) 타입'이란 이와 같은 다발 혹은 로프 형태와 같은 일정한 형상이 없는 형태를 의미한다.
이와 같은 다발 형태의 카본나노튜브는 기본적으로 복수개의 카본나노튜브 가닥이 서로 모여 다발을 이루고 있는 형상을 가지며, 이들 복수개의 가닥은 직선형, 곡선형 또는 이들이 혼합되어 있는 형태를 갖는다. 또한 상기 다발 형태의 카본나노튜브 또한 선형, 곡선형 또는 이들의 혼합 형태를 가질 수 있다. 최종적으로는 이들 카본나노튜브 다발 또한 서로 모여 작게는 수십 μm에서 크게는 수 mm 에 이르는 카본나노튜브 입자를 이루게 된다.
일 구현예에 따르면, 이와 같은 다발 형태의 카본나노튜브 덩어리는 5 μm ~ 100 μm의 길이를, 0.1 μm ~ 20 μm의 두께를 가질 수 있다. 또한, 상기 카본나노튜브 가닥의 평균 직경으로서는 예를 들어 1nm ~ 40nm인 것을 사용할 수 있다. 이러한 물성의 카본나노튜브가 젖음성 지수 개선 효과가 뛰어날 수 있다.
본 발명은 카본나노튜브의 길이 조절과 함께 젖음성 지수를 함께 조절함으로써, 길이 이외에 분쇄 공정에 의해 변할 수 있는 다양한 변수들에 의해 분산성이 변할 수 있는 경우에 대비할 수 있어, 보다 효율적으로 분쇄공정을 수행할 수 있다. 예를 들면, 길이, 밀도 및 BET 비표면적 등의 물성을 평가 하지 않고도 대략적으로 가능한 분산 농도를 예측할 수 있어, 공정의 효율성을 향상시킬 수 있다.
일 실시예에 따르면, 상기 분쇄 및 절단 공정에 사용되는 밀링(milling) 장치는 금속 또는 세라믹 재질의 볼을 이용하는 밀링 장치이면 어느 것이든 사용할 수 있으며, 예를 들면, 볼밀(ball mill or jar mill), 플라너터리 볼밀(planetary ball mill), 및 어트리션 밀(attrition mill) 등을 사용할 수 있다.
상기 밀링 장치에 있어서, 사용되는 볼(ball)은 금속 또는 세라믹 재질(材質)일 수 있으며, 예를 들면, 텅스텐(W), 티타늄(Ti) 또는 이들을 포함하는 합금 등을 함유한 금속, 또는 지르코니아(ZrO2), 알루미나(Al2O3), 실리카(SiO2)와 같은 세라믹 소재 등이 사용될 수 있으나, 이에 한정 되는 것은 아니며, 필요에 따라서 2이상의 소재의 볼을 혼합하여 사용할 수 있다.
일 실시예에 따르면, 상기 금속 또는 세라믹 재질(材質)의 볼(ball)의 직경이 1 mm ~ 10 mm 이며, 바람직하게는 1 mm ~ 8 mm, 또는 1mm ~ 6mm이하인 1종의 볼 또는 상기 직경의 범위에서 서로 다른 직경을 갖는 2종 상의 볼을 혼합하여 사용하는 것일 수 있다. 서로 다른 직경의 볼을 혼합 사용한다면 1mm ~ 3mm 이하의 볼과 3mm 초과 10mm 이하의 볼을 사용할 수 있다. 이들의 혼합비율은 중량비로 90:10 ~ 10:90 또는 70:30 ~ 30:70 또는 60:40 ~ 40:60일 수 있다. 상기 볼의 형태는 일반적으로 구형이지만, 이에 한정되지 않으며, 원통형 등의 구형이 아닌 볼도 사용할 수 있다. 볼의 크기와 혼합 비율이 상기 범위일 때 카본나노튜브의 젖음성 지수와 벌크밀도를 특정 범위로 동시에 제어하는 것이 용이할 수 있다.
일 실시예에 따르면, 상기 볼(ball)과 상기 카본나노튜브는 1:10 ~ 1:200의 중량비, 또는 1:50 ~ 150 또는 1:100 ~ 1:150의 중량비로 투입될 수 있다. 상기 중량비 범위에서 적절한 길이의 카본나노튜브를 얻을 수 있으며, 볼이 카본나노튜브에 비해 지나치게 과량이면 길이 또는 카본나노튜브의 형태의 변형이 과하게 일어날 수 있어 카본나노튜브의 물성을 저하시킬 수 있으며, 또한 용기 벽면과 볼의 마모가 더욱 심하게 일어나 유지보수 비용이 증가할 수 있다. 반면 카본나노튜브가 지나치게 과량인 경우에는 분쇄 및 절단이 효율적으로 일어나지 않을 수 있다. 상기 중량비는 사용되는 볼의 크기 및 rpm등의 제조조건과 사용하는 카본나노튜브의 벌크밀도 등의 카본나노튜브의 물성에 따라 조율이 가능하다.
일 실시예에 따르면, 상기 밀링 장치를 이용한 분쇄 및 절단 공정시 rpm은 100 ~ 1,200rpm에서 조절하는 것이 젖음성 지수 향상에 효과적일 수 있으며, 바람직하게는 200 ~ 700rpm에서 조절될 수 있으며, 경우에 따라, 상기 rpm을 적절히 조절하여 단계적으로 증가 또는 감소시킬 수 있다.
일 실시예에 따르면, 상기 밀링 공정은 5분 ~ 24시간 동안 수행하는 것이 젖음성 지수 향상에 효과적일 수 있으나, rpm, 밀링 장치 및 카본나노튜브의 함량에 따라 적절히 조절 될 수 있다. 예를 들면, 볼 밀에서는 10분 ~ 10시간, 또는 어트리션밀에서는 10분 ~ 3시간 동안 수행되는 것이 바람직할 수 있다. 또한 예를 들면, 직경 1 ~ 3mm 의 볼을 사용하여 400 ~ 600rpm으로 60 ~ 90분간 밀링할 수 있고, 직경 1 ~ 3mm와 4 ~ 6mm 의 볼을 혼합사용하여 200 ~ 400rpm으로 90 ~ 120분간 밀링할 수 있다.
본 발명에 따르면, 액상의 분산 매질에 카본나노튜브를 분산하는 공정 이전에 밀링장치를 이용하여 카본나노튜브를 미리 건식 분쇄하는 공정을 포함함으로써, 분산 공정 중 분산액의 점도 상승을 억제시킬 수 있을 뿐만 아니라, 최종적으로 생성된 분산액의 점도 또한 감소시킬 수 있다. 분산제와 같은 다른 첨가제를 더 사용하지 않고서도 보다 높은 함량의 카본나노튜브를 포함하는 분산액을 제공할 수 있다.
또한 분쇄 및 절단 공정에 의해 카본나노튜브의 밀도가 현저히 증가함으로써, 제조 공정 중의 카본나노튜브의 날림성이 현격히 감소할 수 있어, 보다 쾌적한 환경의 제조공정에서 안전하게 제조할 수 있다. 그 뿐만 아니라, 날림에 의해 제조물품 및 장치 등으로의 유입에 의한 불량이 감소될 수 있으며, 카본나노튜브의 겉보기 밀도 등의 감소로 인해 저장 부피 등이 감소함으로써 운송 효율 및 저장성이 향상될 수 있어 보다 효율적인 제조공정을 제공할 수 있다.
본 발명에 따른 제조방법으로 제조된 카본나노튜브를 액상의 분산 매질에 분산시키는 방법은 임의의 방법을 사용할 수 있으며 특별히 제한되지 않는다.
본 발명에 따른 제조방법으로 제조된 카본나노튜브 분산액은 이차 전지, 연료 전지 또는 슈퍼 커패시터(super capacitor)와 같은 전기 화학적 저장 장치의 전극, 전자파 차폐체, 전계 방출 디스플레이, 또는 기체 센서 등의 제조에 보다 유용하게 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예에서 사용한 물성 측정 방법은 다음과 같고, 모든 물성은 상온에서 측정하였다.
- 벌크밀도:
100cc 원통형 용기에 카본나노튜브 분말을 자유낙하시켜 담고, 용기 위로 튀어 나온 부분을 깎아낸 후 담긴 분말의 질량을 구한 다음 용기의 부피로 나누어 벌크밀도를 구하였다.
- BET 비표면적:
일반적으로 사용되는 비표면적 측정장비를 이용하여 얻은 등온 기체 흡착 양상으로부터 측정하였다.
- 분체 저항:
분말을 일반적으로 분체 저항 측정에 사용되는 분체 저항 측정기의 측정 셀에 담고 압력을 가하며 측정하며, 밀도 1g/cc 주변으로 5개의 측정점을 이용해 압력-저항 관계 curve를 얻고, 이 curve로부터 밀도 1g/cc에서의 분체 저항을 얻었다.
- 젖음성 지수: NMP를 사용하여 식 1에 의해 구하였다.
[식 1]
젖음성 지수 = (흡수된 용매의 질량/카본나노튜브 질량)
상기 식 1에 있어서,
흡수된 용매의 질량은 상온에서 카본나노튜브가 최대로 흡수한 용매의 질량이다.
<실시예 1>
2mm 직경의 지르코니아 ball을 포함하는 어트리션 밀(KMtech, KMA-3)에서 벌크밀도가 약 40 kg/m3, BET 비표면적이 185m2/g, 평균 길이가 30㎛인 번들형의 카본나노튜브를 500rpm의 속도로 각각10, 15, 20, 60, 80 분간 밀링한 후, 벌크밀도, 젖음성 지수 및 분체저항을 측정하여 표 1에 나타내었다. 분쇄된 카본나노튜브의 길이는 0.2 ~ 10 ㎛이고, BET 비표면적은 200 ~ 280 m2/g 으로 나타났다.
또한, NMP에 분산 가능한 최대농도와 점도를 측정하였다. 최대 농도는 동일한 분산제와 분산 장비(GEA niro soavi, PandaPLUS 2000)를 사용하였을 때 장비가 가동이 가능한 용액의 농도 중 가장 높은 농도로 하였으며, 이때 농도는 분산액 총중량을 기준으로 한 카본나노튜브의 중량%이다. 점도는 NMP에 4 중량% 분산하였을 때를 기준으로 하였다.
처리시간(min) Bulk density(kg/ m3) 젖음성 지수(NMP/CNT) 분체저항@1g/cc(Ω·cm) 최대농도(중량%) 점도(cP)(in NMP, 4%)
비교예 1 - 39.9 15.6 0.0169 1.5 분산 불가
실시예 1-1 10 65.1 12.5 0.0206 4 26000
실시예 1-2 15 68.7 11.5 0.0222 4.5 8000
실시예 1-3 20 71.7 11.3 0.0229 5 7500
실시예 1-4 60 83.7 6.5 0.0542 >5 950
실시예 1-5 80 97.7 5.6 0.0566 >5 330
<실시예 2>
3mm 직경 및 5mm 직경의 지르코니아 ball을 포함하는 어트리션 밀에서 벌크밀도가 약40 kg/m3, BET비표면적이 185m2/g, 길이가 30㎛인 번들형의 카본나노튜브를 300rpm의 속도로 각각60, 80, 100, 140분간 밀링하여, 벌크밀도, 젖음성 지수 및 분체저항을 측정하여 표 2에 나타내었다. 분쇄된 카본나노튜브의 길이는 0.2 ~ 10 ㎛이고, BET 비표면적은 260 ~ 280 m2/g 으로 나타났다.
또한, NMP에 분산 가능한 최대농도와 점도를 측정하였다. 최대 농도는 분산액 총중량을 기준으로 한 카본나노튜브의 중량%이다.
처리시간(min) Bulk density(kg/ m3) 젖음성 지수(NMP/CNT) 분체저항@1g/cc(Ω·cm) 최대농도(중량%) 점도(cP)(in NMP, 4%)
비교예 1 - 39.9 15.6 0.0169 1.5 분산 불가
실시예 2-1 60 77.9 8.8 0.0250 4 10300
실시예 2-2 80 90 7.8 - 4.5 8300
실시예 2-3 100 97.7 6.7 0.0297 5 5900
실시예 2-4 140 119.1 5.8 - 5 4300
<실시예 3>
벌크밀도가 13 ~ 90 kg/m3, BET비표면적이 150 ~ 270 m2/g, 길이가 10 ~ 40㎛인 번들형 또는 인탱글형의 다양한 종류의 카본나노튜브를 3 ~ 10 mm 직경의 지르코니아 ball을 포함하는 볼 밀 장치(동서과학, DS-BM10L)에서 130 rpm의 속도로 16시간 동안 또는 어트리션 밀 장치에서 200~900 rpm의 속도로 10분 ~ 2 시간 동안 분쇄 밀링 처리한 여러 카본나노튜브의 젖음성 지수 및 NMP에 분산 가능한 최대농도를 측정하여 표 3에 나타내었다.
실시예 번들/인탱글 분쇄전Bulk density(kg/m3) 분쇄후Bulk density(kg/m3) 젖음성 지수(NMP/CNT) 최대농도(중량%) 장치 볼 직경
3-1 혼합구조 86 118 4.8 5 볼 밀 10 mm/3 mm
3-2 번들 24 156 6.3 5 어트리션 밀 5 mm
3-3 번들 30 89 7 4.75 볼 밀 10 mm/3 mm
3-4 번들 24 139 7.7 5 어트리션 밀 5 mm
3-5 혼합구조 53 91 7.7 4.25 볼 밀 10 mm/3 mm
3-6 번들 24 139 7.8 4.5 어트리션 밀 5 mm
3-7 혼합구조 30 92 8.1 3.75 볼 밀 10 mm/3 mm
3-8 혼합구조 41 88 8.6 4 볼 밀 10 mm/3 mm
3-9 번들 29 80 9.2 3.25 볼 밀 10 mm/3 mm
3-10 번들 36 73 9.2 2.75 볼 밀 10 mm/3 mm
3-11 번들 15 82 9.3 3.25 볼 밀 10 mm/3 mm
3-12 번들 41 73 9.9 2.5 볼 밀 10 mm/3 mm
3-13 번들 50 72 10.3 2.5 볼 밀 10 mm/3 mm
3-14 번들 24 89 13.2 2.25 어트리션 밀 5 mm
도 2는 표 3의 데이터를 바탕으로 젖음성 지수-최대농도의 관계를 나타내는 그래프이다. 상기 표 3과 도 2에 나타낸 바와 같이 젖음성 지수와 최대 농도는 하기 식 3을 만족하는 것을 알 수 있다.
[식 3]
Y = 1.5+3.75/{1+e^[(X-9)/1.005)]}
상기 식 3에 있어서,
X는 카본나노튜브의 젖음성 지수이고
Y는 카본나노튜브의 최대 분산 농도이다.
<비교예 2>
밀링 처리 하지 않은 카본나노튜브의 젖음성 지수와 및 NMP에 분산가능한 최대농도를 측정하여 표 4에 나타내었다.
비교예 번들/인탱글 Bulk density(g/L) 젖음성 지수(NMP/CNT) 최대농도(중량%)
2-1 혼합구조 30 15.2 1.5
2-2 번들 30 15.6 1.5
2-3 번들 29 17.7 1.75
2-4 번들 15 24.6 1.25
2-5 번들 21 24.9 1.25
<비교예 3>
비교예2에서 사용한 카본나노튜브를 제트밀(KMtech)을 사용하여 20분 동안 분쇄 처리하고 젖음성 지수와 및 NMP에 분산가능한 최대농도를 측정하여 표 5에 나타내었다.
비교예 번들/인탱글 Bulk density(kg/ m3) 젖음성 지수(NMP/CNT) 최대농도(중량%)
3-1 혼합구조 15 22.3 1.25
3-2 번들 13 25.2 1.25
3-3 번들 12 27 1
3-4 번들 7.4 29.8 0.75
3-5 혼합구조 5.1 32.4 0.75
도 1 및 상기 표 4 및 표 5에 나타낸 바와 같이 밀링되지 않았거나 제트밀로 처리된 카본나노튜브는 젖음성 지수가 높고 분산 가능한 최대농도가 매우 낮은 것을 알 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (14)

  1. 하기 식 1로 정의되는 젖음성 지수가 14 이하인 카본나노튜브가 분산액 총중량을 기준으로 2 중량% 이상 분산되어 있는 카본나노튜브 분산액:
    [식 1]
    젖음성 지수 = (흡수된 용매의 질량/카본나노튜브 질량)
    상기 식 1에 있어서,
    흡수된 용매의 질량은 상온에서 카본나노튜브가 최대로 흡수한 용매의 질량이다.
  2. 제1항에 있어서,
    상기 분산액의 점도는 40,000cP 이하인 것인 카본나노튜브 분산액.
  3. 제1항에 있어서,
    상기 분산액은 물, 메탄올, 에탄올, 프로판올, 아세톤, 디메틸 포름아미드(DMF), 디메틸 아세트아미드, 디메틸설폭사이드(dimethyl sulfoxide, DMSO) 및 N-메틸피롤리돈(NMP) 중에서 선택되는 1종 이상의 분산 매질을 포함하는 것인 카본나노튜브 분산액.
  4. 금속 또는 세라믹 재질(材質)의 볼(ball)을 포함하는 밀링 장치에서 카본나노튜브를 건식 분쇄하는 단계; 및 분쇄된 카본나노튜브를 용매에 분산하는 단계를 포함하는 제1항 내지 제3항 중 어느 한 항의 카본나노튜브 분산액 제조 방법.
  5. 제4항에 있어서,
    상기 분쇄 단계 이후의 카본나노튜브의 젖음성 지수가 분쇄 전 카본나노튜브의 젖음성 지수에 비해 3 이상 감소하는 것인 카본나노튜브 분산액 제조방법.
  6. 제4항에 있어서,
    상기 카본나노튜브는 분쇄 전 벌크밀도가 10 ~ 250 kg/m3, BET비표면적이 100 ~ 300 m2/g, 길이가 5 ~ 100㎛ 인 것인 카본나노튜브 분산액 제조방법.
  7. 제4항에 있어서,
    상기 분쇄된 카본나노튜브는 길이가 0.2 ~ 10㎛인 카본나노튜브 분산액 제조방법.
  8. 제4항에 있어서,
    상기 금속 또는 세라믹 재질(材質)의 볼(ball)은 직경이 1 mm ~ 10 mm 인 1종의 볼 또는 상기 직경의 범위에서 서로 다른 직경을 갖는 2종 이상의 볼을 혼합하여 밀링하는 것인 카본나노튜브 분산액 제조방법.
  9. 제4항에 있어서,
    상기 밀링 장치가 볼밀, 플라너터리 볼밀 및 어트리션 밀 중에서 선택되는 것인 카본나노튜브 분산액 제조방법.
  10. 제4항에 있어서,
    상기 분쇄 단계 이후에 카본나노튜브의 길이가 1/10 이하로 감소되는 것인 카본나노튜브 분산액 제조방법.
  11. 제4항에 있어서,
    분쇄 단계 이후, 카본나노튜브의 비표면적이 5% ~ 100% 증가하는 것인 카본나노튜브 분산액 제조방법.
  12. 제4항에 있어서,
    분쇄 단계 이후, 카본나노튜브의 벌크밀도가 5% ~ 1000% 증가하는 것인 카보나노튜브 분산액 제조방법.
  13. 제4항에 있어서,
    상기 밀링 장치에 의한 분쇄 단계에 있어서, 상기 밀링 속도가 100rpm ~ 1,200rpm에서 조절되는 것인 카본나노튜브 분산액 제조방법.
  14. 제4항에 있어서,
    상기 분쇄 단계는 5분 ~ 24시간 동안 수행되는 것인 카본나노튜브의 제조방법.
PCT/KR2018/000251 2017-01-05 2018-01-05 작업성이 향상된 카본나노튜브 분산액 및 그 제조방법 WO2018128461A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/331,796 US11267710B2 (en) 2017-01-05 2018-01-05 Method for producing carbon nanotube dispersion with improved workability
EP18736525.9A EP3466875B1 (en) 2017-01-05 2018-01-05 Carbon nanotube dispersion with improved workability and preparation method therefor
CN201880002387.0A CN109311672B (zh) 2017-01-05 2018-01-05 具有改善的可加工性的碳纳米管分散体及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170001673 2017-01-05
KR10-2017-0001673 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018128461A1 true WO2018128461A1 (ko) 2018-07-12

Family

ID=62789377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000251 WO2018128461A1 (ko) 2017-01-05 2018-01-05 작업성이 향상된 카본나노튜브 분산액 및 그 제조방법

Country Status (5)

Country Link
US (1) US11267710B2 (ko)
EP (1) EP3466875B1 (ko)
KR (1) KR102125933B1 (ko)
CN (1) CN109311672B (ko)
WO (1) WO2018128461A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516630A (zh) * 2022-03-17 2022-05-20 无锡东恒新能源科技有限公司 一种提高碳纳米管的分散性的方法
CN114937530A (zh) * 2022-06-21 2022-08-23 湖北冠毓新材料科技有限公司 一种降低碳纤维导电浆料粘度的方法
US11889072B2 (en) 2018-12-28 2024-01-30 Hangzhou Hikvision Digital Technology Co., Ltd. Video encoding and decoding

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548377B1 (ko) * 2018-11-23 2023-06-27 주식회사 엘지화학 탄소나노튜브 수계 분산액 및 이의 제조방법
KR102203637B1 (ko) * 2019-05-14 2021-01-18 세방전지(주) 저 전도성 직물시트를 이용한 전극용 활성탄 시트의 제조 방법
KR102586634B1 (ko) * 2021-06-30 2023-10-10 주식회사 제이오 탄소나노튜브 분산액의 제조 방법
CN113611438B (zh) * 2021-07-31 2023-03-28 江苏天奈科技股份有限公司 一种碳纳米管纤维束的粉碎方法及导电浆料
WO2023127931A1 (ja) 2021-12-28 2023-07-06 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液、及びそれを用いる非水電解質二次電池
KR20240104373A (ko) * 2022-12-28 2024-07-05 주식회사 동진쎄미켐 탄소나노튜브 분산액, 전극 제조용 슬러리, 및 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110124764A (ko) * 2009-03-04 2011-11-17 도레이 카부시키가이샤 카본 나노 튜브 함유 조성물, 카본 나노 튜브 제조용 촉매체 및 카본 나노 튜브 수성 분산액
KR20130053015A (ko) * 2011-11-14 2013-05-23 (주) 디에이치홀딩스 고농도 고분산 탄소나노튜브 분산액의 제조방법
JP2013230951A (ja) * 2012-04-27 2013-11-14 Toray Ind Inc カーボンナノチューブ分散液の製造方法
JP2014131960A (ja) * 2010-12-15 2014-07-17 National Institute Of Advanced Industrial & Technology カーボンナノチューブ集合体、3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液
JP2016514080A (ja) * 2013-02-22 2016-05-19 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG カーボンナノチューブ含有分散液および電極の製造におけるその使用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315893A (ja) 2005-05-11 2006-11-24 Sumitomo Precision Prod Co Ltd カーボンナノチューブ分散複合材料の製造方法
KR100793259B1 (ko) 2006-12-29 2008-01-10 (주)디피아이 홀딩스 수분산 폴리우레탄 수지, 수분산 폴리우레탄 수지의 제조방법 및 이를 이용한 탄소나노튜브의 분산 방법
JP5034544B2 (ja) 2007-02-20 2012-09-26 東レ株式会社 カーボンナノチューブ集合体、その製造方法
KR101024169B1 (ko) 2008-08-07 2011-03-22 주식회사 어플라이드카본나노 길이가 제어된 나노파이버, 그 제어방법 및 장치, 길이가제어된 나노파이버를 이용한 복합소재
KR101218366B1 (ko) 2009-12-10 2013-01-03 (주)월드튜브 나노카본 고형체의 제조방법, 이를 이용한 나노카본 고형체, 나노카본 분산액, 나노카본 소재의 제조방법
KR101471044B1 (ko) 2012-03-30 2014-12-09 (주)파낙스이엠 탄소나노튜브 분산체를 이용한 탄소나노튜브의 분산방법
KR20150090831A (ko) 2014-01-29 2015-08-06 한국과학기술원 탄소나노소재, 탄소나노소재-고분자 복합소재, 탄소섬유-탄소나노소재-고분자 복합소재, 및 이들의 제조 방법
FR3018046A1 (fr) * 2014-02-28 2015-09-04 Commissariat Energie Atomique Procede de preparation d'une suspension contenant des nanotubes de carbone et suspension stable ainsi obtenue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110124764A (ko) * 2009-03-04 2011-11-17 도레이 카부시키가이샤 카본 나노 튜브 함유 조성물, 카본 나노 튜브 제조용 촉매체 및 카본 나노 튜브 수성 분산액
JP2014131960A (ja) * 2010-12-15 2014-07-17 National Institute Of Advanced Industrial & Technology カーボンナノチューブ集合体、3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液
KR20130053015A (ko) * 2011-11-14 2013-05-23 (주) 디에이치홀딩스 고농도 고분산 탄소나노튜브 분산액의 제조방법
JP2013230951A (ja) * 2012-04-27 2013-11-14 Toray Ind Inc カーボンナノチューブ分散液の製造方法
JP2016514080A (ja) * 2013-02-22 2016-05-19 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG カーボンナノチューブ含有分散液および電極の製造におけるその使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466875A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11889072B2 (en) 2018-12-28 2024-01-30 Hangzhou Hikvision Digital Technology Co., Ltd. Video encoding and decoding
CN114516630A (zh) * 2022-03-17 2022-05-20 无锡东恒新能源科技有限公司 一种提高碳纳米管的分散性的方法
CN114516630B (zh) * 2022-03-17 2023-09-01 无锡东恒新能源科技有限公司 一种提高碳纳米管的分散性的方法
CN114937530A (zh) * 2022-06-21 2022-08-23 湖北冠毓新材料科技有限公司 一种降低碳纤维导电浆料粘度的方法

Also Published As

Publication number Publication date
US20190263663A1 (en) 2019-08-29
EP3466875B1 (en) 2022-11-09
KR102125933B1 (ko) 2020-06-24
EP3466875A1 (en) 2019-04-10
EP3466875A4 (en) 2019-07-17
CN109311672A (zh) 2019-02-05
KR20180081006A (ko) 2018-07-13
US11267710B2 (en) 2022-03-08
CN109311672B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2018128461A1 (ko) 작업성이 향상된 카본나노튜브 분산액 및 그 제조방법
DE60223374T2 (de) Fasern aus ausgerichteten kohlenstoffnanoröhren und herstellungsverfahren
WO2019146982A1 (ko) 탄소나노튜브 분산액의 제조방법
WO2014189270A1 (ko) 전기방사에 의해 제조된 탄소 복합 섬유를 포함하는 전자파 차폐 시트 및 이의 제조방법
Wang et al. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio
WO2017191887A1 (ko) 습식 방사공정을 이용한 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법
EP1485924B1 (en) Conductive polyolefins with good mechanical properties
US20060263588A1 (en) Transparent conductive film and coating composition therefor
WO2017052064A1 (ko) 탄소 나노튜브 분산액 및 이의 제조방법
WO2013095045A1 (ko) 탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재
KR101831562B1 (ko) 탄소나노튜브 슬러리 조성물
EP2205364A1 (en) Carbon fibers and films and methods of making same
WO2018236023A1 (ko) 탄소 나노튜브 섬유 집합체의 인장강도 향상 방법
WO2017068603A1 (en) Composite fibers having aligned inorganic nano structures of high aspect ratio and preparation method
Chen et al. Effects of raw particle size and annealing on microstructure, electrical and mechanical behaviors of ZnO-based varistors
Ouyang et al. Preparation of branched Al2O3 and its synergistic effect with carbon nanotubes on the enhancement of thermal conductive and electrical insulation properties of silicone rubber composites
Ji et al. The enhancement in dielectric properties for PVDF based composites due to the incorporation of 2D TiO2 nanobelt containing small amount of MWCNTs
Jing et al. PVDF-based composites filled with PZT@ Ag core-shell structured particles for enhanced dielectric properties
CN110128136B (zh) 一种防静电陶瓷材料及其制备方法
Yang et al. MWCNTs-TiO 2 core-shell nanoassemblies for fabrication of poly (vinylidene fluoride) based composites with high breakdown strength and discharged energy density
WO2020101309A1 (ko) 경주용 타이어 고무 조성물 및 그 제조방법
US20200346930A1 (en) Agglomerated solid material made from loose carbon nanotubes
WO2020235747A1 (ko) 마찰재 및 그 제조방법
Hu et al. A novel fabrication of doped C/C composite laminations by aqueous tape casting
CN111441107A (zh) 用于制备碳纤维材料的纺丝液、柔性电极材料以及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018736525

Country of ref document: EP

Effective date: 20190107

NENP Non-entry into the national phase

Ref country code: DE