WO2018123952A1 - 金属-樹脂複合体及びその利用 - Google Patents

金属-樹脂複合体及びその利用 Download PDF

Info

Publication number
WO2018123952A1
WO2018123952A1 PCT/JP2017/046393 JP2017046393W WO2018123952A1 WO 2018123952 A1 WO2018123952 A1 WO 2018123952A1 JP 2017046393 W JP2017046393 W JP 2017046393W WO 2018123952 A1 WO2018123952 A1 WO 2018123952A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
particles
resin
analyte
resin composite
Prior art date
Application number
PCT/JP2017/046393
Other languages
English (en)
French (fr)
Inventor
靖 榎本
松村 康史
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to EP17886839.4A priority Critical patent/EP3564675A4/en
Priority to KR1020197019716A priority patent/KR102640613B1/ko
Priority to JP2018559447A priority patent/JP7265357B2/ja
Priority to US16/474,549 priority patent/US20190367694A1/en
Priority to CN201780081371.9A priority patent/CN110140053A/zh
Publication of WO2018123952A1 publication Critical patent/WO2018123952A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/20Polymers characterized by their physical structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a metal-resin complex that can be preferably used for, for example, immunological measurement, a labeled substance, an immunological measurement method, an immunological measurement reagent, an analyte measurement method, an analyte, and the like.
  • the present invention relates to a light measurement kit and a test strip for lateral flow chromatography.
  • immunoassay This is also called an immunological measurement method, and is a method for qualitatively and quantitatively analyzing a trace component by utilizing a specific reaction between an antigen and an antibody, which is one of immune reactions.
  • the antigen-antibody reaction is widely used in the above field because of its high sensitivity and high selectivity of the reaction.
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • CLIA chemiluminescence immunoassay
  • FIA fluorescence immunoassay
  • LIA latex agglutination
  • ICA immunochromatography
  • HA hemagglutination method
  • HI hemagglutination inhibition method
  • an antigen or antibody is detected qualitatively or quantitatively from a change (a change in the concentration of the antigen, antibody or complex) when the antigen reacts with the antibody to form a complex.
  • a change a change in the concentration of the antigen, antibody or complex
  • the detection sensitivity is increased by binding a labeling substance to the antibody, antigen or complex. Therefore, it can be said that the labeling ability of the labeling substance is an important factor affecting the detection ability in the immunoassay.
  • red blood cells in the case of HA
  • latex particles in the case of LIA
  • fluorescent dyes in the case of FIA
  • radioactive elements in the case of RIA
  • enzymes in the case of EIA
  • Chemiluminescent materials in the case of CLIA
  • colored fine particles when used as the labeling substance, detection can be confirmed by visual observation without using a special analyzer, so that simpler measurement is expected.
  • colored fine particles include colloidal particles of metals and metal oxides, latex particles colored with a pigment, and the like (Patent Document 1, Patent Document 4 and the like).
  • Patent Document 1 Patent Document 4 and the like.
  • the color tone of the colloidal particles is determined depending on the particle diameter and preparation conditions, it is difficult to obtain a desired vivid dark color tone, that is, there is a problem that visibility is insufficient.
  • the colored latex particles have a problem that the coloring effect by the coloring matter is low and the visual judgment is insufficient.
  • the labeling substance is further modified with other metals.
  • An immunochromatographic method for amplifying a substance detection sensitivity is disclosed (Patent Documents 2 and 5).
  • Patent Documents 2 and 5 An immunochromatographic method for amplifying a substance detection sensitivity is disclosed (Patent Documents 2 and 5).
  • the operation is complicated and stable amplification is difficult.
  • the measurement cost is high, for example, a special device is required, it is considered that applicable applications and use environments are limited.
  • the colored latex which consists of a gold nanoparticle couple
  • the gold nanoparticles themselves serve as a colorant to improve visual judgment and detection sensitivity.
  • gold nanoparticles themselves are excellent in binding to antigens or antibodies, it is said that even if gold nanoparticles are bound to a sufficiently dark color, a sufficient amount of antigens or antibodies can be bound. Yes.
  • the colored latex is one in which gold nanoparticles are bonded to the surface of the latex by irradiating a dispersion of HAuCl, which is a precursor of styrene-acrylic acid copolymer latex and gold nanoparticles, with gamma rays.
  • HAuCl a precursor of styrene-acrylic acid copolymer latex and gold nanoparticles
  • Patent Document 3 discloses preferable ranges of the latex diameter and the gold nanoparticle diameter. However, it is not clear whether the examples have been verified in these preferable ranges, and there is almost no disclosure of conditions suitable for implementation, such as no basis for defining the preferable ranges.
  • Patent Document 4 discloses polymer latex particles coated with metallic gold, suggesting application to reagents that can be used in microscopy and immunoassay methods.
  • the polymer latex particles coated with the above metal gold do not disclose the material and particle size of the polymer latex particles. Furthermore, there is no verification of the effect as a reagent that can be used in immunoassay methods. Therefore, the effect as a reagent in metal gold and polymer latex particles is unknown.
  • Non-Patent Document 1 discloses a microgel in which gold nanoparticles are supported on poly-2-vinylpyridine latex particles, and the pH responsiveness of the particle size of the microgel is determined based on the localized surface plasmon of the gold nanoparticles. This is confirmed from the change in resonance behavior.
  • gold nanoparticles are supported in a single layer near the surface layer of the latex particles. Therefore, it is considered that the amount of gold nanoparticles supported is small and a dark color tone effective for immunoassay cannot be obtained.
  • the material, structure, composition, etc. of the microgel have not been studied, and the effect on specific uses such as reagents for immunological measurement is unknown.
  • Patent Document 5 composite fine particles including metal core ultrafine particles and a polymer having a metal ion coordinating group and surrounding the metal core ultrafine particles are disclosed. Application to various fields is suggested. Also, in the Examples, composite fine particles are disclosed in which gold nanoparticles obtained by reducing chloroauric acid are surrounded by crosslinked fine particles of a vinylpyridine-divinylbenzene copolymer. However, the detailed structure and physical properties of the composite fine particles have not been studied, and the effect on specific uses such as immunological measurement reagents is unknown.
  • latex particles to which gold nanoparticles are bound or coated are expected as reagents for immunological measurement, but the durability and visibility are not sufficient with conventional techniques. Moreover, even if the visibility is high, applicable applications and use environments are limited.
  • a metal-resin complex As a labeling substance in immunological measurement, it is necessary to stably bind to a ligand such as an antigen or an antibody or a blocking agent.
  • a ligand such as an antigen or an antibody or a blocking agent.
  • excellent detection sensitivity is not always obtained even if a stable binding state can be formed.
  • a fine metal-resin composite tends to aggregate.
  • aggregation occurs, not only the handling property is significantly reduced, but also the concentration of the metal-resin complex as the labeling substance may be uneven, and the detection sensitivity may be greatly reduced.
  • antigens, antibodies and blocking agents used in immunological measurements include various types such as proteins, synthetic polymers, low molecular weight compounds, strong anionic properties (eg casein), cation Some have strong sexual properties (eg whey whey). Therefore, if there is a labeling substance that can use all these antigens and antibodies, it is very preferable for reasons such as reduction in material costs.
  • the object of the present invention is to provide a metal--which is less likely to aggregate when bound to a ligand such as an antigen or antibody, or a blocking agent, has excellent handling properties, and can be applied to many types of antigens, antibodies and blocking agents. It is an object of the present invention to provide a resin complex, for example, to provide a metal-resin complex for immunological measurement that enables highly sensitive determination in immunological measurement.
  • the metal-resin composite of the present invention is a metal-resin composite having resin particles and a plurality of metal particles fixed to the resin particles, and has a zeta potential in the range of pH 3 to pH 10.
  • the maximum value is 5 mV or more and the minimum value is ⁇ 5 mV or less.
  • the difference between the maximum value and the minimum value of the zeta potential may be 20 mV or more in the range of pH 3 to pH 10.
  • the zero charge point of the zeta potential exists in the range of pH 3.5 to pH 9.0.
  • the average particle diameter of the metal particles may be in the range of 1 nm to 100 nm.
  • the metal-resin composite of the present invention may have an average particle diameter in the range of 30 nm to 1000 nm.
  • the resin particles may be polymer particles having a structure having a substituent capable of adsorbing metal ions.
  • the metal particles may be particles of gold, platinum, palladium, silver, nickel, copper, or an alloy thereof.
  • the labeling substance of the present invention includes any one of the above metal-resin composites.
  • an antigen or antibody may be used by adsorbing on the surface of the metal-resin complex.
  • the immunological measurement method of the present invention uses any of the above-mentioned labeling substances.
  • the reagent for immunological measurement of the present invention comprises any one of the above metal-resin complexes.
  • the method for measuring an analyte of the present invention is a method for detecting or quantifying an analyte contained in a sample.
  • This analyte measurement method uses a lateral flow type chromatographic test strip including a membrane and a determination part in which a capture ligand that specifically binds to the analyte is immobilized on the membrane.
  • the analyte measurement kit of the present invention is an analyte measurement kit for detecting or quantifying an analyte contained in a sample.
  • This analyte measurement kit includes a membrane, a test strip for lateral flow type chromatography including a determination part in which a capture ligand that specifically binds to the analyte is immobilized on the membrane, and a specific to the analyte. And a detection reagent containing a labeled antibody labeled with any of the above metal-resin complexes.
  • the test strip for lateral flow chromatography of the present invention is for detecting or quantifying an analyte contained in a sample.
  • the lateral flow type chromatographic test strip includes a membrane, a determination unit in which a capture ligand that specifically binds to the analyte is fixed to the membrane in a direction in which the sample is developed, and a determination unit. And a reaction part containing a labeled antibody obtained by labeling an antibody that specifically binds to the analyte with any one of the metal-resin complexes on the upstream side.
  • the metal-resin composite of the present invention has a specific zeta potential, it can interact with various substances regardless of whether it is anionic or cationic. Therefore, it is excellent in dispersibility when bound to many types of ligands such as antigens and antibodies, and blocking agents, and aggregation is unlikely to occur.
  • the “zeta potential” means the potential of the sliding surface of the electric double layer formed around the metal-resin complex in an acidic solution or an alkaline solution. For example, by the electrophoretic light scattering method, It is measured as a potential difference between an electrically neutral region sufficiently separated from the metal-resin composite and the sliding surface.
  • the metal-resin composite of the present invention since the metal-resin composite of the present invention has a structure in which a plurality of metal particles are immobilized on resin particles, the amount of metal particles supported is large, and the metal particles are not easily detached from the resin particles. Furthermore, in addition to localized surface plasmon resonance, metal particles exhibit light energy absorption due to electronic transition. Therefore, the metal-resin composite of the present invention is excellent in handling property, durability, visibility, visual judgment property, and detection sensitivity.
  • labeling substances for immunological measurement such as EIA, RIA, CLIA, FIA, LIA, PA, ICA, HA, HI
  • reagents for immunological measurement pharmaceuticals, solid catalysts, pigments, paints, conductive materials
  • the handling property, durability and visibility are excellent, non-specific reaction is suppressed, and various antigens and antibodies are specially selected. High-sensitivity determination is possible without the need for additional equipment or work processes.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a metal-resin composite according to an embodiment of the present invention. It is a schematic diagram showing a cross-sectional structure of one embodiment of a metal-resin composite. It is a schematic diagram which shows the structure of the cross section of another aspect of a metal-resin composite. It is explanatory drawing which shows the outline
  • mold chromatography which concerns on one embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view of a metal-resin composite according to an embodiment of the present invention.
  • the metal-resin composite 100 includes resin particles 10 and metal particles 20.
  • the metal particles 20 are fixed to the resin particles 10.
  • the resin particles 10 are preferably particles that are relatively larger than the metal particles 20. That is, in the metal-resin composite 100, a large number of relatively small metal particles 20 are fixed to the large resin particles 10.
  • the relationship between the particle diameter D1 of the entire metal-resin composite 100, the particle diameter D2 of the resin particle 10, and the particle diameter D3 of the metal particle 20 is D1> D2> D3. .
  • the dispersion state of the metal particles 20 in the resin particles 10 is not limited.
  • the metal particles 20 may be two-dimensionally distributed on the surface of the resin particles 10, or the metal particles 20 may be included in the resin particles 10.
  • a plurality of metal particles 20 may contact each other to form a continuous film on the surface of the resin particle 10.
  • a core-shell structure in which the resin particles 10 are shells and the metal particles 20 are cores may be formed.
  • a part of the metal particles 20 may be three-dimensionally distributed in the surface layer portion 60 of the resin particle 10.
  • a part of the three-dimensionally distributed metal particles 20 may be partially exposed outside the resin particles 10, and the remaining part may be included in the resin particles 10.
  • metal particles 20 that are completely encapsulated in the resin particles 10 (hereinafter, also referred to as “encapsulated particles 30”) are embedded in the resin particles 10.
  • Metal particles (hereinafter also referred to as “partially exposed particles 40”) having exposed portions and portions exposed to the outside of the resin particles 10, and metal particles adsorbed on the surface of the resin particles 10 (hereinafter referred to as “surface adsorbed particles 50”). Is also present.) Is preferably present.
  • the surface of the resin particle 10 or the surface of the partially exposed particle 40 or the surface adsorbed particle 50 has an antigen
  • An antibody or a blocking agent is immobilized and used.
  • the antigen, antibody or blocking agent is immobilized on the partially exposed particles 40 and the surface adsorbed particles 50, while it is difficult to immobilize on the encapsulated particles 30.
  • all of the partially exposed particles 40, the surface adsorbed particles 50, and the encapsulated particles 30 exhibit light energy absorption by electronic transition in addition to the localized surface plasmon resonance.
  • the encapsulated particles 30 also contribute to improving the visibility of the immunological measurement labeling substance and the immunological measurement reagent. Furthermore, since the partially exposed particles 40 and the encapsulated particles 30 have a larger contact area with the resin particles 10 than the surface adsorbed particles 50, an anchor effect or the like due to the embedded state is exhibited, so that physical adsorption The force is strong and it is difficult to detach from the resin particles 10. In addition, the antigen, antibody, or blocking agent adsorbed on the partially exposed particles 40 or the surface adsorbed particles 50 is not easily detached because it is coordinated with the metal. Therefore, the durability and stability of the immunological measurement labeling substance and the immunological measurement reagent using the metal-resin complex 100 can be improved.
  • labeling substance for immunological measurement
  • reagent a reagent for immunological measurement
  • the metal-resin composite 100 has a maximum zeta potential value of 5 mV or more and a minimum value of ⁇ 5 mV or less (first characteristic).
  • first characteristic When the zeta potential is within this range, in an acidic environment (for example, when dispersed in a dispersion medium having a pH of less than 7), the metal-resin complex 100 has a cationic functional group on the surface of the complex. , Positively charged.
  • the metal-resin complex 100 in a basic environment (for example, when dispersed in a dispersion medium exceeding pH 7), the metal-resin complex 100 has an anionic functional group on the surface of the complex and is negatively charged.
  • the metal-resin complex 100 corresponds to the pH of the dispersion medium (binding buffer) and is suitable for binding the antigen, antibody or blocking agent. Charge state. Specifically, in an acidic environment, it can bind to a strong anionic antigen or antibody, and in a basic environment, it can bind to a strong cationic antigen or antibody. That is, the metal-resin complex 100 can stably bind to any antigen or antibody regardless of anionicity or cationicity. Therefore, durability, stability, and versatility as a labeling substance for immunological measurement and a reagent for immunological measurement are high.
  • the maximum value of the zeta potential is less than 5 mV or the minimum value exceeds -5 mV, the dispersibility of the metal-resin composite 100 due to electrostatic repulsion is poor, and the metal-resin composite 100 itself tends to aggregate. turn into. Therefore, it becomes difficult to handle as a labeling substance for immunological measurement and a reagent for immunological measurement, which is disadvantageous. From this viewpoint, it is preferable that the maximum value of the zeta potential is large, and it is preferable that the minimum value is small.
  • the maximum value of the zeta potential is preferably 10 mV or more, and more preferably 20 mV or more.
  • the minimum value of the zeta potential is preferably ⁇ 10 mV or less, and more preferably ⁇ 20 mV or less.
  • the difference between the maximum value and the minimum value of the zeta potential is preferably 20 mV or more in the range of pH 3 to pH 10 (second characteristic). More preferably, it is 40 mV or more, and still more preferably 60 mV or more.
  • the metal-resin composite 100 preferably has the zero charge point of the zeta potential in the range of pH 3.5 to pH 9.0 (third characteristic).
  • the zero charge point is a point where the zeta potential is plus or minus zero. If the zero charge point is within the above range, the surface charge of the metal-resin complex 100 is broadly charged in both positive and negative polarities in a weakly acidic to weakly basic environment where molecular biochemical reactions are usually performed. It is possible and preferable.
  • the third characteristic is satisfied in addition to the first characteristic and the second characteristic, the zeta potential is changed from the plus side to the minus side or from the minus side in the range of pH 3.5 to pH 9.0.
  • the encapsulated particles 30 are all covered with the resin constituting the resin particles 10 on the entire surface.
  • the partially exposed particles 40 are such that 5% or more and less than 100% of the surface area is covered with the resin constituting the resin particles 10.
  • the lower limit thereof is preferably 20% or more, more preferably 30% or more of the surface area.
  • the surface adsorbing particles 50 are covered with a resin constituting the resin particles 10 in a range of more than 0% and less than 5% of the surface area.
  • the loading amount of the metal particles 20 (the total of the encapsulated particles 30, the partially exposed particles 40 and the surface adsorption particles 50) on the metal-resin composite 100 is 3 wt% with respect to the weight of the metal-resin composite 100. It is preferably ⁇ 80 wt%. Within this range, the metal-resin composite 100 is excellent in visibility as a labeling substance, visual judgment and detection sensitivity. When the loading amount of the metal particles 20 is less than 3 wt%, the amount of antibody or antigen immobilized is decreased, and the detection sensitivity tends to decrease.
  • the loading amount of the metal particles 20 exceeds 80 wt%, the particle diameter of the metal particles 20 is remarkably increased, and the light absorption characteristics of the metal particles 20 tend to be lowered.
  • the loading amount of the metal particles 20 is more preferably 15 wt% to 70 wt%, and further preferably 15 wt% to 60 wt%.
  • 10 wt% to 90 wt% of the metal particles 20 are preferably partially exposed particles 40 and surface adsorbed particles 50. If it is this range, since the fixed quantity of the antibody or antigen on the metal particle 20 can be ensured sufficiently, the sensitivity as a labeling substance is high. More preferably, 20 wt% to 80 wt% of the metal particles 20 are the partially exposed particles 40 and the surface adsorbed particles 50, and from the viewpoint of durability of the immunological measurement labeling substance and the immunological measurement reagent, the surface adsorption More preferably, the particle 50 is 20 wt% or less.
  • 60 wt% to 100 wt%, preferably 75 to 100 wt% of the metal particles 20 is more preferable.
  • 5 wt% to 90 wt% of the metal particles 20 existing on the surface layer portion 60 are partially exposed particles 40 or surface adsorbed particles 50, so that a sufficient amount of antibody or antigen can be immobilized on the metal particles 20.
  • This is preferable because the sensitivity as a labeling substance is increased.
  • 10 wt% to 95 wt% of the metal particles 20 present in the surface layer portion 60 are the encapsulated particles 30.
  • the “surface layer portion” refers to the surface of the resin particle 10 on the basis of the outermost position of the metal-resin composite 100 (that is, the protruding end portion of the partially exposed particle 40 or the surface adsorbed particle 50). Means a range of 50% of the particle radius in the depth direction.
  • the “three-dimensional distribution” means that the metal particles 20 are dispersed not only in the surface direction of the resin particles 10 but also in the depth direction.
  • the metal-resin composite 100 has a distribution in which the encapsulated particles 30 are concentrated in a certain range in the depth direction from the surface of the resin particles 10 as shown in FIG. 2A, for example. However, it is preferable that the encapsulated particles 30 are not present near the center of the resin particles 10.
  • the particle diameter D2 of the resin particle 10 is 800 nm
  • 70 wt% or more, preferably 80 wt% or more, more preferably 90 to 100 wt% of the encapsulated particles 30 may be present in the depth direction from the surface of the resin particle 10, for example, within a range of 0 to 200 nm.
  • the region (encapsulated particle distribution region) in which all (100 wt%) of the encapsulated particles 30 are distributed is within a range of, for example, 0 to 100 nm from the surface of the resin particle 10, the localized surface plasmon by the encapsulated particles 30 is used.
  • expression of light energy absorption due to electronic transition can be maximized, which is preferable.
  • the metal-resin composite 100 does not have to include the encapsulated particles 30.
  • all of the metal particles 20 may be fixed to the surface of the resin particle 10 without overlapping in the radial direction of the resin particle 10.
  • the metal particles 20 are composed of partially exposed particles 40 and surface adsorbed particles 50.
  • the resin particle 10 is preferably a polymer particle having a substituent capable of adsorbing metal ions in its structure.
  • suck anionic ion is mentioned.
  • a nitrogen-containing polymer is particularly preferable.
  • the nitrogen atom in the nitrogen-containing polymer is chemically anionic ions such as [AuCl 4 ] ⁇ and [PtCl 6 ] 2 ⁇ which are precursors of the metal particles 20 that have excellent visibility and can easily immobilize antigens or antibodies. It is preferable because it is easily adsorbed.
  • the metal ions adsorbed in the nitrogen-containing polymer are reduced to form the metal particles 20, so that a part of the generated metal particles 20 becomes the encapsulated particles 30 or the partially exposed particles 40.
  • Gold particles are formed when [AuCl 4 ] ⁇ is used, and platinum particles are formed when [PtCl 6 ] 2 ⁇ is used.
  • anionic ions such as palladium, silver, nickel and copper can also be used.
  • a carboxylic acid group-containing polymer such as an acrylic acid polymer and a sulfonic acid group-containing polymer such as polystyrene sulfonic acid (hereinafter collectively referred to as “polymer capable of adsorbing cationic ions”) include carboxylic acid contained therein.
  • a group and a sulfonic acid group are preferable because cationic ions such as Au + and Pt 2+ can be chemisorbed.
  • metal particles 20 in this case, gold particles or platinum particles
  • cationic ions that are precursors of metals such as palladium, silver, nickel, and copper can be used.
  • the polymer capable of adsorbing the anionic ions is cationic and thus functions to make the zeta potential of the metal-resin composite 100 in the acidic environment positive.
  • the polymer capable of adsorbing cationic ions is anionic, it functions to make the zeta potential of the metal-resin complex 100 in the basic environment negative.
  • resin particles other than the nitrogen-containing polymer having a substituent capable of adsorbing metal ions in its structure for example, polystyrene or the like can also be used.
  • the metal ions are relatively difficult to adsorb inside the resin.
  • most of the generated metal particles 20 become the surface adsorption particles 50.
  • the surface adsorption particles 50 have a small contact area with the resin particles 10, the adhesive force between the resin and the metal is small, and the metal particles 20 tend to be detached from the resin particles 10.
  • the nitrogen-containing polymer is a resin having a nitrogen atom in the main chain or side chain, and examples thereof include polyamine, polyamide, polypeptide, polyurethane, polyurea, polyimide, polyimidazole, polyoxazole, polypyrrole, and polyaniline.
  • Preferred are polyamines such as poly-2-vinylpyridine, poly-3-vinylpyridine, poly-4-vinylpyridine, and the like.
  • an acrylic resin, a phenol resin, an epoxy resin, etc. can be used widely.
  • the polymer capable of adsorbing the cationic ions is a resin having a carboxylic acid group, a sulfonic acid group or the like in the main chain or side chain.
  • the polymer capable of adsorbing anionic ions such as the nitrogen-containing polymer and the polymer capable of adsorbing cationic ions may be a copolymer with a known polymerizable monomer.
  • examples of the copolymer include a random copolymer, a block copolymer, an alternating copolymer, and a polymer in which the polymers are crosslinked. Further, two or more types of monomers may be copolymerized to form the resin particle 10, or the monomer may be reacted with a functional group present on the surface of the resin particle 10 and further polymerized as a polymerization active terminal. good.
  • the copolymer composition is not limited, but the monomer containing a substituent capable of adsorbing the metal ion is preferably 10 mol% or more.
  • the polymerizable monomer can be selected without limitation depending on the use of the metal-resin composite 100.
  • a polymerizable monomer having properties as a surfactant can be used in applications for improving the shape, size uniformity, and dispersion stability of the resin particles 10.
  • examples of such polymerizable monomers include polyethylene glycol methyl ether methacrylate and polyethylene glycol dimethacrylate.
  • the resin particle 10 when it has a hydrolyzable group such as an ester bond, it may be partially hydrolyzed by acid treatment or alkali treatment. Hydrolysis is preferable because a group capable of adsorbing a cationic ion such as a carboxyl group is generated on the surface of the resin particle 10 and an effect of adsorbing a metal ion is obtained.
  • a known acid can be used as the acid. From the viewpoint of promoting the hydrolysis reaction, strongly acidic hydrochloric acid, sulfuric acid and the like are preferable.
  • As the alkali a known alkali can be used. From the viewpoint of promoting the hydrolysis reaction, strong alkaline potassium hydroxide, sodium hydroxide aqueous solution and the like are preferable.
  • the metal-resin composite particle 100 functions to make the zeta potential negative in a basic environment. That is, when the resin particle 10 has a hydrolyzable group such as an ester bond, the zeta potential of the metal-resin composite 100 can be controlled by hydrolysis.
  • the metal particles 20 are made of gold, platinum, palladium, silver, nickel, copper, or an alloy thereof from the viewpoint of ease of complexation of a metal and a resin in a nano size. It is preferable that These metals can be used as a simple substance or a composite such as an alloy.
  • a gold alloy means an alloy composed of gold and a metal species other than gold and containing 10% by weight or more of gold.
  • a platinum alloy means an alloy made of platinum and a metal species other than platinum and containing 1 wt% or more of platinum.
  • gold, platinum and palladium are preferable because they are excellent in visibility and can easily immobilize antigens or antibodies. These are preferable because they express absorption derived from localized surface plasmon resonance. More preferably, it is gold with good storage stability or platinum excellent in detection sensitivity in immunological measurement.
  • platinum-resin composites that use platinum particles as metal particles are less likely to aggregate when bound to ligands such as antibodies. Excellent dispersibility.
  • platinum particles are resistant to alterations such as oxidation and are excellent in storage stability.
  • platinum particles exhibit absorption derived from localized surface plasmon resonance at a wide wavelength range of, for example, 250 nm to 900 nm, and exhibit strong color development close to black due to the development of light energy absorption due to electronic transition.
  • the platinum-resin composite is particularly preferable because it shows significantly higher detection sensitivity than the resin composite having particles of other metal species.
  • the platinum particles may be composed only of platinum, or may be an alloy of platinum and another metal.
  • platinum alloy other metal species that form an alloy with platinum are not particularly limited, but for example, silver, nickel, copper, gold, palladium, and the like are preferable.
  • gold-resin composites that use gold particles as metal particles are less likely to aggregate when bound to ligands such as antibodies. Excellent dispersibility. Furthermore, it is excellent in visibility and it is easy to immobilize an antigen or an antibody. In particular, by controlling the particle diameter of the gold particles and the interparticle distance between the gold particles, various colors such as red, purple, and blue are exhibited. Therefore, when the gold-resin complex is used as a labeling substance for immunochromatography, labeling substances of various colors can be obtained.
  • the average particle diameter of the metal particles 20 measured by observation with a scanning electron microscope (SEM) (that is, the average of the particle diameter D3 in FIG. 1) is preferably 1 to 100 nm, for example.
  • SEM scanning electron microscope
  • the average particle diameter of the metal particles 20 is less than 1 nm or exceeds 100 nm, the sensitivity tends to decrease because localized surface plasmon resonance and light energy absorption due to electronic transition are less likely to occur.
  • platinum particles are used as the metal particles 20, the average particle diameter of the platinum particles is preferably 1 nm or more and 50 nm or less from the viewpoint of obtaining high detection sensitivity as a labeling substance for immunological measurement and a reagent for immunological measurement.
  • the average particle diameter of the gold particles is preferably 1 nm or more and less than 70 nm from the viewpoint of obtaining high detection sensitivity as a labeling substance for immunological measurement and a reagent for immunological measurement. More preferably, it is 1 nm or more and less than 50 nm.
  • the average particle diameter of the metal-resin composite 100 (that is, the average of the particle diameter D1 in FIG. 1) is preferably 30 to 1000 nm, for example.
  • the average particle diameter of the metal-resin composite 100 is less than 30 nm, for example, the amount of the metal particles 20 supported tends to be small, so that coloring tends to be weaker than that of the metal particles 20 of the same size.
  • the pores of a chromatographic medium such as a membrane filter tend to be clogged, and the dispersibility tends to decrease.
  • the average particle size of the metal-resin complex 100 improves dispersibility when used as a labeling substance or reagent, and from the viewpoint of obtaining high detection sensitivity when the metal-resin complex 100 is used for immunological measurement.
  • they are 100 nm or more and 700 nm or less, More preferably, they are 250 nm or more and 650 nm or less, Most preferably, they are 280 nm or more and 600 nm or less.
  • the average particle diameter of the metal-resin complex 100 is 280 nm or more, excellent detection sensitivity can be stably obtained when the metal-resin complex 100 is used as a labeling substance for immunochromatography.
  • the particle size of the metal-resin composite 100 means a value obtained by adding the length of the protruding portion of the partially exposed particle 40 or the surface adsorbed particle 50 to the particle size of the resin particle 10, and laser diffraction / scattering. It can be measured by a method, a dynamic light scattering method, or a centrifugal sedimentation method.
  • the method for producing metal-resin composite 100 is not particularly limited.
  • a solution containing metal ions is added to a dispersion of resin particles 10 produced by an emulsion polymerization method, and the metal ions are adsorbed on the resin particles 10 (hereinafter referred to as “metal ion adsorption resin particles”).
  • metal ion adsorption resin particles the metal ion adsorption resin particles
  • the metal ions are reduced to generate the metal particles 20, and the metal-resin composite 100 can be obtained.
  • examples of the solution containing platinum ions include chloroplatinic acid (H 2 PtCl 6 ) aqueous solution, platinum chloride (PtCl 2 ) solution, and the like.
  • a platinum complex may be used instead of platinum ions.
  • examples of the solution containing gold ions include a chloroauric acid (HAuCl 4 ) aqueous solution.
  • a gold complex may be used in place of the gold ion.
  • water-containing alcohol or alcohol such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, t-butanol, alcohol, hydrochloric acid, sulfuric acid, nitric acid, instead of water
  • An acid such as the above may be used.
  • water-soluble polymer compounds such as polyvinyl alcohol, surfactants, alcohols; ethers such as tetrahydrofuran, diethyl ether, diisopropyl ether; alkylene glycol, polyalkylene glycol, these Additives such as various water-miscible organic solvents such as polyols such as monoalkyl ether or dialkyl ether, glycerol, etc .; ketones such as acetone and methyl ethyl ketone may be added. Such an additive is effective for accelerating the reduction reaction rate of metal ions and controlling the size of the metal particles 20 to be produced.
  • a well-known thing can be used for a reducing agent.
  • the reducing agent include sodium borohydride, dimethylamine borane, citric acid, sodium hypophosphite, hydrazine hydrate, hydrazine hydrochloride, hydrazine sulfate, formaldehyde, sucrose, glucose, ascorbic acid, erythorbic acid, phosphinic acid.
  • sodium, hydroquinone, Rochelle salt and the like can be mentioned.
  • sodium borohydride, dimethylamine borane, and citric acid are preferable.
  • a surfactant can be added to the reducing agent solution, and the pH of the solution can be adjusted.
  • the pH can be adjusted using, for example, a buffer such as boric acid or phosphoric acid, an acid such as hydrochloric acid or sulfuric acid, or an alkali such as sodium hydroxide or potassium hydroxide.
  • a buffer such as boric acid or phosphoric acid
  • an acid such as hydrochloric acid or sulfuric acid
  • an alkali such as sodium hydroxide or potassium hydroxide.
  • the particle size of the generated metal particles 20 can be controlled by adjusting the reduction rate of the metal ions according to the temperature of the reducing agent solution.
  • the metal ion adsorption resin particles may be added to the reducing agent solution, or the reducing agent may be added to the metal ion adsorption resin. Although it may be added to the particles, the former is preferable from the viewpoint of easy generation of the encapsulated particles 30 and the partially exposed particles 40.
  • the dispersibility of the metal-resin composite 100 in water for example, citric acid, poly-L-lysine, polyvinyl pyrrolidone, polyvinyl pyridine, polyvinyl alcohol, DISPERBYK194, DISPERBYK180, DISPERBYK184 (Big Chemy Japan)
  • a dispersant may be added.
  • the dispersibility can be maintained by adjusting the pH with a buffer such as boric acid or phosphoric acid, an acid such as hydrochloric acid or sulfuric acid, or an alkali such as sodium hydroxide or potassium hydroxide.
  • the metal-resin complex 100 having the above configuration is used as a labeling substance, for example, by adsorbing an antigen or an antibody on the surface of the metal particle 20, for example, EIA, RIA, CLIA, FIA, LIA, PA, ICA, HA. It is preferably applicable to immunological measurement methods such as HI. In particular, it can be preferably applied as a labeling substance for immunological measurement or a reagent for immunological measurement excellent in visual determinability in a low concentration region (high sensitivity region).
  • the form of the immunological measurement labeling substance or immunological measurement reagent is not particularly limited. For example, a dispersion in which the metal-resin complex 100 is dispersed in water or a pH-adjusted buffer. Can be used as
  • a method for adsorbing an antigen or antibody on the surface of the metal particle 20 is not particularly limited, and a known physical adsorption or chemical adsorption method can be used. Since the bond between the metal particles 20 and the antigen or antibody becomes strong, a method by chemical adsorption is preferred. Physical adsorption and chemical adsorption may be used in combination. As physical adsorption, for example, a method of immersing the metal-resin complex 100 in a buffer solution containing an antigen or antibody and incubating it, immersing the metal-resin complex 100 in a buffer solution, and further adding an antigen or antibody Methods and the like.
  • an SH group is introduced into an antigen or antibody and reacted with the metal-resin complex 100 to form a metal-SH bond.
  • Examples include a method of forming a chemical bond by succinimidylation and reacting with an antigen or an amino group of an antibody.
  • the compound that introduces a carboxyl group on the surface of the metal-resin composite 100 is, for example, a compound having both a functional group having a coordinate bond with a metal such as an amino group, SH group, carbonyl, amide, imide, and a carboxyl group. Is suitable.
  • the SH group is preferred as the functional group because of its strong coordinate bond with the metal, and examples of the compound having an SH group and a carboxyl group at both ends include mercaptopropionic acid, mercaptoundecanoic acid, mercaptolauric acid and the like. Is mentioned.
  • a polymer compound having a plurality of functional groups coordinated with a metal and a carboxyl group in one molecule is likely to obtain a stable bond with the metal-resin composite 100.
  • polyglutamic acid or polyaspartic acid which is a polypeptide of glutamic acid or aspartic acid, is more preferable as a polymer compound for introducing a carboxyl group into the surface of the metal-resin complex 100.
  • the carboxyl group introduced to the surface of the metal-resin composite 100 is anionic, it functions to make the zeta potential of the metal-resin composite 100 negative in the basic environment. That is, by introducing a carboxyl group into the surface of the metal-resin composite 100, the zeta potential of the metal-resin composite 100 can be controlled.
  • the reason why the characteristic behavior of the zeta potential appears in the metal-resin composite 100 of the present embodiment is that a “cationic functional group” is formed on the surface of the metal-resin composite particle 100 (or the resin particle 10). It has the point of having both “anionic functional groups”.
  • the polymer constituting the resin particle 10 is polyvinyl pyridine
  • the pyridine contained in the polyvinyl pyridine is a “cationic functional group”
  • a carboxyl group generated by hydrolysis of the resin particle 1 surface
  • the carboxyl group introduced into the metal-resin composite 100 by mercaptopropionic acid treatment, polyglutamic acid treatment or the like is an “anionic functional group”.
  • the pyridine nitrogen is positively charged in the state of NH + and the carboxyl group is uncharged in the state of COOH, so that the metal-resin composite 100 has a positive surface charge as a whole.
  • nitrogen pyridine becomes uncharged state of N, carboxyl group COO - to become a negatively charged state, the metal - resin complex 100, the surface charge becomes negative as a whole .
  • the zeta potential of the metal-resin composite 100 exhibits the above first to third characteristics.
  • the resin particle 10 is made of a polymer exhibiting cationic properties (for example, a polymer capable of adsorbing the anionic ions), and has an anionic property on the surface of the metal-resin composite 100 (or the resin particle 10).
  • a method of introducing a functional group The resin particles 10 are made of an anionic polymer (for example, a polymer capable of adsorbing the cationic ions), and the surface of the metal-resin composite 100 (or the resin particles 10) has a cationic property.
  • a method of introducing a functional group is introducing an anionic functional group and a cationic functional group on the surface of the metal-resin composite 100 (or the resin particle 10).
  • examples of the “anionic functional group” include a carboxyl group, a sulfonic acid group, and a phosphonic acid group. These anionic functional groups can be present on the surface of the resin particle 10 by selecting the polymer species.
  • examples of a preferable method for introducing an anionic functional group onto the surface of the metal-resin composite 100 (or the resin particle 10) include the following a) and b). a) A method of partially hydrolyzing the surface of the polymer constituting the resin particles 10 by acid treatment or alkali treatment.
  • examples of the polymer that generates an anionic functional group by hydrolysis include polyester and polyamide.
  • the metal-resin composite 100 is made of, for example, the above-mentioned “compound having both a functional group having a coordination bond with a metal and a carboxyl group” and an anionic property having a coordination bond with the metal.
  • Examples of the “cationic functional group” include nitrogen-containing groups such as a pyridinyl group and an amino group. These cationic functional groups can be present on the surface of the resin particle 10 by selecting the polymer species. Further, examples of a preferable method for introducing a cationic functional group onto the surface of the metal-resin composite 100 (or the resin particle 10) include the following c) and d). c) A method of partially hydrolyzing the surface of the polymer constituting the resin particles 10 by acid treatment or alkali treatment.
  • examples of the polymer that generates a cationic functional group by hydrolysis include polyamide.
  • a method in which the metal-resin composite 100 is treated with a compound (including a polymer compound) having both a functional group having a coordination bond with a metal and a nitrogen-containing group examples include 2-aminoethanethiol, 11-amino-1-undecanethiol hydrochloride It is preferable to use a salt or the like.
  • an analyte measurement method using the metal-resin complex 100 as a labeling substance, a lateral flow type chromatographic test strip, and an analyte detection / quantification kit will be described.
  • test strip for lateral flow chromatography
  • test strip 200 can be preferably used in the analyte measuring method of one embodiment of the present invention.
  • the test strip 200 includes a membrane 110.
  • the membrane 110 is provided with a sample addition unit 120, a determination unit 130, and a liquid absorption unit 140 in order in the sample development direction.
  • a membrane used as a membrane material in a general test strip can be applied.
  • the membrane 110 is formed of an inert substance (a substance that does not react with the analyte 160, various ligands, etc.) made of a microporous material that exhibits a capillary phenomenon and develops the sample at the same time as the sample is added. It is.
  • Specific examples of the membrane 110 include a fibrous or non-woven fibrous matrix composed of polyurethane, polyester, polyethylene, polyvinyl chloride, polyvinylidene fluoride, nylon, cellulose derivatives, etc., membrane, filter paper, glass fiber filter paper, cloth, Cotton etc. are mentioned.
  • membranes composed of cellulose derivatives and nylon, filter paper, glass fiber filter paper, etc. are preferably used, more preferably nitrocellulose membrane, mixed nitrocellulose ester (mixture of nitrocellulose and cellulose acetate) membrane, nylon membrane Filter paper is used.
  • the test strip 200 preferably includes a support that supports the membrane 110 in order to make the operation easier.
  • a support for example, plastic can be used.
  • the test strip 200 may have a sample adding unit 120 for adding a sample including the analyte 160.
  • the sample addition unit 120 is a part for receiving a sample including the analyte 160 in the test strip 200.
  • the sample addition unit 120 may be formed on the membrane 110 upstream of the determination unit 130 in the direction in which the sample is developed, or, for example, cellulose filter paper, glass fiber, polyurethane, polyacetate, cellulose acetate, nylon
  • a sample addition pad made of a material such as cotton cloth may be provided on the membrane 110 to constitute the sample addition unit 120.
  • a capture ligand 131 that specifically binds to the analyte 160 is fixed to the determination unit 130.
  • the capture ligand 131 can be used without particular limitation as long as it forms a specific bond with the analyte 160.
  • an antibody against the analyte 160 can be preferably used.
  • the capture ligand 131 is immobilized so as not to move from the determination unit 130 even when a sample is provided to the test strip 200.
  • the capture ligand 131 may be fixed directly or indirectly to the membrane 110 by physical or chemical bonding or adsorption.
  • the determination unit 130 is not particularly limited as long as the complex 170 including the labeled antibody 150 and the analyte 160 is in contact with the capture ligand 131 that specifically binds to the analyte 160.
  • the capture ligand 131 may be directly fixed to the membrane 110, or the capture ligand 131 may be fixed to a pad made of cellulose filter paper, glass fiber, nonwoven fabric, or the like fixed to the membrane 110. .
  • the liquid-absorbing part 140 is formed of a pad of a water-absorbing material such as cellulose filter paper, non-woven fabric, cloth, cellulose acetate or the like.
  • the moving speed of the sample after the development front (front line) of the added sample reaches the liquid absorption part 140 varies depending on the material, size, and the like of the liquid absorption part 140. Therefore, the optimum speed for detection / quantification of the analyte 160 can be set by selecting the material, size, etc. of the liquid absorption part 140.
  • the liquid absorption part 140 is an arbitrary configuration and may be omitted.
  • the test strip 200 may further include arbitrary parts such as a reaction part and a control part as necessary.
  • the test strip 200 may be formed with a reaction part including the labeled antibody 150 on the membrane 110.
  • the reaction unit can be provided upstream of the determination unit 130 in the direction in which the sample flows.
  • the test strip 200 has a reaction part, if the sample containing the analyte 160 is supplied to the reaction part or the sample addition part 120, the analyte 160 contained in the sample and the labeled antibody 150 can be brought into contact with each other in the reaction part. it can.
  • the complex 170 containing the analyte 160 and the labeled antibody 150 can be formed by simply supplying the sample to the reaction part or the sample addition part 120, so-called one-step type immunochromatography is possible. Become.
  • the reaction part is not particularly limited as long as it includes the labeled antibody 150 that specifically binds to the analyte 160, but may be one in which the labeled antibody 150 is directly applied to the membrane 110.
  • the reaction part may be formed by, for example, immobilizing the membrane 110 with a pad (conjugate pad) made of cellulose filter paper, glass fiber, nonwoven fabric, or the like impregnated with the labeled antibody 150.
  • the test strip 200 includes a control unit in which a capture ligand that specifically binds to the labeled antibody 150 is fixed to the membrane 110 on the downstream side of the determination unit 130 in the direction in which the sample is developed. It may be formed. By measuring the color intensity at the control unit together with the determination unit 130, the sample provided for the test strip 200 is developed and reaches the reaction unit and the determination unit 130 to confirm that the test has been performed normally. be able to.
  • the control unit is prepared in the same manner as the determination unit 130 described above except that another type of capture ligand that specifically binds to the labeled antibody 150 is used instead of the capture ligand 131. The configuration can be taken.
  • the measuring method of the analyte 160 of the present embodiment is a measuring method of the analyte 160 that detects or quantifies the analyte 160 contained in the sample.
  • the measurement method of the analyte 160 of the present embodiment uses the test strip 200 including the membrane 110 and the determination unit 130 in which the capture ligand 131 that specifically binds to the analyte 160 is fixed to the membrane 110.
  • the measuring method of the analyte 160 of this Embodiment is the following process (I)-(III); Step (I): The metal-resin composite 100 having a structure in which a plurality of metal particles 20 are immobilized on resin particles 10 with the analyte 160 contained in the sample and an antibody that specifically binds to the analyte 160.
  • Step (II) a step of bringing the complex 170 containing the analyte 160 and the labeled antibody 150 formed in Step (I) into contact with the capture ligand 131 in the determination unit 130;
  • Step (III) a step of measuring the color intensity derived from light energy absorption by localized surface plasmon resonance and / or electronic transition of the metal-resin composite 100, Can be included.
  • Step (I) is a step of bringing the analyte 160 contained in the sample into contact with the labeled antibody 150.
  • the mode of contact is not particularly limited.
  • the sample may be supplied to the sample addition unit 120 or the reaction unit (not shown) of the test strip 200, and the analyte 160 may be brought into contact with the labeled antibody 150 in the sample addition unit 120 or the reaction unit. Before the sample is provided, the analyte 160 in the sample may be brought into contact with the labeled antibody 150.
  • the composite 170 formed in step (I) expands and moves on the test strip 200 and reaches the determination unit 130.
  • step (II) in the determination unit 130 of the test strip 200, the complex 170 formed in step (I) and including the analyte 160 and the labeled antibody 150 is brought into contact with the capture ligand 131.
  • the capture ligand 131 specifically binds to the analyte 160 of the complex 170.
  • the complex 170 is captured by the determination unit 130.
  • the capture ligand 131 does not specifically bind to the labeled antibody 150, when the analyte 160 and the unbound labeled antibody 150 reach the determination unit 130, the analyte 160 and the unbound labeled antibody 150 are unbound. Passes through the determination unit 130.
  • a control unit (not shown) to which another capture ligand that specifically binds to the labeled antibody 150 is fixed is formed on the test strip 200, the labeled antibody 150 that has passed through the determination unit 130 is developed. Then, bind to the other capture ligand at the control unit. As a result, the labeled antibody 150 that does not form the complex 170 with the analyte 160 is captured by the control unit.
  • step (II) if necessary, before step (III), for example, the test strip 200 is washed with a buffer solution commonly used in biochemical tests such as water, physiological saline, and phosphate buffer solution.
  • a cleaning step may be performed.
  • the labeled antibody 150 (the labeled antibody 150 that is not bound to the analyte 160 and does not form the complex 170) that has not been captured by the determination unit 130 or the determination unit 130 and the control unit is removed. be able to.
  • the determination unit 130 or the localized surface plasmon resonance of the metal-resin composite 100 in the determination unit 130 and the control unit and / or light energy absorption due to electronic transition By performing the cleaning process, in the step (III), the determination unit 130 or the localized surface plasmon resonance of the metal-resin composite 100 in the determination unit 130 and the control unit and / or light energy absorption due to electronic transition.
  • the color intensity of background can be reduced, the signal / background ratio can be increased, and detection sensitivity and quantitativeness can be further improved.
  • Step (III) is a step of measuring the color intensity derived from light energy absorption by localized surface plasmon resonance and / or electronic transition of the metal-resin composite 100. After performing the above step (II) or the cleaning step as necessary, the test strip 200 has a color intensity derived from light energy absorption due to localized surface plasmon resonance and / or electronic transition of the metal-resin composite 100. taking measurement.
  • step (II) When a control part is formed on the test strip 200, in step (II), the labeled antibody 150 is captured by another capture ligand in the control part to form a complex. Therefore, in the step (III), in the test strip 200, not only the determination unit 130 but also the control unit can cause color development by localized surface plasmon resonance and / or light energy absorption due to electronic transition. In this way, by measuring the color intensity in the control unit as well as the determination unit 130, it is possible to confirm whether the sample provided for the test strip 200 has developed normally and reached the reaction unit and the determination unit 130.
  • the sample in the analyte measurement method of the present embodiment is not particularly limited as long as it includes a substance that can be an antigen such as a protein as the analyte 160.
  • a biological sample containing the analyte 160 of interest ie, whole blood, serum, plasma, urine, saliva, sputum, nasal or throat swab, cerebrospinal fluid, amniotic fluid, nipple discharge, tears, sweat, skin exudate , Extracts from tissues, cells and stool, etc.
  • food extracts ie, whole blood, serum, plasma, urine, saliva, sputum, nasal or throat swab, cerebrospinal fluid, amniotic fluid, nipple discharge, tears, sweat, skin exudate , Extracts from tissues, cells and stool, etc.
  • the analyte 160 contained in the sample is pretreated prior to the step (I). May be.
  • the pretreatment include chemical treatment using various chemicals such as acid, base, and surfactant, and physical treatment using heating, stirring, ultrasonic waves, and the like.
  • the analyte 160 is a substance that is not normally exposed on the surface, such as an influenza virus NP antigen, it is preferable to perform treatment with a surfactant or the like.
  • a nonionic surfactant should be used in consideration of the specific binding reaction, for example, the binding reactivity between the capture ligand 131 and the analyte 160 such as an antigen-antibody reaction. Can do.
  • the sample may be appropriately diluted with a solvent (water, physiological saline, buffer, or the like) used in a normal immunological analysis method or a water-miscible organic solvent.
  • a solvent water, physiological saline, buffer, or the like
  • the analyte 160 is not particularly limited, and known ones can be used, and those having strong anionic properties, those having strong cationic properties, and others can be used.
  • Examples of the analyte 160 include tumor markers, signaling substances, hormones and other proteins (including polypeptides and oligopeptides), nucleic acids (single-stranded or double-stranded DNA, RNA, polynucleotides, oligonucleotides) And other molecules such as lipids, substances having nucleic acids, sugars (including oligosaccharides, polysaccharides, sugar chains, etc.) or sugar chains, lipids, and the like.
  • carcinoembryonic antigen CEA
  • HER2 protein HER2 protein
  • PSA prostate specific antigen
  • CA19-9 ⁇ -fetoprotein
  • IAP immunity Inhibitory acidic protein
  • CA15-3 CA125, estrogen receptor, progesterone receptor -Fecal occult blood, troponin I, troponin T, CK-MB, CRP, human chorionic gonadotropin (HCG), luteinizing hormone (LH), follicle stimulating hormone (FSH), syphilis antibody, influenza virus human hemoglobin, chlamydia antigen
  • HCG human chorionic gonadotropin
  • LH luteinizing hormone
  • FSH follicle stimulating hormone
  • syphilis antibody influenza virus human hemoglobin, chlamydia antigen
  • examples include group A ⁇ -streptococcal antigens, HBs antibodies, HBs antigens, rotaviruses, adenoviruses,
  • the labeled antibody 150 is used to contact the analyte 160 contained in the sample to form a complex 170 including the analyte 160 and the labeled antibody 150.
  • the labeled antibody 150 is obtained by labeling an antibody that specifically binds to the analyte 160 with the metal-resin complex 100 having a structure in which a plurality of metal particles 20 are immobilized on the resin particles 10.
  • labeling means that the metal-resin complex 100 is directly attached to the antibody to the extent that the metal-resin complex 100 is not detached from the labeled antibody 150 in steps (I) to (III). It means that it is fixed indirectly by chemical or physical bonding or adsorption.
  • the labeled antibody 150 may be one in which the metal-resin complex 100 is directly bound to the antibody, or the antibody and the metal-resin complex 100 are bound via any linker molecule. Or those fixed to insoluble particles.
  • the “antibody” is not particularly limited, and known antibodies can be used. Those having strong anionic properties, those having strong cationic properties, and others can be used.
  • a polyclonal antibody, a monoclonal antibody, an antibody obtained by gene recombination, and an antibody fragment [for example, H chain, L chain, Fab, F (ab ′) 2 etc.] capable of binding to an antigen can be used. it can.
  • IgG, IgM, IgA, IgE, or IgD may be used as the immunoglobulin.
  • the animal species that produce the antibody may be humans or animals other than humans (eg, mice, rats, rabbits, goats, horses, etc.).
  • Specific examples of the antibody include anti-PSA antibody, anti-AFP antibody, anti-CEA antibody, anti-adenovirus antibody, anti-influenza virus antibody, anti-HCV antibody, anti-IgG antibody, and anti-human IgE antibody.
  • Step A) includes a step of obtaining labeled antibody 150 by mixing and binding the metal-resin complex 100 with the antibody under a first pH condition, and preferably, further includes Step B; Step B) A step of treating the labeled antibody 150 under a second pH condition can be included.
  • step A the labeled antibody 150 is obtained by mixing the metal-resin complex 100 with the antibody under the first pH condition.
  • the solid metal-resin complex 100 is preferably contacted with the antibody in a state dispersed in the liquid phase.
  • the first pH condition is preferably within the range of pH 2 to 10 from the viewpoint of uniformly contacting the metal-resin complex 100 and the antibody while maintaining the dispersion of the metal-resin complex 100 and the activity of the antibody. Further, for example, a pH in the range of 5 to 9 is more preferable. If the conditions for binding the metal-resin complex 100 and the antibody are less than pH 2, the antibody may be altered and deactivated due to strong acidity. If the pH exceeds 10, the metal-resin complex 100 and the antibody are mixed. Aggregate to make it difficult to disperse. However, if the antibody is not inactivated by strong acidity, the treatment can be performed even at a pH of less than 2.
  • Step A is preferably performed in a binding buffer adjusted to the first pH condition.
  • a predetermined amount of the metal-resin complex 100 is mixed in the binding buffer adjusted to the above pH and mixed thoroughly.
  • a boric acid solution adjusted to a predetermined concentration can be used as the binding buffer.
  • the pH of the binding buffer can be adjusted using, for example, hydrochloric acid or sodium hydroxide.
  • a labeled antibody-containing liquid can be obtained by adding a predetermined amount of the antibody to the obtained mixed liquid, sufficiently stirring and mixing.
  • the labeled antibody-containing liquid thus obtained can be fractionated only with the labeled antibody 150 as a solid part by solid-liquid separation means such as centrifugation.
  • Step B the labeled antibody 150 obtained in the process A is treated under the second pH condition to perform blocking that suppresses nonspecific adsorption to the labeled antibody 150.
  • the labeled antibody 150 separated by the solid-liquid separation means is dispersed in the liquid phase under the second pH condition.
  • the second pH condition is preferably within the range of pH 2 to 10, for example, from the viewpoint of maintaining the activity of the antibody and suppressing aggregation of the labeled antibody 150, and from the viewpoint of suppressing nonspecific adsorption of the labeled antibody 150, the pH of 5 A range of from 9 to 9 is more preferable. If the blocking condition is less than pH 2, the antibody may be denatured and deactivated due to strong acidity, and if it exceeds pH 10, the labeled antibody 150 aggregates, making dispersion difficult.
  • Step B is preferably performed using a blocking buffer prepared by using a blocking agent under the second pH condition.
  • the blocking buffer adjusted to the above pH is added to a predetermined amount of labeled antibody 150, and the labeled antibody 150 is uniformly dispersed in the blocking buffer.
  • a protein solution that does not bind to the detection target is preferably used.
  • the blocking agent that can be used in the blocking buffer is not particularly limited, and known blocking agents can be used. Those having strong anionic properties, those having strong cationic properties, and others can also be used. Examples of proteins include bovine serum albumin, ovalbumin, casein, gelatin, and whey whey.
  • a bovine serum albumin solution adjusted to a predetermined concentration.
  • the pH of the blocking buffer can be adjusted using, for example, hydrochloric acid or sodium hydroxide.
  • a dispersing means such as ultrasonic treatment. In this way, a dispersion in which the labeled antibody 150 is uniformly dispersed is obtained.
  • the metal-resin composite 100 is less likely to aggregate due to pH, and can be treated in a wide range of pH from acidic to alkaline. Therefore, the metal-resin complex 100 used in the present invention also has an advantage that it is not easily limited by the production conditions of the labeled antibody.
  • a dispersion of labeled antibody 150 is obtained. From this dispersion, only the labeled antibody 150 can be fractionated as a solid part by solid-liquid separation means such as centrifugation. Moreover, a cleaning process, a preservation
  • a washing buffer solution is added to the labeled antibody 150 sorted by the solid-liquid separation means, and the labeled antibody 150 is uniformly dispersed in the washing buffer solution.
  • a dispersion means such as ultrasonic treatment is preferably used.
  • the washing buffer is not particularly limited, and for example, a Tris buffer solution, a glycinamide buffer solution, an arginine buffer solution, or the like having a predetermined concentration adjusted within a pH range of 8 to 9 may be used. it can.
  • the pH of the washing buffer can be adjusted using, for example, hydrochloric acid or sodium hydroxide.
  • the washing treatment of the labeled antibody 150 can be repeated a plurality of times as necessary.
  • a storage buffer is added to the labeled antibody 150 collected by the solid-liquid separation means, and the labeled antibody 150 is uniformly dispersed in the storage buffer.
  • a dispersion means such as ultrasonic treatment is preferably used.
  • the storage buffer for example, a solution obtained by adding a predetermined concentration of an anti-aggregation agent and / or stabilizer to the washing buffer can be used.
  • the aggregation inhibitor for example, saccharides typified by sucrose, maltose, lactose, trehalose, polyhydric alcohols typified by glycerin, polyvinyl alcohol, and the like can be used.
  • the stabilizer is not particularly limited. For example, proteins such as bovine serum albumin, ovalbumin, casein, and gelatin can be used.
  • save process of the labeled antibody 150 can be performed.
  • a surfactant or a preservative such as sodium azide or paraoxybenzoate can be used as necessary.
  • the analyte measurement kit uses the test strip 200, for example, to detect or quantify the analyte 160 contained in the sample based on the analyte measurement method of the present embodiment. It is a kit for.
  • the analyte measurement kit of the present embodiment is A membrane 110; A test strip 200 including a determination unit 130 in which a capture ligand 131 that specifically binds to the analyte 160 is fixed to the membrane 110; A detection reagent comprising a labeled antibody 150 in which an antibody that specifically binds to the analyte 160 is labeled with a metal-resin complex 100 having a structure in which a plurality of metal particles 20 are immobilized on resin particles 10; Is included.
  • the analyte measurement kit of the present embodiment may further include other components as necessary.
  • the analyte 160 in the sample is brought into contact with the labeled antibody 150 in the detection reagent and step (I) is performed, and then the reaction of the test strip 200 is performed.
  • the step (II) and the step (III) may be sequentially performed by supplying a sample to the part or the sample addition unit 120.
  • a detection reagent is applied to the upstream side of the determination unit 130 of the test strip 200 and appropriately dried to form a reaction part
  • the formed reaction part or a position upstream of the reaction part for example, The sample may be added to the sample addition unit 120) and the steps (I) to (III) may be performed sequentially.
  • the metal-resin complex 100 can be preferably applied as a solid catalyst, pigment, paint, conductive material, electrode, or sensor element for uses other than the labeling substance for immunological measurement or the reagent for immunological measurement.
  • the absorbance of the metal-resin composite particles was measured by placing a metal-resin composite particle dispersion liquid (dispersion medium: water) prepared at 0.01 wt% into a quartz glass cell (optical path length 10 mm), and using a spectrophotometer (Shimadzu Corporation). Using UV 3600), the absorbance at 570 nm for the gold-resin complex and 400 nm for the platinum-resin complex was measured.
  • Solid content concentration (wt%) [Weight after drying (g) / Weight before drying (g)] ⁇ 100
  • Metal loading (wt%) [Weight after heat treatment (g) / Weight before heat treatment (g)] ⁇ 100
  • ⁇ Measurement of average particle diameter of metal particles An image obtained by observing a substrate prepared by dropping a metal-resin composite particle dispersion on a metallic mesh with a carbon support film using a field emission scanning electron microscope (FE-SEM; manufactured by Hitachi High-Technologies Corporation, SU-9000). The area average diameter of 100 arbitrary metal particles was measured.
  • FE-SEM field emission scanning electron microscope
  • zeta potential measurement was measured by an electrophoretic light scattering method using a Zetasizer Nano-ZS manufactured by Malvern as a measuring device.
  • a sample prepared by diluting the sample to 0.01 wt% with pure water and adjusting the pH value to pH 3 to 10 using hydrochloric acid or an aqueous NaOH solution is used as a measurement sample.
  • zeta potential measurement was performed to measure the behavior of changes in zeta potential at multiple pH points of pH 3-10.
  • the change width of the zeta potential was calculated from the maximum value of the zeta potential in the acidic region of pH 3-6 and the minimum value of the zeta potential in the alkaline region of pH 6-10. Further, a linear function connecting an arbitrary one zeta potential greater than 0 mV, which is close to 0 mV, and an arbitrary one zeta potential smaller than 0 mV, is obtained, and the pH at which the zeta potential becomes 0 mV, that is, zero. The charge point (charge) was calculated.
  • Resin particles A-1 having a diameter of 371 nm were obtained. After sedimentation by centrifugation (9000 rpm, 40 minutes), the supernatant was removed, and then dispersed again in pure water, and then impurities were removed by dialysis. Thereafter, the concentration was adjusted to obtain a 10 wt% resin particle dispersion B-1.
  • Example 1 ⁇ Synthesis of platinum-resin composite particles> After adding 54 g of pure water to B-1 (91.5 g), 400 mM chloroplatinic acid aqueous solution (100 g) was added, and the mixture was stirred at 30 ° C. for 3 hours. After this mixture was allowed to stand for 24 hours, A-1 was precipitated by centrifugation (3000 rpm, 30 minutes), and excess chloroplatinic acid was removed by removing the supernatant. Thereafter, the concentration was adjusted to obtain 5 wt% platinum ion adsorbing resin particle dispersion C-1.
  • C-1 (20.6 g) was added to 1392 g of pure water, and 132 mM dimethylamine borane aqueous solution (40 g) was added dropwise over 20 minutes while stirring at 3 ° C., and then at 3 ° C. for 1 hour at room temperature. Was stirred for 3 hours to obtain platinum-resin composite particles D-1 having an average particle size of 381 nm.
  • D-1 was concentrated by centrifugation, then purified by dialysis, and the concentration was adjusted to obtain 1 wt% platinum-resin composite particle dispersion E-1.
  • the absorbance of the platinum-resin composite particle F-1 in E-1 was 1.79.
  • the average particle diameter of platinum particles in F-1 was 4.5 nm, and the amount of platinum supported was 36.7 wt%.
  • the results of measuring the zeta potential of F-1 are shown in Table 1.
  • the platinum particles are partially exposed having encapsulated platinum particles completely encapsulated in the resin particles, a site embedded in the resin particle, and a site exposed outside the resin particle. It contained platinum particles and surface adsorbed platinum particles adsorbed on the surface of the resin particles, and at least some of the platinum particles were distributed three-dimensionally in the surface layer portion of the resin particles.
  • 97% of platinum particles were present in the range of 40% of the particle radius in the depth direction from the surface of the resin particles.
  • Example 2 ⁇ Synthesis of platinum-resin composite particles> 5 wt% platinum ion adsorbing resin particle dispersion C-2, platinum-resin composite particle D-2, 1 wt% platinum, as in Example 1, except that B-2 is used instead of B-1.
  • -Resin composite particle dispersion E-2 and platinum-resin composite particles F-2 were prepared.
  • the average particle size of D-2 was 461 nm, and the absorbance of F-2 was 1.77. Further, the average particle diameter of platinum particles in F-2 was 5.0 nm, and the amount of platinum supported was 37.6 wt%.
  • Table 1 The results of measuring the zeta potential of F-2 are shown in Table 1.
  • the platinum particles are partially exposed having encapsulated platinum particles that are completely encapsulated in the resin particles, a portion that is embedded in the resin particle, and a portion that is exposed outside the resin particle. It contained platinum particles and surface adsorbed platinum particles adsorbed on the surface of the resin particles, and at least some of the platinum particles were distributed three-dimensionally in the surface layer portion of the resin particles.
  • Example 3 ⁇ Synthesis of platinum-resin composite particles> 5 wt% platinum ion adsorbing resin particle dispersion C-3, platinum-resin composite particle D-3, 1 wt% platinum in the same manner as in Example 1 except that B-3 is used instead of B-1. -Resin composite particle dispersion E-3 and platinum-resin composite particles F-3 were prepared.
  • the average particle size of D-3 was 454 nm, and the absorbance of F-3 was 1.45. Further, the average particle diameter of platinum particles in F-3 was 3.8 nm, and the amount of platinum supported was 37.7 wt%.
  • Table 1 The results of measuring the zeta potential of F-3 are shown in Table 1.
  • the platinum particles are partially exposed having encapsulated platinum particles completely encapsulated in the resin particles, a site embedded in the resin particles, and a site exposed outside the resin particles. It contained platinum particles and surface adsorbed platinum particles adsorbed on the surface of the resin particles, and at least some of the platinum particles were distributed three-dimensionally in the surface layer portion of the resin particles.
  • Example 4 ⁇ Synthesis of gold-resin composite particles> After adding 255 g of pure water to B-4 (91.5 g), a 400 mM chloroauric acid aqueous solution (147 g) was added, and the mixture was stirred at room temperature for 3 hours. This mixture was centrifuged (3000 rpm, 30 minutes) to precipitate A-4, and the supernatant was removed to remove excess chloroauric acid. Thereafter, the concentration was adjusted to obtain a 2.5 wt% gold ion-adsorbing resin particle dispersion C-4.
  • C-4 (43.3 g) was added to 1580 g of pure water, and a 528 mM dimethylamine borane aqueous solution (10.0 g) was added dropwise over 2 minutes while stirring at 3 ° C., followed by 1 hour at 3 ° C. The mixture was stirred at room temperature for 3 hours to obtain gold-resin composite particles D-4 having an average particle size of 322 nm. After D-4 was concentrated by centrifugation, it was purified by dialysis and the concentration was adjusted to obtain a 1 wt% gold-resin composite particle dispersion E-4. The absorbance of the gold-resin composite particle F-4 in E-4 was 1.27.
  • the average particle size of gold particles in F-4 was 30 nm, and the amount of gold supported was 53.8 wt%.
  • Table 1 shows the measurement results of the zeta potential of F-4.
  • the gold particles are partially exposed having encapsulated particles completely encapsulated in the resin particles, a part embedded in the resin particle, and a part exposed outside the resin particle. It contained gold particles and surface adsorbed gold particles adsorbed on the surface of the resin particles, and at least some of the gold particles were three-dimensionally distributed in the surface layer portion of the resin particles. Note that 97% of the gold particles were present in the range of 40% of the particle radius in the depth direction from the surface of the resin particles.
  • Example 5 ⁇ Synthesis of gold-resin composite particles> Except that B-2 was used instead of B-4, 2.5 wt% gold ion adsorption resin particle dispersion C-5, gold-resin composite particle D-5, 1 wt% was obtained in the same manner as in Example 4.
  • Gold-resin composite particle dispersion E-5 and gold-resin composite particle F-5 were prepared.
  • the gold particles are partly exposed having encapsulated particles completely encapsulated in the resin particles, a part embedded in the resin particle, and a part exposed outside the resin particle. It contained gold particles and surface adsorbed gold particles adsorbed on the surface of the resin particles, and at least some of the gold particles were three-dimensionally distributed in the surface layer portion of the resin particles.
  • E-5 (0.1 g) and 10 mM mercaptopropionic acid aqueous solution (1.0 g) were mixed and stirred at 23 ° C. for 1 hour.
  • the gold-resin composite particles F-5 are precipitated by centrifugation (12000 rpm, 5 minutes), the supernatant is removed, and then pure water (1.0 g) is added and redispersed to remove excess mercaptopropionic acid.
  • pure water 1.0 g
  • the average particle size of G-5 was 455 nm, and the absorbance of G-5 was 1.36.
  • the average particle size of gold particles in G-5 was 20 nm, and the amount of gold supported was 48.3 wt%.
  • the results of G-5 zeta potential measurement are shown in Table 1.
  • Example 6 ⁇ Mercaptopropionic acid treatment> Mercaptopropionic acid-treated platinum-resin composite particles G-6 were produced in the same manner as in Example 5 except that E-2 was used instead of E-5. The results of measuring the zeta potential of G-6 are shown in Table 1.
  • Example 7 ⁇ Polyglutamic acid treatment> E-5 (0.1 g) and a 0.5 wt% polyglutamic acid aqueous solution (1.0 g) were mixed and stirred at 23 ° C. for 1 hour.
  • the gold-resin composite particles D-5 are precipitated by centrifugation (12000 rpm, 5 minutes), the supernatant is removed, and then excess polyglutamic acid is removed by adding pure water (1.0 g).
  • Gold-resin composite particles G-7 treated with glutamic acid were produced. The results of measuring the zeta potential of G-7 are shown in Table 1.
  • Example 8 Polyglutamic acid treatment> Polyglutamic acid-treated platinum-resin composite particles G-8 were produced in the same manner as in Example 7 except that E-2 was used instead of E-5. The results of measuring the zeta potential of G-8 are shown in Table 1.
  • the average particle size of D-9 was 380 nm, and the absorbance of F-9 was 1.46.
  • the average particle diameter of gold particles in F-9 was 22 nm, and the amount of gold supported was 53.7 wt%.
  • the results of measuring the zeta potential of F-9 are shown in Table 1.
  • the gold particles are partially exposed having encapsulated particles completely encapsulated in the resin particles, a portion embedded in the resin particle, and a portion exposed outside the resin particle. It contained gold particles and surface adsorbed gold particles adsorbed on the surface of the resin particles, and at least some of the gold particles were three-dimensionally distributed in the surface layer portion of the resin particles.
  • the average particle size of D-10 was 455 nm, and the absorbance of F-10 was 1.36. Further, the average particle diameter of gold particles in F-10 was 20 nm, and the amount of gold supported was 48.3 wt%.
  • Table 1 The results of measuring the zeta potential of F-10 are shown in Table 1.
  • the gold particles are partially exposed having encapsulated particles completely encapsulated in the resin particles, a portion embedded in the resin particle, and a portion exposed outside the resin particle. It contained gold particles and surface adsorbed gold particles adsorbed on the surface of the resin particles, and at least some of the gold particles were three-dimensionally distributed in the surface layer portion of the resin particles.
  • the average particle diameter of D-11 was 442 nm, and the absorbance of F-11 was 1.26.
  • the average particle diameter of gold particles in F-11 was 16.1 nm, and the amount of gold supported was 53.9 wt%.
  • Table 1 shows the measurement results of the zeta potential of F-11.
  • the gold particles are partially exposed having encapsulated particles completely encapsulated in the resin particles, a portion embedded in the resin particle, and a portion exposed outside the resin particle. It contained gold particles and surface adsorbed gold particles adsorbed on the surface of the resin particles, and at least some of the gold particles were three-dimensionally distributed in the surface layer portion of the resin particles.
  • Table 1 shows the results of zeta potential measurement of gold colloid (Au colloidal solution manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.—SC average particle size 50 nm).
  • Table 1 shows the results of zeta potential measurement of colored latex beads (Carboxyl group modification-colored Estapor, K1-030 Red, manufactured by Merck Millipore).
  • the labeled antibody dispersion K-1 is ice-cooled, centrifuged at 12000 rpm for 5 minutes, and the supernatant is removed. Then, the solid content residue contains less than 0.1 wt% surfactant and bovine serum albumin. 1 mL of 5 mM Tris aqueous solution (pH 8.5) was added, and ultrasonic dispersion treatment was performed for 10 to 20 seconds. This operation was repeated three times to obtain a washing process.
  • a labeled antibody dispersion L-1 was obtained by adding 1 mL of an aqueous Tris solution (pH 8.5) and performing ultrasonic dispersion treatment for 10 to 20 seconds.
  • influenza A positive control (x1, x2, x4, x from the right) 8, x16, x32, x64, x128, x256, x512, x1024) and 100 ⁇ l each of negative controls were mixed.
  • influenza A positive control prepared APC ⁇ 1 by diluting influenza A virus inactivated antigen (manufactured by Adtech Co., Ltd.) 100 times using a sample treatment solution (manufactured by Adtech Co., Ltd.). .
  • the antigen concentration of APC ⁇ 1 corresponds to 5000 FFU / ml.
  • the negative control is a sample treatment solution (manufactured by Adtec Corporation).
  • 50 ⁇ l of this mixed dispersion is added to a sample injection port of 12 holes per row of a monochrome screen for influenza A evaluation (manufactured by Adtech Co., Ltd.), and after 5 minutes, 10 minutes, and 15 minutes.
  • the color development level of the line was evaluated.
  • a color development level of 0.5 or more after 15 minutes was judged as “good”.
  • the color development level was determined using a color sample for gold colloid determination (manufactured by Adtec Corporation).
  • the immunochromatographic evaluation results of the labeled antibody dispersion L-1 are shown in Table 4.
  • Test Example 4 Immunochromatographic Evaluation of Colored Latex Instead of using the 1 wt% platinum-resin composite particle dispersion E-1 of Example 1 in the binding step of Test Example 3, 1 wt% colored latex beads of Comparative Example 5 Labeled antibody dispersions J-2, K-2, and L-2 were obtained in the same manner as in Test Example 3 except that was used.
  • the labeled antibody dispersion L-2 with commercially available colored latex beads shows a color development level of less than 0.5 after 15 minutes for a 1-fold diluted antigen and does not show good color development. confirmed.
  • SYMBOLS 10 Resin particle, 20 ... Metal particle, 30 ... Encapsulated particle, 40 ... Partially exposed particle, 50 ... Surface adsorption particle, 60 ... Surface layer part, 100 ... Metal-resin composite, 110 ... Membrane, 120 ... Sample addition part , 130 ... determination part, 131 ... capture ligand, 140 ... liquid absorption part, 150 ... labeled antibody, 160 ... analyte, 170 ... complex, 200 ... test strip

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

金属-樹脂複合体は、樹脂粒子に複数の金属粒子が固定化された構造を有し、pH3~pH10の範囲において、ゼータ電位の最大値が5mV以上であり、かつ、最小値が-5mV以下である。金属-樹脂複合体は、pH3~pH10の範囲において、ゼータ電位の最大値と最小値の差が、20mV以上であることが好ましく、ゼータ電位のゼロ電荷点が、pH3.5~pH9.0の範囲内に存在することがより好ましい。金属-樹脂複合体は、その表面に抗原又は抗体を吸着させて標識物質として免疫学的測定法や免疫学的測定用試薬に利用できる。

Description

金属-樹脂複合体及びその利用
 本発明は、例えば免疫学的測定等の用途に好ましく使用可能な金属-樹脂複合体、それを利用した標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップに関する。
 生体内には、無数の化学物質が存在することから、生体内の特定の微量成分を定性的、定量的に分析する技術は、極めて重要である。医療、製薬、健康食品、バイオテクノロジー、環境等の分野において、生体内の特定の箇所(化学物質)にのみ作用する薬品及び食品、生体の僅かな変化を検出する分析装置及び診断薬等は、上記技術とともに発展してきた。
 上記分析技術の一つに、イムノアッセイがある。これは、免疫学的測定法とも呼ばれ、免疫反応の一つである、抗原-抗体間における特異的な反応を利用し、微量成分を定性的、定量的に分析する方法である。抗原-抗体間反応は感度や反応の選択性が高いため、上記分野で広く用いられている。イムノアッセイは、その測定原理により、様々な測定法がある。例えば、酵素免疫測定法(EIA)、放射性免疫測定法(RIA)、化学発光免疫測定法(CLIA)、蛍光免疫測定法(FIA)、ラテックス等の凝集法(LIA、PA)、イムノクロマトグラフィー法(ICA)、赤血球凝集法(HA)、赤血球凝集抑制法(HI)等が挙げられる。なお、イムノアッセイの他には、物理・化学的測定法、生物学的測定法等がある。
 イムノアッセイは、抗原及び抗体が反応し複合体を形成した際の変化(抗原、抗体又は複合体の濃度変化)から、抗原又は抗体を定性的又は定量的に検出する。これらを検出する際に、抗体、抗原又は複合体に標識物質を結合させることで、検出感度が増大する。
 そのため、標識物質の標識能力は、イムノアッセイにおける検出能力を左右する重要な要素であるといえる。上記に例示したイムノアッセイにおいても、標識物質として、赤血球(HAの場合)、ラテックス粒子(LIAの場合)、蛍光色素(FIAの場合)、放射性元素(RIAの場合)、酵素(EIAの場合)、化学発光物質(CLIAの場合)等が用いられている。
 ところで、標識物質として着色した微粒子を用いた場合、特別な分析装置を用いることなく目視により検出を確認することができるため、より簡便な測定ができることが期待される。このような着色した微粒子としては、金属及び金属酸化物のコロイド状粒子、色素で着色したラテックス粒子等が挙げられる(特許文献1、特許文献4等)。しかし、上記コロイド状粒子は、粒子径及び調製条件によって色調が決定されてしまうため、所望の鮮明な濃い色調のものを得難い、つまり視認性が不十分であるという問題がある。
 また、上記着色したラテックス粒子は、色素による着色の効果が低く、目視判定性が不十分であるという問題がある。なお、この問題を解消するために色素の着色量を増やそうとすると、色素がラテックスの表面を覆い、ラテックス粒子本来の表面状態が損なわれるため、抗原又は抗体を結合させるのが困難になるという問題があった。また、メンブランフィルター等のクロマトグラフ媒体の細孔内に詰まったり、ラテックス粒子が非特異凝集を起こしたりして、色素の着色料を増やして濃く着色することが、必ずしも、性能の向上に結び付かない、という問題もあった。
 上記標識物質の視認性を向上させるために、標識物質が結合した抗体(標識抗体)と抗原が反応し複合体を形成した後に、これらの標識物質に対しさらに他の金属を修飾させることで標識物質の検出感度を増幅させるイムノクロマトグラフ方法が開示されている(特許文献2及び5)。しかし、この方法では、操作が煩雑であり、安定した増幅が難しい。また、特別な装置が必要である等、測定コストがかかることから、適用可能な用途及び使用環境は限定されると考えられる。
 また、ポリマー系ラテックス粒子の表面に結合した金ナノ粒子からなる着色ラテックスが開示されている(特許文献3)。
 ポリマー系ラテックス粒子の表面に金ナノ粒子を結合させることにより、該金ナノ粒子自身が着色剤として目視判定性や検出感度の向上に役立つ。また、金ナノ粒子自身が抗原又は抗体に対する結合性にも優れることから、充分な濃色となる程度にまで金ナノ粒子を結合させても充分な量の抗原又は抗体を結合させ得るとされている。
 上記着色ラテックスは、スチレン-アクリル酸共重合体ラテックス及び金ナノ粒子の前駆体であるHAuClの分散液にガンマ線を照射することで、上記ラテックスの表面に金ナノ粒子を結合させたものである。しかし、上記着色ラテックスは、金ナノ粒子がラテックスの表面のみに結合されることから、表面プラズモン共鳴を発現させるための金ナノ粒子の担持量に制限があるうえに、金ナノ粒子が脱離しやすい。その結果、免疫学的測定用試薬としての視認性や感度が十分でない恐れがある。また、ガンマ線等の電磁放射線を照射するため、ラテックスにダメージを与える恐れがある。さらに、特許文献3の明細書中には、上記ラテックス径や金ナノ粒子径の好ましい範囲を開示している。しかし、その実施例は、これらの好ましい範囲で検証されているか明らかでなく、好ましい範囲の規定の根拠がない等、実施に適した条件の開示がほとんどない。
 また、特許文献4では、金属金で被覆されたポリマーラテックス粒子が開示され、顕微鏡検査法及びイムノアッセイ法に利用可能な試薬への適用が示唆されている。
 しかし、上記金属金で被覆されたポリマーラテックス粒子は、ポリマーラテックス粒子の材質や粒径の開示がない。さらに、イムノアッセイ法に利用可能な試薬としての効果について検証がない。そのため、金属金及びポリマーラテックス粒子における試薬としての効果は不明である。
 また、非特許文献1では、ポリ-2-ビニルピリジンラテックス粒子に金ナノ粒子を担持させたマイクロゲルが開示され、マイクロゲルの粒径のpH応答性を、金ナノ粒子の局在型表面プラズモン共鳴の挙動の変化から確認している。しかし、上記マイクロゲルは、金ナノ粒子が上記ラテックス粒子の表層付近に単層で担持されている。そのため、金ナノ粒子の担持量が少なく、イムノアッセイに有効な濃い色調が得られないと考えられる。また、マイクロゲルの材質、構造、組成等の検討は行っておらず、免疫学的測定用試薬等の具体的な用途への効果は不明である。
 また、特許文献5では、金属コア超微粒子と、金属イオン配位性基を有し、該金属コア超微粒子を包囲する重合体とを含む複合微粒子が開示され、診断薬などのセンシング分野等、種々の分野への適用が示唆されている。また、実施例において、ビニルピリジン-ジビニルベンゼン共重合体の架橋微粒子に、塩化金酸を還元して得られた金ナノ粒子を包囲させた複合微粒子が開示されている。しかし、上記複合微粒子は、その詳細な構造や物性の検討は行っておらず、免疫学的測定用試薬等の具体的な用途への効果は不明である。
 以上より、金ナノ粒子が結合又は被覆されたラテックス粒子は、免疫学的測定用の試薬として期待されるものであるが、従来の技術では、耐久性や視認性が十分でなかった。また、視認性が高いものでも、適用可能な用途及び使用環境は限定されるものであった。
 上記従来技術の状況に鑑み、本出願人は、特定の割合の金属粒子が樹脂粒子の表層部に存在する樹脂-金属複合体を見出し、先に提案した(例えば、特許文献6)。この樹脂-金属複合体は、特に免疫学的測定材料の用途において、耐久性及び視認性に優れ、かつ、特別な装置や作業工程の追加を必要とせずに高感度な判定を可能とするものである。
特開平5-10950号公報 特開2011-117906号公報 特開2009-168495号公報 特開平3-206959号公報 特開2009-227883号公報 国際公開WO2016/002742
K.Akamatsu, M.Shimada, T.Tsuruoka, H.Nawafune, S.Fujii and Y.Nakamura;Langmuir 2010,26,1254-1259.
 金属-樹脂複合体を免疫学的測定における標識物質として使用するためには、抗原、抗体などのリガンドや、ブロッキング剤などに安定的に結合させることが必要である。しかし、リガンドを金属-樹脂複合体によって標識する場合、安定的な結合状態を形成できたとしても、必ずしも優れた検出感度が得られるとは限らない。例えば、微細な金属-樹脂複合体は凝集が生じやすい。凝集が生じると、ハンドリング性が大幅に低下するだけでなく、標識物質である金属-樹脂複合体の濃度にムラが生じて検出感度が大きく低下する場合がある。
 また、免疫学的測定に用いられる抗原、抗体及びブロッキング剤としては、タンパク質、合成高分子、低分子化合物など様々な種類のものがあり、アニオン性の性質が強いもの(例えばカゼイン)と、カチオン性の性質が強いもの(例えば乳清ホエイ)とがある。そこで、これら全ての抗原及び抗体を使用することができる標識物質があれば、材料コスト低減等の理由から、非常に好ましい。
 本発明の目的は、抗原、抗体などのリガンドや、ブロッキング剤と結合させた状態で凝集が生じにくく、ハンドリング性に優れ、更に、多くの種類の抗原、抗体、ブロッキング剤が適用できる、金属-樹脂複合体を提供することであり、例えば免疫学的測定において、高感度な判定を可能とする免疫学的測定用金属-樹脂複合体を提供することにある。
 本発明者らは、鋭意研究を行った結果、樹脂粒子に複数の金属粒子が固定化され、かつ、構造及び電気的性質を制御した金属-樹脂複合体によって、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明の金属-樹脂複合体は、樹脂粒子と、前記樹脂粒子に固定化された複数の金属粒子と、を有する金属-樹脂複合体であって、pH3~pH10の範囲において、ゼータ電位の最大値が5mV以上であり、かつ、最小値が-5mV以下であることを特徴とする。
 本発明の金属-樹脂複合体は、pH3~pH10の範囲において、前記ゼータ電位の最大値と最小値の差が、20mV以上であってもよい。
 本発明の金属-樹脂複合体は、前記ゼータ電位のゼロ電荷点が、pH3.5~pH9.0の範囲に存在することがより好ましい。
 本発明の金属-樹脂複合体は、前記金属粒子の平均粒子径が、1nm~100nmの範囲内であってもよい。
 本発明の金属-樹脂複合体は、その平均粒子径が30nm~1000nmの範囲内であってもよい。
 本発明の金属-樹脂複合体は、前記樹脂粒子が、金属イオンを吸着することが可能な置換基を構造に有するポリマー粒子であってもよい。
 本発明の金属-樹脂複合体は、前記金属粒子が、金、白金、パラジウム、銀、ニッケル、銅、又はこれらの合金の粒子であってもよい。
 本発明の標識物質は、上記いずれかの金属-樹脂複合体を備えている。この場合、前記金属-樹脂複合体の表面に、抗原又は抗体を吸着させて使用するものであってもよい。
 本発明の免疫学的測定法は、上記いずれかの標識物質を用いるものである。
 本発明の免疫学的測定用試薬は、上記いずれかの金属-樹脂複合体を備えている。
 本発明のアナライトの測定方法は、試料中に含まれるアナライトを検出又は定量する方法である。このアナライトの測定方法は、メンブレン、及び当該メンブレンに前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部を含むラテラルフロー型クロマト用テストストリップを用い、下記工程(I)~(III);
 工程(I):試料に含まれる前記アナライトと、該アナライトに特異的に結合する抗体を、上記いずれかの金属-樹脂複合体で標識した標識抗体と、を接触させる工程、
 工程(II):前記判定部にて、工程(I)において形成された、アナライトと標識抗体とを含む複合体を、捕捉リガンドに接触させる工程、
 工程(III):前記金属-樹脂複合体の局在型表面プラズモン共鳴及び/又は電子遷移による光エネルギー吸収に由来する発色強度を測定する工程、
を含む工程を行うことを特徴とする。
 本発明のアナライト測定用キットは、試料中に含まれるアナライトを検出又は定量するためのアナライト測定用キットである。このアナライト測定用キットは、メンブレン、及び当該メンブレンに、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部を含むラテラルフロー型クロマト用テストストリップと、前記アナライトに特異的に結合する抗体を、上記いずれかの金属-樹脂複合体で標識した標識抗体を含む検出試薬と、を含む。
 本発明のラテラルフロー型クロマト用テストストリップは、試料中に含まれるアナライトを検出又は定量するためのものである。このラテラルフロー型クロマト用テストストリップは、メンブレンと、前記メンブレンに、前記試料が展開する方向において、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部と、当該判定部よりも上流側に、前記アナライトに特異的に結合する抗体を上記いずれかの金属-樹脂複合体で標識した標識抗体が含まれる反応部と、を含む。
 本発明の金属-樹脂複合体は、特定のゼータ電位を有するため、アニオン性、カチオン性にかかわらず、様々な物質と相互作用することができる。そのため、抗原、抗体などの多くの種類のリガンドや、ブロッキング剤に結合させた状態での分散性に優れ、凝集が生じにくい。ここで、「ゼータ電位」とは、酸性溶液もしくはアルカリ性溶液中で、金属-樹脂複合体の周囲に形成される電気二重層の滑り面の電位を意味し、例えば、電気泳動光散乱法により、金属-樹脂複合体から十分に離れた電気的に中性の領域と前記滑り面との間の電位差として測定されるものである。
 また、本発明の金属-樹脂複合体は、樹脂粒子に複数の金属粒子が固定化された構造を有するため、金属粒子の担持量が多く、また、金属粒子が樹脂粒子から脱離しにくい。
 さらに、金属粒子は、局在型表面プラズモン共鳴に加え、電子遷移による光エネルギー吸収を発現する。
 従って、本発明の金属-樹脂複合体は、ハンドリング性、耐久性、視認性、目視判定性、検出感度に優れる。そのため、例えば、EIA、RIA、CLIA、FIA、LIA、PA、ICA、HA、HI等の免疫学的測定用標識物質、免疫学的測定用試薬、医薬、固体触媒、顔料、塗料、導電性材料、電極、センサー素子などの目的で好ましく適用できる。特に、本発明の金属-樹脂複合体を免疫学的測定に用いる場合には、ハンドリング性、耐久性及び視認性に優れ、非特異反応が抑制され、かつ、様々な抗原及び抗体について、特別な装置や作業工程の追加を必要とせずに、高感度な判定が可能になる。
本発明の一実施の形態に係る金属-樹脂複合体の断面の構造を示す模式図である。 金属-樹脂複合体の一態様の断面の構造を示す模式図である。 金属-樹脂複合体の別の態様の断面の構造を示す模式図である。 本発明の一実施の形態に係るラテラルフロー型クロマト用テストストリップを用いたアナライトの測定方法の概要を示す説明図である。
 以下、適宜図面を参照しながら、本発明の実施の形態について詳細に説明する。図1は、本発明の一実施の形態に係る金属-樹脂複合体の断面模式図である。金属-樹脂複合体100は、樹脂粒子10と、金属粒子20と、を備えている。金属-樹脂複合体100は、樹脂粒子10に金属粒子20が固定化されている。樹脂粒子10は、金属粒子20よりも相対的に大きな粒子であることが好ましい。つまり、金属-樹脂複合体100では、大きな樹脂粒子10に、相対的に小さな多数の金属粒子20が固定されている。この場合、図1に示すように、金属-樹脂複合体100全体の粒子径D1と、樹脂粒子10の粒子径D2と金属粒子20の粒子径D3との関係は、D1>D2>D3である。
 また、金属-樹脂複合体100は、樹脂粒子10における金属粒子20の分散状態は限定しない。例えば、樹脂粒子10の表面に金属粒子20が二次元的に分布しても良いし、樹脂粒子10の内部に金属粒子20が内包されていても良い。前者の一形態として、樹脂粒子10の表面に、複数の金属粒子20が、相互に接触して連続的な膜を形成しても良い。また、後者の一形態として、樹脂粒子10をシェルとし、金属粒子20をコアとする、コア-シェル構造を形成しても良い。また、金属粒子20の一部が樹脂粒子10の表層部60において三次元的に分布していてもよい。この場合、三次元的に分布した金属粒子20の一部が部分的に樹脂粒子10外に露出していてもよく、残りの一部が樹脂粒子10に内包されていてもよい。具体的には、図1に示すように、金属粒子20には、樹脂粒子10に完全に内包された金属粒子(以下、「内包粒子30」ともいう。)、樹脂粒子10内に埋包された部位及び樹脂粒子10外に露出した部位を有する金属粒子(以下、「一部露出粒子40」ともいう。)及び樹脂粒子10の表面に吸着している金属粒子(以下、「表面吸着粒子50」ともいう。)が存在していることが好ましい。
 例えば、金属-樹脂複合体100を免疫学的測定用標識物質又は免疫学的測定用試薬に使用する場合、樹脂粒子10の表面又は一部露出粒子40もしくは表面吸着粒子50の表面に、抗原、抗体又はブロッキング剤を固定化して使用する。その際、一部露出粒子40及び表面吸着粒子50には、前記抗原、抗体又はブロッキング剤が固定化される一方で、内包粒子30には、固定化されにくいと考えられる。しかし、一部露出粒子40、表面吸着粒子50及び内包粒子30のいずれも局在型表面プラズモン共鳴に加え、電子遷移による光エネルギー吸収を発現することから、一部露出粒子40及び表面吸着粒子50のみならず、内包粒子30も、免疫学的測定用標識物質及び免疫学的測定用試薬の視認性向上に寄与する。さらに、一部露出粒子40及び内包粒子30は、表面吸着粒子50と比較して樹脂粒子10との接触面積が大きいことに加え、埋包状態によるアンカー効果等が奏されるため、物理的吸着力が強く、樹脂粒子10から脱離しにくい。また、一部露出粒子40もしくは表面吸着粒子50に吸着した抗原、抗体又はブロッキング剤は、金属と配位結合するため、脱離しにくい。そのため、金属-樹脂複合体100を使用した免疫学的測定用標識物質及び免疫学的測定用試薬の耐久性、安定性を優れたものにすることができる。
 以下、金属-樹脂複合体100を免疫学的測定用標識物質(以下、単に「標識物質」ともいう。)又は免疫学的測定用試薬(以下、単に「試薬」ともいう。)に適用する場合を例として説明する。
 金属-樹脂複合体100は、pH3~pH10の範囲において、ゼータ電位の最大値が5mV以上であり、かつ、最小値が-5mV以下である(第1の特性)。ゼータ電位がこの範囲である場合、酸性環境下(例えば、pH7未満の分散媒中に分散させた場合)では、金属-樹脂複合体100は、その複合体表面にカチオン性の官能基を有し、正電荷を帯びる。一方、塩基性環境下(例えば、pH7を超える分散媒中に分散させた場合)では、金属-樹脂複合体100は、その複合体表面にアニオン性の官能基を有し、負電荷を帯びる。つまり、金属-樹脂複合体100は、抗原、抗体又はブロッキング剤をその表面に結合させる場合、分散媒(結合用バッファー)のpHに対応して、抗原、抗体又はブロッキング剤の結合に適した表面電荷状態になる。具体的には、酸性環境下では、アニオン性の強い抗原又は抗体と結合することができるし、塩基性環境下では、カチオン性の強い抗原又は抗体と結合することができる。つまり、金属-樹脂複合体100は、アニオン性及びカチオン性によらず、あらゆる抗原又は抗体と、安定して結合することができる。そのため、免疫学的測定用標識物質及び免疫学的測定用試薬としての耐久性、安定性、汎用性が高い。
 一方で、ゼータ電位の最大値が5mV未満、又は、最小値が-5mVを超える場合、金属-樹脂複合体100の静電反発による分散性が乏しく、金属-樹脂複合体100自体が凝集しやすくなってしまう。そのため、免疫学的測定用標識物質及び免疫学的測定用試薬として取り扱いが困難になり、不利である。
 この観点から、ゼータ電位の最大値は大きい方が好ましく、最小値は小さい方が好ましい。ゼータ電位の最大値は、10mV以上が好ましく、20mV以上がより好ましい。また、ゼータ電位の最小値は、-10mV以下が好ましく、-20mV以下がより好ましい。また、同じ理由から、金属-樹脂複合体100は、pH3~pH10の範囲において、前記ゼータ電位の最大値と最小値の差が、20mV以上であることが好ましい(第2の特性)。より好ましくは、40mV以上であり、さらに好ましくは60mV以上である。
 また、金属-樹脂複合体100は、前記ゼータ電位のゼロ電荷点が、pH3.5~pH9.0の範囲に存在することが好ましい(第3の特性)。ここで、ゼロ電荷点とは、ゼータ電位がプラスマイナスゼロである点である。ゼロ電荷点が上記範囲内であれば、通常に分子生物化学的反応が行われる、弱酸性から弱塩基性の環境下において、金属-樹脂複合体100の表面電荷を正負両極性の幅広い電荷状態にすることが可能であり、好ましい。特に、上記第1の特性及び第2の特性に加えて、さらに第3の特性を満たす場合には、pH3.5~pH9.0の範囲で、ゼータ電位がプラス側からマイナス側あるいはマイナス側からプラス側に大きく変化していることを意味するため、弱酸性を含む酸性環境と弱塩基性を含む塩基性環境の両方の幅広いpH領域で、優れた分散性を発揮できる。
 一方、ゼロ電荷点が上記範囲外である場合、比較的強酸性又は強塩基性の環境下でなければ正負両極性の電荷状態にすることができない傾向にある。
 金属-樹脂複合体100において、内包粒子30は、その表面の全てが、樹脂粒子10を構成する樹脂に覆われているものである。また、一部露出粒子40は、その表面積の5%以上100%未満が、樹脂粒子10を構成する樹脂に覆われているものである。免疫学的測定用標識物質及び免疫学的測定用試薬の耐久性の観点から、その下限は、表面積の20%以上であることが好ましく、30%以上であることがより好ましい。また、表面吸着粒子50は、その表面積の0%を超えて5%未満が、樹脂粒子10を構成する樹脂に覆われていることが好ましい。
 また、金属-樹脂複合体100への金属粒子20(内包粒子30、一部露出粒子40及び表面吸着粒子50の合計)の担持量は、金属-樹脂複合体100の重量に対して、3wt%~80wt%であることが好ましい。この範囲であれば、金属-樹脂複合体100は、標識物質としての視認性、目視判定性及び検出感度に優れる。金属粒子20の担持量が3wt%未満では、抗体又は抗原の固定化量が少なくなり、検出感度が低下する傾向がある。一方、金属粒子20の担持量が80wt%を超えると、金属粒子20の粒子径が著しく増大し、金属粒子20による光吸収特性が低下する傾向にある。金属粒子20の担持量は、より好ましくは、15wt%~70wt%、さらに好ましくは、15wt%~60wt%である。
 また、金属粒子20の10wt%~90wt%が、一部露出粒子40及び表面吸着粒子50であることが好ましい。この範囲であれば、金属粒子20上への抗体又は抗原の固定化量が充分確保できるため、標識物質としての感度が高い。金属粒子20の20wt%~80wt%が一部露出粒子40及び表面吸着粒子50であることがより好ましく、免疫学的測定用標識物質及び免疫学的測定用試薬の耐久性の観点から、表面吸着粒子50が20wt%以下であることがさらに好ましい。
 また、金属-樹脂複合体100を免疫学的測定に使用する場合に、優れた検出感度を得るためには、金属粒子20の60wt%~100wt%、好ましくは、75~100wt%が、より好ましくは、85~100wt%が、表層部60に存在することがよく、さらに好ましくは、樹脂粒子10の表面から、深さ方向に粒子半径の40%の範囲に存在することがよい。また、表層部60に存在する金属粒子20の5wt%~90wt%が、一部露出粒子40又は表面吸着粒子50であることが、金属粒子20上への抗体又は抗原の固定化量が充分確保できるため、標識物質としての感度が高くなり好ましい。換言すれば、表層部60に存在する金属粒子20の10wt%~95wt%が内包粒子30であることがよい。
 ここで、前記「表層部」とは、金属-樹脂複合体100の最も外側の位置(つまり、一部露出粒子40又は表面吸着粒子50の突出端部)を基準にして、樹脂粒子10の表面から、深さ方向に粒子半径の50%の範囲を意味する。また、前記「三次元的に分布」とは、金属粒子20が、樹脂粒子10の面方向だけでなく、深さ方向にも分散されていることを意味する。
 上記のとおり、内包粒子30も局在型表面プラズモン共鳴に加え、電子遷移による光エネルギー吸収を発現することから、一部露出粒子40及び表面吸着粒子50のみならず、内包粒子30も、免疫学的測定用標識物質及び免疫学的測定用試薬の視認性向上に寄与する。このような視認性向上という観点では、金属-樹脂複合体100は、例えば図2Aに示すように、内包粒子30が、樹脂粒子10の表面から深さ方向に一定の範囲内に集中して分布し、樹脂粒子10の中心付近には内包粒子30が存在しないことが好ましい。より具体的には、内包粒子30による局在型表面プラズモン共鳴に加え、電子遷移による光エネルギー吸収を効果的に発現させるためには、例えば、樹脂粒子10の粒子径D2が800nmであるとき、樹脂粒子10の表面から深さ方向に例えば0~200nmの範囲内に内包粒子30の70wt%以上、好ましくは80wt%以上、より好ましくは90~100wt%が、存在していることがよい。特に、内包粒子30の全て(100wt%)が分布する領域(内包粒子分布領域)が、樹脂粒子10の表面から例えば0~100nmの範囲内である場合は、内包粒子30による局在型表面プラズモン共鳴に加え、電子遷移による光エネルギー吸収の発現を最大化できるので好ましい。
 また、金属-樹脂複合体100は、内包粒子30を有しなくもよい。例えば図2Bに示すように、金属-樹脂複合体100において、金属粒子20のすべてが、樹脂粒子10の径方向に重なり合うことなく、樹脂粒子10の表面に固定されていてもよい。この場合、金属粒子20は、一部露出粒子40と表面吸着粒子50とから構成される。
 樹脂粒子10は、その構造や組成は限定しないが、金属イオンを吸着することが可能な置換基を構造に有するポリマー粒子であることが好ましい。例えば、アニオン性イオンを吸着可能なポリマーが挙げられる。アニオン性イオンを吸着可能なポリマーとして、特に、含窒素ポリマーが好ましい。含窒素ポリマー中の窒素原子は、視認性に優れ、抗原又は抗体の固定化が容易な金属粒子20の前駆体である[AuCl、[PtCl2-などのアニオン性イオンを化学吸着しやすいため、好ましい。本実施の形態では、含窒素ポリマー中に吸着した金属イオンを還元し、金属粒子20を形成する為、生成した金属粒子20の一部は、内包粒子30又は一部露出粒子40となる。[AuClを使用した場合は金粒子を形成するし、[PtCl2-を使用した場合は白金粒子を形成する。その他、パラジウム、銀、ニッケル、銅などアニオン性イオンも使用することができる。
 また、アクリル酸重合体のようなカルボン酸基含有ポリマー及びポリスチレンスルホン酸のようなスルホン酸基含有ポリマー(以下、合わせて「カチオン性イオンを吸着可能なポリマー」という。)は、含有するカルボン酸基及びスルホン酸基により、Au、Pt2+のようなカチオン性イオンを化学吸着することができるため、好ましい。例えば、化学吸着したAuやPt2+を還元し、金属粒子20(この場合、金粒子や白金粒子)を形成することで、上記含窒素ポリマー粒子と同様な構造を作製することが可能である。その他、パラジウム、銀、ニッケル、銅などの金属の前駆体であるカチオン性イオンを使用することができる。
 なお、上記のアニオン性イオンを吸着可能なポリマーはカチオン性であるため、金属-樹脂複合体100の酸性環境下におけるゼータ電位を、プラス側にする働きを示す。一方、カチオン性イオンを吸着可能なポリマーはアニオン性であるため、金属-樹脂複合体100の塩基性環境下におけるゼータ電位を、マイナス側にする働きを示す。
 一方、金属イオンを吸着することが可能な置換基を構造に有する含窒素ポリマー以外の樹脂粒子として、例えばポリスチレン等も使用することができる。しかし、この場合、比較的前記金属イオンを樹脂内部に吸着しにくい。その結果、生成した金属粒子20の大部分は、表面吸着粒子50となる。上記のとおり、表面吸着粒子50は、樹脂粒子10との接触面積が小さいため、樹脂と金属の接着力が小さく、樹脂粒子10から金属粒子20が脱離しやすい傾向にある。
 上記含窒素ポリマーは、主鎖又は側鎖に窒素原子を有する樹脂であり、例えば、ポリアミン、ポリアミド、ポリペプチド、ポリウレタン、ポリ尿素、ポリイミド、ポリイミダゾール、ポリオキサゾール、ポリピロール、ポリアニリン等がある。好ましくは、ポリ-2-ビニルピリジン、ポリ-3-ビニルピリジン、ポリ-4-ビニルピリジン等のポリアミンである。また、側鎖に窒素原子を有する場合は、例えば、アクリル樹脂、フェノール樹脂、エポキシ樹脂等幅広く利用することが可能である。
 また、上記カチオン性イオンを吸着可能なポリマーは、主鎖又は側鎖に、カルボン酸基、スルホン酸基等を有する樹脂であり、例えば、ポリアクリル酸、カルボン酸ビニル、ポリ酢酸ビニル、ポリビニルスルホン酸、ポリスチレンスルホン酸等幅広く利用することができる。
 上記含窒素ポリマーなどのアニオン性イオンを吸着可能なポリマー及びカチオン性イオンを吸着可能なポリマーは、公知の重合性モノマーとの共重合体であっても良い。ここで、共重合体は、ランダム共重合体、ブロック共重合体、交互共重合体、重合体同士が架橋したものが例示される。また、2種類以上のモノマーを共重合させて樹脂粒子10を形成しても良いし、樹脂粒子10の表面に存在する官能基にモノマーを反応させ、それを重合活性末端としてさらに重合させても良い。その共重合組成は限定しないが、前記金属イオンを吸着することが可能な置換基を含有するモノマーが10mol%以上であることが好ましい。
 重合性モノマーとしては、金属-樹脂複合体100の用途に応じて制限なく選択することができる。例えば、樹脂粒子10の形状、サイズの均一性および分散安定性の向上の用途では、界面活性剤としての特性を有する重合性モノマーを使用することができる。このような重合性モノマーとしては、例えば、ポリエチレングリコールメチルエーテルメタクリレート、ポリエチレングリコールジメタクリレートが挙げられる。
 また、上記樹脂粒子10が、エステル結合等の加水分解可能な基を有する場合、これを酸処理やアルカリ処理をすることで、部分的に加水分解を行っても良い。加水分解により、樹脂粒子10の表面にカルボキシル基等のカチオン性イオンを吸着可能な基が発生し、金属イオンを吸着する効果が得られるので、好ましい。酸としては、公知の酸を使用することができる。加水分解反応の促進の観点から、強酸性の塩酸、硫酸などが好ましい。アルカリとしては、公知のアルカリを使用することができる。加水分解反応の促進の観点から、強アルカリ性の水酸化カリウム、水酸化ナトリウム水溶液などが好ましい。
 さらに、上記の加水分解によって生じたカルボキシル基はアニオン性であるため、金属-樹脂複合粒体100の塩基性環境下におけるゼータ電位を、マイナス側にする働きを示す。つまり、上記樹脂粒子10が、エステル結合等の加水分解可能な基を有する場合、加水分解により、金属-樹脂複合体100のゼータ電位を制御することができる。
 また、金属-樹脂複合体100は、金属と樹脂のナノサイズでの複合化のしやすさの観点から、前記金属粒子20が、金、白金、パラジウム、銀、ニッケル、銅、又はこれらの合金であることが好ましい。これらの金属は、単体もしくは合金等の複合体で使用することが可能である。ここで、例えば金合金としては、金と金以外の金属種からなり、金を10重量%以上含有する合金を意味する。また、例えば白金合金としては、白金と白金以外の金属種からなり、白金を1重量%以上含有する合金を意味する。
 免疫学的測定用標識物質及び免疫学的測定用試薬として用いる場合、より好ましくは、視認性に優れ、抗原又は抗体の固定化が容易な金、白金及びパラジウムである。これらは、局在型表面プラズモン共鳴に由来する吸収を発現するため、好ましい。更に好ましくは、保存安定性がよい金、又は免疫学的測定における検出感度に優れる白金である。
 金属粒子として白金粒子を使用した、白金-樹脂複合体は、他の金属種の粒子を有する金属-樹脂複合体と比較して、抗体などのリガンドと結合させた状態で凝集を生じにくく、極めて分散性に優れている。また、白金粒子は、酸化などの変質に強く、保存安定性にも優れている。さらに、白金粒子は、例えば250nm~900nmまでの範囲の幅広い波長で局在型表面プラズモン共鳴に由来する吸収を発現し、さらに電子遷移による光エネルギー吸収の発現により、黒色に近い強い発色を呈するので、白金-樹脂複合体を標識物質として用いることによって、免疫学的測定において、高い視認性が得られ、アナライトの検出感度も高めることができる。この場合、白金粒子を用いることによって、他の金属の粒子に比べ、少ない担持量で優れた検出感度が得られる。従って、仮に平均粒子径が同等であれば、白金-樹脂複合体は、他の金属種の粒子を有する樹脂複合体に比べて有意に高い検出感度を示すので特に好ましい。
 白金粒子は、白金のみからなるものでもよいし、白金と他の金属との合金であってもよい。白金合金において、白金と合金を形成する他の金属種としては、特に制限されないが、例えば、銀、ニッケル、銅、金、パラジウム等が好ましい。
 金属粒子として金粒子を使用した、金-樹脂複合体は、他の金属種の粒子を有する金属-樹脂複合体と比較して、抗体などのリガンドと結合させた状態で凝集を生じにくく、極めて分散性に優れている。さらに、視認性に優れ、抗原又は抗体の固定化が容易である。特に、金粒子の粒子径や金粒子同士の粒子間距離を制御することで、赤色、紫色、青色等、様々な発色を呈する。そのため、金-樹脂複合体をイムノクロマトグラフの標識物質として使用する場合に、様々な色の標識物質を得ることができる。
 また、走査型電子顕微鏡(SEM)観察により測長される金属粒子20の平均粒子径(つまり、図1における粒子径D3の平均)は、例えば1~100nmであることが好ましい。金属粒子20の平均粒子径が、1nm未満の場合や100nmを超える場合は、局在型表面プラズモン共鳴及び、電子遷移による光エネルギー吸収が発現しにくくなるため感度が低下する傾向がある。
 金属粒子20として白金粒子を使用する場合、白金粒子の平均粒子径は、免疫学的測定用標識物質及び免疫学的測定用試薬として高い検出感度を得る観点から、好ましくは1nm以上50nm以下であり、より好ましくは1nm以上30nm以下であり、さらに好ましくは1nm以上20nm以下であり、最も好ましくは1nm以上15nm以下である。例えば、白金粒子の平均粒子径が15nm以下である白金-樹脂複合体をイムノクロマトグラフの標識物質として使用する場合に、特に優れた検出感度が得られる。
 また、金属粒子20として金粒子を使用する場合、金粒子の平均粒子径は、免疫学的測定用標識物質及び免疫学的測定用試薬として高い検出感度を得る観点から、好ましくは1nm以上70nm未満であり、より好ましくは、1nm以上50nm未満である。
 また、金属-樹脂複合体100の平均粒子径(つまり、図1における粒子径D1の平均)は、例えば30~1000nmであることが好ましい。金属-樹脂複合体100の平均粒子径が30nm未満では、例えば、金属粒子20の担持量が少なくなる傾向がある為、同サイズの金属粒子20より着色が弱くなる傾向にあり、1000nmを超えると、標識物質又は試薬とした際に、メンブランフィルター等のクロマトグラフ媒体の細孔内に詰まりやすい傾向や、分散性が低下する傾向がある。金属-樹脂複合体100の平均粒子径は、標識物質又は試薬とした際の分散性を向上させるとともに、金属-樹脂複合体100を免疫学的測定に用いる場合に高い検出感度を得る観点から、好ましくは100nm以上700nm以下であり、より好ましくは250nm以上650nm以下であり、最も好ましくは280nm以上600nm以下である。特に、金属-樹脂複合体100の平均粒子径が280nm以上であると、金属-樹脂複合体100をイムノクロマトグラフの標識物質として使用する場合に安定して優れた検出感度が得られる。ここで、金属-樹脂複合体100の粒子径は、樹脂粒子10の粒子径に、一部露出粒子40又は表面吸着粒子50の突出部位の長さを加えた値を意味し、レーザー回折/散乱法、動的光散乱法、又は遠心沈降法により測定することができる。
[金属-樹脂複合体の製造方法]
 金属-樹脂複合体100の製造方法は、特に限定されない。例えば、乳化重合法により製造した樹脂粒子10の分散液に、金属イオンを含有する溶液を加えて、金属イオンを樹脂粒子10に吸着させる(以下、「金属イオン吸着樹脂粒子」という。)。さらに、前記金属イオン吸着樹脂粒子を還元剤溶液中に加えることで、金属イオンを還元して金属粒子20を生成させ、金属-樹脂複合体100を得ることができる。
 例えば、金属粒子20として白金粒子を生成させる場合は、白金イオンを含有する溶液としては、塩化白金酸(HPtCl)水溶液、塩化白金(PtCl)溶液等が挙げられる。また、白金イオンの代わりに白金錯体を用いても良い。
 また、例えば、金属粒子20として金粒子を生成させる場合は、金イオンを含有する溶液としては、塩化金酸(HAuCl)水溶液等が挙げられる。また、金イオンの代わりに金錯体を用いても良い。
 また、金属イオンを含有する溶液の溶媒として、水の代わりに、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、t-ブタノール等の含水アルコール又はアルコール、塩酸、硫酸、硝酸等の酸等を用いても良い。
 また、前記溶液に、必要に応じて、例えば、ポリビニルアルコール等の水溶性高分子化合物、界面活性剤、アルコール類;テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類;アルキレングリコール、ポリアルキレングリコール、これらのモノアルキルエーテル又はジアルキルエーテル、グリセリン等のポリオール類;アセトン、メチルエチルケトン等のケトン類等の各種水混和性有機溶媒等の添加剤を添加してもよい。このような添加剤は、金属イオンの還元反応速度を促進し、また生成される金属粒子20の大きさを制御するのに有効となる。
 また、還元剤は、公知の物を用いることができる。還元剤としては、例えば、水素化ホウ素ナトリウム、ジメチルアミンボラン、クエン酸、次亜リン酸ナトリウム、抱水ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジン、ホルムアルデヒド、ショ糖、ブドウ糖、アスコルビン酸、エリソルビン酸、ホスフィン酸ナトリウム、ハイドロキノン、ロッシェル塩等が挙げられる。これらのうち、水素化ホウ素ナトリウム又は、ジメチルアミンボラン、クエン酸が好ましい。
 還元剤溶液には、必要に応じて界面活性剤を添加したり、溶液のpHを調整したりすることができる。pH調整は、例えば、ホウ酸やリン酸等の緩衝剤、塩酸、硫酸等の酸、水酸化ナトリウム、水酸化カリウム等のアルカリを用いて行うことができる。
 さらに、還元剤溶液の温度により、金属イオンの還元速度を調整することで、生成する金属粒子20の粒径をコントロールすることができる。
 また、前記金属イオン吸着樹脂粒子中の金属イオンを還元して金属粒子20を生成させる際、前記金属イオン吸着樹脂粒子を還元剤溶液に添加しても良いし、還元剤を前記金属イオン吸着樹脂粒子に添加しても良いが、内包粒子30及び一部露出粒子40の生成しやすさの観点から、前者が好ましい。
 また、金属-樹脂複合体100の、水への分散性を保持するために、例えば、クエン酸、ポリ-L-リシン、ポリビニルピロリドン、ポリビニルピリジン、ポリビニルアルコール、DISPERBYK194、DISPERBYK180、DISPERBYK184(ビッグケミージャパン社製)等の分散剤を添加してもよい。
 さらに、ホウ酸やリン酸等の緩衝剤、塩酸、硫酸等の酸、水酸化ナトリウム、水酸化カリウム等のアルカリによりpHを調整し、分散性を保持することができる。
 以上の構成を有する金属-樹脂複合体100は、特に、金属粒子20の表面に抗原又は抗体を吸着させることにより、標識物質として、例えばEIA、RIA、CLIA、FIA、LIA、PA、ICA、HA、HI等の免疫学的測定法に好ましく適用できる。また、特に、低濃度域(高感度領域)での目視判定性に優れた免疫学的測定用標識物質又は免疫学的測定用試薬の材料として好ましく適用できる。また、免疫学的測定用標識物質又は免疫学的測定用試薬の形態に特に限定はないが、例えば、金属-樹脂複合体100を水もしくは、pHを調整した緩衝液中に分散させた分散液として使用できる。
 上記金属粒子20の表面に抗原又は抗体を吸着させる方法としては特に限定せず、公知の物理吸着及び化学吸着による方法を用いることができる。金属粒子20と抗原又は抗体との結合が強固になるため、化学吸着による方法が好ましい。物理吸着と化学吸着を併用しても良い。
 物理吸着としては、例えば、抗原又は抗体を含む緩衝液中に金属-樹脂複合体100を浸漬させ、インキュベートする方法、緩衝液中に金属-樹脂複合体100を浸漬させ、更に抗原又は抗体を加える方法等が挙げられる。
 化学吸着としては、抗原又は抗体にSH基を導入し、金属-樹脂複合体100と反応させて金属-SH結合を形成する方法、金属-樹脂複合体100の表面にカルボキシル基を導入した後、スクシンイミジル化し抗原又は抗体のアミノ基と反応させ化学結合を形成する方法等が挙げられる。金属-樹脂複合体100の表面にカルボキシル基を導入する化合物は、例えばアミノ基、SH基、カルボニル、アミド、イミドなどの金属と配位結合性のある官能基とカルボキシル基の両方を有する化合物が適している。金属との配位結合が強固であるという理由から、官能基としてはSH基が好ましく、SH基とカルボキシル基を両末端に持つ化合物としては、例えばメルカプトプロピオン酸、メルカプトウンデカン酸、メルカプトラウリン酸などが挙げられる。また、金属と配位結合性のある官能基とカルボキシル基を一分子内に複数有する高分子化合物は、金属-樹脂複合体100と安定した結合を得られやすい。例えばグルタミン酸やアスパラギン酸のポリペプチドであるポリグルタミン酸、ポリアスパラギン酸は、金属-樹脂複合体100の表面にカルボキシル基を導入するための高分子化合物としてより好ましい。
 更に、金属-樹脂複合体100の表面に導入したカルボキシル基はアニオン性であるため、金属-樹脂複合体100の塩基性環境下におけるゼータ電位を、マイナス側にする働きがある。つまり、金属-樹脂複合体100の表面にカルボキシル基を導入することによって、金属-樹脂複合体100のゼータ電位を制御することができる。
 本実施の形態の金属-樹脂複合体100において、ゼータ電位の特徴的な挙動が発現する理由は、金属-樹脂複合粒子100(もしくは樹脂粒子10)の表面に、「カチオン性の官能基」と「アニオン性の官能基」の両方を有している点にある。例えば、樹脂粒子10を構成するポリマーがポリビニルピリジンである場合について説明すると、ポリビニルピリジンに含まれるピリジンは「カチオン性の官能基」であり、樹脂粒子1表面の加水分解により生じたカルボキシル基や、メルカプトプロピオン酸処理、ポリグルタミン酸処理などによって金属-樹脂複合体100に導入したカルボキシル基は「アニオン性の官能基」である。そして、酸性環境下では、ピリジンの窒素がNHの状態で正電荷を帯び、カルボキシル基はCOOHの状態で無電荷となるため、金属-樹脂複合体100は、全体として表面電荷が正となる。一方、塩基性環境下では、ピリジンの窒素がNの状態で無電荷となり、カルボキシル基はCOOの状態で負電荷となるため、金属-樹脂複合体100は、全体として表面電荷が負となる。その結果、金属-樹脂複合体100のゼータ電位が、上述の第1~第3の特性を示すと考えられる。
 以上の観点から、例えば、次の(i)~(iii)の方法で金属-樹脂複合体100におけるゼータ電位を制御することが好ましい。
(i)樹脂粒子10を、カチオン性を示すポリマー(例えば、上記アニオン性イオンを吸着可能なポリマーなど)によって構成するとともに、金属-樹脂複合体100(又は樹脂粒子10)の表面にアニオン性の官能基を導入する方法。
(ii)樹脂粒子10を、アニオン性を示すポリマー(例えば、上記カチオン性イオンを吸着可能なポリマーなど)によって構成するとともに、金属-樹脂複合体100(又は樹脂粒子10)の表面にカチオン性の官能基を導入する方法。
(iii)金属-樹脂複合体100(又は樹脂粒子10)の表面に、アニオン性の官能基とカチオン性の官能基をそれぞれ導入する方法。
 ここで、「アニオン性の官能基」としては、例えば、カルボキシル基、スルホン酸基、ホスホン酸基などを挙げることができる。これらのアニオン性の官能基は、ポリマー種の選択によって樹脂粒子10の表面に存在させることができる。また、アニオン性の官能基を金属-樹脂複合体100(又は樹脂粒子10)の表面に導入するための好ましい方法として、例えば、以下のa)、b)を挙げることができる。
 a)酸処理もしくはアルカリ処理によって樹脂粒子10を構成するポリマーの表面を部分的に加水分解する方法。
 ここで、加水分解によりアニオン性の官能基を生じるポリマーとしては、例えば、ポリエステル、ポリアミドが挙げられる。
 b)金属-樹脂複合体100を、例えば上記の「金属と配位結合性のある官能基とカルボキシル基の両方を有する化合物」のような、金属と配位結合性のある官能基とアニオン性の官能基の両方を有する化合物(高分子化合物を含む)によって処理する方法。
 また、「カチオン性の官能基」としては、例えば、ピリジニル基、アミノ基などの含窒素基を挙げることができる。これらのカチオン性の官能基は、ポリマー種の選択によって樹脂粒子10の表面に存在させることができる。また、カチオン性の官能基を金属-樹脂複合体100(又は樹脂粒子10)の表面に導入するための好ましい方法として、例えば、以下のc)、d)を挙げることができる。
 c)酸処理もしくはアルカリ処理によって樹脂粒子10を構成するポリマーの表面を部分的に加水分解する方法。
 ここで、加水分解によりカチオン性の官能基を生じるポリマーとしては、例えば、ポリアミドが挙げられる。
 d)金属-樹脂複合体100を、金属と配位結合性のある官能基と含窒素基の両方を有する化合物(高分子化合物を含む)によって処理する方法。
 ここで、「金属と配位結合性のある官能基と含窒素基の両方を有する化合物(高分子化合物を含む)」としては、例えば2-アミノエタンチオール、11-アミノ-1-ウンデカンチオール塩酸塩などを用いることが好ましい。
 次に、金属-樹脂複合体100を標識物質として使用したアナライトの測定方法、ラテラルフロー型クロマト用テストストリップ及びアナライト検出・定量キットについて説明する。
[ラテラルフロー型クロマト用テストストリップ]
 まず、図3を参照しながら、本発明の一実施の形態に係るラテラルフロー型クロマト用テストストリップ(以下、単に「テストストリップ」と記すことがある)について説明する。このテストストリップ200は、後述するように、本発明の一実施の形態のアナライトの測定方法に好ましく使用できるものである。
 テストストリップ200は、メンブレン110を備えている。メンブレン110には、試料の展開方向において順に、試料添加部120、判定部130及び吸液部140が設けられている。
<メンブレン>
 テストストリップ200に使用されるメンブレン110としては、一般的なテストストリップにおいてメンブレン材料として使用されるものを適用可能である。メンブレン110は、例えば毛管現象を示し、試料を添加すると同時に、試料が展開するような微細多孔性物質からなる不活性物質(アナライト160、各種リガンドなどと反応しない物質)で形成されているものである。メンブレン110の具体例としては、ポリウレタン、ポリエステル、ポリエチレン、ポリ塩化ビニル、ポリフッ化ビニリデン、ナイロン、セルロース誘導体等で構成される繊維状又は不織繊維状マトリクス、膜、濾紙、ガラス繊維濾紙、布、綿等が挙げられる。これらの中でも、好ましくはセルロース誘導体やナイロンで構成される膜、濾紙、ガラス繊維濾紙等が用いられ、より好ましくはニトロセルロース膜、混合ニトロセルロースエステル(ニトロセルロースと酢酸セルロースの混合物)膜、ナイロン膜、濾紙が用いられる。
 テストストリップ200は、操作をより簡便にするため、メンブレン110を支持する支持体を備えていることが好ましい。支持体としては、例えばプラスチック等を用いることができる。
<試料添加部>
 テストストリップ200は、アナライト160を含む試料を添加するための試料添加部120を有していてもよい。試料添加部120は、テストストリップ200に、アナライト160を含む試料を受け入れるための部位である。試料添加部120は、試料が展開する方向において、判定部130よりも上流側のメンブレン110に形成されていてもよいし、あるいは、例えばセルロース濾紙、ガラス繊維、ポリウレタン、ポリアセテート、酢酸セルロース、ナイロン、綿布などの材料で構成された試料添加パッドがメンブレン110に設けられて試料添加部120を構成していてもよい。
<判定部>
 判定部130には、アナライト160と特異的に結合する捕捉リガンド131が固定されている。捕捉リガンド131は、アナライト160と特異的な結合を形成するものであれば特に制限なく使用でき、例えばアナライト160に対する抗体などを好ましく用いることができる。捕捉リガンド131は、テストストリップ200に試料を提供した場合においても、判定部130から移動することがないように不動化している。捕捉リガンド131は、物理的又は化学的な結合や吸着等によって、メンブレン110に直接的又は間接的に固定されていればよい。
 また、判定部130は、標識抗体150とアナライト160とを含む複合体170が、アナライト160と特異的に結合する捕捉リガンド131に接触するような構成である限り特に限定されない。例えば、メンブレン110に、直接、捕捉リガンド131が固定されていてもよいし、あるいは、メンブレン110に固定されたセルロース濾紙、グラスファイバー、不織布等からなるパッドに捕捉リガンド131が固定されていてもよい。
<吸液部>
 吸液部140は、例えば、セルロ-ス濾紙、不織布、布、セルロースアセテート等の吸水性材料のパッドにより形成される。添加された試料の展開前線(フロントライン)が吸液部140に届いてからの試料の移動速度は、吸液部140の材質、大きさなどにより異なるものとなる。従って、吸液部140の材質、大きさなどの選定により、アナライト160の検出・定量に最適な速度を設定することができる。なお、吸液部140は任意の構成であり、省略してもよい。
 テストストリップ200は、必要に応じて、さらに、反応部、コントロール部等の任意の部位を含んでいてもよい。
<反応部>
 図示は省略するが、テストストリップ200には、メンブレン110に、標識抗体150を含む反応部が形成されていてもよい。反応部は、試料が流れる方向において、判定部130よりも上流側に設けることができる。なお、図3における試料添加部120を反応部として利用してもよい。テストストリップ200が反応部を有する場合、アナライト160を含む試料を、反応部又は試料添加部120に供すると、反応部において、試料に含まれるアナライト160と標識抗体150とを接触させることができる。この場合、試料を、単に反応部又は試料添加部120に供することで、アナライト160と標識抗体150とを含む複合体170を形成させることができるので、いわゆる1ステップ型のイムノクロマトグラフが可能になる。
 反応部は、アナライト160と特異的に結合する標識抗体150を含む限り特に限定されないが、メンブレン110に、直接、標識抗体150が塗布されてなるものであってもよい。あるいは、反応部は、例えばセルロース濾紙、グラスファイバー、不織布等からなるパッド(コンジュゲートパッド)に標識抗体150を含浸したものを、メンブレン110に固定してなるものであってもよい。
<コントロール部>
 図示は省略するが、テストストリップ200は、メンブレン110に、試料が展開する方向において、判定部130よりも下流側に、標識抗体150と特異的に結合する捕捉リガンドが固定されてなるコントロール部が形成されていてもよい。判定部130とともに、コントロール部でも発色強度が測定されることにより、テストストリップ200に供した試料が展開して、反応部及び判定部130に到達し、検査が正常に行われたことを確認することができる。なお、コントロール部は、捕捉リガンド131の代わりに、標識抗体150と特異的に結合する別の種類の捕捉リガンドを用いることを除いては、上述の判定部130と同様にして作製され、同様の構成を採ることができる。
[アナライトの測定方法]
 次に、テストストリップ200を用いて行われる本発明の一実施の形態のアナライト160の測定方法について説明する。
 本実施の形態のアナライト160の測定方法は、試料中に含まれるアナライト160を検出又は定量するアナライト160の測定方法である。本実施の形態のアナライト160の測定方法は、メンブレン110、及び当該メンブレン110にアナライト160と特異的に結合する捕捉リガンド131が固定されてなる判定部130を含むテストストリップ200を用いる。そして、本実施の形態のアナライト160の測定方法は、下記工程(I)~(III);
 工程(I):試料に含まれる前記アナライト160と、該アナライト160に特異的に結合する抗体を樹脂粒子10に複数の金属粒子20が固定化された構造を有する金属-樹脂複合体100で標識した標識抗体150と、を接触させる工程、
 工程(II):判定部130にて、工程(I)において形成された、アナライト160と標識抗体150とを含む複合体170を、捕捉リガンド131に接触させる工程、
 工程(III):金属-樹脂複合体100の局在型表面プラズモン共鳴及び/又は電子遷移による光エネルギー吸収に由来する発色強度を測定する工程、
を含むことができる。
工程(I):
 工程(I)は、試料に含まれるアナライト160を、標識抗体150に接触させる工程である。アナライト160と標識抗体150とを含む複合体170を形成する限り、接触の態様は特に限定されるものではない。例えば、テストストリップ200の試料添加部120又は反応部(図示省略)に試料を供し、当該試料添加部120又は反応部においてアナライト160を標識抗体150に接触させてもよいし、テストストリップ200に試料を供する前に、試料中のアナライト160を標識抗体150に接触させてもよい。
 工程(I)で形成された複合体170は、テストストリップ200上で展開して移動し、判定部130に至る。
工程(II):
 工程(II)は、テストストリップ200の判定部130において、工程(I)において形成された、アナライト160と標識抗体150とを含む複合体170を、捕捉リガンド131に接触させる。複合体170を、捕捉リガンド131に接触させると、捕捉リガンド131は、複合体170のアナライト160に特異的に結合する。その結果、複合体170が判定部130において捕捉される。
 なお、捕捉リガンド131は、標識抗体150には特異的に結合しないために、アナライト160と未結合の標識抗体150が判定部130に到達した場合、当該アナライト160と未結合の標識抗体150は、判定部130を通過する。ここで、テストストリップ200に、標識抗体150に特異的に結合する別の捕捉リガンドが固定されたコントロール部(図示省略)が形成されている場合、判定部130を通過した標識抗体150は、展開を続け、コントロール部で当該別の捕捉リガンドと結合する。その結果、アナライト160と複合体170を形成していない標識抗体150は、コントロール部で捕捉される。
 工程(II)の後、必要に応じて工程(III)の前に、例えば、水、生理食塩水、リン酸緩衝液等の生化学検査で汎用される緩衝液で、テストストリップ200を洗浄する洗浄工程を実施してもよい。洗浄工程によって、判定部130、又は、判定部130及びコントロール部に捕捉されなかった標識抗体150(アナライト160と結合しておらず、複合体170を形成していない標識抗体150)を除去することができる。
 洗浄工程を実施することで、工程(III)において、判定部130、又は、判定部130及びコントロール部における金属-樹脂複合体100の局在型表面プラズモン共鳴及び/又は電子遷移による光エネルギー吸収による発色を測定する際に、バックグラウンドの発色強度を低減させることができ、シグナル/バックグラウンド比を高め、一層、検出感度や定量性を向上させることができる。
工程(III):
 工程(III)は、金属-樹脂複合体100の局在型表面プラズモン共鳴及び/又は電子遷移による光エネルギー吸収に由来する発色強度を測定する工程である。上記工程(II)又は必要に応じて洗浄工程を実施した後、テストストリップ200において、金属-樹脂複合体100の局在型表面プラズモン共鳴及び/又は電子遷移による光エネルギー吸収に由来する発色強度を測定する。
 なお、テストストリップ200にコントロール部が形成されている場合、工程(II)によって、コントロール部にて、標識抗体150が別の捕捉リガンドによって捕捉され複合体が形成される。そのため、工程(III)では、テストストリップ200おいて、判定部130だけでなく、コントロール部においても局在型表面プラズモン共鳴及び/又は電子遷移による光エネルギー吸収による発色を生じさせることができる。このように、判定部130とともにコントロール部においても発色強度を測定することで、テストストリップ200に供した試料が正常に展開して、反応部及び判定部130に到達したか否かを確認できる。
<試料及びアナライト>
 本実施の形態のアナライトの測定方法における試料は、アナライト160として、蛋白質などの抗原となり得る物質を含むものである限り特に限定されるものではない。例えば、目的のアナライト160を含む生体試料(すなわち、全血、血清、血漿、尿、唾液、喀痰、鼻腔又は咽頭拭い液、髄液、羊水、乳頭分泌液、涙、汗、皮膚からの浸出液、組織や細胞及び便からの抽出液等)や食品の抽出液等が挙げられる。必要に応じて、標識抗体150及び捕捉リガンド131とアナライト160との特異的な結合反応が生じやすくするために、上記工程(I)に先立って、試料に含まれるアナライト160を前処理してもよい。ここで、前処理としては、酸、塩基、界面活性剤等の各種化学薬品等を用いた化学的処理や、加熱・撹拌・超音波等を用いた物理的処理が挙げられる。特に、アナライト160がインフルエンザウィルスNP抗原等の、通常は表面に露出していない物質である場合、界面活性剤等による処理を行うことが好ましい。この目的に使用される界面活性剤として、特異的な結合反応、例えば、抗原抗体反応等の捕捉リガンド131とアナライト160との結合反応性を考慮して、非イオン性界面活性剤を用いることができる。
 また、前記試料は、通常の免疫学的分析法で用いられる溶媒(水、生理食塩水、又は緩衝液等)や水混和有機溶媒で適宜希釈されていてもよい。
 前記アナライト160としては、特に制限はなく公知のものが使用でき、アニオン性の性質が強いものや、カチオン性の性質が強いもの、それ以外のものも使用できる。アナライト160としては、例えば、腫瘍マーカー、シグナル伝達物質、ホルモン等のタンパク質(ポリペプチド、オリゴペプチド等を含む)、核酸(一本鎖又は二本鎖の、DNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等を含む)又は核酸を有する物質、糖(オリゴ糖、多糖類、糖鎖等を含む)又は糖鎖を有する物質、脂質などその他の分子が挙げられ、標識抗体150及び捕捉リガンド131に特異的に結合するものである限り特に限定されないが、例えば、癌胎児性抗原(CEA)、HER2タンパク、前立腺特異抗原(PSA)、CA19-9、α-フェトプロテイン(AFP)、免疫抑制酸性タンパク(IAP)、CA15-3、CA125、エストロゲンレセプター、プロゲステロンレセプター、便潜血、トロポニンI、トロポニンT、CK-MB、CRP、ヒト絨毛性ゴナドトロピン(HCG)、黄体形成ホルモン(LH)、卵胞刺激ホルモン(FSH)、梅毒抗体、インフルエンザウィルスヒトヘモグロビン、クラミジア抗原、A群β溶連菌抗原、HBs抗体、HBs抗原、ロタウイルス、アデノウイルス、アルブミン、糖化アルブミン等が挙げられる。これらの中でも非イオン性界面活性剤により可溶化される抗原が好ましく、ウィルスの核タンパク質のように自己集合体を形成する抗原がより好ましい。
<標識抗体>
 標識抗体150は、工程(I)において、試料に含まれるアナライト160に接触させて、アナライト160と標識抗体150とを含む複合体170を形成するために使用される。標識抗体150は、アナライト160に特異的に結合する抗体を、樹脂粒子10に複数の金属粒子20が固定化された構造を有する金属-樹脂複合体100で標識化してなるものである。ここで、「標識化」とは、工程(I)~(III)において、標識抗体150から金属-樹脂複合体100が脱離しない程度に、抗体に金属-樹脂複合体100が直接的に又は間接的に、化学的又は物理的な結合や吸着等で固定されていることを意味する。例えば、標識抗体150は、抗体に金属-樹脂複合体100が直接結合してなるものであってもよいし、抗体と金属-樹脂複合体100とが、任意のリンカー分子を介して結合してなるものや、それぞれが不溶性粒子に固定されてなるものであってもよい。
 また、本実施の形態において、「抗体」としては、特に制限はなく公知のものが使用でき、アニオン性の性質が強いものや、カチオン性の性質が強いもの、それ以外のものも使用できる。例えば、ポリクローナル抗体、モノクローナル抗体、遺伝子組み換えにより得られた抗体のほか、抗原と結合能を有する抗体断片[例えば、H鎖、L鎖、Fab、F(ab’)等]などを用いることができる。また、免疫グロブリンとして、IgG、IgM、IgA、IgE、IgDのいずれでもよい。抗体の産生動物種としては、ヒトをはじめ、ヒト以外の動物(例えばマウス、ラット、ウサギ、ヤギ、ウマ等)でもよい。抗体の具体例としては、抗PSA抗体、抗AFP抗体、抗CEA抗体、抗アデノウイルス抗体、抗インフルエンザウィルス抗体、抗HCV抗体、抗IgG抗体、抗ヒトIgE抗体等が挙げられる。
<標識抗体の好ましい作製方法>
 次に、標識抗体150の好ましい作製方法を挙げて説明する。標識抗体150の製造は、少なくとも、次の工程A;
工程A)金属-樹脂複合体100を第1のpH条件で抗体と混合して結合させることによって、標識抗体150を得る工程
を含み、好ましくは、さらに工程B; 
工程B)標識抗体150を第2のpH条件で処理する工程
を含むことができる。
[工程A]
 工程Aでは、金属-樹脂複合体100を第1のpH条件で抗体と混合して標識抗体150を得る。工程Aは、固体状の金属-樹脂複合体100を液相中に分散させた状態で抗体と接触させることが好ましい。
 第1のpH条件は、金属-樹脂複合体100の分散と抗体の活性を維持したまま金属-樹脂複合体100と抗体を均一に接触させる観点から、pH2~10の範囲内の条件が好ましく、さらに例えばpH5~9の範囲内がより好ましい。金属-樹脂複合体100と抗体とを結合させるときの条件が、pH2未満では強酸性により抗体が変質し失活する場合があり、pH10を超えると金属-樹脂複合体100と抗体を混合した際に凝集し分散が困難となる。ただし、強酸性により抗体が失活しない場合はpH2未満においても処理が可能である。
 工程Aは、第1のpH条件に調整した結合用緩衝液(Binding Buffer)中で行うことが好ましい。例えば、上記pHに調整した結合用緩衝液に所定量の金属-樹脂複合体100を混合し、十分に混和する。結合用緩衝液としては、例えば、所定濃度に調整したホウ酸溶液などを用いることができる。結合用緩衝液のpHの調整は、例えば塩酸、水酸化ナトリウムなどを用いて行うことができる。
 次に、得られた混合液に、所定量の抗体を添加し、十分に撹拌、混合することによって、標識抗体含有液を得ることができる。このようにして得られた標識抗体含有液は、例えば遠心分離などの固液分離手段により、固形部分として標識抗体150のみを分取できる。
[工程B]
 工程Bでは、工程Aで得られた標識抗体150を第2のpH条件で処理することによって、標識抗体150への非特異的な吸着を抑制するブロッキングを行う。この場合、固液分離手段によって分取しておいた標識抗体150を、第2のpH条件で液相中に分散させる。
 第2のpH条件は、抗体の活性を保ちかつ標識抗体150の凝集を抑制する観点から、例えばpH2~10の範囲内が好ましく、標識抗体150の非特異的な吸着を抑制する観点から、pH5~9の範囲内がより好ましい。ブロッキングの条件が、pH2未満では強酸性により抗体が変質し失活する場合があり、pH10を超えると標識抗体150が凝集してしまい分散が困難となる。
 工程Bは、ブロッキング剤を第2のpHの条件に調製したブロック用緩衝液(Blocking Buffer)を用いて行うことが好ましい。例えば、所定量の標識抗体150に上記pHに調整したブロック用緩衝液を添加し、ブロック用緩衝液中で標識抗体150を均一に分散させる。ブロック用緩衝液としては、例えば、被検出物と結合しない蛋白質の溶液を用いることが好ましい。ブロック用緩衝液に使用可能なブロッキング剤としては、特に制限はなく公知のものが使用でき、アニオン性の性質が強いものや、カチオン性の性質が強いもの、それ以外のものも使用できる。例えば、蛋白質であれば、牛血清アルブミン、卵白アルブミン、カゼイン、ゼラチン、乳清ホエイなどを挙げることができる。より具体的には、所定濃度に調整した牛血清アルブミン溶液などを用いることが好ましい。ブロック用緩衝液のpHの調整は、例えば塩酸、水酸化ナトリウムなどを用いて行うことができる。標識抗体150の分散には、例えば超音波処理などの分散手段を用いることが好ましい。このようにして標識抗体150が均一分散した分散液が得られる。
 上記工程Aおよび工程Bにおいて、金属-樹脂複合体100は、pHによる凝集が起こりにくく、酸性~アルカリ性まで広い範囲のpHで処理が可能である。従って、本発明で用いる金属-樹脂複合体100は、標識抗体の作製条件の制限を受けにくいという利点もある。
 以上のようにして、標識抗体150の分散液が得られる。この分散液から、例えば遠心分離などの固液分離手段により、固形部分として標識抗体150のみを分取できる。また、必要に応じて、洗浄処理、保存処理などを実施することができる。以下、洗浄処理、保存処理について説明する。
(洗浄処理)
 洗浄処理は、固液分離手段によって分取した標識抗体150に洗浄用緩衝液を添加し、洗浄用緩衝液中で標識抗体150を均一に分散させる。分散には、例えば超音波処理などの分散手段を用いることが好ましい。洗浄用緩衝液としては、特に限定されるものではないが、例えばpH8~9の範囲内に調整した所定濃度の、トリス(Tris)緩衝液、グリシンアミド緩衝液、アルギニン緩衝液などを用いることができる。洗浄用緩衝液のpHの調整は、例えば塩酸、水酸化ナトリウムなどを用いて行うことができる。標識抗体150の洗浄処理は、必要に応じて複数回を繰り返し行うことができる。
(保存処理)
 保存処理は、固液分離手段によって分取した標識抗体150に保存用緩衝液を添加し、保存用緩衝液中で標識抗体150を均一に分散させる。分散には、例えば超音波処理などの分散手段を用いることが好ましい。保存用緩衝液としては、例えば、洗浄用緩衝液に、所定濃度の凝集防止剤及び/又は安定剤を添加した溶液などを用いることができる。凝集防止剤としては、例えば、スクロース、マルトース、ラクトース、トレハロースに代表される糖類や、グリセリン、ポリビニルアルコールに代表される多価アルコールなどを用いることができる。安定剤としては、特に限定されるものではないが、例えば牛血清アルブミン、卵白アルブミン、カゼイン、ゼラチンなどの蛋白質を用いることができる。このようにして標識抗体150の保存処理を行うことができる。
 以上の各工程では、さらに必要に応じて、界面活性剤や、アジ化ナトリウム、パラオキシ安息香酸エステルなどの防腐剤を用いることができる。
[アナライト測定用キット]
 本発明の一実施の形態に係るアナライト測定用キットは、例えばテストストリップ200を用いて、本実施の形態のアナライトの測定方法に基づき、試料中に含まれるアナライト160の検出又は定量するためのキットである。
 本実施の形態のアナライト測定用キットは、
 メンブレン110と、
 メンブレン110に、前記アナライト160と特異的に結合する捕捉リガンド131が固定されてなる判定部130を含むテストストリップ200と、
 アナライト160に特異的に結合する抗体を樹脂粒子10に複数の金属粒子20が固定化された構造を有する金属-樹脂複合体100で標識した標識抗体150を含む検出試薬と、
を含んでいる。本実施の形態のアナライト測定用キットは、必要に応じて、さらにその他の構成要素を含むものであってもよい。
 本実施の形態に係るアナライト測定用キットを使用するにあたっては、試料中のアナライト160と検出試薬中の標識抗体150とを接触させて工程(I)を実施した後、テストストリップ200の反応部又は試料添加部120に試料を供して、工程(II)、工程(III)を順次実施してもよい。あるいは、テストストリップ200の判定部130よりも上流側に、検出試薬を塗布して、適宜乾燥させて反応部を形成した後、形成された反応部あるいは該反応部よりも上流側の位置(例えば、試料添加部120)に試料を添加して、工程(I)~(III)を順次実施してもよい。
 また、金属-樹脂複合体100の免疫学的測定用標識物質又は免疫学的測定用試薬以外の用途としては、固体触媒、顔料、塗料、導電性材料、電極、センサー素子として好ましく適用できる。
 次に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。以下の実施例、比較例において特にことわりのない限り、各種測定、評価は下記によるものである。
<金属-樹脂複合体粒子の吸光度測定>
金属-樹脂複合体粒子の吸光度は、石英ガラス製セル(光路長10mm)に0.01wt%に調製した金属-樹脂複合体粒子分散液(分散媒:水)を入れ、分光光度計(島津製作所社製、UV3600)を用いて、金-樹脂複合体の場合570nm、白金-樹脂複合体の場合400nmの吸光度を測定した。
<固形分濃度測定及び金属担持量の測定>
 磁製るつぼに濃度調整前の分散液1gを入れ、70℃、3時間乾燥を行った。乾燥前後の重量を測定し、下記式により固形分濃度を算出した。
 固形分濃度(wt%)=
   [乾燥後の重量(g)/乾燥前の重量(g)]×100
 また、上記乾燥処理後のサンプルを、さらに500℃、5時間熱処理を行い、熱処理前後の重量を測定し、下記式より金属担持量を算出した。
 金属担持量(wt%)=
   [熱処理後の重量(g)/熱処理前の重量(g)]×100
<樹脂粒子又は金属-樹脂複合体粒子の平均粒子径の測定>
 ディスク遠心式粒度分布測定装置(CPS Disc Centrifuge DC24000 UHR、CPS instruments, Inc.社製)を用いて測定した。測定は、樹脂粒子又は金属-樹脂複合体粒子を水に分散させた状態で行った。
<金属粒子の平均粒子径の測定>
 金属-樹脂複合体粒子分散液をカーボン支持膜付き金属性メッシュへ滴下して作成した基板を、電界放出形走査電子顕微鏡(FE-SEM;日立ハイテクノロジーズ社製、SU-9000)により観測した画像から、任意の100個の金属粒子の面積平均径を測定した。
<ゼータ電位測定>
 ゼータ電位は、測定装置として、Malvern社製 Zetasizer Nano-ZSを用い、電気泳動光散乱法により測定した。サンプルを純水で0.01wt%に希釈し、塩酸又はNaOH水溶液を用いてpH3~10における各pH値に調整したものを測定サンプルとする。pHメーター(HORIBA LAQUA twin)を用いてpH測定した後、ゼータ電位測定を行うことによって、pH3~10の複数点のpHにおけるゼータ電位の変化の挙動を測定した。pH3~6の酸性領域におけるゼータ電位の最大値とpH6~10のアルカリ性領域におけるゼータ電位の最小値からゼータ電位の変化幅を算出した。また、ゼータ電位が0mVに近い、0mVより大きい任意の1点のゼータ電位、及び、0mVより小さい任意の1点のゼータ電位を結ぶ1次関数を求め、ゼータ電位が0mVとなるpH、すなわちゼロ電荷点(zero point of charge)を算出した。
[作製例1]
<樹脂粒子の合成>
 トリオクチルアンモニウムクロリド(0.91g)及びポリエチレングリコールメチルエーテルメタクリレート(10.00g)を300gの純水に溶解した後、2-ビニルピリジン(48.00g)及びジビニルベンゼン(2.00g)を加え、窒素気流下において30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(0.250g)を滴下し、60℃で3.5時間撹拌することで、平均粒子径371nmの樹脂粒子A-1を得た。遠心分離(9000rpm、40分)により沈殿させ、上澄みを除去した後、純水に再度分散させた後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液B-1を得た。
[作製例2]
<樹脂粒子の合成>
 トリオクチルアンモニウムクロリドを0.39g使用し、2,2-アゾビス(2-メチルプロピオンアミジン)二塩酸塩を0.50g使用した他は、作製例1と同様の方法で、平均粒子径439nmの樹脂粒子A-2及び10wt%の樹脂粒子分散液B-2を得た。
[作製例3]
<樹脂粒子の合成>
 トリオクチルアンモニウムクロリドを1.50g使用し、2-ビニルピリジンを49.50g使用し、ジビニルベンゼンを0.50g使用し、2,2-アゾビス(2-メチルプロピオンアミジン)二塩酸塩を0.50g使用した他は、作製例1と同様の方法で、平均粒子径430nmの樹脂粒子A-3及び10wt%の樹脂粒子分散液B-3を得た。
[作製例4]
<樹脂粒子の合成>
 トリオクチルアンモニウムクロリド(1.50g)及びポリエチレングリコールメチルエーテルメタクリレート(10.00g)を300gの純水に溶解した後、2-ビニルピリジン(48.00g)及びジビニルベンゼン(2.00g)を加え、窒素気流下において、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(0.250g)を滴下し、60℃で3.5時間撹拌した。その後、濃度50wt%の水酸化ナトリウム水溶液を20g添加し、60℃で2時間撹拌することで、平均粒子径312nmの樹脂粒子A-4を得た。遠心分離(9000rpm、40分)により沈殿させ、上澄みを除去した後、純水に再度分散させた後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液B-4を得た。
[実施例1]
<白金-樹脂複合体粒子の合成>
 B-1(91.5g)に純水54gを加えた後、400mM塩化白金酸水溶液(100g)を加え、30℃で3時間撹拌した。この混合液を24時間静置した後、遠心分離(3000rpm、30分)によりA-1を沈殿させ、上澄みを除去することで余分な塩化白金酸を除去した。その後、濃度を調整して、5wt%の白金イオン吸着樹脂粒子分散液C-1を得た。
 次に、純水1392gにC-1(20.6g)を加え、3℃で撹拌しながら、132mMのジメチルアミンボラン水溶液(40g)を20分かけて滴下した後、3℃で1時間、室温で3時間撹拌することで、平均粒子径381nmの白金-樹脂複合体粒子D-1を得た。D-1を遠心分離により濃縮した後、透析処理により精製し、濃度を調整して、1wt%の白金-樹脂複合体粒子分散液E-1を得た。E-1中の白金-樹脂複合体粒子F-1の吸光度は1.79であった。また、F-1における白金粒子の平均粒子径は4.5nm、白金の担持量は36.7wt%であった。F-1のゼータ電位測定の結果を表1に示す。
 この樹脂-白金複合体F-1において、白金粒子は、樹脂粒子に完全に内包された内包白金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出白金粒子と、樹脂粒子の表面に吸着している表面吸着白金粒子と、を含んでおり、少なくとも一部の白金粒子が、樹脂粒子の表層部において三次元的に分布していた。なお、白金粒子は、樹脂粒子の表面から、深さ方向に粒子半径の40%の範囲には97%存在した。
[実施例2]
<白金-樹脂複合体粒子の合成>
 B-1の代わりにB-2を用いる以外は、実施例1と同様にして、5wt%の白金イオン吸着樹脂粒子分散液C-2、白金-樹脂複合体粒子D-2、1wt%の白金-樹脂複合体粒子分散液E-2及び白金-樹脂複合体粒子F-2を作製した。
 D-2の平均粒子径は461nmであり、F-2の吸光度は1.77であった。また、F-2における白金粒子の平均粒子径は5.0nm、白金の担持量は37.6wt%であった。F-2のゼータ電位測定の結果を表1に示す。
 この樹脂-白金複合体F-2において、白金粒子は、樹脂粒子に完全に内包された内包白金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出白金粒子と、樹脂粒子の表面に吸着している表面吸着白金粒子と、を含んでおり、少なくとも一部の白金粒子が、樹脂粒子の表層部において三次元的に分布していた。
[実施例3]
<白金-樹脂複合体粒子の合成>
 B-1の代わりにB-3を用いる以外は、実施例1と同様にして、5wt%の白金イオン吸着樹脂粒子分散液C-3、白金-樹脂複合体粒子D-3、1wt%の白金-樹脂複合体粒子分散液E-3及び白金-樹脂複合体粒子F-3を作製した。
 D-3の平均粒子径は454nmであり、F-3の吸光度は1.45であった。また、F-3における白金粒子の平均粒子径は3.8nm、白金の担持量は37.7wt%であった。F-3のゼータ電位測定の結果を表1に示す。
 この樹脂-白金複合体F-3において、白金粒子は、樹脂粒子に完全に内包された内包白金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出白金粒子と、樹脂粒子の表面に吸着している表面吸着白金粒子と、を含んでおり、少なくとも一部の白金粒子が、樹脂粒子の表層部において三次元的に分布していた。
[実施例4]
<金-樹脂複合体粒子の合成>
 B-4(91.5g)に純水255gを加えた後、400mM塩化金酸水溶液(147g)を加え、室温で3時間撹拌した。この混合液を遠心分離(3000rpm、30分)によりA-4を沈殿させ、上澄みを除去することで余分な塩化金酸を除去した。その後、濃度を調整して、2.5wt%の金イオン吸着樹脂粒子分散液C-4を得た。
 次に、純水1580gにC-4(43.3g)を加え、3℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10.0g)を2分かけて滴下した後、3℃で1時間、室温で3時間撹拌することで、平均粒子径322nmの金-樹脂複合体粒子D-4を得た。D-4を遠心分離により濃縮した後、透析処理により精製し、濃度を調整して、1wt%の金-樹脂複合体粒子分散液E-4を得た。E-4中の金-樹脂複合体粒子F-4の吸光度は、1.27であった。また、F-4における金粒子の平均粒子径は30nm、金の担持量は53.8wt%であった。F-4のゼータ電位測定の結果を表1に示す。
 この樹脂-金複合体F-4において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。なお、金粒子は、樹脂粒子の表面から、深さ方向に粒子半径の40%の範囲には97%存在した。
[実施例5]
<金-樹脂複合体粒子の合成>
 B-4の代わりにB-2を用いる以外は、実施例4と同様にして、2.5wt%の金イオン吸着樹脂粒子分散液C-5、金-樹脂複合体粒子D-5、1wt%の金-樹脂複合体粒子分散液E-5及び金-樹脂複合体粒子F-5を作製した。
 この樹脂-金複合体F-5において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。
<メルカプトプロピオン酸処理>
 E-5(0.1g)と10mMのメルカプトプロピオン酸水溶液(1.0g)を混合し、23℃で1時間撹拌した。遠心分離(12000rpm、5分)により金-樹脂複合体粒子F-5を沈殿させ、上澄みを除去した後、純水(1.0g)を加えて再分散することで余分なメルカプトプロピオン酸を除去することにより、メルカプトプロピオン酸処理した金-樹脂複合体粒子G-5を作製した。
 G-5の平均粒子径は455nmであり、G-5の吸光度は1.36であった。また、G-5における金粒子の平均粒子径は20nm、金の担持量は48.3wt%であった。G-5のゼータ電位測定の結果を表1に示す。
[実施例6]
<メルカプトプロピオン酸処理>
 E-5の代わりにE-2を用いる以外は、実施例5と同様にして、メルカプトプロピオン酸処理した白金-樹脂複合体粒子G-6を作製した。G-6のゼータ電位測定の結果を表1に示す。
[実施例7]
<ポリグルタミン酸処理>
 E-5(0.1g)と0.5wt%のポリグルタミン酸水溶液(1.0g)を混合し、23℃で1時間撹拌した。遠心分離(12000rpm、5分)により金-樹脂複合体粒子D-5を沈殿させ、上澄みを除去した後、純水(1.0g)を加えることで余分なポリグルタミン酸を除去することにより、ポリグルタミン酸処理した金-樹脂複合体粒子G-7を作製した。G-7のゼータ電位測定の結果を表1に示す。
[実施例8]
<ポリグルタミン酸処理>
 E-5の代わりにE-2を用いる以外は、実施例7と同様にして、ポリグルタミン酸処理した白金-樹脂複合体粒子G-8を作製した。G-8のゼータ電位測定の結果を表1に示す。
[比較例1]
<金-樹脂複合体粒子の合成>
 B-4の代わりにB-1を用いる以外は、実施例4と同様にして、2.5wt%の金イオン吸着樹脂粒子分散液C-9、金-樹脂複合体粒子D-9、1wt%の金-樹脂複合体粒子分散液E-9及び金-樹脂複合体粒子F-9を作製した。
 D-9の平均粒子径380nmであり、F-9の吸光度は1.46であった。また、F-9における金粒子の平均粒子径は22nm、金の担持量は53.7wt%であった。F-9のゼータ電位測定の結果を表1に示す。
 この樹脂-金複合体F-9において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。
[比較例2]
<金-樹脂複合体粒子の合成>
 B-4の代わりにB-2を用いる以外は、実施例4と同様にして、2.5wt%の金イオン吸着樹脂粒子分散液C-10、金-樹脂複合体粒子D-10、1wt%の金-樹脂複合体粒子分散液E-10および金-樹脂複合体粒子F-10を作製した。
 D-10の平均粒子径は455nmであり、F-10の吸光度は1.36であった。また、F-10における金粒子の平均粒子径は20nm、金の担持量は48.3wt%であった。F-10のゼータ電位測定の結果を表1に示す。
 この樹脂-金複合体F-10において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。
[比較例3]
<金-樹脂複合体粒子の合成>
 B-4の代わりにB-3を用いる以外は、実施例4と同様にして、2.5wt%の金イオン吸着樹脂粒子分散液C-11、金-樹脂複合体粒子D-11、1wt%の金-樹脂複合体粒子分散液E-11および金-樹脂複合体粒子F-11を作製した。
 D-11の平均粒子径は442nmであり、F-11の吸光度は1.26であった。また、F-11における金粒子の平均粒子径は16.1nm、金の担持量は53.9wt%であった。F-11のゼータ電位測定の結果を表1に示す。
 この樹脂-金複合体F-11において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。
[比較例4]
 金コロイド(田中貴金属工業社製 Auコロイド溶液-SC 平均粒子径50nm)のゼータ電位測定の結果を表1に示す。
[比較例5]
 着色ラテックスビーズ(メルクミリポア社製 カルボキシル基修飾-着色Estapor、K1-030 Red)のゼータ電位測定の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[試験例1-1]
<カゼイン吸着処理>
 5mMのTris(トリスヒドロキシメチルアミノメタン)水溶液(0.9ml)とカゼイン(25μg)の混合溶液に、1mgのF-1を含む分散液(0.1ml)を添加し、23℃で3時間転倒撹拌した。その後、遠心分離(12000rpm、4℃、5min)して、上澄み液H-1を採取した。
<カゼイン吸着量の測定>
 分光光度計を用いて、H-1の波長280nmにおける吸光度を測定し、下記のブランクサンプル及び標準サンプルによる一点検量法により、H-1中のカゼイン含有量を求めた。F-1へのカゼイン吸着量は、下記の式から算出した。算出した結果を表2に示す。
・ブランクサンプル:
  5mMのTris水溶液(0.9ml)及び純水(0.1ml)の混合溶液
・標準サンプル:
  5mMのTris水溶液(0.9ml)、カゼイン(25μg)及び
  純水(0.1ml)の混合溶液
・(金属-樹脂複合体粒子へのカゼイン吸着量)=
(カゼイン吸着処理に使用したカゼイン量)-(上澄み液中のカゼイン含有量)
[試験例1-2~1-12]
 F-1の代わりにF-2、F-3、F-4、G-5、G-6、G-7、G-8、F-9、F-10、F-11および着色ラテックスビーズを、それぞれ使用した他は、試験例1-1と同様の方法で、F-2、F-3、F-4、G-5、G-6、G-7、G-8、F-9、F-10、F-11および着色ラテックスビーズへのカゼイン吸着量を算出した。算出した結果を表2に示す。なお、金コロイドは1mg/0.1mL水分散液を作製する際に、金ナノ粒子が凝集し再分散が困難であったため、カゼイン吸着処理を行うことができなかった。
[試験例2-1]
<乳清ホエイ吸着処理及び乳清ホエイ吸着量の測定>
 カゼインの代わりに乳清ホエイを使用した他は、試験例1-1と同様の方法で、F-1へのホエイ吸着処理を行い、吸着量を測定した。F-1への乳清ホエイ吸着量は、下記の式から算出した。算出した結果を表3に示す。
・ブランクサンプル:
  5mMのTris水溶液(0.9ml)及び純水(0.1ml)の混合溶液
・標準サンプル:
  5mMのTris水溶液(0.9ml)、乳清ホエイ(25μg)及び
  純水(0.1ml)の混合溶液
・(金属-樹脂複合体粒子への乳清ホエイ吸着量)=
(乳清ホエイ吸着処理に使用した乳清ホエイ量)-(上澄み液中の乳清ホエイ含有量)
[試験例2-2~2-12]
 F-1の代わりにF-2、F-3、F-4、G-5、G-6、G-7、G-8、F-9、F-10、F-11および着色ラテックスビーズを、それぞれ使用した他は、試験例2-1と同様の方法で、F-2、F-3、F-4、G-5、G-6、G-7、G-8、F-9、F-10、F-11および着色ラテックスビーズへの乳清ホエイ吸着量を算出した。算出した結果を表3に示す。なお、金コロイドは1mg/0.1mL水分散液を作製する際に、金ナノ粒子が凝集し再分散が困難であったため、乳清ホエイ吸着処理を行うことができなかった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[試験例3]
(結合工程)
 抗インフルエンザA型モノクローナル抗体100μgと100mM ホウ酸水溶液(pH8.5)0.9mLを混合した後、実施例1の1wt%の白金-樹脂複合体粒子分散液E-1を0.1mL添加し、室温で3時間かけて転倒撹拌を行い、白金-樹脂複合体粒子F-1で標識した抗インフルエンザA型モノクローナル抗体を含む標識抗体分散液J-1を得た。
(ブロック工程)
 次に、標識抗体分散液J-1を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に1wt%牛血清アルブミンを含む5mMのTris水溶液(pH8.5)1mLを添加し、10~20秒間かけて超音波分散処理を行い、さらに、室温で2時間かけて転倒撹拌を行い、標識抗体分散液K-1を得た。
(洗浄処理)
 次に、標識抗体分散液K-1を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に0.1wt%未満の界面活性剤と牛血清アルブミンを含む5mMのTris水溶液(pH8.5)1mLを添加し、10~20秒間かけて超音波分散処理を行った。この操作を3回繰り返し、洗浄処理とした。
(保存処理)
 次に、氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に0.1wt%未満の界面活性剤と牛血清アルブミンおよび、10wt%のスクロースを含む5mMのTris水溶液(pH8.5)1mLを添加し、10~20秒間かけて超音波分散処理を行うことによって、標識抗体分散液L-1を得た。
(イムノクロマト法による評価)
 96ウェルプレートの1行分の12ウェルに、標識抗体分散液L-1を3μlずつ入れ、インフルエンザA型陽性コントロール(APC)の2倍希釈列(右から×1、×2、×4、×8、×16、×32、×64、×128、×256、×512、×1024)及び陰性コントロールを、それぞれ100μl混和した。ここで、インフルエンザA型陽性コントロール(APC)はインフルエンザA型ウィルス不活化抗原(アドテック株式会社製)を、検体処理液(アドテック株式会社製)を用いて100倍希釈してAPC×1を調製した。APC×1の抗原濃度は、5000FFU/mlに相当する。陰性コントロールは検体処理液(アドテック株式会社製)である。
 次に、インフルエンザA型評価用モノクロスクリーン(アドテック株式会社製)の1行12穴のサンプル注入口に、この混和した分散液を50μl添加し、5分後、10分後、15分後のテストラインの発色レベルを評価した。15分後の発色レベルが0.5以上のものを「良好」と判定した。発色レベルは、金コロイド判定用色見本(アドテック株式会社製)を用いて判定した。
 標識抗体分散液L-1のイムノクロマト評価結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 上記表4から、標識抗体分散液L-1は、128倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
[試験例4]着色ラテックスのイムノクロマト評価
 試験例3の結合工程において、実施例1の1wt%の白金-樹脂複合体粒子分散液E-1を用いる代わりに、比較例5の1wt%着色ラテックスビーズを用いる以外は試験例3と同様にして、標識抗体分散液J-2、K-2、L-2を得た。
 試験例3のイムノクロマト法による評価において、標識抗体分散液L-1を用いる代わりに、標識抗体分散液L-2を用いる以外は試験例3と同様にして、イムノクロマト評価を行った結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 上記表5から、市販の着色ラテックスビーズによる標識抗体分散液L-2は、1倍希釈の抗原に対して、15分後の発色レベルが0.5未満となり、良好な発色を示さないことが確認された。
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。
 本出願は、2016年12月28日に出願された日本国特許出願2016-256913号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。
 10…樹脂粒子、20…金属粒子、30…内包粒子、40…一部露出粒子、50…表面吸着粒子、60…表層部、100…金属-樹脂複合体、110…メンブレン、120…試料添加部、130…判定部、131…捕捉リガンド、140…吸液部、150…標識抗体、160…アナライト、170…複合体、200…テストストリップ

Claims (14)

  1.  樹脂粒子と、
     前記樹脂粒子に固定化された複数の金属粒子と、
    を有する金属-樹脂複合体であって、
     pH3~pH10の範囲において、ゼータ電位の最大値が5mV以上であり、かつ、最小値が-5mV以下であることを特徴とする、金属-樹脂複合体。
  2.  pH3~pH10の範囲において、前記ゼータ電位の最大値と最小値の差が、20mV以上である、請求項1に記載の金属-樹脂複合体。
  3.  前記ゼータ電位のゼロ電荷点が、pH3.5~pH9.0の範囲に存在する、請求項1に記載の金属-樹脂複合体。
  4.  前記金属粒子の平均粒子径が、1nm~100nmの範囲内である、請求項1に記載の金属-樹脂複合体。
  5.  前記金属-樹脂複合体の平均粒子径が、30nm~1000nmの範囲内である、請求項1に記載の金属-樹脂複合体。
  6.  前記樹脂粒子が、金属イオンを吸着することが可能な置換基を構造に有するポリマー粒子である、請求項1に記載の金属-樹脂複合体。
  7.  前記金属粒子が、金、白金、パラジウム、銀、ニッケル、銅、又はこれらの合金の粒子である、請求項1に記載の金属-樹脂複合体。
  8.  請求項1に記載の金属-樹脂複合体を備えた、標識物質。
  9.  前記金属-樹脂複合体の表面に、抗原又は抗体を吸着させて使用するものである、請求項8に記載の標識物質。
  10.  請求項8に記載の標識物質を用いる、免疫学的測定法。
  11.  請求項8に記載の標識物質を備えた、免疫学的測定用試薬。
  12.  試料中に含まれるアナライトを検出又は定量するアナライトの測定方法であって、
     メンブレン、及び当該メンブレンに前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部を含むラテラルフロー型クロマト用テストストリップを用い、下記工程(I)~(III);
     工程(I):試料に含まれる前記アナライトと、該アナライトに特異的に結合する抗体を金属-樹脂複合体で標識した標識抗体と、を接触させる工程、
     工程(II):前記判定部にて、工程(I)において形成された、アナライトと標識抗体とを含む複合体を、捕捉リガンドに接触させる工程、
     工程(III):前記金属-樹脂複合体の局在型表面プラズモン共鳴及び/又は電子遷移による光エネルギー吸収に由来する発色強度を測定する工程、
    を含み、
     前記金属-樹脂複合体が、樹脂粒子と、前記樹脂粒子に固定化された複数の金属粒子と、を有するとともに、pH3~pH10の範囲において、該金属-樹脂複合体のゼータ電位の最大値が5mV以上であり、かつ、最小値が-5mV以下であることを特徴とする、アナライトの測定方法。
  13.  試料中に含まれるアナライトを検出又は定量するためのアナライト測定用キットであって、
     メンブレン、及び当該メンブレンに、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部を含むラテラルフロー型クロマト用テストストリップと、
     前記アナライトに特異的に結合する抗体を、金属-樹脂複合体で標識した標識抗体を含む検出試薬と、
    を含み、
     前記金属-樹脂複合体が、樹脂粒子に複数の金属粒子が固定化された構造を有するとともに、pH3~pH10の範囲において、ゼータ電位の最大値が5mV以上であり、かつ、最小値が-5mV以下であることを特徴とする、アナライトを検出又は定量するためのアナライト測定用キット。
  14.  試料中に含まれるアナライトを検出又は定量するためのラテラルフロー型クロマト用テストストリップであって、
     メンブレンと、
     前記メンブレンに、前記試料が展開する方向において、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部と、
     当該判定部よりも上流側に、前記アナライトに特異的に結合する抗体を金属-樹脂複合体で標識した標識抗体が含まれる反応部と、
    を含み、
     前記金属-樹脂複合体が、樹脂粒子に複数の金属粒子が固定化された構造を有するとともに、pH3~pH10の範囲において、ゼータ電位の最大値が5mV以上であり、かつ、最小値が-5mV以下であることを特徴とする、ラテラルフロー型クロマト用テストストリップ。

     
PCT/JP2017/046393 2016-12-28 2017-12-25 金属-樹脂複合体及びその利用 WO2018123952A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17886839.4A EP3564675A4 (en) 2016-12-28 2017-12-25 METAL-RESIN COMPLEX AND ITS USE
KR1020197019716A KR102640613B1 (ko) 2016-12-28 2017-12-25 금속-수지 복합체 및 그 이용
JP2018559447A JP7265357B2 (ja) 2016-12-28 2017-12-25 金属-樹脂複合体及びその利用
US16/474,549 US20190367694A1 (en) 2016-12-28 2017-12-25 Metal-resin complex and use thereof
CN201780081371.9A CN110140053A (zh) 2016-12-28 2017-12-25 金属-树脂复合体及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016256913 2016-12-28
JP2016-256913 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123952A1 true WO2018123952A1 (ja) 2018-07-05

Family

ID=62707661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046393 WO2018123952A1 (ja) 2016-12-28 2017-12-25 金属-樹脂複合体及びその利用

Country Status (7)

Country Link
US (1) US20190367694A1 (ja)
EP (1) EP3564675A4 (ja)
JP (1) JP7265357B2 (ja)
KR (1) KR102640613B1 (ja)
CN (1) CN110140053A (ja)
TW (1) TWI758387B (ja)
WO (1) WO2018123952A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052017A (ja) * 2018-09-28 2020-04-02 日鉄ケミカル&マテリアル株式会社 検体処理液及びそれを用いたイムノクロマトキット
JPWO2020040159A1 (ja) * 2018-08-21 2021-08-26 デンカ株式会社 表面プラズモン共鳴を担体粒子を用いて増幅させるイムノクロマト法
WO2023171693A1 (ja) * 2022-03-10 2023-09-14 キヤノン株式会社 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
WO2024176557A1 (ja) * 2023-02-24 2024-08-29 株式会社オハラ 蛋白質固定化用担体、蛋白質固定化用担体分散液、蛋白質固定化用担体水和物、蛋白質担持複合体および抗体検査キット
WO2024203979A1 (ja) * 2023-03-28 2024-10-03 日鉄ケミカル&マテリアル株式会社 金属-樹脂複合体及びその利用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220187287A1 (en) * 2019-03-26 2022-06-16 Sekisui Medical Co., Ltd. Magnetic responsive particle and immunoassay method using same, reagent for immunoassay
US11444111B2 (en) * 2019-03-28 2022-09-13 Semiconductor Components Industries, Llc Image sensor package having a light blocking member

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206959A (ja) 1989-09-29 1991-09-10 Ortho Diagnostic Syst Inc 選ばれた粒度の狭い分布のコロイド粒子を含む試薬を製造する方法及びその使用
JPH0510950A (ja) 1990-08-31 1993-01-19 Japan Synthetic Rubber Co Ltd イムノクロマトグラフ法
JP2003262638A (ja) * 2002-03-08 2003-09-19 Bl:Kk 金属コロイド粒子
JP2004226395A (ja) * 2002-11-25 2004-08-12 Kenji Yamamoto 分子認識蛍光体及び標的物質の測定方法
JP2009168495A (ja) 2008-01-11 2009-07-30 Sekisui Chem Co Ltd 着色ラテックス
JP2009227883A (ja) 2008-03-25 2009-10-08 Kri Inc 複合微粒子ならびにその分散液および成形体
JP2011117906A (ja) 2009-12-07 2011-06-16 Fujifilm Corp イムノクロマトグラフ方法
JP2012177691A (ja) * 2011-02-04 2012-09-13 Hitachi Maxell Ltd 磁性マーカー粒子
WO2014203614A1 (ja) * 2013-06-19 2014-12-24 コニカミノルタ株式会社 生体分子染色用の蛍光ナノ粒子およびその製造方法
WO2015022914A1 (ja) * 2013-08-12 2015-02-19 古河電気工業株式会社 表面に反応性官能基を有するシリカ粒子及びその製造方法
US20150064718A1 (en) * 2013-08-30 2015-03-05 Corning Incorporated Organic/inorganic magnetic composite, methods of making and use thereof
JP2015068764A (ja) * 2013-09-30 2015-04-13 凸版印刷株式会社 分析対象物の濃度測定方法及びラテラルフロー用テストストリップ
WO2016002743A1 (ja) * 2014-07-01 2016-01-07 新日鉄住金化学株式会社 標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
WO2016002742A1 (ja) 2014-07-01 2016-01-07 新日鉄住金化学株式会社 樹脂-金属複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
WO2017010391A1 (ja) * 2015-07-11 2017-01-19 新日鉄住金化学株式会社 樹脂-白金複合体及びその利用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248772A (en) * 1992-01-29 1993-09-28 Coulter Corporation Formation of colloidal metal dispersions using aminodextrans as reductants and protective agents
WO2003083478A1 (fr) * 2002-04-03 2003-10-09 Japan Science And Technology Agency Face de capteur pour biopuce porteuse de nanoparticules de polyethylene glycolate
ATE438854T1 (de) * 2003-04-16 2009-08-15 Sekisui Chemical Co Ltd Verfahren zur herstellung eines partikels mit darin eingebautem magnetischen material
JP5183905B2 (ja) * 2006-11-01 2013-04-17 バンドー化学株式会社 担体、担体の製造方法、およびその利用
US20120104333A1 (en) * 2009-07-01 2012-05-03 Hitachi Chemical Company, Ltd. Coated conductive particles and method for producing same
WO2011062173A1 (ja) * 2009-11-18 2011-05-26 綜研化学株式会社 樹脂粒子およびその製造方法
US8765862B2 (en) * 2010-03-01 2014-07-01 Nippon Steel & Sumikin Chemical Co., Ltd. Metal nanoparticle composite and production method thereof
US20130045877A1 (en) * 2011-08-19 2013-02-21 Agency For Science, Technology And Research Methods to form substrates for optical sensing by surface enhanced raman spectroscopy (sers) and substrates formed by the methods
JP6486065B2 (ja) * 2014-10-28 2019-03-20 シスメックス株式会社 被検物質の検出方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206959A (ja) 1989-09-29 1991-09-10 Ortho Diagnostic Syst Inc 選ばれた粒度の狭い分布のコロイド粒子を含む試薬を製造する方法及びその使用
JPH0510950A (ja) 1990-08-31 1993-01-19 Japan Synthetic Rubber Co Ltd イムノクロマトグラフ法
JP2003262638A (ja) * 2002-03-08 2003-09-19 Bl:Kk 金属コロイド粒子
JP2004226395A (ja) * 2002-11-25 2004-08-12 Kenji Yamamoto 分子認識蛍光体及び標的物質の測定方法
JP2009168495A (ja) 2008-01-11 2009-07-30 Sekisui Chem Co Ltd 着色ラテックス
JP2009227883A (ja) 2008-03-25 2009-10-08 Kri Inc 複合微粒子ならびにその分散液および成形体
JP2011117906A (ja) 2009-12-07 2011-06-16 Fujifilm Corp イムノクロマトグラフ方法
JP2012177691A (ja) * 2011-02-04 2012-09-13 Hitachi Maxell Ltd 磁性マーカー粒子
WO2014203614A1 (ja) * 2013-06-19 2014-12-24 コニカミノルタ株式会社 生体分子染色用の蛍光ナノ粒子およびその製造方法
WO2015022914A1 (ja) * 2013-08-12 2015-02-19 古河電気工業株式会社 表面に反応性官能基を有するシリカ粒子及びその製造方法
US20150064718A1 (en) * 2013-08-30 2015-03-05 Corning Incorporated Organic/inorganic magnetic composite, methods of making and use thereof
JP2015068764A (ja) * 2013-09-30 2015-04-13 凸版印刷株式会社 分析対象物の濃度測定方法及びラテラルフロー用テストストリップ
WO2016002743A1 (ja) * 2014-07-01 2016-01-07 新日鉄住金化学株式会社 標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
WO2016002742A1 (ja) 2014-07-01 2016-01-07 新日鉄住金化学株式会社 樹脂-金属複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
WO2017010391A1 (ja) * 2015-07-11 2017-01-19 新日鉄住金化学株式会社 樹脂-白金複合体及びその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. AKAMATSUM.SHIMADAT. TSURUOKAH. NAWAFUNES. FUJIIY. NAKAMURA, LANGMUIR, vol. 26, 2010, pages 1254 - 1259
See also references of EP3564675A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020040159A1 (ja) * 2018-08-21 2021-08-26 デンカ株式会社 表面プラズモン共鳴を担体粒子を用いて増幅させるイムノクロマト法
JP7358360B2 (ja) 2018-08-21 2023-10-10 デンカ株式会社 表面プラズモン共鳴を担体粒子を用いて増幅させるイムノクロマト法
JP2020052017A (ja) * 2018-09-28 2020-04-02 日鉄ケミカル&マテリアル株式会社 検体処理液及びそれを用いたイムノクロマトキット
JP7218052B2 (ja) 2018-09-28 2023-02-06 日鉄ケミカル&マテリアル株式会社 検体処理液及びそれを用いたイムノクロマトキット
WO2023171693A1 (ja) * 2022-03-10 2023-09-14 キヤノン株式会社 導電性組成物及びその製造方法、導電性画像の記録方法、並びに導電性画像
WO2024176557A1 (ja) * 2023-02-24 2024-08-29 株式会社オハラ 蛋白質固定化用担体、蛋白質固定化用担体分散液、蛋白質固定化用担体水和物、蛋白質担持複合体および抗体検査キット
WO2024203979A1 (ja) * 2023-03-28 2024-10-03 日鉄ケミカル&マテリアル株式会社 金属-樹脂複合体及びその利用

Also Published As

Publication number Publication date
EP3564675A1 (en) 2019-11-06
KR20190101992A (ko) 2019-09-02
JP7265357B2 (ja) 2023-04-26
US20190367694A1 (en) 2019-12-05
EP3564675A4 (en) 2020-08-26
TW201825604A (zh) 2018-07-16
CN110140053A (zh) 2019-08-16
KR102640613B1 (ko) 2024-02-26
TWI758387B (zh) 2022-03-21
JPWO2018123952A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP7265357B2 (ja) 金属-樹脂複合体及びその利用
JP6800275B2 (ja) 樹脂−白金複合体及びその利用
JP6353534B2 (ja) 標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
JP6381642B2 (ja) 樹脂−金属複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
JP2017181368A (ja) 免疫測定方法、免疫測定用キット及びラテラルフロー型クロマトテストストリップ
JP7265315B2 (ja) 免疫学的測定用金属ナノ粒子-セルロース複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
WO2024203979A1 (ja) 金属-樹脂複合体及びその利用
JP2022134172A (ja) ナノ複合体粒子、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、及び、アナライト測定用キット
JP2017120242A (ja) 樹脂−金属複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886839

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018559447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019716

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017886839

Country of ref document: EP

Effective date: 20190729