WO2018123541A1 - 光ファイバ母材製造方法 - Google Patents

光ファイバ母材製造方法 Download PDF

Info

Publication number
WO2018123541A1
WO2018123541A1 PCT/JP2017/044377 JP2017044377W WO2018123541A1 WO 2018123541 A1 WO2018123541 A1 WO 2018123541A1 JP 2017044377 W JP2017044377 W JP 2017044377W WO 2018123541 A1 WO2018123541 A1 WO 2018123541A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass rod
optical fiber
addition region
axis direction
inspection
Prior art date
Application number
PCT/JP2017/044377
Other languages
English (en)
French (fr)
Inventor
安紀子 舟越
佐賢 田中
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US16/473,648 priority Critical patent/US11002905B2/en
Priority to CN201780081183.6A priority patent/CN110114320B/zh
Priority to DK17886471.6T priority patent/DK3564194T3/da
Priority to EP17886471.6A priority patent/EP3564194B1/en
Priority to JP2018558992A priority patent/JP6954312B2/ja
Publication of WO2018123541A1 publication Critical patent/WO2018123541A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • C03B37/01869Collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Definitions

  • the present invention relates to a method for manufacturing an optical fiber preform.
  • Patent Document 1 discloses a method of manufacturing an optical fiber in which Al is added to the core.
  • Patent Document 1 discloses deposition of a glass fine particle deposit (glass layer) containing Al in a glass pipe (hollow glass rod) as a method for producing a central glass rod constituting a part of an optical fiber preform.
  • a glass fine particle deposit glass layer
  • glass pipe glass rod
  • An example in which the glass layer is made transparent and the hollow portion of the glass pipe is solidified in sequence is disclosed.
  • Patent Document 2 as a method for producing a central glass rod constituting a part of an optical fiber preform, production of a glass rod to which an alkali metal element is added, deposition of a glass layer on the outer periphery of the glass rod, An example is disclosed in which diffusion of alkali metal elements into a glass layer by heat treatment, perforation removal of a glass rod to which alkali metal has been added, and solidification (collapse) of a glass layer into which alkali metal has been diffused are sequentially performed. Yes.
  • Patent Document 3 as a step of the optical fiber preform manufacturing method, a glass pipe made of quartz glass with an alkali metal element added to the inner surface is heated, so that the cavity of the glass pipe is solid. An example is shown.
  • the cross section of the element-added region in the glass rod obtained is non-circular (for example, elliptical) ).
  • the concentration distribution of the element, and the like there is a problem that it cannot be grasped visually.
  • the optical characteristics of the optical fiber obtained by drawing the optical fiber preform manufactured in (1) are greatly deviated from the design values. This is because, in the cross section perpendicular to the central axis of the optical fiber preform, the symmetry of the refractive index distribution around the central axis increases with the increase in the non-circularity of the outer peripheral shape of the element addition region including the central axis. Is considered to be due to the significant damage. Such a mixture of defective glass rods and non-defective glass rods causes a decrease in the production yield of the final optical fiber.
  • the present invention has been made to solve the above-described problems, and an optical fiber preform for effectively suppressing the collapse of symmetry of the refractive index distribution defined on the cross section of the optical fiber preform.
  • the object is to provide a material manufacturing method.
  • an optical fiber preform manufacturing method includes a central glass rod extending along a predetermined central axis, and a peripheral glass portion provided on the outer peripheral surface of the central glass rod. Is manufactured.
  • the manufacturing process of the central glass rod includes a glass layer forming process, a collapse process, an inspection process, and a grinding process.
  • the first intermediate glass rod is manufactured by forming a glass layer containing a predetermined element on the inner peripheral surface of the hollow glass rod (glass pipe) extending along the central axis.
  • the second intermediate glass rod in which the element addition region containing the predetermined element is formed along the central axis is manufactured by collapsing the first intermediate glass rod.
  • the concentration distribution measured in the cross section of the second intermediate glass rod orthogonal to the central axis is used, and the measurement result of the concentration distribution of the predetermined element along the long axis direction of the element addition region is used.
  • non-defective products of the second intermediate glass rod are selected.
  • the outer peripheral portion surrounding the central axis of the second intermediate glass rod selected in the inspection process is ground along a planned grinding line defined by a predetermined radius centered on the central axis. A glass rod is manufactured.
  • the inspection step includes inspection first to fourth inspection steps.
  • a measurement surface corresponding to the cross section of the second intermediate glass rod is formed on the second intermediate glass rod.
  • the major axis direction of the element addition region on the formed measurement surface is specified.
  • the concentration distribution of a predetermined element in the element addition region along the specified major axis direction is measured.
  • the inspection fourth step the distance information between the planned grinding line and the element addition region calculated from the measurement result of the concentration distribution of the predetermined element along the major axis direction of the element addition region is used for the grinding step.
  • the second intermediate glass rod that can be ground is selected as a non-defective product.
  • the long axis direction of the element addition region means a cross section of the intermediate glass rod in which the element addition region is formed along the central axis (a rod defined by a plane orthogonal to the central axis) A cross section or a measurement surface), a direction defined by one of a plurality of straight lines intersecting the central axis and giving a maximum width among the widths of the element addition regions along each of the plurality of straight lines.
  • the symmetry of the refractive index distribution defined on the cross section of the optical fiber preform can be effectively suppressed.
  • An optical fiber preform manufacturing method includes an optical fiber including a central glass rod extending along a predetermined central axis and a peripheral glass portion provided on the outer peripheral surface of the central glass rod.
  • Manufacture base materials include a glass layer forming process, a collapse process, an inspection process, and a grinding process.
  • the first intermediate glass rod is manufactured by forming a glass layer containing a predetermined element on the inner peripheral surface of the hollow glass rod extending along the central axis.
  • the second intermediate glass rod in which the element addition region containing the predetermined element is formed along the central axis is manufactured by collapsing the first intermediate glass rod.
  • the concentration distribution measured in the cross section of the second intermediate glass rod orthogonal to the central axis is used, and the measurement result of the concentration distribution of the predetermined element along the long axis direction of the element addition region is used.
  • non-defective products of the second intermediate glass rod are selected.
  • the outer peripheral portion surrounding the central axis of the second intermediate glass rod selected in the inspection process is ground along a planned grinding line defined by a predetermined radius centered on the central axis. A glass rod is manufactured.
  • the inspection process includes inspection first to fourth inspection processes.
  • a measurement surface corresponding to the cross section of the second intermediate glass rod is formed on the second intermediate glass rod.
  • the major axis direction of the element addition region on the formed measurement surface is specified.
  • the concentration distribution of a predetermined element in the element addition region along the specified major axis direction is measured.
  • the distance information between the planned grinding line and the element addition region calculated from the measurement result of the concentration distribution of the predetermined element along the major axis direction of the element addition region is used.
  • the second intermediate glass rod that can be ground is selected as a non-defective product.
  • the second inspection step may include a concentration measurement step, a shape approximation step, and an axis identification step.
  • concentration measurement step the concentration distribution of a predetermined element is measured along each of a plurality of straight lines passing through a position intersecting the central axis on the measurement surface.
  • shape approximating step the outer peripheral shape of the element addition region on the measurement surface is approximated by ellipse fitting using information regarding the concentration distribution of a predetermined element along each of a plurality of straight lines obtained in the concentration measuring step.
  • the major axis direction of the element addition region is estimated from the major axis direction of the outer peripheral shape obtained by the shape approximating step.
  • the outer peripheral shape of the element addition region deformed by the collapse is often an ellipse. In such a case, the ellipse fitting is effective.
  • the second inspection step may include an axis specifying step for specifying the major axis direction of the outer peripheral shape of the measurement surface as the major axis direction of the element addition region.
  • the outer peripheral shape of the second intermediate glass rod in which the outer peripheral shape of the element addition region is deformed by the collapse is often deformed.
  • the major axis direction of the element addition region and the second There exists a tendency for the angle which the major axis direction of 2 intermediate
  • each aspect listed in this [Description of Embodiments of the Invention] is applicable to each of all the remaining aspects or to all combinations of these remaining aspects. .
  • FIG. 1 is a diagram showing an example of an optical fiber preform 100 manufactured by the optical fiber preform manufacturing method according to the present embodiment.
  • the optical fiber preform 100 includes a center glass rod 10 extending along the center axis AX, and a peripheral glass portion (outer periphery of the preform) provided on the outer peripheral surface of the center glass rod 10. Part) 20.
  • an element addition region 11 to which a predetermined element is added is formed along the central axis AX.
  • the central glass rod 10 is a portion corresponding to the core of the optical fiber obtained by drawing the optical fiber preform 100, and a portion corresponding to the central region of the core (including the central axis of the optical fiber). Any of these may be used.
  • the peripheral glass portion 20 is a portion corresponding to the clad itself of the optical fiber obtained by drawing the optical fiber preform 100, and a portion in which the inner region corresponds to the outer peripheral portion of the core and the outer region corresponds to the clad. Any of these may be used. Further, the peripheral glass portion 20 may be composed of a plurality of glass regions provided so as to surround the central glass rod 10 and having different refractive indexes. Another hollow glass rod (glass pipe) 61 corresponding to a part of the core in the optical fiber after drawing may be inserted between the central glass rod 10 and the peripheral glass portion 20 (step number in FIG. 10). (Refer to the column of ST60).
  • FIG. 2 is a flowchart for explaining a manufacturing process of the central glass rod 10 in the optical fiber preform manufacturing method according to the present embodiment.
  • FIG. 3 is a diagram showing the state of the base material in each of steps ST10, ST20, ST30, and ST50 shown in the flowchart of FIG. 2 in order to explain the state change of the base material between processes. .
  • FIG. 3 also shows the state of the base material in step ST410 shown in the flowchart of FIG. 6 for comparison.
  • a hollow glass rod (glass pipe) 1A is prepared (step ST10).
  • the hollow glass rod 1A prepared in this step ST10 is in the longitudinal direction (the direction corresponding to the central axis AX shown in FIG. In the following description, it is a glass pipe provided with a cavity along the longitudinal direction of each of various glass rods along the central axis AX.
  • a glass layer containing a predetermined element is formed on the inner peripheral surface of the hollow glass rod 1A by the glass layer forming step (step ST20). In this glass layer forming step (step ST20), as shown in FIG.
  • the hollow glass rod 1A is indicated by the arrow S1 with the longitudinal direction coinciding with the central axis AX as the center.
  • the oxyhydrogen burner 21 to which the combustion gas is supplied is moved in the direction indicated by the arrow S2 while heating the hollow glass rod 1A.
  • the cavity of the first intermediate glass rod 1B manufactured as described above is collapsed (solidified) by the collapse process (step ST30).
  • step ST30 as shown in FIG. 3 (column of step number ST30), the first intermediate glass rod 1B is indicated by the arrow S1 with the longitudinal direction coinciding with the central axis AX as the center.
  • the oxyhydrogen burner 31 to which the combustion gas is supplied is moved in the direction indicated by the arrow S2 while heating the first intermediate glass rod 1B. By this heating, the cavity of the first intermediate glass rod 1B is collapsed, and the second intermediate glass rod 1C in which the element addition region 11 is formed along the longitudinal direction is obtained.
  • the cross section of the second intermediate glass rod 1C obtained through the above-described collapse process (the cross section perpendicular to the longitudinal direction of the second intermediate glass rod 1C, hereinafter referred to as “rod cross section”).
  • a representative cross-sectional pattern is shown in FIG.
  • the outer peripheral shape in the rod cross section of the element addition region 11 formed in the second intermediate glass rod 1C that has undergone the collapse process is non-circular, and empirically, for example, the cross sectional pattern a and the cross sectional pattern b in FIG. In general, the shape can be approximated by an ellipse.
  • the cross-sectional pattern a is an example in which the major axis direction of the outer peripheral shape of the second intermediate glass rod 1C substantially matches the major axis direction of the element addition region 11 in the rod section
  • the sectional pattern b is This is an example in which the major axis direction of the outer peripheral shape of the second intermediate glass rod 1C and the major axis direction of the element addition region 11 are substantially orthogonal.
  • the element-added region 11 extends along the long axis direction and is compressed along the short axis direction. An example having a shape was also confirmed.
  • the outer peripheral portion of the second intermediate glass rod 1C heated by the oxyhydrogen burners 21 and 31 contains a lot of moisture, the outer peripheral portion is removed by a grinding process.
  • the grinding step (step ST50) is performed on the second intermediate glass rod 1C having various cross-sectional patterns shown in FIG. 4, the rod cross-section of the central glass rod 10 obtained is shown in FIG.
  • the grinding pattern is as follows.
  • the second intermediate glass rod 1C is indicated by an arrow S1 with the longitudinal direction coinciding with the central axis AX as the center.
  • the blade 51 is moved in the direction indicated by the arrow S3, while being rotated (or may be rotated in one direction). By such movement of the blade 51, the outer peripheral portion of the second intermediate glass rod 1C is removed, and the center glass rod 10 having a substantially circular rod cross section is obtained.
  • the continuous line in FIG. 5 shows the outer periphery shape of the rod cross section in the center glass rod 10 obtained by the grinding process, and the planned grinding line.
  • the grinding pattern a in FIG. 5 is a grinding line (distance r) away from the center of the rod cross section (position intersecting the central axis AX) with respect to the second intermediate glass rod 1C having the cross section pattern a in FIG.
  • An example in which a planned grinding line separated from the center of the rod cross section by a radius r is set.
  • the grinding pattern c in FIG. 5 is different from the center of the rod cross section with respect to the second intermediate glass rod 1C having the cross section pattern c in FIG. This is an example in which a planned grinding line separated by a radius r is set.
  • the element addition region of the second intermediate glass rod 1C obtained through the collapse process remains non-circular. Therefore, in the central glass rod 10 obtained through the grinding process (step ST50), the margin width between the outer periphery of the rod cross section (corresponding to the planned grinding line) and the element addition region 11 is a circumference around the central axis AX. It will change in the direction. If the outer peripheral shape of the element addition region 11 in the rod cross section is greatly flattened, a sufficient margin width may not be ensured between the element addition region 11 and the grinding planned line.
  • an inspection process is performed as a grinding preparation process between the collapse process (step ST30) and the grinding process (step ST50).
  • the second intermediate glass rod 1C that can be predicted to sufficiently secure the margin width is selected as a non-defective product.
  • the margin width (judgment reference value) to be secured may be set as appropriate in consideration of the shape of the designed refractive index distribution.
  • step ST40 is performed according to the flowchart shown in FIG. FIG. 3 shows the state of the base material in step ST410.
  • a measurement surface is formed on the second intermediate glass rod 1C obtained through the collapse process (step ST30) (step ST410). That is, as shown in FIG. 3 (column of step number ST410), the measurement surface 41 corresponding to the cross section of the second intermediate glass rod 1C is formed as the measurement surface forming step, that is, the inspection first step. More specifically, at the position indicated by the arrow C, a part of the second intermediate glass rod 1C is cut from a direction perpendicular to the longitudinal direction thereof, thereby exposing the exposed cross section of the second intermediate glass rod 1C.
  • the major axis direction of the element addition region 11 on the measurement surface 41 is specified (step ST420).
  • the concentration distribution of the additive element along the specified major axis direction is measured in the inspection third process (step ST430).
  • the concentration distribution of the additive element on the measurement surface 41 can be measured using an electron probe microanalyzer (EPMA).
  • EPMA electron probe microanalyzer
  • the edge position of the element addition region 11 is specified from the measurement result of the concentration distribution of the additive element along the major axis direction of the element addition region 11.
  • a planned grinding line (a line that coincides with the outer periphery of the cross section of the central glass rod 10 finally obtained) defined by a circle having a radius r from the center (intersection with the central axis AX) on the measurement surface 41 is set in advance. Therefore, the shortest margin width (distance information) between the planned grinding line and the element addition region 11 is calculated. If the calculated shortest margin width is too small, the optical characteristics of the optical fiber obtained by drawing the optical fiber preform 100 including the central glass rod 10 are greatly deviated from the design values. Therefore, in the fourth inspection step, the second intermediate glass rod 1C that can be ground in the grinding step (step ST50), that is, the second intermediate glass whose calculated minimum margin width exceeds the preset reference value. The rod 1C is selected as a non-defective product (step ST440).
  • the major axis direction of the element addition region 11 on the measurement surface 41 is elliptical fitting (approximation of the outer shape of the element addition region 11 as shown in FIG. 7, for example). ) Or based on the outer peripheral shape of the measurement surface of the second intermediate glass rod 1C.
  • step ST30 When the outer periphery of the cross section (the outer periphery of the measurement surface 41) in the second intermediate glass rod 1C obtained through the collapse process (step ST30) is flat, empirically, the major axis direction of the element addition region 11 and the outer periphery of the cross section It has been found that the angle formed with the major axis direction tends to be small (cross-sectional pattern a in FIG. 4). Therefore, when the flatness of the second intermediate glass rod 1C is relatively small (step ST421), after the outer peripheral shape of the measurement surface 41 is specified (step ST422) in the inspection process, the long axis of the specified outer peripheral shape is specified. The direction is estimated as the major axis direction of the element addition region 11 (step ST427).
  • the major axis direction is specified by ellipse fitting (step ST421).
  • the measurement direction L1 passing through the center of the measurement surface is determined on the measurement surface 41 (step ST423).
  • the concentration distribution P1 of the additive element is measured along the measurement direction L1 using the electronic probe microanalyzer (step ST424).
  • the concentration distributions P1 to P3 of the additive element are measured in the measurement directions L1 to L3, respectively (step ST425).
  • step ST426 the edge position in each measurement direction of the element addition region 11 on the measurement surface 41 can be specified. Fitting is performed (step ST426). In this elliptical fitting, the major axis direction of the approximated elliptical shape is estimated as the major axis direction of the element addition region 11 (step ST427).
  • step ST50 the outer peripheral portion of the second intermediate glass rod 1C that has been determined to be non-defective through the above inspection process (step ST40) is obtained, and the center glass rod 10 is obtained.
  • a peripheral glass portion (base metal outer peripheral portion) is manufactured on the outer peripheral surface of the central glass rod 10 manufactured as described above.
  • FIG. 9 is a flowchart for explaining a manufacturing process of the peripheral glass portion 20 in the optical fiber preform manufacturing method according to the present embodiment.
  • FIG. 10 is a diagram showing the state of the base material in each of steps ST60, ST72, and ST73 shown in the flowchart of FIG. 9 in order to explain the state change of the base material between processes.
  • a rod incolapse method (step ST60) may be performed.
  • the hollow glass rod 61 glass pipe having a refractive index different from the refractive index of the central glass rod 10.
  • the outer peripheral part manufacturing process for manufacturing the peripheral glass part (base material outer peripheral part) 20 is implemented on the outer peripheral surface of the central glass rod 10 or the hollow glass rod 61 integrated with the central glass rod 10.
  • the peripheral glass part 20 is manufactured in the outer peripheral part manufacturing process by a VAD (Vapor-phase Axial Deposition) method (step ST72) or an OVD (Outside Vapor Deposition) method (step ST73).
  • VAD Vapor-phase Axial Deposition
  • OVD Outside Vapor Deposition
  • step ST72 when the VAD method is selected as the means for manufacturing the peripheral glass portion 20 (step ST72), the direction in which the center glass rod 10 is indicated by the arrow S5 as shown in FIG. 10 (column of step number ST72). To be rotated. Meanwhile, the flame of the burner 71 to which the fuel gas and the raw material gas are supplied is sprayed on the outer peripheral surface of the central glass rod 10. Thereby, glass fine particles are deposited on the outer peripheral surface.
  • step ST73 when the OVD method is selected as the means for manufacturing the peripheral glass portion 20 (step ST73), the direction in which the center glass rod 10 is indicated by the arrow S5 as shown in FIG. 10 (column of step number ST73). To be rotated.
  • the flame of the burner 71 to which the fuel gas and the raw material gas are supplied is sprayed on the outer peripheral surface of the central glass rod 10 while moving along the longitudinal direction of the central glass rod 10. Thereby, glass fine particles are deposited on the outer peripheral surface.
  • step ST70 The glass layer deposited on the outer peripheral surface of the central glass rod 10 through the peripheral glass part manufacturing process (step ST70) is sintered by being heated by a heating furnace (transparent vitrification), and further, a predetermined outer The optical fiber preform 100 is obtained by drawing until the diameter is reached (step ST80).
  • a heating furnace transparent vitrification
  • step ST80 a predetermined outer The optical fiber preform 100 is obtained by drawing until the diameter is reached.
  • the method can be applied to a method of measuring the concentration distribution of the additive.
  • SYMBOLS 1A Hollow glass rod (glass pipe), 1B ... 1st intermediate glass rod, 1C ... 2nd intermediate glass rod, 10 ... Center glass rod, 11 ... Element addition area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

本実施形態は、光ファイバ母材の断面上で規定される屈折率分布の対称性の崩れを効果的に抑制する光ファイバ母材製造方法に関する。本実施形態では、光ファイバ母材の一部を構成する中心ガラスロッドの製造において、コラップスにより元素添加領域が内部に形成された中間ガラスロッドの外周部分の研削に先立ち、研削対象となる中間ガラスロッドの良品判定が行われる。

Description

光ファイバ母材製造方法
 本発明は、光ファイバ母材の製造方法に関するものである。
 光ファイバ母材の製造技術に関し、現在、種々の技術が知られている。例えば、特許文献1にはコアにAlが添加された光ファイバの製造方法が開示されている。特に、特許文献1には、光ファイバ母材の一部を構成する中心ガラスロッドの製造方法として、Alを含むガラス微粒子堆積体(ガラス層)の、ガラスパイプ(中空ガラスロッド)内への堆積、該ガラス層の透明化、更に該ガラスパイプの空洞部分の中実化が順次実施する例が開示されている。
 また、特許文献2には、光ファイバ母材の一部を構成する中心ガラスロッドの製造方法として、アルカリ金属元素が添加されたガラスロッドの製造、該ガラスロッドの外周へのガラス層の堆積、熱処理によるアルカリ金属元素のガラス層への拡散、アルカリ金属が添加されたガラスロッドの穿孔除去、及び、アルカリ金属が拡散したガラス層の中実化(コラプス)が順次実施される例が開示されている。
 更に、特許文献3には、光ファイバ母材製造方法の一工程として、アルカリ金属元素が内表面に添加された石英系ガラスからなるガラスパイプを加熱することにより、該ガラスパイプの空洞を中実化する例が記載されている。
国際公開WO2008/001673号公報 国際公開WO2016/021576号公報 特開2012-162409号公報
 発明者は、従来の光ファイバ母材の製造方法について検討した結果、以下のような課題を発見した。
 すなわち、元素が添加されたガラス層が形成されたガラスパイプのコラプスにより、得られるガラスロッド内における元素添加領域の断面(当該ガラスロッドの長手方向に直交する面)が非円形形状(例えば楕円形状)になることがある。ところが、元素添加領域の大きさや元素の濃度分布などを検査しようとしても、目視では把握できないという課題があった。
 また、添加元素の濃度分布を測定する場合であっても任意の一次元情報に基づく測定結果を利用してコラップスにより元素添加領域が形成されたガラスロッドの良品判定が行われても、最終的に製造された光ファイバ母材を線引きすることにより得られる光ファイバの光学特性が設計値から大きくずれる場合がある。これは、光ファイバ母材の、その中心軸に直交する断面において、該中心軸を含む元素添加領域の外周形状の非円率の増大に伴い該中心軸を中心とした屈折率分布の対称性が著しく損なわれることに起因すると考えられる。このような不良ガラスロッドと良品ガラスロッドの混在は、最終製品である光ファイバの製造歩留まりを低下させる原因となっている。
 本発明は、上述のような課題を解決するためになされたものであり、光ファイバ母材の断面上で規定される屈折率分布の対称性の崩れを効果的に抑制するための光ファイバ母材製造方法を提供することを目的としている。
 上述の目的を達成するため、本実施形態に係る光ファイバ母材製造方法は、所定の中心軸に沿って延びた中心ガラスロッドと、中心ガラスロッドの外周面上に設けられた周辺ガラス部とを備えた光ファイバ母材を製造する。特に、本実施形態において、中心ガラスロッドの製造工程は、ガラス層形成工程と、コラップス工程と、検査工程と、研削工程と、を含む。ガラス層形成工程では、中心軸に沿って延びた中空ガラスロッド(ガラスパイプ)の内周面上に所定の元素を含むガラス層を形成することで、第1中間ガラスロッドが製造される。コラップス工程では、第1中間ガラスロッドをコラップスすることにより、所定の元素を含む元素添加領域が中心軸に沿って形成された第2中間ガラスロッドが製造される。検査工程では、中心軸に直交する、第2中間ガラスロッドの断面において測定される濃度分布であって、元素添加領域の長軸方向に沿った、所定の元素の濃度分布の測定結果を利用して、第2中間ガラスロッドの良品が選別される。研削工程では、検査工程において選別された第2中間ガラスロッドの、中心軸を取り囲む外周部分を、該中心軸を中心とした所定半径で規定される研削予定ラインに沿って研削することにより、中心ガラスロッドが製造される。
 ここで、上記検査工程は、検査第1~検査第4工程を含む。検査第1工程では、第2中間ガラスロッドに対し、該第2中間ガラスロッドの断面に相当する測定面が形成される。検査第2工程では、形成された測定面上における元素添加領域の長軸方向が特定される。検査第3工程では、特定された長軸方向に沿った、元素添加領域における所定の元素の濃度分布が測定される。検査第4工程では、元素添加領域の長軸方向に沿った、所定の元素の濃度分布の測定結果から算出される、研削予定ラインと元素添加領域との距離情報を利用して、研削工程にける研削対象となり得る第2中間ガラスロッドが良品として選別される。
 なお、本明細書において、「元素添加領域の長軸方向」とは、中心軸に沿って元素添加領域が内部に形成された中間ガラスロッドの断面(中心軸に直交する平面で規定されるロッド断面または測定面)において、中心軸と交差する複数の直線のうちの一つであって、該複数の直線それぞれに沿った元素添加領域の幅のうち最大幅を与える直線により規定される方向を意味する。
 本実施形態によれは、光ファイバ母材の断面上で規定される屈折率分布の対称性の崩れが、効果的に抑制され得る。
は、本実施形態に係る光ファイバ母材製造方法により製造された光ファイバ母材100の一例を示す図である。 は、本実施形態に係る光ファイバ母材製造方法のうち中心ガラスロッド10の製造工程を説明するためのフローチャートである。 は、工程間の母材の状態変化を説明するため、ステップST10、ST20、ST30、ST50、およびST410それぞれにおける母材の状態を比較するための図である。 は、コラップス工程(ステップST30)後の第2中間ガラスロッド1Cにおける種々の断面パターンを示す図である。 は、図4に示された第2中間ガラスロッド1Cから中心ガラスロッド10を得るための種々の研削パターンを示す図である。 は、本実施形態に係る光ファイバ母材製造方法の研削準備工程(検査工程)を説明するためのフローチャートである。 は、研削準備工程における長軸方向の特定動作を説明するためのフローチャートである。 は、研削準備工程における長軸方向を特定動作の一例を説明するための図である。 は、本実施形態に係る光ファイバ母材製造方法のうち周辺ガラス部(母材外周部)20の製造工程を説明するためのフローチャートである。 工程間の母材の状態変化を説明するため、ステップST60、ST72、およびST73それぞれにおける母材の状態を比較するための図である。
 [本願発明の実施形態の説明]
  最初に本願発明の実施形態の内容をそれぞれ個別に列挙して説明する。
 (1)本実施形態に係る光ファイバ母材製造方法は、所定の中心軸に沿って延びた中心ガラスロッドと、中心ガラスロッドの外周面上に設けられた周辺ガラス部とを備えた光ファイバ母材を製造する。特に、本実施形態の一態様として、中心ガラスロッドの製造工程は、ガラス層形成工程と、コラップス工程と、検査工程と、研削工程と、を含む。ガラス層形成工程では、中心軸に沿って延びた中空ガラスロッドの内周面上に所定の元素を含むガラス層を形成することで、第1中間ガラスロッドが製造される。コラップス工程では、第1中間ガラスロッドをコラップスすることにより、所定の元素を含む元素添加領域が中心軸に沿って形成された第2中間ガラスロッドが製造される。検査工程では、中心軸に直交する、第2中間ガラスロッドの断面において測定される濃度分布であって、元素添加領域の長軸方向に沿った、所定の元素の濃度分布の測定結果を利用して、第2中間ガラスロッドの良品が選別される。研削工程では、検査工程において選別された第2中間ガラスロッドの、中心軸を取り囲む外周部分を、該中心軸を中心とした所定半径で規定される研削予定ラインに沿って研削することにより、中心ガラスロッドが製造される。
 また、上記検査工程は、検査第1~検査第4工程を含む。検査第1工程では、第2中間ガラスロッドに対し、該第2中間ガラスロッドの断面に相当する測定面が形成される。検査第2工程では、形成された測定面上における元素添加領域の長軸方向が特定される。検査第3工程では、特定された長軸方向に沿った、元素添加領域における所定の元素の濃度分布が測定される。検査第4工程では、元素添加領域の長軸方向に沿った、所定の元素の濃度分布の測定結果から算出される、研削予定ラインと元素添加領域との距離情報を利用して、研削工程における研削対象となり得る第2中間ガラスロッドが良品として選別される。
 (2)本実施形態の一態様として、検査第2工程は、濃度測定工程と、形状近似工程と、軸特定工程と、を含んでもよい。濃度測定工程では、測定面において、中心軸と交差する位置を通過する複数の直線それぞれに沿って所定の元素の濃度分布が測定される。形状近似工程では、濃度測定工程により得られた、複数の直線それぞれに沿った所定の元素の濃度分布に関する情報を利用した楕円フィッティングにより、測定面における元素添加領域の外周形状が近似される。軸特定工程では、形状近似工程により得られた外周形状の長軸方向から、元素添加領域の長軸方向が推定される。第2中間ガラスロッドの断面において、コラップスにより変形する元素添加領域の外周形状は楕円状になるケースが多いため、このような場合に楕円フィッティングが有効である。
 (3)本実施形態の一態様として、検査第2工程は、元素添加領域の長軸方向として、測定面の外周形状の長軸方向を特定する軸特定工程を含んでもよい。第2中間ガラスロッドの断面において、コラップスにより元素添加領域の外周形状が変形した第2中間ガラスロッドでは、その外周形状も変形することが多く、この場合、元素添加領域の長軸方向と当該第2中間ガラスロッドの長軸方向のなす角度が小さくなる傾向がある。したがって、第2中間ガラスロッドの断面において、当該第2中間ガラスロッドの長軸方向から、元素添加領域の長軸方向の推定が可能になる。
 以上、この[本願発明の実施形態の説明]の欄に列挙された各態様は、残りの全ての態様のそれぞれに対して、または、これら残りの態様の全ての組み合わせに対して適用可能である。
 [本願発明の実施形態の詳細]
  本願発明に係る光ファイバ母材製造方法の具体例を、以下に添付の図面を参照しながら詳細に説明する。なお、本発明は、これら例示に限定されるものではなく、特許請求の範囲によって示され、また、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図されている。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
 図1は、本実施形態に係る光ファイバ母材製造方法により製造された光ファイバ母材100の一例を示す図である。図1に示されたように、光ファイバ母材100は、中心軸AXに沿って延びた中心ガラスロッド10と、該中心ガラスロッド10の外周面上に設けられた周辺ガラス部(母材外周部)20と、を備える。中心ガラスロッド10の内部には、中心軸AXに沿って所定の元素が添加された元素添加領域11が形成されている。なお、中心ガラスロッド10は、光ファイバ母材100を線引きすることにより得られる光ファイバのコア自体に相当する部分、また、該コアの中心領域(光ファイバの中心軸を含む)に相当する部分の何れであってもよい。周辺ガラス部20は、光ファイバ母材100を線引きすることにより得られる光ファイバのクラッド自体に相当する部分、また、内側領域がコアの外周部分に相当するとともに外側領域が該クラッドに相当する部分の何れであってもよい。さらに、周辺ガラス部20は、中心ガラスロッド10を取り囲むように設けられた、互いに異なる屈折率を有する複数のガラス領域で構成されてもよい。中心ガラスロッド10と周辺ガラス部20との間に、線引き後の光ファイバにおけるコアの一部に相当する別の中空ガラスロッド(ガラスパイプ)61が挿入されてもよい(図10中のステップ番号ST60の欄参照)。
 以下、本実施形態に係る光ファイバ母材製造方法について、図2~図10を用いて説明する。図2は、本実施形態に係る光ファイバ母材製造方法のうち中心ガラスロッド10の製造工程を説明するためのフローチャートである。また、図3は、工程間の母材の状態変化を比較しながら説明するため、図2のフローチャートに示されたステップST10、ST20、ST30、およびST50それぞれにおける母材の状態を示す図である。なお、図3には、比較のため、図6のフローチャートに示されたステップST410における母材の状態も示されている。
 図2に示されたように、本実施形態では、まず、中空ガラスロッド(ガラスパイプ)1Aが準備される(ステップST10)。このステップST10で準備される中空ガラスロッド1Aは、図3(ステップ番号ST10の欄)に示されたように、長手方向(図1中に示された中心軸AXに一致した方向であって、以下の説明において種々のガラスロッドそれぞれの長手方向は、中心軸AXに一致しているものとする)に沿って空洞が設けられたガラスパイプである。続いて、ガラス層形成工程により、中空ガラスロッド1Aの内周面上に所定の元素を含むガラス層が形成される(ステップST20)。このガラス層形成工程(ステップST20)では、図3(ステップ番号ST20の欄)に示されたように、中心軸AXに一致する長手方向を中心にして中空ガラスロッド1Aが矢印S1で示された方向へ回転(一方向の回転でもよい)させられる一方、燃焼ガスが供給される酸水素バーナ21が中空ガラスロッド1Aを加熱しながら矢印S2で示された方向に移動させられる。この加熱された中空ガラスロッド1Aの一方の端部から、該中空ガラスロッド1Aの空洞内に添加されるべき元素を含む原料ガスが供給されることで、該中空ガラスロッド1Aの内周面上に元素添加領域11となるべきガラス層が形成される。中空ガラスロッド1Aの一方の端部から空洞内に導入された原料ガスは、該中空ガラスロッド1Aの他方の端部から排気される。このガラス層形成工程(ステップST20)を経て第1中間ガラスロッド1Bが得られる。
 さらに、上述のように製造された第1中間ガラスロッド1Bの空洞は、コラップス工程によりコラップス(中実化)される(ステップST30)。このコラップス工程(ステップST30)では、図3(ステップ番号ST30の欄)に示されたように、中心軸AXに一致した長手方向を中心にして第1中間ガラスロッド1Bが矢印S1で示された方向に回転(一方向の回転でもよい)させられる一方、燃焼ガスが供給される酸水素バーナ31が第1中間ガラスロッド1Bを加熱しながら矢印S2で示された方向に移動させられる。この加熱により第1中間ガラスロッド1Bの空洞はコラップスされ、長手方向に沿って元素添加領域11が形成された第2中間ガラスロッド1Cが得られる。
 なお、上述のコラップス工程(ステップST30)を経て得られた第2中間ガラスロッド1Cの断面(当該第2中間ガラスロッド1Cの、長手方向に直交する断面であって、以下「ロッド断面」という)の代表的な断面パターンが図4に示されている。通常、コラップス工程を経た第2中間ガラスロッド1C内に形成された元素添加領域11の、ロッド断面における外周形状は非円形となり、経験的には、例えば図4中の断面パターンaや断面パターンbのように、楕円で近似可能な形状となるのが一般的である。なお、断面パターンaは、ロッド断面において、第2中間ガラスロッド1Cの外周形状の長軸方向と元素添加領域11の長軸方向が略一致した例であり、断面パターンbは、ロッド断面において、第2中間ガラスロッド1Cの外周形状の長軸方向と元素添加領域11の長軸方向が略直交した例である。さらに、第2中間ガラスロッド1Cの断面パターンには、図4中の断面パターンcのように、元素添加領域11が、長軸方向に沿って延びる一方、短軸方向に沿って圧縮された外周形状を有する例も確認された。
 通常、酸水素バーナ21、31により加熱された第2中間ガラスロッド1Cの外周部分は、水分を多く含んでいるため、研削工程により該外周部分が除去される。例えば、図4に示された種々の断面パターンを有する第2中間ガラスロッド1Cに対して研削工程(ステップST50)を実施する場合、得られる中心ガラスロッド10のロッド断面は、図5に示されたような研削パターンとなる。ここで、研削工程(ステップST50)では、図3(ステップ番号ST50の欄)に示されたように、中心軸AXに一致した長手方向を中心にして第2中間ガラスロッド1Cが矢印S1で示された方向に回転(一方向の回転でもよい)させられる一方、ブレード51が矢印S3で示された方向に移動させられる。このようなブレード51の移動により第2中間ガラスロッド1Cの外周部分が除去され、略円形のロッド断面を有する中心ガラスロッド10が得られる。
 なお、図5中の実線は、研削工程により得られる中心ガラスロッド10におけるロッド断面の外周形状および研削予定ラインを示す。すなわち、図5の研削パターンaは、図4の断面パターンaを有する第2中間ガラスロッド1Cに対し、ロッド断面の中心(中心軸AXと交差する位置)から距離rだけ離れた研削予定ライン(ロッド断面において、中心軸AXとの交差点を中心に半径rの円周で規定)が設定した例、図5の研削パターンbは、図4の断面パターンbを有する第2中間ガラスロッド1Cに対し、ロッド断面の中心から半径rだけ離れた研削予定ラインが設定された例、図5の研削パターンcは、図4の断面パターンcを有する第2中間ガラスロッド1Cに対し、ロッド断面の中心から半径rだけ離れた研削予定ラインが設定された例である。
 これら図5の研削パターンa~cから分かるように、ロッド断面において、研削予定ラインを略円形に設定した場合であっても、コラップス工程を経て得られた第2中間ガラスロッド1Cの元素添加領域11の外周形状は非円形のままである。したがって、研削工程(ステップST50)を経て得られた中心ガラスロッド10において、ロッド断面の外周(研削予定ラインに一致)と元素添加領域11とのマージン幅は、中心軸AXを中心とした円周方向に変動してしまう。仮に、ロッド断面における元素添加領域11の外周形状が大きく扁平した場合、元素添加領域11と研削予定ラインとの間に十分なマージン幅が確保できない可能性がある。すなわち、十分なマージン幅が確保できていない中心ガラスロッド10の外周に更に屈折率の異なる周辺ガラス部20が形成された場合、ロッド断面における中心軸AXを中心とした屈折率の対称性が維持できなくなる。換言すれば、このような光ファイバ母材を線引きすることにより得られた光ファイバでは、設計された光学特性が得られない可能性が高くなる。
 そこで、本実施形態では、コラップス工程(ステップST30)と研削工程(ステップST50)との間に、研削準備工程として検査工程(ステップST40)が実施される。この検査工程では、研削工程(ステップST50)が実施された場合に、上記のマージン幅を十分に確保可能なことが予測できる第2中間ガラスロッド1Cが、良品として選別される。なお、確保すべきマージン幅(判定基準値)は、設計された屈折率分布の形状等を考慮し、適宜設定されればよい。
 なお、検査工程(ステップST40)は、図6に示されたフローチャートに従って実施される。また、図3には、ステップST410における母材の状態が示されている。検査工程(ステップST40)では、まず、コラップス工程(ステップST30)を経て得られた第2中間ガラスロッド1Cに対し、測定面が形成される(ステップST410)。すなわち、図3(ステップ番号ST410の欄)に示されたように、測定面形成工程すなわち検査第1工程として、当該第2中間ガラスロッド1Cの断面に相当する測定面41が形成される。より具体的には、矢印Cで示された位置において、第2中間ガラスロッド1Cの一部を、その長手方向に直交する方向から切断することにより、露出した当該第2中間ガラスロッド1Cの断面を測定面41とする。続いて、検査第2工程として、測定面41上における元素添加領域11の長軸方向が特定される(ステップST420)。検査第2工程において元素添加領域11の長軸方向が特定されると、検査第3工程では、特定された長軸方向に沿った、添加元素の濃度分布が測定される(ステップST430)。なお、測定面41上における添加元素の濃度分布は、電子プローブマイクロアナライザ(EPMA)を利用して測定可能である。そして、検査第4工程において、元素添加領域11の長軸方向に沿った、添加元素の濃度分布の測定結果から、元素添加領域11のエッジ位置が特定される。測定面41上の中心(中心軸AXとの交点)から半径rの円で規定される研削予定ライン(最終的に得られる中心ガラスロッド10における断面の外周に一致するライン)は、予め設定されているため、研削予定ラインと元素添加領域11との最短マージン幅(距離情報)が算出される。算出された最短マージン幅が小さ過ぎると、このような中心ガラスロッド10を含む光ファイバ母材100を線引きすることにより得られる光ファイバの光学特性が設計値から大きく外れる結果となる。そこで、この検査第4工程では、研削工程(ステップST50)における研削対象となり得る第2中間ガラスロッド1C、すなわち、算出された最小マージン幅が予め設定された基準値を超えている第2中間ガラスロッド1Cが良品として選別される(ステップST440)。
 ここで、検査第2工程(ステップST420)において、測定面41上における元素添加領域11の長軸方向は、例えば図7に示されたように、楕円フィッティング(元素添加領域11の外周形状の近似)、または、第2中間ガラスロッド1Cの測定面の外周形状に基づいて、特定される。
 コラップス工程(ステップST30)を経て得られた第2中間ガラスロッド1Cにおける断面外周(測定面41の外周)が扁平している場合、経験的に、元素添加領域11の長軸方向と断面外周の長軸方向とのなす角が小さくなる傾向があることが分かっている(図4の断面パターンa)。そこで、第2中間ガラスロッド1Cの扁平率が比較的小さい場合(ステップST421)、当該検査工程では、測定面41の外周形状が特定された後(ステップST422)、特定された外周形状の長軸方向が、元素添加領域11の長軸方向として推定される(ステップST427)。
 一方、精密に元素添加領域11の長手方向を推定する場合には、楕円フィッティングにより長軸方向の特定が実施される(ステップST421)。この楕円フィッティングでは、図8に示されたように、測定面41上において、該測定面の中心(中心軸AXとの交点)を通過する測定方向L1が決定される(ステップST423)。続いて、上記電子プローブマイクロアナライザを利用して、測定方向L1に沿って添加元素の濃度分布P1が測定される(ステップST424)。図8の例では、測定方向L1~L3について、それぞれ添加元素の濃度分布P1~P3が測定される(ステップST425)。これらステップST423~ST425により得られた濃度分布P1~P3から、測定面41上における元素添加領域11の、測定方向それぞれにおけるエッジ位置が特定できるため、得られたエッジ位置の情報を利用して楕円フィッティングが行われる(ステップST426)。この楕円フィッティングでは、近似された楕円形状の長軸方向が、元素添加領域11の長軸方向として推定される(ステップST427)。
 以上の検査工程(ステップST40)を経て良品と判定された第2中間ガラスロッド1Cは上述の研削工程(ステップST50)においてその外周部分が除去され、中心ガラスロッド10が得られる。本実施形態に係る光ファイバ母材製造方法では、このように製造された中心ガラスロッド10の外周面上に周辺ガラス部(母材外周部)が製造される。図9は、本実施形態に係る光ファイバ母材製造方法のうち周辺ガラス部20の製造工程を説明するためのフローチャートである。また、図10は、工程間の母材の状態変化を比較しながら説明するため、図9のフローチャートに示されたステップST60、ST72、およびST73それぞれにおける母材の状態を示す図である。
 中心ガラスロッド10が光ファイバのコア中心部に相当する部分である場合、例えばロッドインコラップス法(ステップST60)が実施されてもよい。この場合、図10(ステップ番号ST60の欄)に示されたように、中空ガラスロッド61(中心ガラスロッド10の屈折率とは異なる屈折率を有するガラスパイプ)内に、矢印S4で示された方向に沿って中心ガラスロッド10が収納された状態で、これら中心ガラスロッド10と中空ガラスロッド61が一体化される。
 次に、中心ガラスロッド10または中心ガラスロッド10と一体化された中空ガラスロッド61の外周面上に、周辺ガラス部(母材外周部)20を製造するための外周部製造工程が実施される(ステップST70)。この外周部製造工程における周辺ガラス部20の製造は、VAD(Vapor-phase Axial Deposition)法(ステップST72)またはOVD(Outside Vapor Deposition)法(ステップST73)により行われる。
 すなわち、周辺ガラス部20の製造手段としてVAD法が選択された場合(ステップST72)、図10(ステップ番号ST72の欄)に示されたように、中心ガラスロッド10が矢印S5で示された方向に回転させられる。その間、中心ガラスロッド10の外周面上に燃料ガスおよび原料ガスが供給されるバーナ71の炎が吹き付けられる。これにより、該外周面上にガラス微粒子が堆積していく。一方、周辺ガラス部20の製造手段としてOVD法が選択された場合(ステップST73)、図10(ステップ番号ST73の欄)に示されたように、中心ガラスロッド10が矢印S5で示された方向に回転させられる。その間、中心ガラスロッド10の長手方向に沿って移動しながら、該中心ガラスロッド10の外周面上に燃料ガスおよび原料ガスが供給されるバーナ71の炎が吹き付けられる。これにより、該外周面上にガラス微粒子が堆積していく。
 周辺ガラス部の製造工程(ステップST70)を経て中心ガラスロッド10の外周面上に堆積したガラス層は、加熱炉により加熱されることにより焼結された後(透明ガラス化)、更に所定の外径となるまで延伸されることにより、光ファイバ母材100が得られる(ステップST80)。なお、本実施形態に係る製造方法は、上述の態様には限定される種々の変形が可能である。例えば断面形状が四角形等の多角形形状や外周の一部が研磨されたパイプのような非円形状の断面を有するパイプの内面にガラス層が形成された後にコラップスが行われる場合のように、元素添加領域が大きく非円形状となる場合、また、母材断面を意図的に非円形状にする場合に、添加物の濃度分布を測定する方法等にも適用可能である。
 1A…中空ガラスロッド(ガラスパイプ)、1B…第1中間ガラスロッド、1C…第2中間ガラスロッド、10…中心ガラスロッド、11…元素添加領域、20…周辺ガラス部、100…光ファイバ母材。

Claims (3)

  1.  所定の中心軸に沿って延びた中心ガラスロッドと、前記中心ガラスロッドの外周面上に設けられた周辺ガラス部とを備えた光ファイバ母材を製造するための光ファイバ母材製造方法であって、
     前記中心ガラスロッドの製造工程は、
     前記中心軸に沿って延びた中空ガラスロッドの内周面上に所定の元素を含むガラス層を形成することで、第1中間ガラスロッドを製造するガラス層形成工程と、
     前記第1中間ガラスロッドをコラップスすることにより、前記所定の元素を含む元素添加領域が前記中心軸に沿って形成された第2中間ガラスロッドを製造するコラップス工程と、
     前記中心軸に直交する、前記第2中間ガラスロッドの断面において測定される濃度分布であって、前記元素添加領域の長軸方向に沿った、前記所定の元素の濃度分布の測定結果を利用して、前記第2中間ガラスロッドの良品を選別する検査工程と、
     前記検査工程において選別された前記第2中間ガラスロッドの、前記中心軸を取り囲む外周部分を、前記中心軸を中心とした所定半径で規定される研削予定ラインに沿って研削することにより、前記中心ガラスロッドを製造する研削工程と、を含み、
     前記検査工程は、
     前記第2中間ガラスロッドに対し、前記断面に相当する測定面を形成する検査第1工程と、
     前記測定面上における前記元素添加領域の長軸方向を特定する検査第2工程と、
     特定された前記長軸方向に沿った、前記元素添加領域における前記所定の元素の濃度分布を測定する検査第3工程と、
     前記元素添加領域の長軸方向に沿った、前記所定の元素の濃度分布の測定結果から算出される、前記研削予定ラインと前記元素添加領域との距離情報を利用して、前記研削工程にける研削対象となり得る第2中間ガラスロッドを前記良品として選別する検査第4工程と、を含むことを特徴とする光ファイバ母材製造方法。
  2.  前記検査第2工程は、
     前記測定面において、前記中心軸と交差する位置を通過する複数の直線それぞれに沿って前記所定の元素の濃度分布を測定する濃度測定工程と、
     前記濃度測定工程により得られた、前記複数の直線それぞれに沿った前記所定の元素の濃度分布に関する情報を利用した楕円フィッティングにより、前記測定面における前記元素添加領域の外周形状を近似する形状近似工程と、
     前記元素添加領域の長軸方向として、前記形状近似工程により得られた外周形状の長軸方向を特定する軸特定工程と、を含むことを特徴とする請求項1に記載の光ファイバ母材製造方法。
  3.  前記検査第2工程は、
     前記元素添加領域の長軸方向として、前記測定面の外周形状の長軸方向を特定する軸特定工程を含む請求項1に記載の光ファイバ母材製造方法。
PCT/JP2017/044377 2016-12-28 2017-12-11 光ファイバ母材製造方法 WO2018123541A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/473,648 US11002905B2 (en) 2016-12-28 2017-12-11 Method for producing optical fiber preform
CN201780081183.6A CN110114320B (zh) 2016-12-28 2017-12-11 用于制造光纤预制件的方法
DK17886471.6T DK3564194T3 (da) 2016-12-28 2017-12-11 Fremgangsmåde til fremstilling af optisk fiberforform
EP17886471.6A EP3564194B1 (en) 2016-12-28 2017-12-11 Method for producing optical fiber preform
JP2018558992A JP6954312B2 (ja) 2016-12-28 2017-12-11 光ファイバ母材製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016255812 2016-12-28
JP2016-255812 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123541A1 true WO2018123541A1 (ja) 2018-07-05

Family

ID=62710585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044377 WO2018123541A1 (ja) 2016-12-28 2017-12-11 光ファイバ母材製造方法

Country Status (6)

Country Link
US (1) US11002905B2 (ja)
EP (1) EP3564194B1 (ja)
JP (1) JP6954312B2 (ja)
CN (1) CN110114320B (ja)
DK (1) DK3564194T3 (ja)
WO (1) WO2018123541A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105503U (ja) * 1982-01-13 1983-07-18 日立電線株式会社 定偏波型光フアイバ
JPH03223131A (ja) * 1990-01-26 1991-10-02 Hitachi Cable Ltd 楕円コア型偏波面保存光ファイバの製造方法
WO2003086997A1 (fr) * 2002-04-16 2003-10-23 Sumitomo Electric Industries, Ltd. Procede de production d'une preforme de fibre optique, procede de production d'une fibre optique et fibre optique elle-meme
JP2006232567A (ja) * 2005-02-22 2006-09-07 Shin Etsu Chem Co Ltd 光ファイバ用母材の製造方法
WO2008001673A1 (fr) 2006-06-26 2008-01-03 Sumitomo Electric Industries, Ltd. processus de fabrication de base de fibre optique, PROCESSUS DE FABRICATION DE FIBRE OPTIQUE, et fibre optique
JP2012162409A (ja) 2011-02-03 2012-08-30 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
WO2016021576A1 (ja) 2014-08-06 2016-02-11 古河電気工業株式会社 光ファイバ母材および光ファイバの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566205A (en) * 1979-06-29 1981-01-22 Canon Inc Production of optical fiber bundle having flexibility
JPS6186436A (ja) * 1984-10-05 1986-05-01 Sumitomo Electric Ind Ltd 光フアイバ用母材の製造方法
JPH0624780A (ja) * 1992-07-10 1994-02-01 Furukawa Electric Co Ltd:The 光ファイバ用母材の製造方法
EP1125153A2 (en) * 1998-09-09 2001-08-22 Corning Incorporated Radially non uniform and azimuthally asymmetric optical waveguide fiber
JP2003335539A (ja) 2002-05-21 2003-11-25 Sumitomo Electric Ind Ltd 光ファイバ用ガラス母材の製造方法
US20040159124A1 (en) * 2003-02-14 2004-08-19 Atkins Robert M. Optical fiber manufacture
JP4315086B2 (ja) * 2004-09-27 2009-08-19 住友電気工業株式会社 光ファイバ母材製造方法
JP6579107B2 (ja) * 2014-07-22 2019-09-25 住友電気工業株式会社 光ファイバ母材製造方法および光ファイバ母材
NL2015161B1 (en) * 2015-07-13 2017-02-01 Draka Comteq Bv A method for preparing a primary preform by etching and collapsing a deposited tube.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105503U (ja) * 1982-01-13 1983-07-18 日立電線株式会社 定偏波型光フアイバ
JPH03223131A (ja) * 1990-01-26 1991-10-02 Hitachi Cable Ltd 楕円コア型偏波面保存光ファイバの製造方法
WO2003086997A1 (fr) * 2002-04-16 2003-10-23 Sumitomo Electric Industries, Ltd. Procede de production d'une preforme de fibre optique, procede de production d'une fibre optique et fibre optique elle-meme
JP2006232567A (ja) * 2005-02-22 2006-09-07 Shin Etsu Chem Co Ltd 光ファイバ用母材の製造方法
WO2008001673A1 (fr) 2006-06-26 2008-01-03 Sumitomo Electric Industries, Ltd. processus de fabrication de base de fibre optique, PROCESSUS DE FABRICATION DE FIBRE OPTIQUE, et fibre optique
JP2012162409A (ja) 2011-02-03 2012-08-30 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
WO2016021576A1 (ja) 2014-08-06 2016-02-11 古河電気工業株式会社 光ファイバ母材および光ファイバの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564194A4

Also Published As

Publication number Publication date
US11002905B2 (en) 2021-05-11
CN110114320A (zh) 2019-08-09
EP3564194A4 (en) 2020-07-29
JP6954312B2 (ja) 2021-10-27
DK3564194T3 (da) 2023-06-19
EP3564194B1 (en) 2023-05-31
EP3564194A1 (en) 2019-11-06
CN110114320B (zh) 2021-11-30
JPWO2018123541A1 (ja) 2019-10-31
US20210088715A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
FI77217B (fi) Foerfarande foer framstaellning av en polarisationsbevarande optisk fiber.
WO2006049186A1 (ja) 光ファイバ母材の製造方法並びに光学用ガラスロッドおよび光ファイバ
EP2960218B1 (en) Method for manufacturing base material
CN100582038C (zh) 生产一种由石英玻璃制成的光学器件的方法和用于实施所述方法的由石英玻璃制成的中空圆筒
EP3180293B1 (en) Method for forming a quartz glass optical component and system
US20080176091A1 (en) Optical fiber base material and manufacturing method therefore
US9296639B2 (en) Method for producing an optical preform with a POD cladding glass layer
WO2018123541A1 (ja) 光ファイバ母材製造方法
RU2236386C2 (ru) Способ изготовления заготовки оптического волокна
JP3775234B2 (ja) 光ファイバ母材の製造方法
JP6095690B2 (ja) 光学部品のための半完成品としての石英ガラス管並びに前記石英ガラス管を製造するための方法
JP2021155308A (ja) マルチコアファイバの母材の製造方法及びマルチコアファイバの製造方法
WO2011136324A1 (ja) ガラス母材製造方法
US11242276B2 (en) Method for producing a glass-fibre preform with a core of a polygonal core cross section
JP2014139114A (ja) 光ファイバ母材、光ファイバ母材の製造方法、及び光ファイバの製造方法
US20110011135A1 (en) Method of making a glass preform
JP5835823B1 (ja) マルチコア光ファイバ母材の製造方法
JP6136164B2 (ja) 光ファイバおよびその製造方法
CN113613841B (zh) 切削工具以及光纤母材制造方法
US11130702B2 (en) Optical fiber manufacturing method
JPS58135147A (ja) 光フアイバ母材の製造方法
JP4413715B2 (ja) 光ファイバ、光ファイバ用プリフォーム、それらの製造に使用される石英ガラス管、ならびにそれらの製造方法
JPH09278453A (ja) ロッドレンズ用素材の製造方法
JP2005022945A (ja) 光ファイバの製造方法
JPH0986948A (ja) 光ファイバ用多孔質ガラス母材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886471

Country of ref document: EP

Effective date: 20190729