WO2018123651A1 - 植物の環境ストレス耐性向上剤 - Google Patents

植物の環境ストレス耐性向上剤 Download PDF

Info

Publication number
WO2018123651A1
WO2018123651A1 PCT/JP2017/045088 JP2017045088W WO2018123651A1 WO 2018123651 A1 WO2018123651 A1 WO 2018123651A1 JP 2017045088 W JP2017045088 W JP 2017045088W WO 2018123651 A1 WO2018123651 A1 WO 2018123651A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
stress
ethanol
environmental stress
stress tolerance
Prior art date
Application number
PCT/JP2017/045088
Other languages
English (en)
French (fr)
Inventor
関 原明
香織 佐古
章浩 松井
クーラム バシル
フオン マイ ヌウェン
裕司 砂押
スルタナ ラシード
チェン バン ハ
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2018559048A priority Critical patent/JPWO2018123651A1/ja
Publication of WO2018123651A1 publication Critical patent/WO2018123651A1/ja
Priority to JP2022129618A priority patent/JP7401938B2/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds

Definitions

  • the present invention relates to a plant environmental stress tolerance improver containing ethanol as an active ingredient.
  • Environmental stress such as salt stress, drought stress and temperature stress imposes significant constraints on plant growth and life support. Since environmental stress also affects photosynthesis and respiration, it causes serious damages in agriculture such as crop quality degradation and yield reduction. Studies on environmental stress responses suggest that there are various environmental stress responsive genes in plants, and that they are involved in acquiring resistance to environmental stress.
  • Salt stress is a type of environmental stress caused by salt accumulation in soil. Agricultural damage due to salt stress is also increasing with the increase in field area due to the development of irrigation technology, or the immersion of seawater in the field due to tsunami or storm surge.
  • the effects of salt stress in plants can be classified into osmotic stress and ionic stress.
  • Osmotic stress means a phenomenon in which soil osmotic pressure increases due to salt accumulation in soil, water absorption in the roots is restricted, and as a result, water is deficient at the cellular level.
  • Ion stress means phenomena such as a decrease in enzyme activity and inhibition of absorption of inorganic ions such as K + caused by NaCl, which is the most abundant salt (Non-patent Document 1).
  • Patent Document 1 describes a plant salt tolerance improver containing, as an active ingredient, one or more compounds selected from 5-aminolevulinic acid, derivatives thereof and salts thereof, and hemins.
  • Patent Document 2 describes a plant growth regulator for cultivated plants characterized by containing a heterocyclic compound represented by the general formula (I) as an active ingredient. The document describes that the compounds can be used to increase plant salt tolerance.
  • Patent Document 3 describes a plant growth promoting and / or salt tolerance improving agent comprising a bacterium belonging to the genus Paenibacillus or a culture supernatant thereof.
  • Patent Document 4 describes a plant salt tolerance improver containing a histone deacetylase inhibitor as an active ingredient.
  • an object of the present invention is to provide means for improving environmental stress tolerance in plants at low cost.
  • the present inventors have studied various means for solving the above problems.
  • the present inventors have found that ethanol, which is a lower alcohol, has an activity of improving environmental stress tolerance such as salt tolerance, drought stress tolerance and high temperature stress tolerance of plants. Based on the above findings, the present inventors have completed the present invention.
  • the gist of the present invention is as follows.
  • a plant environmental stress tolerance improver comprising ethanol or a solvate thereof as an active ingredient.
  • the agrochemical preparation according to the embodiment (3), wherein the environmental stress is at least one selected from the group consisting of salt stress, drought stress and high temperature stress.
  • a method for improving the environmental stress resistance of a plant which comprises applying an agriculturally effective amount of ethanol or a solvate thereof to the plant or the soil, medium or culture solution from which the plant grows.
  • FIG. 1 is a diagram showing the relationship (15 plants, repeated twice) between ethanol concentration and survival rate under salt stress conditions when ethanol is added to wild-type Arabidopsis thaliana (Col-0).
  • FIG. 2 is a diagram showing the survival rate (30 plants, repeated 3 times) when ethanol is added to wild-type Arabidopsis thaliana (Col-0) in the presence or absence of NaCl.
  • FIG. 3 is a diagram showing the phenotype of Arabidopsis plants after ethanol treatment and after 4 days of growth in the presence or absence of NaCl.
  • FIG. 4 is a view showing a photograph of an Arabidopsis plant after DAB staining.
  • FIG. 1 is a diagram showing the relationship (15 plants, repeated twice) between ethanol concentration and survival rate under salt stress conditions when ethanol is added to wild-type Arabidopsis thaliana (Col-0).
  • FIG. 2 is a diagram showing the survival rate (30 plants, repeated 3 times) when ethanol is added to wild-type Arabid
  • FIG. 5 is a graph showing the survival rate after high-temperature stress treatment when ethanol is added to wild-type Arabidopsis thaliana (Col-0).
  • FIG. 6 is a diagram showing the phenotype of Arabidopsis plants grown for another week under non-stress conditions after high-temperature stress treatment for 4 hours.
  • A Arabidopsis plant grown on MS solid medium
  • B Arabidopsis plant grown on MS + EtOH solid medium.
  • FIG. 7 is a graph showing the relationship between ethanol concentration and survival rate under drought stress conditions (24 plants, repeated 3 times) when ethanol is added to wild-type Arabidopsis thaliana (Col-0).
  • FIG. 8 is a diagram showing the phenotype of Arabidopsis plants grown for 12 days after ethanol treatment and under drought stress conditions.
  • FIG. 9 is a diagram showing the phenotype of an Arabidopsis plant after the drought stress treatment, after supplying water and growing for another 48 hours.
  • FIG. 10 is a diagram showing the phenotype of a corn plant after 15 days of ethanol treatment, after 15 days of drought stress treatment, water supply and growth for 5 days.
  • environmental stress means stress experienced by a plant due to the external environment of the target plant.
  • the environmental stress that is a subject of the present invention include, but are not limited to, salt stress, drying stress, and temperature (for example, high temperature, low temperature, or freezing) stress.
  • Environmental stress is caused by various external environments depending on suitable growth conditions of the target plant. A person skilled in the art can easily determine specific conditions of the external environment that cause environmental stress based on the target plant.
  • “environmental stress tolerance” refers to inability to grow (death), poor growth (for example, whitening or yellowing of plants, reduction of root length, or number of leaves) even under growth conditions that are subject to environmental stress. Reduced), reduced growth rate, or traits that can grow normally without substantial undesired effects such as reduced plant weight or crop yield.
  • “salt stress resistance” may be described as “salt resistance”.
  • ethanol which is a lower alcohol that can be obtained at low cost, has an activity to improve environmental stress tolerance such as salt tolerance, drought stress tolerance and high temperature stress tolerance of plants. Therefore, one aspect of the present invention relates to a plant environmental stress tolerance improver containing ethanol or a solvate thereof as an active ingredient.
  • the plant environmental stress tolerance improver of this embodiment By applying the plant environmental stress tolerance improver of this embodiment to plants, the plant's environmental stress tolerance such as salt tolerance, drought stress tolerance and high temperature stress tolerance can be improved.
  • ethanol used as an active ingredient includes not only itself but also its solvate.
  • Solvents that can form solvates with ethanol include, but are not limited to, for example, lower alcohols other than ethanol (for example, 1-6 carbon atoms such as methanol or 2-propanol (isopropyl alcohol)). Alcohol), higher alcohols (eg, alcohols having 7 or more carbon atoms such as 1-heptanol or 1-octanol), dimethyl sulfoxide (DMSO), organic solvents such as acetic acid, ethanolamine or ethyl acetate, or Water is preferred.
  • ethanol is in the form of a solvate with the above-mentioned solvent, the compound can be used without substantially reducing the environmental stress tolerance improving activity of plants and the safety to plants.
  • the environmental stress is preferably at least one selected from the group consisting of salt stress, drought stress and high temperature stress.
  • the plant's environmental stress tolerance such as salt tolerance, drought stress tolerance and high temperature stress tolerance can be improved.
  • “improving the environmental stress tolerance of a plant” is preferably 60% or more of the treated plant population by applying the present invention to the plant population under the growth conditions subjected to the environmental stress described above. Means 70% or more, more preferably 80%, even more preferably 90% or more, and particularly preferably 100% exhibit resistance to environmental stress.
  • the environmental stress tolerance of a plant can be evaluated by the means described below.
  • the effects of improving the environmental stress tolerance of the plant according to the present invention include effects on the growth of the plant itself, for example, the elongation of the leaves or roots, the increase in the number of leaves, the increase in plant weight or crop yield, the greening, or the promotion of tillering. It may or may not include a growth promoting effect.
  • the environmental stress tolerance improving effect of the plant according to the present invention includes specifically improving the tolerance of the plant to environmental stress while substantially promoting the growth of the plant.
  • the environmental stress tolerance improvement effect of the plant by this invention includes improving the tolerance of a plant specifically with respect to environmental stress, without substantially promoting the growth of a plant. Either case is included in the embodiment of the present invention.
  • a plant environmental stress tolerance improver containing ethanol or a solvate thereof as an active ingredient to the plant, the plant's salt tolerance, drought stress tolerance and high temperature stress tolerance can be reduced.
  • Environmental stress tolerance can be improved. Therefore, another aspect of the present invention relates to an agrochemical preparation or an agricultural chemical containing ethanol or a solvate thereof as an active ingredient.
  • Another aspect of the present invention also includes applying an agriculturally effective amount of ethanol or a solvate thereof to the plant or the soil, medium or culture from which the plant grows.
  • the present invention relates to a method for improving stress tolerance.
  • the plant environmental stress tolerance improver, agrochemical preparation or agrochemical of this embodiment, or ethanol or a solvate thereof as an active ingredient thereof can be used to improve the plant's environmental stress tolerance.
  • the environmental stress is preferably at least one selected from the group consisting of salt stress, drought stress and high temperature stress.
  • the environmental stress tolerance of plants is not limited, but can be evaluated by the following means.
  • salt stress tolerance is achieved by subjecting a target plant to a medium or soil supplemented with a salt at an appropriate concentration at a growth temperature suitable for the plant (for example, an air temperature of 22 ° C. in Arabidopsis) for 1 day. Determined by salt stress treatment over a period of ⁇ 5 days, followed by acclimation over a period of 1-14 days under growth conditions suitable for the plant, if desired, and evaluating its phenotype. That's fine.
  • the target plant is grown for 1 to 14 days at a growth temperature and humidity in a dry state for the plant (for example, in the case of Arabidopsis, the temperature is 22 ° C. and the humidity is 50% or less (for example, no water supply condition)) And then acclimating for 1 to 14 days under growth conditions suitable for the plant, if desired, and evaluating the phenotype.
  • a target plant is treated with high temperature stress at a high growth temperature for the plant (for example, in the case of Arabidopsis thaliana, the temperature is 40 ° C. or more) for a period of 1 hour to 5 days, and then desired.
  • freeze stress tolerance is achieved by acclimating a target plant at a low temperature that does not freeze, and then subjecting the plant to a freezing stress treatment at a growth temperature in a frozen state (for example, a temperature of ⁇ 2 ° C. or less in Arabidopsis thaliana). And then acclimated for a period of 1 to 14 days at a growth temperature suitable for the plant if desired (for example, the temperature in Arabidopsis is 22 ° C.) and evaluating the phenotype. do it.
  • the plant environmental stress tolerance improver, agrochemical formulation or pesticide of this embodiment is used in any form such as, for example, a solid (eg, powder or granule), liquid (eg, solution or suspension), or gas. be able to.
  • the plant environmental stress tolerance improving agent, agrochemical preparation or agricultural chemical of this embodiment is preferably used in the form of a liquid such as a solution or a suspension. Improving the environmental stress tolerance of the plant such as salt tolerance, drought stress tolerance and high temperature stress tolerance by applying to the plant the environmental stress tolerance improver, agrochemical preparation or pesticide of the plant of this embodiment in the above-mentioned form. Can do.
  • ethanol or a solvate thereof may be used alone as an active ingredient, or may be used in combination with one or more agriculturally acceptable ingredients.
  • the agrochemical formulation or pesticide of this embodiment can be formulated into various dosage forms commonly used in the art depending on the desired application method. Therefore, the agrochemical formulation or pesticide of this embodiment can also be provided in the form of an agrochemical composition containing ethanol or a solvate thereof and one or more agriculturally acceptable ingredients.
  • Agriculturally acceptable ingredients used in the agrochemical composition of this embodiment include carriers, excipients, binders, solubilizers, stabilizers, thickeners, swelling agents, lubricants, surfactants, An oily liquid, a buffering agent, a disinfectant, an antifreeze agent, an antifoaming agent, a colorant, an antioxidant, and a further active ingredient can be exemplified.
  • Agriculturally acceptable carriers include water, mineral oil fractions such as kerosene or diesel oil, oils derived from plants or animals, cyclic or aromatic hydrocarbons (eg paraffin, tetrahydronaphthalene, alkylated naphthalenes or derivatives thereof) Or alkylated benzenes or derivatives thereof), alcohols other than ethanol (eg methanol, propanol, butanol or cyclohexanol), ketones (eg cyclohexanone), amines (eg N-methylpyrrolidone), or mixtures thereof Agriculturally acceptable liquid carriers are preferred.
  • mineral oil fractions such as kerosene or diesel oil, oils derived from plants or animals, cyclic or aromatic hydrocarbons (eg paraffin, tetrahydronaphthalene, alkylated naphthalenes or derivatives thereof) Or alkylated benzenes or derivatives thereof), alcohols other than ethanol (eg methanol,
  • the agrochemical composition of this embodiment contains one or more additional active ingredients
  • compounds having various environmental stress tolerance improving activities known in the art can be applied as the additional active ingredients.
  • the agrochemical composition of this embodiment contains one or more additional active ingredients as described above, it is possible to further improve environmental stress tolerance of plants such as salt tolerance, drought stress tolerance and high temperature stress tolerance. .
  • the plant that is the subject of the present invention is not particularly limited.
  • the environmental stress tolerance improving agent, agricultural chemical preparation, or agricultural chemical of the plant of one embodiment of the present invention can be applied to various plants including angiosperms and gymnosperms.
  • Examples of the plant to which the present invention is applied include, but are not limited to, for example, cruciferous plants such as Arabidopsis thaliana and rape, legumes such as soybean, gramineous such as rice, corn, wheat and barley. Mention plants, convolvulaceae such as morning glory, willows such as poplar, euphorbiaceae such as castor bean, cassava and jatropha, vines such as grapes, and solanaceae such as tomatoes it can.
  • the plant may be not only the plant itself but also a part of the plant such as tissue, organ (for example, vegetative propagation organ such as rhizome, tuberous root, corm or runner), cultured cell and / or callus.
  • the environmental stress tolerance improving agent, agrochemical preparation or pesticide of a plant of one embodiment of the present invention is the plant or a part thereof (for example, seed, seedling or mature plant) in any growth stage including before germination or after germination. Body).
  • the present inventors have found that by applying ethanol to a plant, the amount of active oxygen produced due to exposure to environmental stress in the plant is reduced. Normally, when a plant is exposed to environmental stress, active oxygen such as superoxide and hydrogen peroxide is produced in the plant. Reactive oxygen can be involved in the induction of various disorders related to environmental stress in plants. Therefore, the production of active oxygen in the plant can be suppressed by applying the plant environmental stress tolerance improving agent, agrochemical preparation or agricultural chemical of one embodiment of the present invention to the plant. Thereby, the induction
  • the plant environmental stress tolerance improver, agrochemical preparation or agricultural chemical according to one embodiment of the present invention can be applied not only to the plant itself, but also to the soil, medium or culture solution from which the plant grows.
  • the environmental stress tolerance improving agent, agricultural chemical preparation or agricultural chemical of the plant of one embodiment of the present invention to the plant in the growth stage as described above or the soil, medium or culture solution from which the plant grows, salt tolerance
  • the environmental stress tolerance of the plant such as resistance, drought stress tolerance and high temperature stress tolerance can be improved.
  • the environmental stress tolerance improver, agrochemical preparation or pesticide of a plant according to one aspect of the present invention is the plant itself or soil from which the plant grows before, during and / or after the plant is exposed to environmental stress. It can be applied to a medium or a culture solution. Before the plant is exposed to environmental stress, it is preferable to apply the environmental stress tolerance improving agent, agrochemical preparation or pesticide of the plant of one embodiment of the present invention.
  • the plant environmental stress tolerance improver, agrochemical preparation or pesticide of one embodiment of the present invention is improved. be able to.
  • the method of the present invention may optionally further comprise, in addition to ethanol or a solvate thereof, further applying an additional agent to the plant or the soil, medium or culture medium from which the plant grows.
  • the further agent is preferably a further active ingredient of the agrochemical composition described above.
  • the order in which ethanol or a solvate thereof and a further drug are applied to the plant or the soil, medium or culture solution from which the plant grows is not particularly limited.
  • ethanol or a solvate thereof and an additional agent may be applied simultaneously (as a single or separate formulation) to a plant or to the soil, medium or culture from which the plant grows, or sequentially It may be applied.
  • the environmental stress tolerance of the plant such as salt tolerance, drought stress tolerance and high temperature stress tolerance can be more remarkably improved.
  • the plant environmental stress tolerance improver, agricultural chemical preparation or agricultural chemical dosage form of one embodiment of the present invention is not particularly limited. It can be formulated into dosage forms such as emulsions, wettable powders, liquids, aqueous solvents, powders, powders, pastes or granules, which are usually used in the art.
  • the content of ethanol or its solvate contained as an active ingredient is, for example, in the range of 0.01 to 5% by mass with respect to the total mass at the time of application, and usually at the time of application. Is in the range of 0.01 to 1% by mass, and typically in the range of 0.04 to 1% by mass with respect to the total mass at the time of application.
  • an environmental stress tolerance improver agricultural chemical preparation or agricultural chemical containing ethanol or a solvate thereof, which can be obtained at low cost, as an active ingredient. Therefore, by applying the plant environmental stress tolerance improver, agrochemical preparation or agricultural chemical of one embodiment of the present invention to a plant, the plant can be reduced in cost, such as salt tolerance, drought stress tolerance and high temperature stress tolerance. Environmental stress tolerance can be improved.
  • FIG. 1 shows the relationship between ethanol concentration and survival rate under salt stress conditions (15 plants, repeated twice) when ethanol is added to wild-type Arabidopsis thaliana (Col-0).
  • FIG. 1 shows the relationship between ethanol concentration and survival rate under salt stress conditions (15 plants, repeated twice) when ethanol is added to wild-type Arabidopsis thaliana (Col-0).
  • FIG. 2 shows the survival rate (30 plants, repeated 3 times) when ethanol is added to wild-type Arabidopsis thaliana (Col-0) in the presence or absence of NaCl.
  • error lines indicate standard errors.
  • FIG. 3 shows the phenotype of Arabidopsis plants after ethanol treatment and after 4 days of growth in the presence or absence of NaCl.
  • FIG. 1 A photograph of Arabidopsis plants after DAB staining is shown in FIG.
  • control is a plant that was not treated with ethanol and NaCl
  • EtOH was a plant that was treated with ethanol and then grown in the absence of NaCl
  • NaCl was not treated with ethanol
  • EtOH + NaCl indicates a plant grown in the presence of NaCl after ethanol treatment of the plant grown in the presence of NaCl.
  • Wild-type Arabidopsis (Col-0) seeds were sterilized.
  • the sterilized Arabidopsis seeds were allowed to stand at 4 ° C. for 4 days, and then seeded on each medium, 32 grains per Petri dish of MS solid medium or MS + EtOH solid medium.
  • the Petri dish was moved into an incubator set at 22 ° C. (TOMY gloss chamber CF-405, Tommy) (16 hours light period / 8 hours dark period), and Arabidopsis thaliana was grown at 22 ° C. for 14 days.
  • the Petri dish was moved into a high-temperature incubator set at 43.5 ° C. (SANYO incubator MIR-153, Sanyo Electric), and Arabidopsis was treated at 43.5 ° C.
  • FIG. 5 shows the survival rate after high-temperature stress treatment when ethanol is added to wild-type Arabidopsis thaliana (Col-0). In the figure, the error line indicates the standard deviation (* P ⁇ 0.05).
  • FIG. 6 shows the phenotype of an Arabidopsis plant grown for 4 weeks under non-stress conditions after 4 hours of high-temperature stress treatment. In the figure, A shows an Arabidopsis plant grown on an MS solid medium, and B shows an Arabidopsis plant grown on an MS + EtOH solid medium.
  • FIG. 7 shows the relationship between the ethanol concentration and the survival rate under drought stress conditions (24 plants, 3 repetitions) when ethanol is added to wild-type Arabidopsis thaliana (Col-0).
  • error lines indicate standard errors.
  • Fig. 8 shows the phenotype of Arabidopsis plants grown for 12 days under ethanol-treated and drought stress conditions.
  • Fig. 9 shows the phenotypes of Arabidopsis plants after drought stress treatment, water supply and growth for 48 hours. Respectively.
  • FIG. 10 shows the phenotype of the corn plant after the ethanol treatment, after 15 days of drought stress treatment, after supplying water and growing for another 5 days.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Cultivation Of Plants (AREA)

Abstract

本発明は、低コストで植物における環境ストレス耐性を向上させる手段を提供することを目的とする。本発明は、エタノール又はその溶媒和物を有効成分として含有する、植物の環境ストレス耐性向上剤に関する。

Description

植物の環境ストレス耐性向上剤
 本発明は、エタノールを有効成分として含有する植物の環境ストレス耐性向上剤に関する。
 塩ストレス、乾燥ストレス及び温度ストレスのような環境ストレスは、植物の成長及び生命維持に重大な制約を与える。環境ストレスは、光合成及び呼吸等にも影響を及ぼすため、作物の品質低下及び収穫量減少等、農業において重大な被害をもたらす。環境ストレス応答に関する研究から、植物においては、様々な環境ストレス応答性遺伝子群が存在し、環境ストレスに対する抵抗性の獲得に関与していることが示唆されている。
 塩ストレスは、土壌中の塩類集積によって引き起こされる環境ストレスの一種である。灌漑技術の発達による圃場面積の増大、或いは津波又は高潮による圃場の海水浸漬に伴い、塩ストレスに起因する農業上の被害も増大している。植物における塩ストレスの影響は、浸透圧ストレス及びイオンストレスに分類することができる。浸透圧ストレスは、土壌中の塩類集積によって土壌の浸透圧が上昇し、根における吸水が制限され、結果として細胞レベルで水が欠乏する現象を意味する。イオンストレスは、最も豊富に存在する塩であるNaClによって引き起こされる、酵素活性の低下、及びK+等の無機イオンの吸収阻害等の現象を意味する(非特許文献1)。
 植物に対する環境ストレスは、原因となる環境要因を取り除くことが困難であるか、又は多額の費用を要するため、回避することが困難な場合がある。例えば、塩ストレスの場合、塩類集積した圃場の除塩が必要となるが、灌漑による除塩を行うためには、対象圃場に用排水設備を準備する必要がある。また、土壌成分によっては、灌漑による除塩を行っても、土壌中の塩濃度が十分に低下しない場合がある。
 このような場合、植物自体の環境ストレス耐性を向上させることにより、該環境ストレスによる影響を回避できる可能性がある。植物自体の環境ストレス耐性を向上させる手段として、環境ストレス応答性遺伝子を改変した遺伝子組み換え植物の作出、及び環境ストレス耐性を向上させる化学的又は生物学的調節剤の施用を挙げることができる。
 例えば、特許文献1は、5-アミノレブリン酸、その誘導体及びそれらの塩、並びにヘミン類から選ばれる1種又は2種以上の化合物を有効成分とする植物の耐塩性向上剤を記載する。
 特許文献2は、一般式(I)で表されるヘテロ環化合物を有効成分として含有することを特徴とする栽培植物用の植物成長調節剤を記載する。当該文献は、前記化合物が植物の耐塩性の増加に使用し得ることを記載する。
 特許文献3は、パエニバチルス属に属する細菌若しくはその培養上清を含有してなる、植物の生長促進及び/又は耐塩性向上剤を記載する。
 特許文献4は、ヒストンデアセチラーゼ阻害剤を有効成分として含有する、植物の耐塩性向上剤を記載する。
特許第2896963号公報 特開2014-88322号公報 特開2013-75881号公報 特開2016-69380号公報
小柴共一ら編, 「植物ホルモンの分子細胞生物学」, 講談社, 2006年, p. 233-246
 前記のように、環境ストレス耐性を向上させる化学的又は生物学的調節剤が知られている。しかしながら、これら公知の化学的又は生物学的調節剤は、効果及び/又はコストの観点から改良の余地が存在した。
 それ故、本発明は、低コストで植物における環境ストレス耐性を向上させる手段を提供することを目的とする。
 本発明者らは、前記課題を解決するための手段を種々検討した。本発明者らは、低級アルコールであるエタノールが、植物の耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような環境ストレス耐性を向上させる活性を有することを見出した。本発明者らは、前記知見に基づき本発明を完成した。
 すなわち、本発明の要旨は以下の通りである。
 (1) エタノール又はその溶媒和物を有効成分として含有する、植物の環境ストレス耐性向上剤。
 (2) 環境ストレスが、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種である、前記実施形態(1)に記載の植物の環境ストレス耐性向上剤。
 (3) エタノール又はその溶媒和物を有効成分として含有する、植物の環境ストレス耐性を向上させるための農業化学製剤。
 (4) 環境ストレスが、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種である、前記実施形態(3)に記載の農業化学製剤。
 (5) エタノール又はその溶媒和物と、1種以上の農業上許容される成分とを含有する、植物の環境ストレス耐性を向上させるための農業化学組成物。
 (6) 環境ストレスが、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種である、前記実施形態(5)に記載の農業化学組成物。
 (7) 農業上有効な量のエタノール又はその溶媒和物を、植物又はそこから該植物が生育する土壌、培地若しくは培養液に施用することを含む、該植物の環境ストレス耐性を向上する方法。
 (8) 環境ストレスが、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種である、前記実施形態(7)に記載の方法。
 (9) 植物の環境ストレス耐性を向上させるための、エタノール又はその溶媒和物の使用。
 (10) 植物の環境ストレス耐性を向上させるための、エタノール又はその溶媒和物を有効成分として含有する農業化学製剤の使用。
 (11) 植物の環境ストレス耐性を向上させるための、エタノール又はその溶媒和物と、1種以上の農業上許容される成分とを含有する農業化学組成物の使用。
 本発明により、低コストで植物における環境ストレス耐性を向上させる手段を提供することが可能となる。
 前記以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
 本明細書は、本願の優先権の基礎である日本国特許出願第2016-252242号の明細書及び/又は図面に記載される内容を包含する。
図1は、野生型のシロイヌナズナ(Col-0)にエタノールを添加した場合のエタノールの濃度と塩ストレス条件下における生存率との関係(15植物体、2回反復)を示す図である。 図2は、野生型のシロイヌナズナ(Col-0)にNaCl存在下又は非存在下でエタノールを添加した場合の生存率(30植物体、3回反復)を示す図である。 図3は、エタノール処理後、NaCl存在下又は非存在下で4日間生育後のシロイヌナズナ植物体の表現型を示す図である。 図4は、DAB染色後のシロイヌナズナ植物体の写真を示す図である。 図5は、野生型のシロイヌナズナ(Col-0)にエタノールを添加した場合の高温ストレス処理後の生存率を示す図である。 図6は、4時間の高温ストレス処理後、非ストレス条件下でさらに1週間生育させたシロイヌナズナ植物体の表現型を示す図である。A:MS固形培地で生育させたシロイヌナズナ植物体、B:MS+EtOH固体培地で生育させたシロイヌナズナ植物体。 図7は、野生型のシロイヌナズナ(Col-0)にエタノールを添加した場合のエタノールの濃度と乾燥ストレス条件下における生存率との関係(24植物体、3回反復)を示す図である。 図8は、エタノール処理後、乾燥ストレス条件下で12日間生育後のシロイヌナズナ植物体の表現型を示す図である。 図9は、乾燥ストレス処理後、給水してさらに48時間生育後のシロイヌナズナ植物体の表現型を示す図である。 図10は、エタノール処理後、15日間の乾燥ストレス処理を行い、給水してさらに5日間生育後のトウモロコシ植物体の表現型を示す図である。
 以下、本発明の好ましい実施形態について詳細に説明する。
 本発明において、「環境ストレス」は、対象となる植物の外部環境に起因して、植物が被るストレスを意味する。本発明の対象となる環境ストレスとしては、限定するものではないが、例えば、塩ストレス、乾燥ストレス及び温度(例えば高温、低温若しくは凍結)ストレスを挙げることができる。環境ストレスは、対象となる植物の好適な生育条件に依存して、様々な外部環境がその要因となる。当業者であれば、対象となる植物に基づき、環境ストレスの要因となる外部環境の具体的な条件を容易に決定することができる。
 本発明において、「環境ストレス耐性」は、環境ストレスを被る生育条件下であっても、生育不能(枯死)、生育不良(例えば、植物体の白化若しくは黄化、根長の減少若しくは葉数の減少)、生育速度の低下、又は植物体重量若しくは作物収量の減少のような望ましくない影響を実質的に受けることなく、正常に生育できる形質を意味する。本明細書において、「塩ストレス耐性」を「耐塩性」と記載する場合がある。本発明により、植物の環境ストレス耐性を向上させることにより、通常の植物では生育に望ましくない影響を受ける外部環境においても、植物を正常に生育させることができる。
 本発明者らは、安価で入手できる低級アルコールであるエタノールが、植物の耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような環境ストレス耐性を向上させる活性を有することを見出した。それ故、本発明の一態様は、エタノール又はその溶媒和物を有効成分として含有する、植物の環境ストレス耐性向上剤に関する。本態様の植物の環境ストレス耐性向上剤を植物に施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。
 本発明の各態様において、有効成分として使用されるエタノールは、それ自体だけでなく、その溶媒和物も包含する。エタノールと溶媒和物を形成し得る溶媒としては、限定するものではないが、例えば、エタノール以外の低級アルコール(例えば、メタノール若しくは2-プロパノール(イソプロピルアルコール)のような1~6の炭素原子数を有するアルコール)、高級アルコール(例えば、1-ヘプタノール若しくは1-オクタノールのような7以上の炭素原子数を有するアルコール)、ジメチルスルホキシド(DMSO)、酢酸、エタノールアミン若しくは酢酸エチルのような有機溶媒、又は水が好ましい。エタノールが前記の溶媒との溶媒和物の形態である場合、植物の環境ストレス耐性向上活性及び植物に対する安全性を実質的に低下させることなく、該化合物を使用することができる。
 本発明の各態様において、環境ストレスは、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種であることが好ましい。本態様の植物の環境ストレス耐性向上剤を植物に施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。
 本発明において、「植物の環境ストレス耐性を向上させる」とは、前記で説明した環境ストレスを被る生育条件下の植物集団に本発明を適用することにより、該処理植物集団の60%以上、好ましくは70%以上、より好ましくは80%、さらに好ましくは90%以上、特に好ましくは100%が、環境ストレスに耐性を示すことを意味する。植物の環境ストレス耐性は、以下で説明する手段によって評価することができる。
 本発明による植物の環境ストレス耐性向上効果は、植物の生育自体に対する効果、例えば、茎葉部若しくは根部の伸張、葉数の増加、植物体重量若しくは作物収量の増加、緑化、又は分蘖の促進のような生育の促進効果を包含してもよく、包含しなくてもよい。例えば、本発明による植物の環境ストレス耐性向上効果は、植物の生育を実質的に促進しつつ、環境ストレスに対する植物の耐性を特異的に向上させることを包含する。或いは、本発明による植物の環境ストレス耐性向上効果は、植物の生育を実質的に促進することなく、環境ストレスに対する植物の耐性を特異的に向上させることを包含する。いずれの場合も本発明の実施形態に包含される。
 前記で説明したように、エタノール又はその溶媒和物を有効成分として含有する植物の環境ストレス耐性向上剤を植物に施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。それ故、本発明の別の一態様は、エタノール又はその溶媒和物を有効成分として含有する農業化学製剤又は農薬に関する。本発明の別の一態様はまた、農業上有効な量のエタノール又はその溶媒和物を、植物又はそこから該植物が生育する土壌、培地若しくは培養液に施用することを含む、該植物の環境ストレス耐性を向上する方法に関する。
 本態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬、或いはそれらの有効成分であるエタノール又はその溶媒和物は、植物の環境ストレス耐性を向上させるために使用することができる。前記環境ストレスは、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種であることが好ましい。本態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬、或いはそれらの有効成分であるエタノール又はその溶媒和物を植物に施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。
 本発明において、植物の環境ストレス耐性は、限定するものではないが、以下の手段によって評価することができる。例えば、塩ストレス耐性は、対象となる植物を、適当な濃度で塩を添加した培地又は土壌中で、該植物にとって好適な状態の生育温度(例えば、シロイヌナズナの場合、気温22℃)で1日間~5日間の期間に亘って塩ストレス処理し、その後、所望により該植物にとって好適な生育条件下で1日間~14日間の期間に亘って馴化させ、その表現型を評価することにより、決定すればよい。乾燥ストレス耐性は、対象となる植物を、該植物にとって乾燥状態の生育温度及び生育湿度(例えば、シロイヌナズナの場合、気温22℃、湿度50%以下(例えば無給水条件))で1日間~14日間の期間に亘って乾燥ストレス処理し、その後、所望により該植物にとって好適な生育条件下で1日間~14日間の期間に亘って馴化させ、その表現型を評価することにより、決定すればよい。高温ストレス耐性は、対象となる植物を、該植物にとって高温状態の生育温度(例えば、シロイヌナズナの場合、気温40℃以上)で1時間~5日間の期間に亘って高温ストレス処理し、その後、所望により該植物にとって好適な生育条件下で1日間~14日間の期間に亘って馴化させ、その表現型を評価することにより、決定すればよい。また、凍結ストレス耐性は、対象となる植物を、凍らない程度の低温で馴化させた後、該植物にとって凍結状態の生育温度(例えば、シロイヌナズナの場合、-2℃以下の温度)で凍結ストレス処理し、その後、所望により該植物にとって好適な状態の生育温度(例えば、シロイヌナズナの場合、気温22℃)で1日間~14日間の期間に亘って馴化させ、その表現型を評価することにより、決定すればよい。
 本態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬は、例えば、固体(例えば粉末若しくは粒状物)、液体(例えば溶液若しくは懸濁液)、又は気体のような任意の形態で使用することができる。本態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬は、溶液又は懸濁液のような液体の形態で使用することが好ましい。本態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬を前記形態で植物に施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。
 本態様の農業化学製剤又は農薬において、エタノール又はその溶媒和物を有効成分として単独で使用してもよく、1種以上の農業上許容される成分と組み合わせて使用してもよい。本態様の農業化学製剤又は農薬は、所望の施用方法に応じて、当該技術分野で通常使用される様々な剤形に製剤されることができる。それ故、本態様の農業化学製剤又は農薬はまた、エタノール又はその溶媒和物と、1種以上の農業上許容される成分とを含有する農業化学組成物の形態で提供されることもできる。本態様の農業化学組成物に使用される農業上許容される成分としては、担体、賦形剤、結合剤、溶解補助剤、安定剤、増粘剤、膨化剤、潤滑剤、界面活性剤、油性液、緩衝剤、殺菌剤、不凍剤、消泡剤、着色剤、酸化防止剤、及びさらなる活性成分等を挙げることができる。農業上許容される担体としては、水、ケロセン若しくはディーゼル油のような鉱油画分、植物若しくは動物由来の油、環状若しくは芳香族炭化水素(例えばパラフィン、テトラヒドロナフタレン、アルキル化ナフタレン類若しくはそれらの誘導体、又はアルキル化ベンゼン類若しくはそれらの誘導体)、エタノール以外のアルコール(例えばメタノール、プロパノール、ブタノール又はシクロヘキサノール)、ケトン(例えばシクロヘキサノン)、若しくはアミン(例えばN-メチルピロリドン)、又はこれらの混合物のような農業上許容される液体担体が好ましい。
 本態様の農業化学組成物が1種以上のさらなる活性成分を含有する場合、該さらなる活性成分としては、当該技術分野で公知の様々な環境ストレス耐性向上活性を有する化合物を適用することができる。本態様の農業化学組成物が前記のような1種以上のさらなる活性成分を含有することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような植物の環境ストレス耐性をさらに向上させることができる。
 本発明の対象となる植物は、特に限定されない。被子植物及び裸子植物を含む様々な植物に対して、本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬を施用することができる。本発明の施用対象となる植物としては、限定するものではないが、例えば、シロイヌナズナ及びアブラナのようなアブラナ科植物、ダイズのようなマメ科植物、イネ、トウモロコシ、コムギ及びオオムギのようなイネ科植物、アサガオのようなヒルガオ科植物、ポプラのようなヤナギ科植物、トウゴマ、キャッサバ及びジャトロファのようなトウダイグサ科植物、ブドウのようなブドウ科植物、並びにトマトのようなナス科植物を挙げることができる。前記植物は、該植物自体だけでなく、組織、器官(例えば、根茎、塊根、球茎若しくはランナー等の栄養繁殖器官)、培養細胞及び/又はカルス等の該植物の部分であってもよい。また、本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬は、発芽前又は発芽後を含む任意の生育段階にある前記植物又はその部分(例えば、種子、幼苗又は成熟植物体)に施用することができる。前記のような植物に本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬を施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。
 本発明者らは、エタノールを植物に施用することにより、該植物において環境ストレスの曝露に起因する活性酸素の産生量が減少することを見出した。通常、植物が環境ストレスに曝露されると、該植物体内において、スーパーオキシド及び過酸化水素のような活性酸素が産生される。活性酸素は、植物体内において環境ストレスに関連する様々な障害の誘導に関与し得る。それ故、本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬を植物に施用することにより、該植物において活性酸素の産生を抑制することができる。これにより、植物において環境ストレスに関連する障害の誘導を抑制することができる。
 本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬は、前記植物自体だけでなく、そこから該植物が生育する土壌、培地若しくは培養液に施用することができる。前記のような生育段階にある植物又はそこから該植物が生育する土壌、培地若しくは培養液に本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬を施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。
 本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬は、植物が環境ストレスに曝露される前、間及び/又は後に、該植物自体、或いはそこから該植物が生育する土壌、培地若しくは培養液に施用することができる。植物が環境ストレスに曝露される前に、本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬を施用することが好ましい。前記時期に本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬を施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。
 一態様において、本発明の方法は、所望により、エタノール又はその溶媒和物に加えて、さらなる薬剤を植物又はそこから該植物が生育する土壌、培地若しくは培養液に施用することをさらに含んでもよい。さらなる薬剤としては、前記で説明した農業化学組成物のさらなる活性成分であることが好ましい。この場合、エタノール又はその溶媒和物と、さらなる薬剤とを、植物又はそこから該植物が生育する土壌、培地若しくは培養液に施用する順序は特に限定されない。例えば、エタノール又はその溶媒和物とさらなる薬剤とを同時に(単一の若しくは別々の製剤として)植物又はそこから該植物が生育する土壌、培地若しくは培養液に施用してもよく、又は逐次的に施用してもよい。エタノール又はその溶媒和物に加えて、さらなる薬剤を植物等に施用することにより、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性をより顕著に向上させることができる。
 本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬の剤形は、特に限定されない。当該技術分野で通常使用される、乳剤、水和剤、液剤、水溶剤、粉剤、粉末剤、ペースト剤又は粒剤等の剤形に製剤することができる。本発明の各態様において、有効成分として含有されるエタノール又はその溶媒和物の含有量は、例えば、施用時の総質量に対して、0.01~5質量%の範囲であり、通常は、施用時の総質量に対して、0.01~1質量%の範囲であり、典型的には、施用時の総質量に対して、0.04~1質量%の範囲である。
 本明細書において詳細に説明したように、本発明により、安価で入手できるエタノール又はその溶媒和物を有効成分として含有する環境ストレス耐性向上剤、農業化学製剤又は農薬を提供することができる。それ故、本発明の一態様の植物の環境ストレス耐性向上剤、農業化学製剤又は農薬を植物に施用することにより、低コストで、耐塩性、乾燥ストレス耐性及び高温ストレス耐性のような該植物の環境ストレス耐性を向上させることができる。
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
<I:エタノールによる植物の耐塩性向上>
[I-1:エタノールによるシロイヌナズナの耐塩性向上試験]
 野生型のシロイヌナズナ(Col-0)の種子を滅菌した。滅菌処理された24穴マイクロプレートの各ウェルに、1 mlの1/2 Murashige Skoog(MS)培地(1%スクロース、0.1%寒天)を添加した。滅菌処理されたシロイヌナズナ種子を、1ウェルあたり5粒ずつ、ウェル中の1/2 MS寒天培地に播種した。マイクロプレートを、少なくとも2日間、4℃、暗所にて積層した。その後、マイクロプレートを、22℃に設定されたインキュベーター内(16時間明期/8時間暗期)に移動し、シロイヌナズナを22℃で4日間生育させた。処理のため、所定のウェルに、試験区として0.3%エタノール(和光純薬工業)又は対照区として同量の滅菌脱イオン水(SDW)を添加して、シロイヌナズナをさらに22℃で24時間生育させた。その後、所定のウェルに、100 mM NaClを添加して、シロイヌナズナを22℃で4日間生育させた。肉眼又は実体顕微鏡で、生育させたシロイヌナズナの表現型を観察した。NaCl非添加区のシロイヌナズナ植物体と比較して、子葉若しくは本葉の黄化又は白化が観察された植物体を、塩ストレスによる影響を受けた植物体と判定した。各試験区において、植物体の総数(5×3ウェル=15植物体、又は5×6ウェル=30植物体)に対する塩ストレスによる影響を受けていない植物体の数の百分率を、塩ストレス条件下における生存率(%)として算出した。各試験区について、それぞれ2回又は3回反復試験を行い、その平均値及び標準誤差を算出した。野生型のシロイヌナズナ(Col-0)にエタノールを添加した場合のエタノールの濃度と塩ストレス条件下における生存率との関係(15植物体、2回反復)を図1に示す。また、野生型のシロイヌナズナ(Col-0)にNaCl存在下又は非存在下でエタノールを添加した場合の生存率(30植物体、3回反復)を図2に示す。図1及び2中、誤差線は、標準誤差を示す。また、エタノール処理後、NaCl存在下又は非存在下で4日間生育後のシロイヌナズナ植物体の表現型を図3に示す。
 図1に示すように、エタノール非処理のシロイヌナズナ植物体を塩ストレス条件下で生育させると、生存率は約25%まで低下した。この場合において、0.1%以上、特に0.1~0.7%エタノールで処理したシロイヌナズナ植物体を塩ストレス条件下で生育させると、生存率は、約45%以上、特に約45~65%の範囲まで向上した。また、図2に示すように、0.3%又は0.4%エタノールで処理したシロイヌナズナ植物体を塩ストレス条件下で生育させると、生存率は、約90~95%の範囲まで向上した。図3に示すように、塩ストレス条件下での生育において、エタノールは、0.3%又は0.4%の濃度で、塩ストレスによる子葉若しくは本葉の黄化又は白化を部分的に抑制した。
[I-2:スーパーオキシド及び過酸化水素の検出]
 前記Iの手順で調製したエタノール処理した5日目野生型シロイヌナズナ(Col-0)植物を、100 mM NaCl又はSDW存在下で6時間生育させた。過酸化水素(H2O2)を検出する3,3’-ジアミノベンジジン(DAB)染色のために、植物を、0.1%DAB、及び10 mMリン酸カリウム、pH 7.0を含む染色液で、室温で5時間染色した。染色した試料を、エタノール:酢酸(96:4)溶液で洗浄し、デジタル顕微鏡(VHX-5000、キーエンス)で撮影した。DAB染色後のシロイヌナズナ植物体の写真を図4に示す。図中、「対照」は、エタノール及びNaCl非処理の植物体を、「EtOH」は、エタノール処理した後、NaCl非存在下で生育させた植物体を、「NaCl」は、エタノール非処理で、NaCl存在下で生育させた植物体を、「EtOH+NaCl」は、エタノール処理した後、NaCl存在下で生育させた植物体を、それぞれ示す。
 図4に示すように、エタノール非処理の植物を100 mM NaCl存在下で生育させた場合、植物体がDABによって染色された。これに対し、エタノール処理した植物を100 mM NaCl存在下で生育させた場合、植物体がDABによって殆ど染色されなかった。この結果から、エタノール処理により、シロイヌナズナを塩ストレス条件下で生育させた際に産生される活性酸素が減少すると推測される。
<II:エタノールによる植物の高温ストレス耐性向上>
[II-1:エタノールによるシロイヌナズナの高温ストレス耐性向上試験]
 滅菌処理されたペトリ皿に、MS(日本製薬)、0.1%(v/v)B5 ビタミン、1.0%(w/v)スクロース、0.05%(w/v)MES、0.1%(v/v)1M水酸化カリウム、及び0.85%(w/v)アガロース(寒天精製粉末、ナカライテスク)を含むMS固形培地、又はMS固形培地の成分に加えて0.01%(v/v)エタノールを含むMS+EtOH固形培地を調製した。野生型のシロイヌナズナ(Col-0)の種子を滅菌した。滅菌処理されたシロイヌナズナ種子を、4℃で4日間静置した後、MS固形培地又はMS+EtOH固体培地のペトリ皿1枚あたり32粒ずつ、各培地に播種した。ペトリ皿を、22℃に設定されたインキュベーター内(TOMYグロスチャンバー CF-405、トミー)(16時間明期/8時間暗期)に移動し、シロイヌナズナを22℃で14日間生育させた。高温ストレス処理のため、ペトリ皿を、43.5℃に設定された高温インキュベーター内(SANYOインキュベーター MIR-153、三洋電機)に移動し、シロイヌナズナを、暗条件下、43.5℃で4.0時間処理した。処理後、ペトリ皿を、22℃に設定されたインキュベーター内(16時間明期/8時間暗期)に移動し、シロイヌナズナを22℃で7日間生育させた。肉眼又は実体顕微鏡で、生育させたシロイヌナズナの表現型を観察した。非処理区のシロイヌナズナ植物体と比較して、子葉若しくは本葉の黄化又は白化が観察された植物体を、高温ストレスによる影響を受けた植物体と判定した。各試験区において、植物体の総数(N=8植物体)に対する高温ストレスによる影響を受けていない植物体の数の百分率を、高温ストレス条件下における生存率(%)として算出した。各試験区について、それぞれ3回反復試験を行い、その平均値及び標準偏差を算出した。野生型のシロイヌナズナ(Col-0)にエタノールを添加した場合の高温ストレス処理後の生存率を図5に示す。図中、誤差線は、標準偏差を示す(*P < 0.05)。また、4時間の高温ストレス処理後、非ストレス条件下でさらに1週間生育させたシロイヌナズナ植物体の表現型を図6に示す。図中、Aは、MS固形培地で生育させたシロイヌナズナ植物体を、Bは、MS+EtOH固体培地で生育させたシロイヌナズナ植物体を、それぞれ示す。
 図5に示すように、エタノール非処理のシロイヌナズナ植物体を高温ストレスに曝露させると、生存率は約10%まで低下した。この場合において、エタノールで処理したシロイヌナズナ植物体を高温ストレスに曝露させると、生存率は約45%まで向上した。図6に示すように、高温ストレス処理後の生育において、エタノールは、高温ストレスによる子葉若しくは本葉の白化又は黄化を部分的に抑制した。
<III:エタノールによる植物の乾燥ストレス耐性向上>
[III-1:エタノールによるシロイヌナズナの乾燥ストレス耐性向上試験]
野生型のシロイヌナズナ(Col-0)の種子を、ポット中のプロフェッショナル用培土No. 2(ダイオ化成)に播種し、4℃で5日間生育させた。ポットを、温室(22℃、16時間明期/8時間暗期、60 μmol m-2 s-1 光量子束密度)内に移動し、シロイヌナズナを22℃で15日間生育させた。この時点において、植物を無作為に4群に分け、温室内で、0、5、10又は20 mMエタノールで3日間処理した。処理から72時間後、トレイから過剰量の水を除去し、給水を停止することにより、植物を乾燥ストレス処理した。ポットは毎日回転させた。乾燥処理開始から12日後、植物に給水して、乾燥ストレス処理前と同じ条件で生育させた。肉眼で、生育させたシロイヌナズナの表現型を観察した。非処理区のシロイヌナズナ植物体と比較して、子葉若しくは本葉の黄化又は白化が観察された植物体を、乾燥ストレスによる影響を受けた植物体と判定した。各試験区において、植物体の総数(N=24植物体)に対する乾燥ストレスによる影響を受けていない植物体の数の百分率を、乾燥ストレス条件下における生存率(%)として算出した。各試験区について、それぞれ3回反復試験を行い、その平均値及び標準誤差を算出した。野生型のシロイヌナズナ(Col-0)にエタノールを添加した場合のエタノールの濃度と乾燥ストレス条件下における生存率との関係(24植物体、3回反復)を図7に示す。図中、誤差線は、標準誤差を示す。また、エタノール処理後、乾燥ストレス条件下で12日間生育後のシロイヌナズナ植物体の表現型を図8に、乾燥ストレス処理後、給水してさらに48時間生育後のシロイヌナズナ植物体の表現型を図9に、それぞれ示す。
 図7に示すように、エタノール非処理のシロイヌナズナ植物体を乾燥ストレス条件下で生育させると、生存率は約3%まで低下した。この場合において、5 mM以上、特に5~20 mMエタノールで処理したシロイヌナズナ植物体を乾燥ストレス条件下で生育させると、生存率は、約33%以上、特に約33~89%の範囲まで向上した。図8に示すように、乾燥ストレス条件下での生育において、エタノールは、10 mMの濃度で、乾燥ストレスによる子葉又は本葉の黄化を部分的に抑制した。また、図9に示すように、黄化したシロイヌナズナ植物体は、給水しても正常な状態に回復しなかった。
[III-2:エタノールによるトウモロコシの乾燥ストレス耐性向上試験]
トウモロコシ(キャンベラ 90EX、タキイ種苗)の種子を、ポット中のプロフェッショナル用培土No. 2(ダイオ化成)に2粒ずつ播種し、温室内(30℃)で4週間生育させた。2植物ずつ生育したポットを、無作為に7ポットずつ2群に分けて、トレイ内に配置した。各群を、温室内(30℃)で、水(すなわち0 mMエタノール)又は50 mMエタノールで2日間処理した。処理後、トレイから過剰量の水を除去し、給水を停止することにより、植物を乾燥ストレス処理した。ポットは毎日回転させた。乾燥処理開始から15日後、植物に給水して、乾燥ストレス処理前と同じ条件で5日間生育させた。肉眼で、生育させたトウモロコシの表現型を観察した。非処理区のトウモロコシ植物体と比較して、本葉の黄化又は白化が観察された植物体を、乾燥ストレスによる影響を受けた植物体と判定した。エタノール処理後、15日間の乾燥ストレス処理を行い、給水してさらに5日間生育後のトウモロコシ植物体の表現型を図10に示す。
 図10に示すように、乾燥ストレス条件下での生育において、エタノールは、50 mMの濃度で、乾燥ストレスによる本葉の黄化を部分的に抑制した。他方、水処理区では、殆どの葉が黄化又は白化した。また、黄化したトウモロコシ植物体は、給水しても正常な状態に回復しなかった。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (8)

  1.  エタノール又はその溶媒和物を有効成分として含有する、植物の環境ストレス耐性向上剤。
  2.  環境ストレスが、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種である、請求項1に記載の植物の環境ストレス耐性向上剤。
  3.  エタノール又はその溶媒和物を有効成分として含有する、植物の環境ストレス耐性を向上させるための農業化学製剤。
  4.  環境ストレスが、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種である、請求項3に記載の農業化学製剤。
  5.  エタノール又はその溶媒和物と、1種以上の農業上許容される成分とを含有する、植物の環境ストレス耐性を向上させるための農業化学組成物。
  6.  環境ストレスが、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種である、請求項5に記載の農業化学組成物。
  7.  農業上有効な量のエタノール又はその溶媒和物を、植物又はそこから該植物が生育する土壌、培地若しくは培養液に施用することを含む、該植物の環境ストレス耐性を向上する方法。
  8.  環境ストレスが、塩ストレス、乾燥ストレス及び高温ストレスからなる群より選択される少なくとも1種である、請求項7に記載の方法。
PCT/JP2017/045088 2016-12-27 2017-12-15 植物の環境ストレス耐性向上剤 WO2018123651A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018559048A JPWO2018123651A1 (ja) 2016-12-27 2017-12-15 植物の環境ストレス耐性向上剤
JP2022129618A JP7401938B2 (ja) 2016-12-27 2022-08-16 植物の環境ストレス耐性を向上する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-252242 2016-12-27
JP2016252242 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123651A1 true WO2018123651A1 (ja) 2018-07-05

Family

ID=62707461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045088 WO2018123651A1 (ja) 2016-12-27 2017-12-15 植物の環境ストレス耐性向上剤

Country Status (2)

Country Link
JP (2) JPWO2018123651A1 (ja)
WO (1) WO2018123651A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316877A (zh) * 2020-02-28 2020-06-23 广西南亚热带农业科学研究所 一种木薯抗倒伏高效增产的栽培方法
WO2020130145A1 (ja) * 2018-12-21 2020-06-25 アクプランタ株式会社 植物の耐熱性あるいは耐塩性向上剤

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859408A (ja) * 1994-08-26 1996-03-05 Nippon Zeon Co Ltd ブラシノステロイド含有組成物およびその水分散体
JPH10262457A (ja) * 1997-03-27 1998-10-06 Kubota Corp 塩条件下における幼植物体の栽培方法
JP2002265307A (ja) * 2001-03-09 2002-09-18 Kao Corp 農作物用低温耐性向上剤
JP2003528119A (ja) * 2000-03-29 2003-09-24 ウイスコンシン・アラムニ・リサーチ・フアウンデイシヨン 植物の健康増進及び植物のストレス防御方法
JP2009055832A (ja) * 2007-08-31 2009-03-19 Kao Corp 植物ストレス耐性付与方法
CN104430517A (zh) * 2014-11-24 2015-03-25 广东省农业科学院农业资源与环境研究所 一种罗勒抗盐浸种剂及其制备方法
CN104839160A (zh) * 2015-03-24 2015-08-19 安徽省农业科学院烟草研究所 一种玉米抗旱浸种液及其制备方法
WO2016031775A1 (ja) * 2014-08-25 2016-03-03 国立大学法人神戸大学 植物の耐性向上剤
WO2016056581A1 (ja) * 2014-10-08 2016-04-14 国立研究開発法人理化学研究所 植物成長促進剤及び植物成長促進方法
JP2016199519A (ja) * 2015-04-14 2016-12-01 国立大学法人埼玉大学 環境ストレスに対する植物の耐性を強化させる方法
CN106673857A (zh) * 2017-01-19 2017-05-17 冯云 一种提高植物耐热性的生物磷肥

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859408A (ja) * 1994-08-26 1996-03-05 Nippon Zeon Co Ltd ブラシノステロイド含有組成物およびその水分散体
JPH10262457A (ja) * 1997-03-27 1998-10-06 Kubota Corp 塩条件下における幼植物体の栽培方法
JP2003528119A (ja) * 2000-03-29 2003-09-24 ウイスコンシン・アラムニ・リサーチ・フアウンデイシヨン 植物の健康増進及び植物のストレス防御方法
JP2002265307A (ja) * 2001-03-09 2002-09-18 Kao Corp 農作物用低温耐性向上剤
JP2009055832A (ja) * 2007-08-31 2009-03-19 Kao Corp 植物ストレス耐性付与方法
WO2016031775A1 (ja) * 2014-08-25 2016-03-03 国立大学法人神戸大学 植物の耐性向上剤
WO2016056581A1 (ja) * 2014-10-08 2016-04-14 国立研究開発法人理化学研究所 植物成長促進剤及び植物成長促進方法
CN104430517A (zh) * 2014-11-24 2015-03-25 广东省农业科学院农业资源与环境研究所 一种罗勒抗盐浸种剂及其制备方法
CN104839160A (zh) * 2015-03-24 2015-08-19 安徽省农业科学院烟草研究所 一种玉米抗旱浸种液及其制备方法
JP2016199519A (ja) * 2015-04-14 2016-12-01 国立大学法人埼玉大学 環境ストレスに対する植物の耐性を強化させる方法
CN106673857A (zh) * 2017-01-19 2017-05-17 冯云 一种提高植物耐热性的生物磷肥

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Explication of a heat stress tolerance acquisition mechanism involving Ethanol in Arabidopsis Thaliana", PROCEEDING OF THE 81ST ANNUAL MEETING OF THE BOTANICAL SOCIETY OF JAPAN, vol. 81, no. 156, 1 September 2017 (2017-09-01) *
KUMAR, NAVEEN ET AL.: "Effect of ethanol plus sucrose on the vase-life of cut rose (Rosa hybrida L.)", JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, vol. 83, no. 6, 2008 - 7 November 2015 (2015-11-07), pages 749 - 754, XP055605272, ISSN: 1462-0316, DOI: 10.1080/14620316.2008.11512455 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130145A1 (ja) * 2018-12-21 2020-06-25 アクプランタ株式会社 植物の耐熱性あるいは耐塩性向上剤
JPWO2020130145A1 (ja) * 2018-12-21 2021-11-04 アクプランタ株式会社 植物の耐熱性あるいは耐塩性向上剤
CN111316877A (zh) * 2020-02-28 2020-06-23 广西南亚热带农业科学研究所 一种木薯抗倒伏高效增产的栽培方法
CN111316877B (zh) * 2020-02-28 2022-03-18 广西南亚热带农业科学研究所 一种木薯抗倒伏增产的栽培方法

Also Published As

Publication number Publication date
JP7401938B2 (ja) 2023-12-20
JPWO2018123651A1 (ja) 2019-10-31
JP2022164710A (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
Zhao et al. Roles of phytohormones and their signaling pathways in leaf development and stress responses
JP7401938B2 (ja) 植物の環境ストレス耐性を向上する方法
Best et al. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins
Pandey et al. In planta transformed cumin (Cuminum cyminum L.) plants, overexpressing the SbNHX1 gene showed enhanced salt endurance
Roumeliotis et al. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato
McClinchey et al. Production of mutants with high cold tolerance in spring canola (Brassica napus)
Kamiab et al. Biologia futura: the role of polyamine in plant science
WO2013065876A1 (en) Method for reducing abiotic stress in plant
JP4074092B2 (ja) 細胞または器官の分化調節剤およびそれを用いる形態形成の調節法
JP4817397B2 (ja) 細胞または器官の分化調節剤およびそれを用いる形態形成の調節法
JP6623015B2 (ja) 植物の耐塩性向上剤
Kaur et al. Roles of polyamines in growth and development of the Solanaceous crops under normal and stressful conditions
Rao et al. In vitro selection of salt tolerant calli lines and regeneration of salt tolerant Plantlets in Mung Bean (Vigna radiata L. Wilczek)
Wong et al. The PAL2 promoter activities in relation to structural development and adaptation in Arabidopsis thaliana
JP6917046B2 (ja) 植物の耐塩性向上剤
Lakehal et al. Multiple roles of jasmonates in shaping rhizotaxis: emerging integrators
Gómez-Cadenas et al. Phytohormonal crosstalk under abiotic stress
JP2012197249A (ja) 農園芸用高温ストレス耐性付与剤およびそれを用いた高温ストレス耐性付与法
Ahmed et al. In vitro regeneration and the antioxidant enzymatic system on acclimatization of micropropagated Vitex trifolia L.
Murvanidze et al. A calmodulin antagonist protects in vitro raspberries against disturbed photosynthesis caused by constant light and cytokinin
Ju et al. An oriental melon 9-lipoxygenase gene CmLOX09 response to stresses, hormones, and signal substances
Madaan et al. Implications of phytohormones as agrochemicals in dynamic environmental conditions
Naz et al. Micropropagation of Cassia occidentalis L. and the effect of irradiance on photosynthetic pigments and antioxidative enzymes
US8536091B2 (en) System for protection of plants from pathogens using alkamides
JP5366474B2 (ja) D−アロースを有効成分とする植物のジベレリンシグナル経路抑制剤およびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888867

Country of ref document: EP

Kind code of ref document: A1