WO2018126967A1 - 穿梭车速度规划控制方法、装置及穿梭车 - Google Patents

穿梭车速度规划控制方法、装置及穿梭车 Download PDF

Info

Publication number
WO2018126967A1
WO2018126967A1 PCT/CN2017/119003 CN2017119003W WO2018126967A1 WO 2018126967 A1 WO2018126967 A1 WO 2018126967A1 CN 2017119003 W CN2017119003 W CN 2017119003W WO 2018126967 A1 WO2018126967 A1 WO 2018126967A1
Authority
WO
WIPO (PCT)
Prior art keywords
shuttle
motion
acceleration
time
speed
Prior art date
Application number
PCT/CN2017/119003
Other languages
English (en)
French (fr)
Inventor
陈晓涛
Original Assignee
北京京东尚科信息技术有限公司
北京京东世纪贸易有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东尚科信息技术有限公司, 北京京东世纪贸易有限公司 filed Critical 北京京东尚科信息技术有限公司
Priority to US16/475,601 priority Critical patent/US11226631B2/en
Publication of WO2018126967A1 publication Critical patent/WO2018126967A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the present disclosure relates to the field of control, and in particular, to a shuttle speed planning control method, apparatus, and shuttle.
  • the linear reciprocating track shuttle (Shuttle trolley) needs to move at a very high speed (up to 4 meters per second) and accurately position it, mainly driven by a servo amplifier, with a yardstick sensor. Positioning.
  • the shuttle has a speed fluctuation defect during the movement.
  • a shuttle speed planning control method including:
  • the shuttle is controlled to perform a deceleration motion, wherein a first deceleration motion in which the acceleration decreases with time is first performed, and then a second deceleration motion in which the acceleration increases with time is performed, and the end point of the specified displacement is reached at the specified end speed Ve .
  • the time required for the shuttle to perform the first acceleration movement and the second acceleration movement is the same;
  • the time required for the shuttle to perform the first deceleration motion and the second deceleration motion is the same.
  • the time T 1 required for the shuttle to perform the first acceleration movement or the second acceleration movement and the time T 2 required to perform the first deceleration movement and the second deceleration movement satisfy:
  • T 1 and T 2 are proportional to the difference between the end speed V e of the shuttle and the initial speed V s .
  • the specified displacement is greater than a predetermined threshold, wherein the predetermined threshold is determined by the initial velocity V s and the final velocity Ve .
  • the predetermined threshold by the end of the velocity V and the initial velocity V e S sum and the difference e is the terminal velocity V and the initial velocity V S of the determination.
  • V max is the maximum speed of the shuttle, and J is the acceleration parameter
  • the shuttle shuttle performs only the acceleration motion and the deceleration motion by the specified displacement, and the time T 2 and T 1 are determined by performing a dichotomy on the displacement function of the shuttle.
  • the minimum value of the time T 2 is 0;
  • the specified displacement is subtracted from the difference between the acceleration process displacement and the deceleration process displacement as a uniform process displacement of the shuttle to perform the uniform motion.
  • the initial time T 1 and velocity V s for determining the time required for the shuttle to the uniform motion T 3.
  • the initial speed V s , the acceleration parameter J, the times T 1 , T 2 and T 3 are used to determine the speed of operation of the shuttle at various times.
  • a shuttle speed planning control apparatus including:
  • the first motion control module is configured to control the shuttle to start the acceleration motion from the starting point of the specified displacement at the specified initial speed V s , wherein the first acceleration motion with the acceleration increasing with time is performed first, and then the acceleration decreases with time.
  • Second acceleration movement
  • a second motion control module configured to control the shuttle to perform uniform motion
  • a third motion control module configured to control the shuttle to perform a deceleration motion, wherein the first deceleration motion in which the acceleration decreases with time is performed first, and then the second deceleration motion in which the acceleration increases with time is performed, and the specified final velocity Ve reaches the specified The end of the displacement.
  • the time required for the shuttle to perform the first acceleration movement and the second acceleration movement is the same;
  • the time required for the shuttle to perform the first deceleration motion and the second deceleration motion is the same.
  • the time T 1 required for the shuttle to perform the first acceleration movement or the second acceleration movement and the time T 2 required to perform the first deceleration movement and the second deceleration movement satisfy:
  • T 1 and T 2 are proportional to the difference between the end speed V e of the shuttle and the initial speed V s .
  • the specified displacement is greater than a predetermined threshold, wherein the predetermined threshold is determined by the initial velocity V s and the final velocity Ve .
  • the predetermined threshold by the end of the velocity V and the initial velocity V e S sum and the difference e is the terminal velocity V and the initial velocity V S of the determination.
  • the maximum value of the time T 2 is V max is the maximum speed of the shuttle, J is the acceleration parameter; the shuttle shuttle is only subjected to the acceleration movement and the deceleration motion by the specified displacement, and the time T 2 is determined by performing a dichotomy on the displacement function of the shuttle. T 1 .
  • the minimum value of the time T 2 is 0;
  • the foregoing apparatus further includes:
  • a speed planning module configured to determine, by the time T 1 and the initial speed V s , a speed-increasing process displacement of the shuttle to perform the acceleration motion; determining, by the time T 2 and the final speed V e , the shuttle to perform the deceleration The displacement of the deceleration process of the motion; subtracting the difference between the displacement of the acceleration process and the displacement of the deceleration process by the specified displacement as a uniform process displacement of the shuttle to perform the uniform motion.
  • the speed planning module is further configured to determine the time T 3 required for the shuttle to perform the uniform motion using the uniform speed process displacement, the time T 1 and the initial speed V s .
  • the speed planning module is further configured to determine the speed of operation of the shuttle at each moment using the initial speed V s , the acceleration parameter J, the times T 1 , T 2 , and T 3 .
  • a shuttle speed planning control apparatus includes a memory and a processor, wherein:
  • a memory configured to store instructions
  • a processor coupled to the memory, the processor being configured to perform a method as described in any of the above embodiments based on instructions stored by the memory.
  • a shuttle comprising a shuttle speed planning control device as in any of the above embodiments.
  • a computer readable storage medium stores computer instructions that, when executed by a processor, implement any of the embodiments described above method.
  • FIG. 1 is an exemplary schematic diagram of a shuttle speed curve in the related art.
  • FIG. 2 is an exemplary schematic diagram of a shuttle acceleration curve in the related art.
  • FIG. 3 is an exemplary flow chart showing a shuttle speed planning control method in accordance with some embodiments of the present disclosure.
  • FIG. 4 is an exemplary flow chart showing a shuttle speed planning control method in accordance with further embodiments of the present disclosure.
  • FIG. 5 is an exemplary schematic diagram showing a shuttle speed profile in accordance with some embodiments of the present disclosure.
  • FIG. 6 is an exemplary schematic diagram showing a shuttle acceleration curve in accordance with some embodiments of the present disclosure.
  • FIG. 7 is an exemplary block diagram showing a shuttle speed planning control device in accordance with some embodiments of the present disclosure.
  • FIG. 8 is an exemplary block diagram showing a shuttle speed planning control device according to further embodiments of the present disclosure.
  • FIG. 9 is an exemplary block diagram showing a shuttle speed planning control device in accordance with further embodiments of the present disclosure.
  • FIG. 10 is an exemplary block diagram showing a shuttle according to further embodiments of the present disclosure.
  • the shuttle adopts a speed curve method of fixed acceleration and deceleration.
  • FIG. 1 is an exemplary schematic diagram of a shuttle speed curve in the related art.
  • 2 is an exemplary schematic diagram of a speed curve of a shuttle in the related art.
  • the whole displacement is divided into three stages, in which acceleration is performed at a given acceleration in the first stage up to the maximum speed, at a constant speed in the second stage, and at a given acceleration in the third stage. Slow down until the speed is reduced to the set end speed.
  • FIG. 3 is an exemplary flow chart showing a shuttle speed planning control method in accordance with some embodiments of the present disclosure. The method steps of this embodiment can be performed by a shuttle speed planning control device.
  • Step 301 the control device controls the shuttle to start the acceleration motion from the starting point of the specified displacement at the specified initial speed V s , wherein the first acceleration motion with the acceleration increasing with time is performed first, and then the second acceleration motion with the acceleration decreasing with time is performed.
  • the time required for the shuttle to perform the first acceleration motion and the second acceleration motion is the same.
  • step 302 the control device controls the shuttle to perform uniform motion.
  • Step 303 the control device controls the shuttle to perform a deceleration motion, wherein the first deceleration motion in which the acceleration decreases with time is performed first, and then the second deceleration motion in which the acceleration increases with time is performed, and reaches the end point of the specified displacement at the specified end speed Ve .
  • the time required for the shuttle to perform the first deceleration motion and the second deceleration motion is the same.
  • the time T 1 required for the shuttle to perform the first acceleration movement or the second acceleration movement and the time T 2 required to perform the first deceleration movement and the second deceleration movement satisfy:
  • T 1 and T 2 are proportional to the difference between the end speed V e of the shuttle minus the initial speed V s .
  • T 1 2 -T 2 2 (V e -V s )/J, where J is the acceleration parameter of the shuttle.
  • the speed jump is effectively reduced while improving the overall efficiency while ensuring the traveling speed.
  • FIG. 4 is an exemplary flow chart showing a shuttle speed planning control method in accordance with further embodiments of the present disclosure. The method steps of this embodiment can be performed by a shuttle speed planning control device.
  • Step 401 the control device determines whether the displacement of the shuttle is greater than the specified predetermined threshold, wherein the predetermined threshold V S from the initial velocity and the final velocity V e determined.
  • step 403 is performed; if the designated displacement of the shuttle is not greater than the predetermined threshold, step 402 is performed.
  • the corresponding predetermined thresholds are also different.
  • the terminal velocity V e is not less than the initial velocity V S, V e with predetermined initial threshold speed V and the sum S, and the terminal velocity V by the velocity difference V S at the end of the initial velocity is determined e. While at the end of the initial velocity less than the velocity V e V S, V e with predetermined initial threshold speed V and the sum S by the terminal velocity and the initial velocity and the terminal velocity V S V e is determined difference.
  • step 402 the control device controls the shuttle to pass the specified displacement at a predetermined speed.
  • the other steps of this embodiment are not performed thereafter.
  • Step 403 the control device controls the shuttle to start the acceleration motion from the starting point of the specified displacement at the specified initial speed V s , wherein the first acceleration motion with the acceleration increasing with time is performed first, and then the second acceleration motion with the acceleration decreasing with time is performed.
  • step 404 the control device controls the shuttle to perform a uniform motion.
  • Step 405 The control device controls the shuttle to perform a deceleration motion, wherein the first deceleration motion in which the acceleration decreases with time is performed first, and then the second deceleration motion in which the acceleration increases with time is performed, and the end point of the specified displacement is reached at the specified end speed Ve .
  • the specified displacement does not meet the predetermined threshold requirement, it indicates that the specified displacement is too short.
  • the above speed regulation is not required, and it is only necessary to control the shuttle to pass the designated position at a predetermined speed at a constant speed.
  • FIG. 5 is an exemplary schematic diagram showing a shuttle speed profile in accordance with some embodiments of the present disclosure.
  • the specified displacement S is divided into three stages, wherein in the first stage (speed up process displacement S up ), the shuttle starts from the starting point of the specified displacement at the specified initial speed V s at time T 1 a first acceleration within the first motion acceleration increases over time, then the acceleration of the second acceleration decreases over time within a time T 1; Next, in the second stage (uniform during displacement S ev), at time T 3 within the for uniform motion; then, an acceleration decrease with time within a first deceleration time T 2 in a third phase (deceleration displacement S down), then the time T 2 of the second acceleration increases with time deceleration, And at the specified end speed Ve to the end of the specified displacement.
  • FIG. 6 is an exemplary schematic diagram showing a shuttle acceleration curve in accordance with some embodiments of the present disclosure.
  • T 2 is considered as a variable in the above equation, it can be regarded as a function of T 2 , then:
  • T 2 has a positive solution, so that in equation (9)
  • the dichotomy can be used to solve for T 2 .
  • T 2 has a positive solution, so that in equation (9)
  • the dichotomy can be used to solve for T 2 .
  • the time T 1 and the initial speed V s are used to determine the displacement process of the acceleration process of the shuttle car for the acceleration movement, and the time T 2 and the final speed V e are used to determine the displacement of the deceleration process of the shuttle car for the deceleration motion, and the specified displacement is subtracted.
  • the difference between the displacement of the acceleration process and the displacement of the deceleration process is the uniform process displacement of the shuttle car for uniform motion.
  • the uniform time process displacement, time T 1 and initial velocity V s are used to determine the time T 3 required for the shuttle to move at a constant speed.
  • the initial speed V s , the acceleration parameter J , the times T 1 , T 2 and T 3 are used to determine the running speed of the shuttle at each moment.
  • FIG. 7 is an exemplary block diagram showing a shuttle speed planning control device in accordance with some embodiments of the present disclosure.
  • the apparatus includes a first motion control module 701, a second motion control module 702, and a third motion control module 703, wherein:
  • the first motion control module 701 is configured to control the shuttle to start the acceleration motion from the starting point of the specified displacement at the specified initial speed V s , wherein the first acceleration motion with the acceleration increasing with time is performed first, and then the second acceleration is decreased with time. Speed up the movement.
  • the time required for the shuttle to perform the first acceleration motion and the second acceleration motion is the same.
  • the second motion control module 702 is configured to control the shuttle to perform uniform motion.
  • the third motion control module 703 is configured to control the shuttle to perform the deceleration motion, wherein the first deceleration motion in which the acceleration decreases with time is performed first, and then the second deceleration motion in which the acceleration increases with time is performed, and the specified displacement is reached at the specified end velocity Ve. The end point.
  • the time required for the shuttle to perform the first deceleration motion and the second deceleration motion is the same.
  • the time T 1 required for the shuttle to perform the first acceleration movement or the second acceleration movement and the time T 2 required to perform the first deceleration motion and the second deceleration motion may satisfy:
  • the squared difference between time T 1 and time T 2 is proportional to the difference between the end speed V e of the shuttle minus the initial speed V s .
  • the shuttle speed planning control device provided by the above embodiment, by controlling the acceleration and deceleration process during the traveling of the shuttle, the speed jump is effectively reduced while the traveling speed is ensured, and the overall efficiency is improved.
  • FIG. 8 is an exemplary block diagram showing a shuttle speed planning control device according to further embodiments of the present disclosure.
  • the device includes a speed planning module 804 and a fourth motion control module 805 in addition to the first motion control module 801, the second motion control module 802, and the third motion control module 803. among them:
  • the speed planning module 804 is configured to determine whether the specified displacement of the shuttle is greater than a predetermined threshold, wherein the predetermined threshold is determined by the initial speed V s and the final speed Ve ; and if the designated displacement of the shuttle is greater than the predetermined threshold, the first motion control module 801 is instructed Executing an operation of controlling the shuttle to start an acceleration motion from a specified displacement starting point at a specified initial speed V s ;
  • the fourth motion control module 805 is used for the determination result of the speed planning module 804. If the designated displacement of the shuttle is not greater than the predetermined threshold, the shuttle is controlled to pass the specified displacement at a predetermined speed.
  • V e when, at the end of velocity V e is not less than the initial velocity V S, V e with predetermined initial threshold speed V and the sum S, and the terminal velocity V by the velocity difference between the end of the initial velocity V e S of the determination. While at the end of the initial velocity less than the velocity V e V S, V e with predetermined initial threshold speed V and the sum S by the terminal velocity and the initial velocity and the terminal velocity V S V e is determined difference.
  • the speed planning module 804 further determines information such as time, speed, displacement, and the like of the shuttle in each section, and provides the determined corresponding parameters to the corresponding motion control module to perform corresponding control on the shuttle.
  • the speed planning module 804 specifically determines that the time range of the time T 2 is V max is the maximum speed of the shuttle, J is the acceleration parameter; the shuttle shuttle only performs the acceleration motion and the deceleration motion by the specified displacement, and according to the above formula (9), the time T 2 is determined by dichotomously shifting the displacement function of the shuttle. And T 1 .
  • the speed planning module 804 specifically determines that the time range of the time T 2 is V max is the maximum speed of the shuttle, J is the acceleration parameter; the shuttle shuttle only performs the acceleration motion and the deceleration motion by the specified displacement, and according to the above formula (9), the time T 2 is determined by dichotomously shifting the displacement function of the shuttle. And T 1 .
  • the speed planning module 804 is further configured to determine, by using the time T 1 and the initial speed V s , the speed-up process displacement of the shuttle to perform the acceleration motion; determining the deceleration process of the shuttle vehicle to perform the deceleration motion by using the time T 2 and the final speed V e Displacement; the difference between the specified displacement and the displacement of the acceleration process and the deceleration process is used as the uniform process displacement of the shuttle for uniform motion.
  • the speed planning module 804 is further configured to determine a time T 3 required for the shuttle to perform a uniform motion using the uniform speed process displacement, the time T 1 , and the initial speed V s .
  • the correlation calculation can be completed by the above formula (7).
  • the speed planning module 804 can also determine the running speed of the shuttle at each moment using the initial speed V s , the acceleration parameter J, the times T 1 , T 2 , and T 3 using the above formula (2).
  • FIG. 9 is an exemplary block diagram showing a shuttle speed planning control device in accordance with further embodiments of the present disclosure.
  • the shuttle speed planning control device may include a memory 901 and a processor 902, wherein:
  • Memory 901 is used to store instructions, processor 902 is coupled to memory 901, and processor 902 is configured to perform the methods involved in any of the embodiments of FIG. 3 or FIG. 4 based on instructions stored in the memory.
  • the shuttle speed planning control device further includes a communication interface 903 for performing information interaction with other devices.
  • the apparatus further includes a bus 904, and the processor 902, the communication interface 903, and the memory 901 complete communication with each other via the bus 904.
  • the memory 901 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory. Memory 901 can also be a memory array. The memory 901 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • the processor 902 can be a central processing unit CPU, or can be an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present disclosure.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FIG. 10 is an exemplary block diagram showing a shuttle according to further embodiments of the present disclosure.
  • the shuttle 1001 includes a shuttle speed planning control device 1002, wherein the shuttle speed planning control device 1002 can be the shuttle speed planning control device of any of the embodiments of FIGS. 7-9.
  • the functional unit modules described in the above embodiments may be implemented as a general purpose processor, a programmable logic controller (PLC), a digital signal processor (for example) for performing the functions described in the present disclosure.
  • PLC programmable logic controller
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • other programmable logic devices discrete gates or transistors Logic device, discrete hardware component, or any suitable combination thereof.
  • the present disclosure also provides a computer readable storage medium, wherein the computer readable storage medium stores computer instructions that, when executed by the processor, implement the method of any of the embodiments of FIG. 3 or FIG.
  • the present disclosure may be provided as a method, apparatus, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects.
  • the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种穿梭车速度规划控制方法、装置及穿梭车,涉及控制领域。控制穿梭车从指定位移的起点以指定初始速度开始进行加速运动,其中先进行加速度随时间增加的第一加速运动,再进行加速度随时间减小的第二加速运动(301);然后控制穿梭车进行匀速运动(302);最后控制穿梭车进行减速运动,其中先进行加速度随时间减少的第一减速运动,再进行加速度随时间增加的第二减速运动,并以指定末速度到达指定位移的终点(303)。通过对穿梭车行进过程中的加减速过程进行控制,从而在保证行进速度的同时,有效减小速度跳变,提高整体效率。

Description

穿梭车速度规划控制方法、装置及穿梭车
本申请是以CN申请号为201710003147.X,申请日为2017年1月3日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及控制领域,特别涉及一种穿梭车速度规划控制方法、装置及穿梭车。
背景技术
在现代自动化物流仓库中,直线式往复型轨道穿梭车(Shuttle小车)需要以很高速度(最高速度可以达到4米每秒)运动并准确定位,主要采用伺服放大器进行驱动,配合码尺传感器进行定位。
然而,穿梭车在运动过程中因加速、减速而产生速度的剧烈波动,导致定位不准确。
发明内容
本公开的实施例解决的一个技术问题是:穿梭车在运动过程中存在速度波动缺陷。
依据本公开的一个或多个实施例的一个方面,提供一种穿梭车速度规划控制方法,包括:
控制穿梭车从指定位移的起点以指定初始速度V s开始进行加速运动,其中先进行加速度随时间增加的第一加速运动,再进行加速度随时间减小的第二加速运动;
控制穿梭车进行匀速运动;
控制穿梭车进行减速运动,其中先进行加速度随时间减少的第一减速运动,再进行加速度随时间增加的第二减速运动,并以指定末速度V e到达指定位移的终点。
可选地,穿梭车进行第一加速运动和第二加速运动所需的时间相同;
穿梭车进行第一减速运动和第二减速运动所需的时间相同。
可选地,穿梭车进行第一加速运动或第二加速运动所需的时间T 1和进行第一减速运动和第二减速运动所需的时间T 2满足:
T 1和T 2的平方差与穿梭车的所述末速度V e和初始速度V s的差值呈正比。
可选地,所述指定位移大于预定门限,其中所述预定门限由所述初始速度V s和末速 度V e确定。
可选地,所述预定门限由所述末速度V e与初始速度V s之和、以及所述末速度V e与初始速度V s之差确定。
可选地,所述时间T 2的最大值为
Figure PCTCN2017119003-appb-000001
V max为穿梭车的最高速度,J为加速度参数;
设穿梭车通过所述指定位移仅进行所述加速运动和减速运动,通过对穿梭车的位移函数进行二分法来确定所述时间T 2和T 1
可选地,在所述末速度V e不小于初始速度V s的情况下,所述时间T 2的最小值为0;
在所述末速度V e小于初始速度V s的情况下,所述时间T 2的最小值为
Figure PCTCN2017119003-appb-000002
可选地,利用所述时间T 1和初始速度V s确定穿梭车进行所述加速运动的升速过程位移;
利用所述时间T 2和末速度V e确定穿梭车进行所述减速运动的减速过程位移;
将所述指定位移减去所述升速过程位移和所述减速过程位移的差值作为穿梭车进行所述匀速运动的匀速过程位移。
可选地,利用所述匀速过程位移、所述时间T 1和初始速度V s确定穿梭车进行所述匀速运动所需的时间T 3
可选地,利用所述初始速度V s、加速度参数J、时间T 1、T 2和T 3确定穿梭车在各时刻的运行速度。
依据本公开的一个或多个实施例的另一个方面,提供一种穿梭车速度规划控制装置,包括:
第一运动控制模块,被配置为控制穿梭车从指定位移的起点以指定初始速度V s开始进行加速运动,其中先进行加速度随时间增加的第一加速运动,再进行加速度随时间减小的第二加速运动;
第二运动控制模块,被配置为控制穿梭车进行匀速运动;
第三运动控制模块,被配置为控制穿梭车进行减速运动,其中先进行加速度随时间减少的第一减速运动,再进行加速度随时间增加的第二减速运动,并以指定末速度V e到达指定位移的终点。
可选地,穿梭车进行第一加速运动和第二加速运动所需的时间相同;
穿梭车进行第一减速运动和第二减速运动所需的时间相同。
可选地,穿梭车进行第一加速运动或第二加速运动所需的时间T 1和进行第一减速运动和第二减速运动所需的时间T 2满足:
T 1和T 2的平方差与穿梭车的所述末速度V e和初始速度V s的差值呈正比。
可选地,所述指定位移大于预定门限,其中所述预定门限由所述初始速度V s和末速度V e确定。
可选地,所述预定门限由所述末速度V e与初始速度V s之和、以及所述末速度V e与初始速度V s之差确定。
可选地,所述时间T 2的最大值为
Figure PCTCN2017119003-appb-000003
V max为穿梭车的最高速度,J为加速度参数;设穿梭车通过所述指定位移仅进行所述加速运动和减速运动,通过对穿梭车的位移函数进行二分法来确定所述时间T 2和T 1
可选地,在所述末速度V e不小于初始速度V s的情况下,所述时间T 2的最小值为0;
在所述末速度V e小于初始速度V s的情况下,所述时间T 2的最小值为
Figure PCTCN2017119003-appb-000004
可选地,上述装置还包括:
速度规划模块,被配置为利用所述时间T 1和初始速度V s确定穿梭车进行所述加速运动的升速过程位移;利用所述时间T 2和末速度V e确定穿梭车进行所述减速运动的减速过程位移;将所述指定位移减去所述升速过程位移和所述减速过程位移的差值作为穿梭车进行所述匀速运动的匀速过程位移。
可选地,速度规划模块还被配置为利用所述匀速过程位移、所述时间T 1和初始速度V s确定穿梭车进行所述匀速运动所需的时间T 3
可选地,速度规划模块还被配置为利用所述初始速度V s、加速度参数J、时间T 1、T 2和T 3确定穿梭车在各时刻的运行速度。
依据本公开的一个或多个实施例的一个方面,提供一种穿梭车速度规划控制装置,包括存储器和处理器,其中:
存储器,被配置为存储指令;
处理器,耦合到所述存储器,所述处理器被配置为基于所述存储器存储的指令执行实现如上述任一实施例涉及的方法。
依据本公开的一个或多个实施例的一个方面,提供一种穿梭车,包括如上述任一实 施例涉及的穿梭车速度规划控制装置。
依据本公开的一个或多个实施例的又一个方面,提供一种计算机可读存储介质,其中计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上述任一实施例涉及的方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中穿梭车速度曲线的示例性示意图。
图2为相关技术中穿梭车加速度曲线的示例性示意图。
图3为示出根据本公开一些实施例的穿梭车速度规划控制方法的示例性流程图。
图4为示出根据本公开另一些实施例的穿梭车速度规划控制方法的示例性流程图。
图5为示出根据本公开一些实施例的穿梭车速度曲线的示例性示意图。
图6为示出根据本公开一些实施例的穿梭车加速度曲线的示例性示意图。
图7为示出根据本公开一些实施例的穿梭车速度规划控制装置的示例性框图。
图8为示出根据本公开另一些实施例的穿梭车速度规划控制装置的示例性框图。
图9为示出根据本公开又一些实施例的穿梭车速度规划控制装置的示例性框图。
图10为示出根据本公开另一些实施例的穿梭车的示例性框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达 式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
发明人认识到,在相关技术中,穿梭车采用固定加速度和减速度的速度曲线方式。
图1为相关技术中穿梭车速度曲线的示例性示意图。图2为相关技术中穿梭车速度曲线的示例性示意图。
如图1所示,将整个位移分为三个阶段,其中在第一阶段以给定的加速度进行加速直到最大速度,在第二阶段以匀速进行运动,在第三阶段以给定的加速度进行减速,直到速度减到设定的结束速度。
在该速度曲线中,当速度变化从加速阶段进入匀速,或从匀速阶段进入减速阶段时,由于加速度的变化,如图2所示,速度会相应发生跳变。速度跳变会导致定位不准确。
本公开的发明人提出一种穿梭车速度规划控制方案,可有效抑制速度跳变问题。下面结合附图进行详细说明。
图3为示出根据本公开一些实施例的穿梭车速度规划控制方法的示例性流程图。本实施例的方法步骤可由穿梭车速度规划控制装置执行。
步骤301,控制装置控制穿梭车从指定位移的起点以指定初始速度V s开始进行加速运动,其中先进行加速度随时间增加的第一加速运动,再进行加速度随时间减小的第二加速运动。
可选地,穿梭车进行第一加速运动和第二加速运动所需的时间相同。
步骤302,控制装置控制穿梭车进行匀速运动。
步骤303,控制装置控制穿梭车进行减速运动,其中先进行加速度随时间减少的第一减速运动,再进行加速度随时间增加的第二减速运动,并以指定末速度V e到达指定位移的终点。
可选地,穿梭车进行第一减速运动和第二减速运动所需的时间相同。
可选地,穿梭车进行第一加速运动或第二加速运动所需的时间T 1和进行第一减速运动和第二减速运动所需的时间T 2满足:
时间T 1和时间T 2的平方差与穿梭车的末速度V e减去初始速度V s的差值呈正比。例如,T 1 2-T 2 2=(V e-V s)/J,其中J为穿梭车的加速度参数。
在上述实施例提供的穿梭车速度规划控制方法中,通过对穿梭车行进过程中的加减速过程进行控制,从而在保证行进速度的同时,有效减小速度跳变,提高整体效率。
图4为示出根据本公开另一些实施例的穿梭车速度规划控制方法的示例性流程图。本实施例的方法步骤可由穿梭车速度规划控制装置执行。
步骤401,控制装置判断穿梭车的指定位移是否大于预定门限,其中预定门限由初始速度V s和末速度V e确定。
若穿梭车的指定位移大于预定门限,则执行步骤403;若穿梭车的指定位移不大于预定门限,则执行步骤402。
其中,由于初始速度V s和末速度V e之间的大小关系不同,因此相应的预定门限也会不同。
例如,在末速度V e不小于初始速度V s时,预定门限由末速度V e与初始速度V s之和、以及末速度V e与初始速度V s之差确定。而在末速度V e小于初始速度V s时,预定门限由末速度V e与初始速度V s之和、以及初始速度V s与末速度V e之差确定。
步骤402,控制装置控制穿梭车以预定速度通过指定位移。之后不再执行本实施例的其它步骤。
步骤403,控制装置控制穿梭车从指定位移的起点以指定初始速度V s开始进行加速运动,其中先进行加速度随时间增加的第一加速运动,再进行加速度随时间减小的第二加速运动。
步骤404,控制装置控制穿梭车进行匀速运动。
步骤405,控制装置控制穿梭车进行减速运动,其中先进行加速度随时间减少的第一减速运动,再进行加速度随时间增加的第二减速运动,并以指定末速度V e到达指定位移的终点。
若指定位移不满足预定门限要求,则表明该指定位移过短,在这种情况下就无需进行上述速度规定,仅需控制穿梭车以预定速度匀速通过该指定位置即可。
图5为示出根据本公开一些实施例的穿梭车速度曲线的示例性示意图。
如图5所示,将指定位移S划分为三个阶段,其中在第一阶段(升速过程位移S up)中,穿梭车从指定位移的起点以指定初始速度V s开始,在时间T 1内先进行加速度随时间增加的第一加速运动,再在时间T 1内进行加速度随时间减小的第二加速运动;接下来在第二阶段(匀速过程位移S ev),在时间T 3内进行匀速运动;然后在第三阶段(减速过程位移S down),在时间T 2内进行加速度随时间减少的第一减速运动,再在时间T 2内进行加速度随时间增加的第二减速运动,并以指定末速度V e到达指定位移的终点。
设参数J为加速度的变化率,其为一恒定值。则相应的加速度公式如下:
Figure PCTCN2017119003-appb-000005
图6为示出根据本公开一些实施例的穿梭车加速度曲线的示例性示意图。
如图6所示,相应的速度公式如下:
Figure PCTCN2017119003-appb-000006
对应的位移公式如下:
Figure PCTCN2017119003-appb-000007
由于初始速度V s、末速度V e、指定位移S和加速度的变化率J均为已知,由此如果能够求出T 1,T 2和T 3,则位移曲线也就迎刃而解了。
当t=2T 1+2T 2+T 3时,由公式(2)可得:
Figure PCTCN2017119003-appb-000008
若匀速过程位移S ev≥0,则穿梭车的最高速度V max即为匀速时的速度,由公式(2) 可得:
Figure PCTCN2017119003-appb-000009
将公式(5)带入公式(4),可得:
Figure PCTCN2017119003-appb-000010
进而由公式(3)可推导出:
Figure PCTCN2017119003-appb-000011
如果S ev<0,则没有匀速区,即T 3为0,且速度达不到V max,由公式(3)和公式(4)可得:
Figure PCTCN2017119003-appb-000012
如果将上式中的T 2看作变量,则可以当作关于T 2的函数,则:
Figure PCTCN2017119003-appb-000013
其中
Figure PCTCN2017119003-appb-000014
相对于区间T 2∈[0,+∞)是单调递增的。根据公式(6)得T 2的取值上限是
Figure PCTCN2017119003-appb-000015
当Ve≥Vs时,T2的最小值为0,则其取值范围为
Figure PCTCN2017119003-appb-000016
因此,若给定位移:
Figure PCTCN2017119003-appb-000017
则T 2存在正数解,令公式(9)中的
Figure PCTCN2017119003-appb-000018
可采用二分法求解T 2
而当V e<V s时,由公式(4)得:
Figure PCTCN2017119003-appb-000019
即T 2的最小值为
Figure PCTCN2017119003-appb-000020
则T 2的取值范围是
Figure PCTCN2017119003-appb-000021
因此,若给定位移:
Figure PCTCN2017119003-appb-000022
则T 2存在正数解,令公式(9)中的
Figure PCTCN2017119003-appb-000023
可采用二分法求解T 2
将求取的T 2代入公式(4)中得到T 1,进而利用公式(7),则可求得S up,S down,S ev 及T 3,将T 1,T 2,T 3代入公式(2)中,便可得到各区域的速度。
也就是说,利用时间T 1和初始速度V s确定穿梭车进行加速运动的升速过程位移,利用时间T 2和末速度V e确定穿梭车进行减速运动的减速过程位移,将指定位移减去升速过程位移和减速过程位移的差值作为穿梭车进行匀速运动的匀速过程位移。利用匀速过程位移、时间T 1和初始速度V s确定穿梭车进行匀速运动所需的时间T 3。最后利用初始速度V s、加速度参数J、时间T 1、T 2和T 3确定穿梭车在各时刻的运行速度。
图7为示出根据本公开一些实施例的穿梭车速度规划控制装置的示例性框图。
如图7所示,该装置包括第一运动控制模块701、第二运动控制模块702和第三运动控制模块703,其中:
第一运动控制模块701用于控制穿梭车从指定位移的起点以指定初始速度V s开始进行加速运动,其中先进行加速度随时间增加的第一加速运动,再进行加速度随时间减小的第二加速运动。
可选地,穿梭车进行第一加速运动和第二加速运动所需的时间相同。
第二运动控制模块702用于控制穿梭车进行匀速运动。
第三运动控制模块703用于控制穿梭车进行减速运动,其中先进行加速度随时间减少的第一减速运动,再进行加速度随时间增加的第二减速运动,并以指定末速度V e到达指定位移的终点。
可选地,穿梭车进行第一减速运动和第二减速运动所需的时间相同。
可选地,穿梭车进行第一加速运动或第二加速运动所需的时间T 1和进行第一减速运动和第二减速运动所需的时间T 2可满足:
时间T 1和时间T 2的平方差与穿梭车的末速度V e减去初始速度V s的差值呈正比。
在上述实施例提供的穿梭车速度规划控制装置中,通过对穿梭车行进过程中的加减速过程进行控制,从而在保证行进速度的同时,有效减小速度跳变,提高整体效率。
图8为示出根据本公开另一些实施例的穿梭车速度规划控制装置的示例性框图。
如图8所示,该装置中除第一运动控制模块801、第二运动控制模块802和第三运动控制模块803之外,还包括速度规划模块804和第四运动控制模块805。其中:
速度规划模块804用于判断穿梭车的指定位移是否大于预定门限,其中预定门限由初始速度V s和末速度V e确定;若穿梭车的指定位移大于预定门限,则指示第一运动控制模块801执行控制穿梭车从指定位移起点以指定初始速度V s开始进行加速运动的操作;
第四运动控制模块805用于速度规划模块804的判断结果,若穿梭车的指定位移不大 于预定门限,则控制穿梭车以预定速度通过指定位移。
可选地,在末速度V e不小于初始速度V s时,预定门限由末速度V e与初始速度V s之和、以及末速度V e与初始速度V s之差确定。而在末速度V e小于初始速度V s时,预定门限由末速度V e与初始速度V s之和、以及初始速度V s与末速度V e之差确定。
可选地,速度规划模块804还用户确定穿梭车在各区间的时间、速度、位移等信息,并将确定的相应参数提供给相应的运动控制模块对穿梭车进行相应控制。
例如,在末速度V e不小于初始速度V s时,速度规划模块804具体确定时间T 2的取值范围为
Figure PCTCN2017119003-appb-000024
V max为穿梭车的最高速度,J为加速度参数;设穿梭车通过指定位移仅进行加速运动和减速运动,根据上述公式(9),通过对穿梭车的位移函数进行二分法来确定时间T 2和T 1
而在末速度V e小于初始速度V s时,速度规划模块804具体确定时间T 2的取值范围为
Figure PCTCN2017119003-appb-000025
V max为穿梭车的最高速度,J为加速度参数;设穿梭车通过指定位移仅进行加速运动和减速运动,根据上述公式(9),通过对穿梭车的位移函数进行二分法来确定时间T 2和T 1
可选地,速度规划模块804还用于利用时间T 1和初始速度V s确定穿梭车进行加速运动的升速过程位移;利用时间T 2和末速度V e确定穿梭车进行减速运动的减速过程位移;将指定位移减去升速过程位移和减速过程位移的差值作为穿梭车进行匀速运动的匀速过程位移。
可选地,速度规划模块804还用于利用匀速过程位移、时间T 1和初始速度V s确定穿梭车进行匀速运动所需的时间T 3
例如,可通过上述公式(7)完成相关计算。
之后,速度规划模块804还可利用上述公式(2),利用初始速度V s、加速度参数J、时间T 1、T 2和T 3确定穿梭车在各时刻的运行速度。
图9为示出根据本公开又一些实施例的穿梭车速度规划控制装置的示例性框图。
如图9所示,穿梭车速度规划控制装置可包括存储器901和处理器902,其中:
存储器901用于存储指令,处理器902耦合到存储器901,处理器902被配置为基于存储器存储的指令执行实现如图3或图4中任一实施例涉及的方法。
如图9所示,穿梭车速度规划控制装置还包括通信接口903,用于与其它设备进行信 息交互。同时,该装置还包括总线904,处理器902、通信接口903、以及存储器901通过总线904完成相互间的通信。
存储器901可以包含高速RAM存储器,也可还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器901也可以是存储器阵列。存储器901还可能被分块,并且块可按一定的规则组合成虚拟卷。
此外,处理器902可以是一个中央处理器CPU,或者可以是专用集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本公开实施例的一个或多个集成电路。
图10为示出根据本公开另一些实施例的穿梭车的示例性框图。
如图10所示,穿梭车1001中包括穿梭车速度规划控制装置1002,其中穿梭车速度规划控制装置1002可为图7至图9中任一实施例涉及的穿梭车速度规划控制装置。
可选地,在上述实施例所描述的功能单元模块可以实现为用于执行本公开所描述功能的通用处理器、可编程逻辑控制器(Programmable Logic Controller,简称:PLC)、数字信号处理器(Digital Signal Processor,简称:DSP)、专用集成电路(Application Specific Integrated Circuit,简称:ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。
本公开还提供一种计算机可读存储介质,其中计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如图3或图4中任一实施例所涉及的方法。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
通过实施本公开,能够在保证精度的条件下,使用加减速控制技术对行进路径加减速过程进行控制,提高行进速度,减小速度跳变,提高整体效率。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等) 上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (23)

  1. 一种穿梭车速度规划控制方法,包括:
    控制穿梭车从指定位移的起点以指定初始速度V s开始进行加速运动,其中先进行加速度随时间增加的第一加速运动,再进行加速度随时间减小的第二加速运动;
    控制穿梭车进行匀速运动;
    控制穿梭车进行减速运动,其中先进行加速度随时间减少的第一减速运动,再进行加速度随时间增加的第二减速运动,并以指定末速度V e到达指定位移的终点。
  2. 根据权利要求1所述的方法,其中,
    穿梭车进行第一加速运动和第二加速运动所需的时间相同;
    穿梭车进行第一减速运动和第二减速运动所需的时间相同。
  3. 根据权利要求2所述的方法,其中,
    穿梭车进行第一加速运动或第二加速运动所需的时间T 1和进行第一减速运动和第二减速运动所需的时间T 2满足:
    T 1和T 2的平方差与穿梭车的所述末速度V e和初始速度V s的差值呈正比。
  4. 根据权利要求1-3中任一项所述的方法,其中,
    所述指定位移大于预定门限,其中所述预定门限由所述初始速度V s和末速度V e确定。
  5. 根据权利要求4所述的方法,其中,
    所述预定门限由所述末速度V e与初始速度V s之和、以及所述末速度V e与初始速度V s之差确定。
  6. 根据权利要求5所述的方法,其中,
    所述时间T 2的最大值为
    Figure PCTCN2017119003-appb-100001
    V max为穿梭车的最高速度,J为加速度参数;
    设穿梭车通过所述指定位移仅进行所述加速运动和减速运动,通过对穿梭车的位移 函数进行二分法来确定所述时间T 2和T 1
  7. 根据权利要求6所述的方法,其中,
    在所述末速度V e不小于初始速度V s的情况下,所述时间T 2的最小值为0;
    在所述末速度V e小于初始速度V s的情况下,所述时间T 2的最小值为
    Figure PCTCN2017119003-appb-100002
  8. 根据权利要求6所述的方法,还包括:
    利用所述时间T 1和初始速度V s确定穿梭车进行所述加速运动的升速过程位移;
    利用所述时间T 2和末速度V e确定穿梭车进行所述减速运动的减速过程位移;
    将所述指定位移减去所述升速过程位移和所述减速过程位移的差值作为穿梭车进行所述匀速运动的匀速过程位移。
  9. 根据权利要求8所述的方法,还包括:
    利用所述匀速过程位移、所述时间T 1和初始速度V s确定穿梭车进行所述匀速运动所需的时间T 3
  10. 根据权利要求9所述的方法,还包括:
    利用所述初始速度V s、加速度参数J、时间T 1、T 2和T 3确定穿梭车在各时刻的运行速度。
  11. 一种穿梭车速度规划控制装置,包括:
    第一运动控制模块,被配置为控制穿梭车从指定位移的起点以指定初始速度V s开始进行加速运动,其中先进行加速度随时间增加的第一加速运动,再进行加速度随时间减小的第二加速运动;
    第二运动控制模块,被配置为控制穿梭车进行匀速运动;
    第三运动控制模块,被配置为控制穿梭车进行减速运动,其中先进行加速度随时间减少的第一减速运动,再进行加速度随时间增加的第二减速运动,并以指定末速度V e到达指定位移的终点。
  12. 根据权利要求11所述的装置,其中,
    穿梭车进行第一加速运动和第二加速运动所需的时间相同;
    穿梭车进行第一减速运动和第二减速运动所需的时间相同。
  13. 根据权利要求12所述的装置,其中,
    穿梭车进行第一加速运动或第二加速运动所需的时间T 1和进行第一减速运动和第二减速运动所需的时间T 2满足:
    T 1和T 2的平方差与穿梭车的所述末速度V e和初始速度V s的差值呈正比。
  14. 根据权利要求11-13中任一项所述的装置,其中,
    所述指定位移大于预定门限,其中所述预定门限由所述初始速度V s和末速度V e确定。
  15. 根据权利要求14所述的装置,其中,
    所述预定门限由所述末速度V e与初始速度V s之和、以及所述末速度V e与初始速度V s之差确定。
  16. 根据权利要求15所述的装置,其中,
    所述时间T 2的最大值为
    Figure PCTCN2017119003-appb-100003
    V max为穿梭车的最高速度,J为加速度参数;设穿梭车通过所述指定位移仅进行所述加速运动和减速运动,通过对穿梭车的位移函数进行二分法来确定所述时间T 2和T 1
  17. 根据权利要求16所述的装置,其中,
    在所述末速度V e不小于初始速度V s的情况下,所述时间T 2的最小值为0;
    在所述末速度V e小于初始速度V s的情况下,所述时间T 2的最小值为
    Figure PCTCN2017119003-appb-100004
  18. 根据权利要求16所述的装置,还包括:
    速度规划模块,被配置为利用所述时间T 1和初始速度V s确定穿梭车进行所述加速 运动的升速过程位移;利用所述时间T 2和末速度V e确定穿梭车进行所述减速运动的减速过程位移;将所述指定位移减去所述升速过程位移和所述减速过程位移的差值作为穿梭车进行所述匀速运动的匀速过程位移。
  19. 根据权利要求18所述的装置,其中,
    速度规划模块还被配置为利用所述匀速过程位移、所述时间T 1和初始速度V s确定穿梭车进行所述匀速运动所需的时间T 3
  20. 根据权利要求19所述的装置,其中,
    速度规划模块还被配置为利用所述初始速度V s、加速度参数J、时间T 1、T 2和T 3确定穿梭车在各时刻的运行速度。
  21. 一种穿梭车速度规划控制装置,包括存储器和处理器,其中:
    存储器,被配置为存储指令;
    处理器,耦合到所述存储器,所述处理器被配置为基于所述存储器存储的指令执行实现如权利要求1-10中任一项所述的方法。
  22. 一种穿梭车,包括如权利要求11-21中任一项所述的穿梭车速度规划控制装置。
  23. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如权利要求1-10中任一项所述的方法。
PCT/CN2017/119003 2017-01-03 2017-12-27 穿梭车速度规划控制方法、装置及穿梭车 WO2018126967A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,601 US11226631B2 (en) 2017-01-03 2017-12-27 Shuttle vehicle speed control method and apparatus, and shuttle vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710003147.X 2017-01-03
CN201710003147.XA CN106843207A (zh) 2017-01-03 2017-01-03 穿梭车速度规划控制方法、装置及穿梭车

Publications (1)

Publication Number Publication Date
WO2018126967A1 true WO2018126967A1 (zh) 2018-07-12

Family

ID=59116767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119003 WO2018126967A1 (zh) 2017-01-03 2017-12-27 穿梭车速度规划控制方法、装置及穿梭车

Country Status (3)

Country Link
US (1) US11226631B2 (zh)
CN (1) CN106843207A (zh)
WO (1) WO2018126967A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112520581A (zh) * 2020-12-04 2021-03-19 上海驭矩信息科技有限公司 一种提高轮胎式起重机大车运动控制精度的方法及系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843207A (zh) 2017-01-03 2017-06-13 北京京东尚科信息技术有限公司 穿梭车速度规划控制方法、装置及穿梭车
CN110271804B (zh) * 2018-03-15 2021-10-15 深圳志合天成科技有限公司 自动存取装置的运动控制方法、装置、设备及存储介质
CN110398993B (zh) * 2018-04-24 2022-09-06 北京京东尚科信息技术有限公司 速度控制方法、装置及计算机可读存储介质
CN110597309B (zh) * 2019-09-23 2022-03-29 纳恩博(常州)科技有限公司 移动产品的控制方法、装置、系统、存储介质和处理器
CN111198561B (zh) * 2019-12-05 2021-10-22 浙江大华技术股份有限公司 目标跟踪的运动控制方法、装置、计算机设备及存储介质
CN113060590A (zh) * 2021-03-19 2021-07-02 诸暨兴大豪科技开发有限公司 铺布机的控制方法、装置及储存介质
CN114137978A (zh) * 2021-11-29 2022-03-04 佛山市毕佳索智能科技有限公司 一种仓储agv的速度规划与控制方法
CN114510062B (zh) * 2022-03-28 2022-07-26 山东西曼克技术有限公司 穿梭车导航控制方法及系统
CN114408440B (zh) * 2022-04-02 2022-07-26 山东西曼克技术有限公司 冷库用四向穿梭车速度跟踪控制方法及控制系统
CN117261974B (zh) * 2023-11-17 2024-02-09 北京全路通信信号研究设计院集团有限公司 一种基于二分法的计算模式限速值计算算法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793486B1 (ko) * 2006-10-27 2008-01-14 현대자동차주식회사 네비게이션의 조그셔틀 다중 키 성능 개선 구조
CN101847003A (zh) * 2010-05-24 2010-09-29 三一重型装备有限公司 一种梭车行驶控制系统及梭车
CN102897460A (zh) * 2012-09-14 2013-01-30 上海精星仓储设备工程有限公司 用于自动化立体仓库磁栅尺定位分配穿梭车
CN103818672A (zh) * 2014-02-28 2014-05-28 上海速锐物流科技有限公司 一种三维立体行驶的智能穿梭车及其控制方法
CN104229370A (zh) * 2014-09-26 2014-12-24 昆明七零五所科技发展总公司 一种具有转向功能的轨道穿梭车的定位装置及定位方法
CN106115197A (zh) * 2016-07-04 2016-11-16 长沙长泰智能装备有限公司 穿梭车定位系统及控制方法
CN106647749A (zh) * 2016-11-30 2017-05-10 上海精星仓储设备工程有限公司 一种基于密集存储库内穿梭车行走精确定位的方法
CN106843207A (zh) * 2017-01-03 2017-06-13 北京京东尚科信息技术有限公司 穿梭车速度规划控制方法、装置及穿梭车

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934515A (en) * 1972-11-09 1976-01-27 Lon H. Romanski Transportation system
US4155426A (en) * 1978-05-05 1979-05-22 Westinghouse Electric Corp. Digital speed pattern generator
US20040225382A1 (en) * 2003-05-09 2004-11-11 Phil Brown Jerk profile, vector motion control and real time position capture in motion control systems
JP2007086904A (ja) * 2005-09-20 2007-04-05 Brother Ind Ltd 加速度軌跡生成装置
KR100819654B1 (ko) * 2006-07-28 2008-04-04 호서대학교 산학협력단 비대칭 에스 커브를 이용한 모터 제어 방법
CN101477354B (zh) * 2009-01-19 2010-08-04 东元总合科技(杭州)有限公司 位置s型指令产生方法
CN103713581B (zh) * 2013-12-12 2016-01-20 南京工程学院 运动控制系统s曲线加减速的实现方法
CN104090596A (zh) * 2014-06-27 2014-10-08 北京工业大学 一种基于粒子群优化算法的五阶段s曲线加减速控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793486B1 (ko) * 2006-10-27 2008-01-14 현대자동차주식회사 네비게이션의 조그셔틀 다중 키 성능 개선 구조
CN101847003A (zh) * 2010-05-24 2010-09-29 三一重型装备有限公司 一种梭车行驶控制系统及梭车
CN102897460A (zh) * 2012-09-14 2013-01-30 上海精星仓储设备工程有限公司 用于自动化立体仓库磁栅尺定位分配穿梭车
CN103818672A (zh) * 2014-02-28 2014-05-28 上海速锐物流科技有限公司 一种三维立体行驶的智能穿梭车及其控制方法
CN104229370A (zh) * 2014-09-26 2014-12-24 昆明七零五所科技发展总公司 一种具有转向功能的轨道穿梭车的定位装置及定位方法
CN106115197A (zh) * 2016-07-04 2016-11-16 长沙长泰智能装备有限公司 穿梭车定位系统及控制方法
CN106647749A (zh) * 2016-11-30 2017-05-10 上海精星仓储设备工程有限公司 一种基于密集存储库内穿梭车行走精确定位的方法
CN106843207A (zh) * 2017-01-03 2017-06-13 北京京东尚科信息技术有限公司 穿梭车速度规划控制方法、装置及穿梭车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112520581A (zh) * 2020-12-04 2021-03-19 上海驭矩信息科技有限公司 一种提高轮胎式起重机大车运动控制精度的方法及系统
CN112520581B (zh) * 2020-12-04 2023-09-05 上海驭矩信息科技有限公司 一种提高轮胎式起重机大车运动控制精度的方法及系统

Also Published As

Publication number Publication date
US20190324469A1 (en) 2019-10-24
US11226631B2 (en) 2022-01-18
CN106843207A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018126967A1 (zh) 穿梭车速度规划控制方法、装置及穿梭车
CN107368639B (zh) 速度规划方法、装置、计算机设备和存储介质
CN112099493B (zh) 一种自主移动机器人轨迹规划方法、系统及设备
CN111169469B (zh) 一种车辆的轨迹规划方法、装置、存储介质及汽车
CN108319228B (zh) 一种数控系统轨迹规划中加减速控制方法
CN107850887B (zh) S型曲线规划方法、装置及数控机床
CN109747651B (zh) 一种车辆控制方法、装置及系统
CN107844058B (zh) 一种运动曲线离散动态规划方法
CN103466452B (zh) 一种起重机运行控制方法及起重机运行控制系统
CN106647749A (zh) 一种基于密集存储库内穿梭车行走精确定位的方法
CN109747652B (zh) 一种车辆控制方法、装置及系统
CN109556610B (zh) 一种路径规划方法、控制器及系统
CN109032128B (zh) 离散多agv非质点系统的三角编队控制方法
CN113433936A (zh) 移动设备绕障方法、装置、移动设备及存储介质
CN106743340A (zh) 物流上包控制方法及控制系统
US9519280B2 (en) Numerical control device for machine tool
CN108268960B (zh) 驾驶轨迹优化系统
CN108268027B (zh) 驾驶轨迹优化方法及优化系统
CN109313429B (zh) S型速度规划方法、装置、系统、机器人以及数控机床
CN110398993B (zh) 速度控制方法、装置及计算机可读存储介质
US20180164772A1 (en) Motion control method, motion control device, and motion trajectory planning method
US8000828B2 (en) System and method for movement control
WO2018099089A1 (zh) 一种静止状态的判断方法及装置
CN111966103B (zh) 无人驾驶叉车零偏角的动态修正方法、装置、设备及介质
CN110794820A (zh) 一种智能车速度跟踪方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17890243

Country of ref document: EP

Kind code of ref document: A1