CN108268960B - 驾驶轨迹优化系统 - Google Patents

驾驶轨迹优化系统 Download PDF

Info

Publication number
CN108268960B
CN108268960B CN201611255410.6A CN201611255410A CN108268960B CN 108268960 B CN108268960 B CN 108268960B CN 201611255410 A CN201611255410 A CN 201611255410A CN 108268960 B CN108268960 B CN 108268960B
Authority
CN
China
Prior art keywords
point
column
key point
key
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611255410.6A
Other languages
English (en)
Other versions
CN108268960A (zh
Inventor
孙龙飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fafa Automobile China Co ltd
Original Assignee
Fafa Automobile China Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fafa Automobile China Co ltd filed Critical Fafa Automobile China Co ltd
Priority to CN201611255410.6A priority Critical patent/CN108268960B/zh
Publication of CN108268960A publication Critical patent/CN108268960A/zh
Application granted granted Critical
Publication of CN108268960B publication Critical patent/CN108268960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Seats For Vehicles (AREA)

Abstract

本发明涉及自动驾驶控制技术领域,公开了一种驾驶轨迹优化系统,该驾驶轨迹优化系统包括:获取装置,用于获取所述驾驶轨迹的初始点列信息;计算装置,用于对所述初始点列信息进行计算,得到所述初始点列的坐标值、曲率k和方向角θ;处理装置,用于基于计算得到的所述初始点列的曲率,确定曲率处于预设范围内的点列作为关键点列;其中,所述计算装置还被配置为:从所述关键点列的起点向终点对所述关键点列进行若干次曲线拟合运算,将所述若干次曲线拟合运算得到的终点与所述关键点列的终点比较,确定所述拟合后的曲线的终点与所述关键点列的终点误差最小的拟合曲线为最终的驾驶优化轨迹。该系统用以优化驾驶轨迹,为平稳的无人驾驶提供可能,改善驾驶舒适度并提高驾驶器运行性能。

Description

驾驶轨迹优化系统
技术领域
本发明涉及自动驾驶控制技术领域,具体地,涉及一种驾驶轨迹优化系统。
背景技术
无人驾驶技术日益发展,现有技术自动驾驶方案的主要缺点是:
1)车辆运动速度非恒定,不同速度下相同距离间隔内采集的点数不同;
2)当车速较低或者静止时,由于传感器自身噪声及外界环境噪声的影响,会造成局部采样点过多且抖动;
3)当车速较快时,单位距离内的采样点太少,横向控制器可能无法精确预测下一时刻运动趋势,尤其是在大转弯的情况下;
4)计算得到的轨迹转向角,曲率等参数有跳变,会增加驾驶控制器设计负担。
如何让车辆运行更加平稳,提高乘客的舒适度,是无人驾驶决策控制要研究的问题,车辆稳定性成为评价无人驾驶控制性能的重要因素。现有的技术无人驾驶轨迹绘制,多以一定的采样频率采集GPS数据作为预设轨迹,驾驶控制器根据预设轨迹对车辆进行横向和纵向控制,预设轨迹中往往包含坐标点、方向角、曲率等信息。而对轨迹的优化多采用后续驾驶数据的采集反馈到控制系统中,对预设轨迹进行优化。
发明内容
本发明的目的是提供一种驾驶轨迹优化系统,该驾驶轨迹优化系统,得到优化的驾驶轨迹,驾驶轨迹更加平滑,根据该优化的驾驶轨迹行驶可降低驾驶控制器设计难度,提高车辆运行性能。
为了实现上述目的,本发明提供一种驾驶轨迹优化方法,该方法包括:获取驾驶轨迹的初始点列信息;对所述初始点列信息进行计算,得到所述初始点列的坐标值、曲率k和方向角θ;基于计算得到的所述初始点列的曲率,确定曲率处于预设范围内的点列作为关键点列;以及,从所述关键点列的起点向终点对所述关键点列进行若干次曲线拟合运算,将所述若干次曲线拟合运算得到的终点与所述关键点列的终点比较,确定所述拟合后的曲线的终点与所述关键点列的终点误差最小的拟合曲线为最终的驾驶优化轨迹。
优选地,从所述关键点列的起点向终点对所述关键点列进行曲线拟合运算的函数为Spiralfit(start,goal,s),包括如下公式:
Figure BDA0001198823930000021
Figure BDA0001198823930000022
k(s)=u(s) (2)
u(s)=a*s3+b*s2+c*s+d (1)
其中,start为所述关键点列的起点,start=[xs,yss,ks],xs为所述起点的横坐标,ys为所述起点的纵坐标,θs为所述起点的方向角,ks为所述起点的曲率;goal为所述关键点列的终点,goal=[xg,ygg,kg],xg为所述终点的横坐标,yg为所述终点的纵坐标,θg为所述终点的方向角,kg为所述终点的曲率;s为所述关键点列内的点与所述关键点列的起点之间的距离;a、b、c和d为拟合运算参数。
优选地,初始点列的方向角
Figure BDA0001198823930000023
其中,Δy=yn-yn-1,Δx=xn-xn-1
优选地,初始点列的曲率k=Δθ/Δs,其中,
Figure BDA0001198823930000024
Δθ=θnn-1
优选地,基于计算得到的所述初始点列的曲率,确定关键点列包括:当曲率k在0.05-0.15之间时,确定该点列为关键点列。
本发明还提供一种驾驶轨迹优化系统,该系统包括:获取装置,用于获取所述驾驶轨迹的初始点列信息;计算装置,用于对所述初始点列信息进行计算,得到所述初始点列的坐标值、曲率k和方向角θ;处理装置,用于基于计算得到的所述初始点列的曲率,确定曲率处于预设范围内的点列作为关键点列;其中,所述计算装置还被配置为:从所述关键点列的起点向终点对所述关键点列进行若干次曲线拟合运算,将所述若干次曲线拟合运算得到的终点与所述关键点列的终点比较,确定所述拟合后的曲线的终点与所述关键点列的终点误差最小的拟合曲线为最终的驾驶优化轨迹。
优选地,所说计算装置从所述关键点列的起点向终点对所述关键点列进行曲线拟合运算的函数为Spiralfit(start,goal,s),包括如下公式:
Figure BDA0001198823930000031
Figure BDA0001198823930000032
k(s)=u(s) (2)
u(s)=a*s3+b*s2+c*s+d (l)
其中,start为所述关键点列的起点,start=[xs,yss,ks],xs为所述起点的横坐标,ys为所述起点的纵坐标,θs为所述起点的方向角,ks为所述起点的曲率;
goal为所述关键点列的终点,goal=[xg,ygg,kg],xg为所述终点的横坐标,yg为所述终点的纵坐标,θg为所述终点的方向角,kg为所述终点的曲率;
s为所述关键点列内的点与所述关键点列的起点之间的距离;
a、b、c和d为拟合运算参数。
优选地,所述计算装置对所述初始点列的方向角
Figure BDA0001198823930000033
其中,Δy=yn-yn-1,Δx=xn-xn-1
优选地,所述计算装置对所述初始点列的曲率k=Δθ/Δs
其中,
Figure BDA0001198823930000041
Δ6=θnn-1
优选地,所述处理装置基于计算得到的所述初始点列的曲率,确定关键点列包括:当曲率k在0.05-0.15之间时,确定该点列为关键点列。
通过上述技术方案,获取初始的驾驶轨迹,生成驾驶轨迹的初始点列信息,对上述初始点列信息进行计算,得到初始点列的坐标值、曲率k和方向角θ;基于计算得到的所述初始点列的曲率,确定曲率处于预设范围内的点列作为关键点列;以及,从所述关键点列的起点向终点对所述关键点列进行若干次曲线拟合运算,将所述若干次曲线拟合运算得到的终点与所述关键点列的终点比较,确定所述拟合后的曲线的终点与所述关键点列的终点误差最小的拟合曲线为最终的驾驶优化轨迹。通过上述方法,消除驾驶轨噪声,优化驾驶轨迹,为更加平稳的自动驾驶汽车提供前提。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明一种实施方式的驾驶轨迹优化方法流程图;
图2是本发明一种实施方式的驾驶轨迹优化方法确定关键点列示意图;
图3是初始驾驶轨迹曲率曲线;
图4是根据本发明一种实施方式的驾驶轨迹优化方法优化后轨迹的曲率曲线;
图5是本发明一种实施方式的驾驶轨迹优化系统结构示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
图1是本发明一种实施方式的驾驶轨迹优化方法。如图1所示,该方法包括:在步骤S110中,获取驾驶轨迹的初始点列信息;在步骤S120中,对所述初始点列信息进行计算,得到所述初始点列的坐标值、曲率k和方向角θ;在步骤S130中,基于计算得到的所述初始点列的曲率,确定曲率处于预设范围内的点列作为关键点列;以及,在步骤S140中,从所述关键点列的起点向终点对所述关键点列进行若干次曲线拟合运算,将所述若干次曲线拟合运算得到的终点与所述关键点列的终点比较,确定所述拟合后的曲线的终点与所述关键点列的终点误差最小的拟合曲线为最终的驾驶优化轨迹。
上述方案中,通过某种技术手段,例如通过GPS定位或视觉定位获取初始驾驶轨迹,生成初始点列信息,对上述初始点列信息进行计算,得到初始点列的坐标值、曲率k和方向角θ,基于计算得到的所述初始点列的曲率k,确定曲率k处于预设范围内的点列作为关键点列;从所述关键点列的起点向终点对所述关键点列进行若干次曲线拟合运算,将所述若干次曲线拟合运算得到的终点与所述关键点列的终点比较,确定所述拟合后的曲线的终点与所述关键点列的终点误差最小的拟合曲线为最终的驾驶优化轨迹;例如可进行三次拟合运算,将三次拟合运算得到的终点坐标与初始点列的终点坐标进行比较,选取与初始点列的终点坐标相近的曲线作为最终优化的驾驶轨迹。
上述方案的步骤S140中,从所述关键点列的起点向终点对所述关键点列进行曲线拟合运算的函数为Spiralfit(start,goal,s),包括如下公式:
Figure BDA0001198823930000051
Figure BDA0001198823930000061
k(5)=u(5) (2)
u(s)=a*s3+b*s2+c*s+d (l)
其中,start为所述关键点列的起点,start=[xs,yss,ks],xs为所述起点的横坐标,ys为所述起点的纵坐标,θs为所述起点的方向角,ks为所述起点的曲率;goal为所述关键点列的终点,goal=[xg,ygg,kg],xg为所述终点的横坐标,yg为所述终点的纵坐标,θg为所述终点的方向角,kg为所述终点的曲率;s为所述关键点列内的点与所述关键点列的起点之间的距离;a、b、c和d为拟合运算参数。
上述方案步骤S140中,从起点开始,记为start=[xs,yss,ks];到终点结束,记为goal=[xg,ygg,kg],对各个关键点列按照距离起点的距离逐一进行上述拟合运算,例如两个关键点列的间隔为0.1,则按照s=0.1,0.2,0.3……逐一拟合运算直至终点goal,完成一次曲线拟合运算;对初始驾驶轨迹进行3次曲线拟合,曲线拟合函数Spiralfit(start,goal,s),将三次拟合运算的终点与初始轨迹的终点进行比较,选取与初始轨迹的终点相差最小的轨迹作为优化后的驾驶轨迹,优化后的轨迹曲率更加平滑。
上述方案中,初始点列的方向角
Figure BDA0001198823930000062
其中,Δy=yn-yn-1,Δx=xn-xn-1
上述方案中,初始点列的曲率k=Δθ/Δs,其中,
Figure BDA0001198823930000063
Δ6=θnn-1
上述方案中,基于计算得到的所述初始点列的曲率,确定关键点列包括:当曲率k在0.05-0.15之间时,确定该点列为关键点列。
图2是本发明一种实施方式的驾驶轨迹优化方法确定关键点列示意图。如图2所示,在轨迹的起点1和终点4被确定为关键点列,曲率k在0.05-0.15之间的点2和3被确定为弯道的入弯点和出弯点,被确定为关键点列;在进行拟合运算时,以点1为起点,按照点2到点1的距离s,根据上述函数对点2进行拟合,而后按照点3到点1的距离s,根据上述函数对点3进行拟合,直至对点4的拟合运算结束,本次驾驶轨迹的拟合运算结束,实现对当前关键点列的根据s、θ、k进行拟合的运算。对该轨迹进行三次拟合运算,分别设置不同的a、b、c和d参数值,最终根据三次拟合运算得到的终点与初始轨迹的终点4进行比较,误差最小的一次拟合运算得到的轨迹最终确定为优化的驾驶轨迹。图4和图5分别为优化前和优化后的驾驶轨迹的曲率示意曲线,从图5可见,优化后的曲率更加平滑,有效消除抖动。
上述方案中,例如还包括:对轨迹起点和终点做均值处理,因在起点和终点的停车时间较长,采样的点数较多,传感器的误差将造成采集数据的噪声,对起点和终点进行均值处理,可有效消除传感器噪声对轨迹的影响。
图5是本发明一种实施方式的驾驶轨迹优化系统。如图2所示,该系统包括:获取装置10,用于获取所述驾驶轨迹的初始点列信息;计算装置20,用于对所述初始点列信息进行计算,得到所述初始点列的坐标值、曲率k和方向角θ;处理装置30,用于基于计算得到的所述初始点列的曲率,确定曲率处于预设范围内的点列作为关键点列;其中,所述计算装置20还被配置为:从所述关键点列的起点向终点对所述关键点列进行若干次曲线拟合运算,将所述若干次曲线拟合运算得到的终点与所述关键点列的终点比较,确定所述拟合后的曲线的终点与所述关键点列的终点误差最小的拟合曲线为最终的驾驶优化轨迹,其中误差包括位置误差和角度误差。
上述方案中,计算装置20从所述关键点列的起点向终点对所述关键点列进行曲线拟合运算的函数为Spiralfit(start,goal,s),包括如下公式:
Figure BDA0001198823930000071
Figure BDA0001198823930000072
k(s)=u(s) (2)
u(s)=a*s3+b*s2+c*s+d (1)
其中,start为所述关键点列的起点,start=[xs,ys,θs,ks],xs为所述起点的横坐标,ys为所述起点的纵坐标,θs为所述起点的方向角,ks为所述起点的曲率;goal为所述关键点列的终点,goal=[xg,yg,θg,kg],xg为所述终点的横坐标,yg为所述终点的纵坐标,θg为所述终点的方向角,kg为所述终点的曲率;s为所述关键点列内的点与所述关键点列的起点之间的距离;a、b、c和d为拟合运算参数。
上述方案中,所述计算装置20计算所述初始点列的方向角θ的公式为:
Figure BDA0001198823930000081
其中,Δy=yn-yn-1,Δx=xn-xn-1
上述方案中,所述计算装置20计算所述初始点列的曲率k的公式为:k=Δθ/Δs;其中,
Figure BDA0001198823930000082
Δθ=θnn-1
上述方案中,所述处理装置30基于计算得到的所述初始点列的曲率,确定关键点列包括:当曲率k在0.05-0.15之间时,确定该点列为关键点列,当曲率在0.05-0.05之间的点列是为弯道,作为驾驶轨迹的关键点列。
上述方案的驾驶轨迹优化系统,消除测量数据的噪声,使驾驶轨迹平滑,根据得到的优化驾驶轨迹控制驾驶,有效降低驾驶控制器设计难度,提高车辆运行性能。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (3)

1.一种驾驶轨迹优化系统,该系统包括:
获取装置,用于获取所述驾驶轨迹的初始点列信息;
计算装置,用于对所述初始点列信息进行计算,得到所述初始点列的坐标值、曲率k和方向角θ;
处理装置,用于基于计算得到的所述初始点列的曲率,确定曲率处于预设范围内的点列作为关键点列;其中,
所述计算装置还被配置为:从所述关键点列的起点向终点对所述关键点列进行若干次曲线拟合运算,将所述若干次曲线拟合运算得到的终点与所述关键点列的终点比较,确定所述拟合后的曲线的终点与所述关键点列的终点误差最小的拟合曲线为最终的驾驶优化轨迹,
其中,所述计算装置从所述关键点列的起点向终点对所述关键点列进行曲线拟合运算的函数为Spiralfit(start,goal,s),包括如下公式:
Figure FDA0004110780220000011
Figure FDA0004110780220000012
k(s)=u(s) (2)
u(s)=a*s3+b*s2+c*s+d (1)
其中,start为所述关键点列的起点,start=[xs,yss,ks],xs为所述关键点列的起点的横坐标,ys为所述关键点列的起点的纵坐标,θs为所述关键点列的起点的方向角,ks为所述关键点列的起点的曲率;
goal为所述关键点列的终点,goal=[xg,ygg,kg],xg为所述关键点列的终点的横坐标,yg为所述关键点列的终点的纵坐标,θg为所述关键点列的终点的方向角,kg为所述关键点列的终点的曲率;
s为所述关键点列内的点与所述关键点列的起点之间的距离;
a、b、c和d为拟合运算参数。
2.根据权利要求1所述的系统,其中,所述计算装置计算所述初始点列的方向角
Figure FDA0004110780220000021
其中,Δy=yn-yn-1,Δx=xn-xn-1
3.根据权利要求2所述的系统,其中,所述计算装置计算所述初始点列的曲率k=Δθ/Δs
其中,
Figure FDA0004110780220000022
Δθ=θnn-1
CN201611255410.6A 2016-12-30 2016-12-30 驾驶轨迹优化系统 Active CN108268960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611255410.6A CN108268960B (zh) 2016-12-30 2016-12-30 驾驶轨迹优化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611255410.6A CN108268960B (zh) 2016-12-30 2016-12-30 驾驶轨迹优化系统

Publications (2)

Publication Number Publication Date
CN108268960A CN108268960A (zh) 2018-07-10
CN108268960B true CN108268960B (zh) 2023-06-02

Family

ID=62754605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611255410.6A Active CN108268960B (zh) 2016-12-30 2016-12-30 驾驶轨迹优化系统

Country Status (1)

Country Link
CN (1) CN108268960B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108268027B (zh) * 2016-12-30 2021-09-17 法法汽车(中国)有限公司 驾驶轨迹优化方法及优化系统
CN110160541B (zh) 2018-08-06 2022-02-22 腾讯大地通途(北京)科技有限公司 运动轨迹的重构方法和装置、存储介质、电子装置
CN111174793B (zh) * 2020-01-17 2021-11-30 北京市商汤科技开发有限公司 路径规划方法及装置、存储介质
CN116594659B (zh) * 2023-07-18 2023-09-29 苏州浪潮智能科技有限公司 一种车载域控制器程序优化系统、方法、装置及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591332B (zh) * 2011-01-13 2014-08-13 同济大学 用于无人驾驶汽车局部路径规划的装置及方法
CN103902086A (zh) * 2012-12-28 2014-07-02 北京汇冠新技术股份有限公司 一种基于曲线拟合的触摸轨迹平滑方法及系统
EP2843364B1 (en) * 2013-08-30 2019-10-23 The Boeing Company Method and system for estimating aircraft course
CN103592665B (zh) * 2013-11-15 2017-09-22 厦门雅迅网络股份有限公司 基于b样条曲线的车载终端定位轨迹拟合方法
CN108268027B (zh) * 2016-12-30 2021-09-17 法法汽车(中国)有限公司 驾驶轨迹优化方法及优化系统

Also Published As

Publication number Publication date
CN108268960A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
CN108268960B (zh) 驾驶轨迹优化系统
CN106080598B (zh) 实时预期速度控制
US20150355641A1 (en) Lane changing apparatus and method of autonomous vehicle
JP4869858B2 (ja) 車両の走行制御システム
JP5522157B2 (ja) 先行車判定装置および車間制御装置
JP6600446B2 (ja) 車両制御装置、及びプログラム
CN106314423A (zh) 车辆行驶控制装置
US20150353082A1 (en) Unified motion planning algorithm for autonomous driving vehicle in obstacle avoidance maneuver
CN108268027B (zh) 驾驶轨迹优化方法及优化系统
KR102086270B1 (ko) 주행 제어 장치의 제어 방법 및 주행 제어 장치
US10162361B2 (en) Vehicle control device
WO2014171073A1 (ja) カーブ形状モデル化装置、車両情報処理システム、カーブ形状モデル化方法、及びカーブ形状モデル化プログラム
US20180029602A1 (en) Control system and control method for selecting and tracking a motor vehicle
JP6776202B2 (ja) 車載カメラのキャリブレーション装置及び方法
US8874322B2 (en) Vehicle steering controller
JP2016206976A (ja) 車両の運転支援制御のための先行車軌跡算出装置
CN115123233A (zh) 规划车辆轨迹的方法和装置
KR102303230B1 (ko) 차량의 곡률 반경 추정장치 및 그 방법
US20180032083A1 (en) Control system and control method for selecting and tracking a motor vehicle
CN113415274B (zh) 自动驾驶的跟车轨迹规划系统、方法、车辆及存储介质
US9714035B2 (en) Deceleration control system, method, and computer-readable medium
CN108268022A (zh) 自动驾驶汽车航向跟踪控制器性能评估方法
CN108195387A (zh) Ar-hud导航系统及其gps数据校验修正方法
CN107167146B (zh) 一种返回式飞行器离轨制动末期指令姿态确定方法
US20240270257A1 (en) Vehicle, Device, Computer Program and Method for Estimating a Road Profile

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20180713

Address after: 511458 9, Nansha District Beach Road, Guangzhou, Guangdong, 9

Applicant after: Rui Chi Intelligent Automobile (Guangzhou) Co.,Ltd.

Address before: 100026 8 floor 909, 105 building 3, Yao Yuan Road, Chaoyang District, Beijing.

Applicant before: Lexus Automobile (Beijing) Co.,Ltd.

TA01 Transfer of patent application right
CB02 Change of applicant information

Address after: 511458 9, Nansha District Beach Road, Guangzhou, Guangdong, 9

Applicant after: Evergrande Faraday Future Smart Car (Guangdong) Co.,Ltd.

Address before: 511458 9, Nansha District Beach Road, Guangzhou, Guangdong, 9

Applicant before: Rui Chi Intelligent Automobile (Guangzhou) Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20190319

Address after: 100015 Building No. 7, 74, Jiuxianqiao North Road, Chaoyang District, Beijing, 001

Applicant after: FAFA Automobile (China) Co.,Ltd.

Address before: 511458 9, Nansha District Beach Road, Guangzhou, Guangdong, 9

Applicant before: Evergrande Faraday Future Smart Car (Guangdong) Co.,Ltd.

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant