WO2018121290A1 - 红外截止滤光片及其制备方法 - Google Patents

红外截止滤光片及其制备方法 Download PDF

Info

Publication number
WO2018121290A1
WO2018121290A1 PCT/CN2017/116530 CN2017116530W WO2018121290A1 WO 2018121290 A1 WO2018121290 A1 WO 2018121290A1 CN 2017116530 W CN2017116530 W CN 2017116530W WO 2018121290 A1 WO2018121290 A1 WO 2018121290A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared cut
layer
cut filter
film layer
substrate
Prior art date
Application number
PCT/CN2017/116530
Other languages
English (en)
French (fr)
Inventor
王磊
丁维红
杜瑞
Original Assignee
信阳舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信阳舜宇光学有限公司 filed Critical 信阳舜宇光学有限公司
Priority to US16/081,343 priority Critical patent/US11073639B2/en
Priority to KR1020187027869A priority patent/KR102481155B1/ko
Publication of WO2018121290A1 publication Critical patent/WO2018121290A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the invention relates to an infrared cut filter and a preparation method thereof.
  • Chinese Patent No. 201610305348.0 discloses a hybrid absorption type infrared cut filter and a preparation method thereof.
  • the hybrid absorption type infrared cut filter comprises a glass substrate, a coating layer disposed on the upper surface of the glass substrate, an anti-reflection film layer disposed on the coating layer, and an infrared cut-off film layer disposed on the lower surface of the glass substrate .
  • the coating layer in the filter has only one layer, and in the plating process, the infrared cut film layer and the anti-reflection film layer are plated after the glue layer is applied first.
  • the method for preparing the hybrid absorption type infrared cut filter is to ultrasonically clean the glass substrate, then spin coating with a homogenizer, and then baking with nitrogen gas.
  • the structure of the filter prepared by the preparation method is unstable, the degree of firmness between the layers is low, and baking with nitrogen makes the operation difficult and the cost is high.
  • blue glass is a new type of material used in mobile phone camera modules.
  • the thickness of blue glass has become a factor that limits the height of the camera module.
  • the puncture force will drop linearly and cannot meet the normal use requirements.
  • the present invention provides an infrared cut filter comprising a substrate composed of white glass and an infrared cut film layer plated on one side of the white glass, plated on the white glass a spin coating on the other side and an anti-reflective coating layer plated on the spin coating;
  • the spin coating includes a bottom layer and an absorbent layer each composed of an organic material.
  • the infrared cut film layer and the anti-reflection film layer are each formed by alternately depositing a layer of a high refractive index material and a layer of a low refractive index material.
  • the high refractive index material layer may be composed of one of TiO 2 , Ti 3 O 5 , Ta 2 O 5 , H4 or several.
  • the low refractive index material layer may be composed of one of SiO 2 , MgF 2 or both.
  • the number of plating layers of the infrared cut film layer is 43-50 layers.
  • the infrared cut film layer has a plating thickness of 5 ⁇ m to 7 ⁇ m.
  • the number of plating layers of the anti-reflection film layer is 8-10 layers.
  • the anti-reflection film layer has a plating thickness of from 0.4 ⁇ m to 0.7 ⁇ m.
  • a method of preparing an infrared cut filter comprising the steps of:
  • the plating of the infrared cut-off film layer is deposited by electron gun evaporation and ion source assisted vacuum coating.
  • the plasma cleaning process has a power of 300-450 W and an action time of 100-600 s.
  • the step (e) comprises the steps of:
  • the baked substrate is cleaned by an ultrasonic cleaning process.
  • the rotation speed is 3000-5500 rpm.
  • the oven in the (e2) step, is baked in a dustless oven at a baking temperature of 80-200 ° C and a baking time of 2-10 min.
  • the rotation speed is 200 to 1000 rpm, and the rotation time is 8 to 15 s.
  • step (e4) baking is performed in a dust-free oven, the baking temperature is 80-200 ° C, and the baking time is 60-120 min.
  • the pre-plated infrared cut-off film layer is used to improve the production efficiency, and the effect of the higher temperature of the infrared cut-off film layer on the baking effect of the spin coating is avoided. The stability of the spin coating is guaranteed.
  • the plasma cleaning process is added before the spin coating of the substrate, and the cleanliness of the surface of the infrared cut filter is effectively improved.
  • the spin coating layer adopts a combination of the bottom layer and the absorbing layer, and the bottom layer effectively improves the adhesion degree between the substrate and the absorbing layer, thereby improving the film layer firmness.
  • the spin coating adopts a dust-free oven during the baking process, and does not need to be filled with nitrogen, thereby reducing the difficulty and cost of the operation.
  • the bandwidth of the anti-reflection film is wider than that of the anti-reflection film of the conventional blue glass plated film, so that the proportion of the light-passing amount is increased, thereby improving the brightness of the photo and improving the brightness of the photo. Imaging quality.
  • the central wavelength of the optical characteristic of the infrared cut filter is not affected by the thickness of the substrate, and the thickness of the spin coating liquid and the spin coating speed are controlled to achieve different thicknesses.
  • the center wavelength of the substrate is consistent, and the center wavelength of the blue glass plate is affected by the substrate material and thickness.
  • the intensity of the infrared cut filter after plating the film is higher than that of the blue glass plate.
  • the infrared cut filter provided by the invention and the preparation method thereof can meet the requirements of day and night, and solve the inconvenience of alternate use of the daily lens and the night lens, thereby simplifying the device structure.
  • the infrared cut filter has a small color cast effect in a variation range of an incident angle of 0-30°, and can prevent color inconsistency at the edge and the center of the photo. The situation that makes the imaging color real.
  • the absorption function of the red light and the near-infrared light which is the same as that of the blue glass is achieved by coating the surface of the white glass with the absorption layer.
  • the infrared cut filter has a smaller change of half wavelength when the light is incident at a large angle, effectively improving ghosting, stray light and color cast during imaging, and the substrate has strength advantage, thickness advantage, and the thinnest thickness can be reached. 0.11mm, which can further shorten the height of the camera module.
  • FIG. 1 is a schematic view showing the structure of an infrared cut filter according to the present invention.
  • FIG. 2 is a view schematically showing a characteristic curve of an infrared cut filter and a blue glass plated film according to the present invention
  • Fig. 3 is a graph showing the characteristic of day and night of an infrared cut filter according to the present invention.
  • the infrared cut filter comprises a substrate 1, a spin coating 2 and an anti-reflection film layer 3.
  • the substrate 1 includes white glass 101 and an infrared cut-off film layer 102 coated on one side of the white glass 101, and the spin coating 2 is plated on the other side of the white glass 101, minus The reflective film layer 3 is plated on the spin coating 2.
  • the infrared cut film layer 102 is formed by alternately depositing a layer of a high refractive index material and a layer of a low refractive index material.
  • the high refractive index material layer may be composed of one of TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and H 4 or several compositions.
  • the low refractive index material layer may be composed of one of SiO 2 and MgF 2 or of both.
  • the number of plating layers of the infrared cut film layer 102 is 43-50 layers, and the plating thickness thereof is 5 ⁇ m-7 ⁇ m.
  • the spin coating 2 comprises a bottom layer 201 and an absorbing layer 202.
  • both the underlayer 201 and the absorbing layer 202 are organic.
  • the bottom layer 201 is coated on the side opposite to the white glass 101 coated with the infrared cut film layer 102, and the absorbing layer 202 is plated on the bottom layer 201, that is, the bottom layer 201 is located between the substrate 1 and the absorbing layer 202.
  • the bottom layer 201 increases the degree of adhesion of the absorbent layer 202 to the white glass 101, so that the absorbent layer 202 is more firmly adhered to the white glass 101, thereby improving the firmness of the entire spin coating.
  • the absorbing layer 202 causes the substrate 1 to have an absorption function for red light and near red light.
  • the anti-reflection film layer 3 is formed by alternately depositing a layer of a high refractive index material and a layer of a low refractive index material.
  • the high refractive index material layer may be composed of one of TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and H 4 or several compositions.
  • the low refractive index material layer may be composed of one of SiO 2 and MgF 2 or of both.
  • the number of plating layers of the anti-reflection film layer 3 is 8 to 10 layers, and the plating thickness thereof is 0.4 ⁇ m to 0.7 ⁇ m.
  • the horizontal axis represents the spectral band
  • the vertical axis represents the transmittance.
  • the color filter effect occurs in the range of the filter over a large angle. The larger the color cast effect, the less realistic the image color.
  • the curve a is the characteristic curve of the incident angle of 0° of the blue glass plate
  • the curve b is the characteristic curve of the incident angle of 30° of the blue glass plate
  • the curve c is the characteristic curve of the incident angle of the infrared cut filter of 0°
  • the curve d is a characteristic curve of an incident angle of 30° of the infrared cut filter.
  • the difference between the curve a and the curve b is significantly larger than the difference between the curve c and the curve d, that is, when the light is incident from 0°-30°, the wavelength of the blue glass plate is larger than the change.
  • the amount of change in the wavelength of the infrared cut filter is smaller than the coincidence degree of the two characteristic curves of the infrared cut filter of the present invention.
  • the infrared cut filter according to an embodiment of the present invention has a smaller color cast effect than the blue glass coated film, and can well improve the phenomenon that the color cast effect of the wide-angle lens becomes more obvious as the angle increases. At the same time, it saves production costs.
  • Figure 3 is a graph showing the characteristics of the day and night of the infrared cut filter according to the present invention.
  • the horizontal axis represents the spectral band
  • the vertical axis represents the transmittance.
  • the existing optical day and night equipment is alternately used by the daily lens and the night lens to achieve the effect of day and night.
  • the infrared cut filter according to an embodiment of the present invention has characteristics of front and rear bands. It can be seen from the figure that in the transmission band between 420-560 nm in the front band, the minimum transmittance is not less than 78%, the average transmittance is above 91%, and the center wavelength is 650 ⁇ 10 nm at a transmittance of 50%.
  • the half-wave value of the incident angle of 0°-30° is offset by less than 5 nm, and the cutoff wavelength of between 700 and 790 nm has an average maximum transmittance of less than 5%, which is suitable for daytime;
  • the transmission band between 10 nm has an average minimum transmittance of 80% or more, and an average maximum transmittance of 5% or less in the cutoff band of 910-1100 nm, which is suitable for nighttime.
  • the white glass 101 is cleaned by an ultrasonic cleaning process. In this step, the dirt on the layer to be plated of the white glass 101 and the dirt such as organic materials are washed away, and the surface cleanness of the white glass 101 is ensured to be good, which is advantageous for improving the quality of the plated layer.
  • An infrared cut film layer 102 is plated on one side of the white glass 101.
  • the infrared cut-off film layer 102 is plated on the white glass 101.
  • the designed film layer is deposited by electron gun evaporation and ion source assisted vacuum coating.
  • the number of layers of the infrared cut film layer 102 is 43-50, and the thickness of the film layer is 5 ⁇ m-7 ⁇ m.
  • the substrate 1 is cleaned by a plasma cleaning process.
  • the white glass 101 which is subjected to the step of plating the infrared cut-off film layer 102 in the step (b) requires a plasma cleaning process.
  • the power of the plasma cleaning process is 300-450 W, and the action time is 100-600 s.
  • the substrate 1 can be improved in surface cleanness by a plasma cleaning process.
  • the substrate 1 is cleaned by an ultrasonic cleaning process. After plasma cleaning, it is also necessary to obtain a substrate 1 having a more clean surface by ultrasonic cleaning.
  • a small amount of a bonding agent is dropped on one surface of the substrate 1 on which the infrared cut film layer 102 is not plated, and the substrate 1 is rotated at a high speed, and the bonding agent is uniformly applied on the surface of the substrate 1 by centrifugal force, and at the same time
  • the binder is scooped out to form the underlayer 201.
  • the rotation speed is 3000 to 5500 rpm, so that the bonding agent can be uniformly coated on the substrate 1, and the underlayer 201 having a uniform thickness can be formed.
  • (e2) Baking and coating the substrate 1 of the underlayer 201 According to an embodiment of the present invention, drying treatment is required after the primer layer 201 is applied.
  • the substrate 1 coated with the underlayer 201 is placed in a dust-free oven for baking at a baking temperature of 80-200 ° C and a baking time of 2-10 min. Thereby, the coated bottom layer 101 achieves a better curing effect.
  • the dust-free oven does not need to be filled with nitrogen, which reduces the work difficulty and cost.
  • Infrared absorbing glue is dropped onto the bottom layer 201, and rotated at a low speed, and the infrared absorbing glue is uniformly applied to the baked base layer 201 by centrifugal force, and the excess infrared absorbing glue body is scooped out to form the absorbing layer 202.
  • the rotation speed is 200-1000 rpm
  • the rotation time is 8-15 s, so that the infrared absorbing glue can be uniformly coated on the substrate 1, and the absorption layer 202 having a uniform thickness can be formed.
  • the coated absorbent layer 202 requires a drying process.
  • the baking temperature is 80-200 ° C, and the baking time is 60-120 min.
  • the coated absorbing layer 202 can be stably attached to the substrate 1.
  • the baked substrate 1 is cleaned by an ultrasonic cleaning process.
  • the substrate 1 coated with the spin coating 2 and baked in the above step is flowed into an ultrasonic process to remove impurities or dirt on the surface of the spin coating 2 after baking, so that the spin coating is applied. 2 The surface is clean.
  • the anti-reflection film layer 3 is deposited on the spin coating layer 2.
  • the substrate 1 is coated with the spin coating layer 2 after the above steps, and after ensuring the appearance thereof, the substrate 1 is fed to the step of plating the anti-reflection layer 3.
  • the anti-reflection film layer 3 is evaporated on the absorption layer 202 in the spin coating layer 2.
  • the number of layers of the plated anti-reflection film layer 3 is 8 to 10 layers, and the thickness thereof is 0.4 ⁇ m to 0.7 ⁇ m.
  • the anti-reflection film layer 3 can be coated with low temperature, which effectively protects the stability of the spin coating layer 2, and in the embodiment, the bandwidth of the anti-reflection film is wider than that of the anti-reflection film of the conventional blue glass plated film, and the bandwidth is widened. After that, the proportion of the amount of light passing through is increased, thereby improving the brightness of the photograph and improving the image quality.
  • the absorption film 202 can be coated on the substrate 1 of different thicknesses, and the same center wavelength can be realized by controlling the process parameters such as the rotation speed.
  • the infrared cut filter prepared according to the invention avoids the disadvantage that the different thickness of the blue glass in the blue glass coated film determines different central wavelengths, reduces the requirement on the thickness of the substrate, effectively reduces the production difficulty, thereby saving the production cost. .
  • white glass of 0.11 mm, 0.21 mm, 0.3 mm, and 0.55 mm can be used. While the thickness of the existing blue glass is 0.21 mm and 0.3 mm, there is no good way to solve the problem that the blue glass is made thin (for example, 0.11 mm). At the same time, the intensity of the blue glass decreases with the decrease of the thickness, and the infrared cut filter produced by the preparation method avoids the disadvantage of the blue glass.
  • the infrared cut filter prepared by the preparation method and the 0.21 mm CXA series blue glass plated film are comparatively measured with puncture force by 0.11 mm white glass. As shown in Table 1 (unit: kgf):
  • Table 1 is the measurement data of the puncture force of the 0.11 mm white glass by the infrared cut filter prepared by the preparation method and the 0.21 mm CXA series blue glass plated film. Puncture force refers to the force generated by an external force that is resistant to external forces. The measured data is measured by a SUNDOO thrust meter.
  • AR refers to the anti-reflection film layer
  • IR refers to the infrared cut-off film layer.
  • the average puncture force of the anti-reflection film layer of the 0.11 mm infrared cut filter obtained by the preparation method is 2.64, and the average puncture force of the anti-reflection film layer of the 0.21 mm CXA series blue glass plated film is 1.86. . Therefore, the puncture force of the anti-reflection film layer of the 0.11 mm infrared cut filter is better than the puncture force of the anti-reflection film layer of the 0.21 mm CXA series blue glass plate.
  • the average puncture force of the infrared cut-off film layer of the 0.11 mm infrared cut filter obtained by the preparation method was 2.88, and the average puncture force of the infrared cut film layer of the 0.21 mm CXA series blue glass plated film was 1.37. Therefore, the puncture force of the infrared cut-off film layer of the 0.11 mm infrared cut filter is better than the puncture force of the infrared cut-off film layer of the 0.21 mm CXA series blue glass. It can be seen from Table 1 that the intensity of the infrared cut filter obtained by the present preparation method is superior to that of the blue glass plated film.
  • the infrared cut filter obtained by the preparation method of the present invention has characteristic data listed in the form of a graph, as shown in Table 2,
  • Table 2 shows the characteristic data of the infrared cut filter produced by the production method according to the present invention. It can be seen from the data in Table 2 that the infrared cut filter prepared according to the preparation method of the present invention has an incident angle range of 0°-30°, and the data satisfy the characteristic requirements of the items listed in the table.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

一种红外截止滤光片,包括由白玻璃(101)和镀制在白玻璃(101)的一个面上的红外截止膜层(102)所组成的基板(1),镀制在白玻璃(101)的另一个面上的旋涂层(2)和镀制在旋涂层(2)上的减反射膜层(3),旋涂层(2)包括有机物构成的底层(201)和吸收层(202)。红外截止滤光片的结构稳定,膜层之间牢固度高,成本低。

Description

红外截止滤光片及其制备方法 技术领域
本发明涉及一种红外截止滤光片及其制备方法。
背景技术
中国专利201610305348.0公开了一种混合吸收型红外截止滤光片及其制备方法。该混合吸收型红外截止滤光片包括玻璃基板,设置在玻璃基板上表面的涂覆胶层,设在涂覆胶层之上的减反射膜层以及设置在玻璃基板下表面的红外截止膜层。该滤光片中的涂覆胶层仅有一层,且在镀制过程中,是先涂覆胶层后镀制红外截止膜层和减反射膜层。制备这种混合吸收型红外截止滤光片的方法是对玻璃基板先进行超声波清洗,然后利用匀胶机进行旋涂镀膜,再利用充氮气进行烘烤。利用这种制备方法制备的滤光片的结构不稳定,膜层之间的牢固度偏低,而且利用氮气进行烘烤使得作业难度高,成本也偏高。
手机作为现代人生活中必不可少的一部分,其发展速度可谓一日千里,手机的照相功能在日常使用中起着举足轻重的作用,而蓝玻璃作为应用于手机摄像模组上的一种新型材料,随着技术开发,蓝玻璃的厚度成了制约手机摄像模组高度的一个因素。蓝玻璃随着厚度的减小,其穿刺力会直线下降,无法满足正常的使用要求,急需一种可以做的很薄,同时具有很好强度的材料。
发明内容
本发明的目的在于提供一种结构稳定,膜层之间牢固度高,成本低的红外截止滤光片,以及这种红外截止滤光片的制备方法。
为实现上述目的,本发明提供一种红外截止滤光片,包括由白玻璃和镀制在所述白玻璃的一个面上的红外截止膜层所组成的基板,镀制在所述白玻璃的另一个面上的旋涂层和镀制在所述旋涂层上的减反射膜层;
所述旋涂层包括均由有机物构成的底层和吸收层。
根据本发明的一个方面,所述红外截止膜层和所述减反射膜层均是由高折射率材料层和低折射率材料层交替沉积镀制而成。
根据本发明的一个方面,所述高折射率材料层可由TiO 2、Ti 3O 5、Ta 2O 5、H4中的一种构成或者几种组成。
根据本发明的一个方面,所述低折射率材料层可由SiO 2、MgF 2中的一种构成或者两种组成。
根据本发明的一个方面,所述红外截止膜层的镀制层数为43-50层。
根据本发明的一个方面,所述红外截止膜层的镀制厚度为5μm-7μm。
根据本发明的一个方面,所述减反射膜层的镀制层数为8-10层。
根据本发明的一个方面,所述减反射膜层的镀制厚度为0.4μm-0.7μm。
制备红外截止滤光片的方法,包括以下步骤:
(a)采用超声波清洗工艺清洗白玻璃;
(b)在白玻璃的一个面上镀制红外截止膜层;
(c)采用等离子清洗工艺清洗基板;
(d)采用超声波清洗工艺清洗基板;
(e)在基板的未镀制红外截止膜层的一面上镀制旋涂层;
(f)在旋涂层上蒸镀减反射膜层。
根据本发明的一个方面,所述(b)步骤中,采用电子枪蒸发、离子源辅助的真空镀膜方法沉积镀制红外截止膜层。
根据本发明的一个方面,所述(c)步骤中,等离子清洗工艺的功率为300-450W,作用时间为100-600s。
根据本发明的一个方面,所述(e)步骤包括以下步骤:
(e1)在基板的未镀制红外截止膜层的一面上滴入少许结合剂,高速旋转,利用离心力将结合剂均匀地涂布在基板的表面上,同时将多余结合剂甩出,从而形成底层;
(e2)烘烤涂布好底层的基板;
(e3)在底层上滴入红外吸收胶水,低速旋转,利用离心力将红外吸收胶水均匀地涂布底层之上,同时将多余红外吸收胶水甩出,从而形成吸收层;
(e4)烘烤涂布好吸收层的基板;
(e5)采用超声波清洗工艺清洗烘烤后的基板。
根据本发明的一个方面,所述(e1)步骤中,旋转速度为3000-5500rpm。
根据本发明的一个方面,所述(e2)步骤中,采用无尘烘箱烘烤,烘烤温度为80-200℃,烘烤时为2-10min。
根据本发明的一个方面,所述(e3)步骤中,旋转速度为200-1000rpm,旋转时间为8-15s。
根据本发明的一个方面,所述(e4)步骤中,采用无尘烘箱烘烤,烘烤温度为80-200℃,烘烤时间为60-120min。
根据本发明提供的红外截止滤光片及其制备方法,采用预先镀制红外截止膜层提高生产效率,同时避免了镀制红外截止膜层的较高温度对旋涂层烘烤效果的影响,保证了旋涂层的稳定性。
根据本发明提供的红外截止滤光片及其制备方法,其在基板涂布旋涂层之前增加等离子清洗工序,有效提高该红外截止滤光片的表面的洁净度。
根据本发明提供的红外截止滤光片及其制备方法,旋涂层采用底层和吸收层的组合方式,底层有效提高了基板与吸收层的粘结程度,从而提高膜层牢固度。并且旋涂层在烘烤过程中采用无尘烘箱,不需要充入氮气,减少作业难度以及成本。
根据本发明提供的红外截止滤光片及其制备方法,其减反射膜的带宽比常规蓝玻璃镀膜片的减反射膜的带宽宽,使得通光量比例增大,从而提高照片的亮度,提高了成像质量。
根据本发明提供的红外截止滤光片及其制备方法,该红外截止滤光片光学特性中的中心波长不受基板厚度的影响,通过旋涂液和控制旋涂转速等工艺条件使不同厚度的基板的中心波长达到一致,而蓝玻璃镀膜片的中心波长则受基板材质和厚度影响。同时,镀制膜层后的红外截止滤光片的强度要比蓝玻璃镀膜片强度要高。
根据本发明提供的红外截止滤光片及其制备方法,可以满足日夜两用的要求,解决了日用镜头和夜用镜头交替使用的不便,从而简化了设备结构。
根据本发明提供的红外截止滤光片及其制备方法,该红外截止滤光片在0-30°入射角的变化范围内,有较小的偏色效应,可以防止照片边缘和中心出现色彩不一致的情况,从而使得成像色彩真实。
根据本发明提供的红外截止滤光片及其制备方法,通过在白玻璃表面涂布吸收层,从而达到与蓝玻璃相同的红光和近红外光的吸收功能。同时该红外截止滤光片在光线大角度入射时半波长变化量更小,有效的改善成像时的鬼影、杂光以及偏色问题,且基板具有强度优势,厚度优势,最薄厚度可达0.11mm,能进一步缩短摄像模组高度。
附图说明
图1是示意性表示根据本发明的红外截止滤光片的结构示意图;
图2是示意性表示根据本发明的红外截止滤光片与蓝玻璃镀膜片的特性曲线对比图;
图3是示意性表示根据本发明的红外截止滤光片日夜两用的特性曲线。
具体实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此 一一赘述,但本发明的实施方式并不因此限定于以下实施方式。
图1是示意性表示根据本发明的一种实施方式的红外截止滤光片的结构示意图。如图所示,根据本发明的一种实施方式,该红外截止滤光片包括基板1,旋涂层2和减反射膜层3。如图所示,在本实施方式中,基板1包括白玻璃101和涂覆在白玻璃101一侧面的红外截止膜层102,旋涂层2镀制在白玻璃101的另一侧面上,减反射膜层3镀制在旋涂层2上。
根据本发明的一种实施方式,红外截止膜层102是由高折射率材料层和低折射率材料层交替沉积镀制而成。在本实施方式中,高折射率材料层可由TiO 2、Ti 3O 5、Ta 2O 5、H4中的一种构成或者几种组成。低折射率材料层可由SiO 2、MgF 2中的一种构成或者两种组成。红外截止膜层102的镀制层数为43-50层,其镀制厚度为5μm-7μm。
根据本发明的一种实施方式,旋涂层2包括底层201和吸收层202。在本实施方式中,底层201和吸收层202均为有机物。底层201涂布在与白玻璃101镀制红外截止膜层102相对的一侧面上,吸收层202镀制在底层201上,即底层201位于基板1和吸收层202之间。底层201提高了吸收层202与白玻璃101的粘结程度,使吸收层202更加牢固的附着在白玻璃101上,从而提高整个旋涂层牢固度。同时,吸收层202则使基板1具有对红光和近红光的吸收功能。
在根据本发明的一种实施方式中,减反射膜层3是由高折射率材料层和低折射率材料层交替沉积镀制而成。在本实施方式中,高折射率材料层可由TiO 2、Ti 3O 5、Ta 2O 5、H4中的一种构成或者几种组成。低折射率材料层可由SiO 2、MgF 2中的一种构成或者两种组成。减反射膜层3的镀制层数为8-10层,其镀制厚度为0.4μm-0.7μm。
图2是根据本发明的红外截止滤光片与蓝玻璃镀膜片的特性曲线对比图。图中横轴表示光谱波段,纵轴表示透射率。滤光片在大角度的变化范围内会出现偏色效应,偏色效应越大,成像颜色越不真实。如图所示,曲线a为蓝玻璃镀膜片0°入射角的特性曲线,曲线b为蓝玻璃镀膜片30°入射角的特性曲线,曲线c为红外截止滤光片0°入射角的特性曲线,曲线d为红外截止滤光片30°入射角的特性曲线。在0°-30°入射角的变 化范围内,波长发生变化时,特性曲线之间的差值越大表明偏色效应越明显。在图中标识位置,曲线a和曲线b之间的差值明显大于曲线c和曲线d之间的差值,即在光线由0°-30°入射时,蓝玻璃镀膜片波长的变化量大于红外截止滤光片波长的变化量。蓝玻璃镀膜片在0°-30°入射角之间的两条特性曲线的重合度小于本发明红外截止滤光片的两条特性曲线的重合度。从而可知,根据本发明的一种实施方式的红外截止滤光片比蓝玻璃镀膜片有更小的偏色效应,可以很好的改善广角镜头随着角度的增加偏色效应更加明显的这一现象,同时节约了生产成本。
图3是根据本发明的红外截止滤光片日夜两用的特性曲线。图中横轴表示光谱波段,纵轴表示透射率。现有光学日夜两用设备,采用日用镜头、夜用镜头交替使用来达到日夜两用的效果。如图3所示,根据本发明的一种实施方式的红外截止滤光片具有前后波段的特性。从图中可以看出,在前波段420-560nm之间的透射波段,其最小透射率不低于78%,平均透射率在91%以上,在透射率为50%处中心波长为650±10nm时,0°-30°入射角的半波值的偏移量小于5nm,而在700-790nm之间的截止波段,其平均最大透射率在5%以下,适用于白天;在后波段850±10nm之间的透射波段,其平均最小透射率在80%以上,在910-1100nm截止波段,其平均最大透过率在5%以下,适用于夜晚。有效解决了使用两种镜头交替使用的不变,采用本发明的红外截止滤光片的镜头可以同时满足日夜两用的要求,并且简化了设备的结构。
根据本发明,还提供了制备上述镜片的方法,包括以下步骤:
(a)采用超声波清洗工艺清洗白玻璃101。在本步骤中清洗掉白玻璃101的待镀制膜层面上的污物以及有机物料等污物,保证白玻璃101的表面洁净度良好,有利于提高镀制膜层的质量。
(b)在白玻璃101的一个面上镀制红外截止膜层102。根据本发明的一种实施方式,在白玻璃101上镀制红外截止膜层102采用电子枪蒸发、离子源辅助的真空镀膜方法沉积设计好的膜层。在本实施方式中,红外截止膜层102镀制层数为43-50层,膜层厚度为5μm-7μm。采用这种预先镀制红外截止膜层102的方式,有效提高了生产效率。并且镀制红外截 止膜层102需要的温度高于旋涂层2所需的温度,因此避免了后续加工流程中旋涂层2的稳定性受到高温的影响。
(c)采用等离子清洗工艺清洗基板1。根据本发明的一种实施方式,经过步骤(b)中镀制红外截止膜层102的白玻璃101需要通过等离子清洗工艺。在本实施方式中,等离子清洗工艺的功率为300-450W,作用时间为100-600s。基板1通过等离子清洗工艺可以提高其表面洁净度。
(d)采用超声波清洗工艺清洗基板1。经过等离子清洗后,还需要通过超声清洗得到表面洁净程度更加良好的基板1。
(e)在基板1的未镀制红外截止膜层102的一面上镀制旋涂层2。根据本发明的一种实施方式,经过上述步骤得到的合格基板1需要镀制旋涂层2。在本实施方式中,镀制旋涂层2需要经过以下几步完成:
(e1)在基板1的未镀制红外截止膜层102的一面上滴入少许结合剂,并且使基板1高速旋转,利用离心力将结合剂均匀地涂布在基板1的表面上,同时将多余结合剂甩出,从而形成底层201。在本实施方式中,旋转速度为3000-5500rpm,使结合剂在基板1上能够涂布均匀,保证能够形成均匀厚度的底层201。
(e2)烘烤涂布好底层201的基板1。根据本发明的一种实施方式,涂布底层201后需要进行烘干处理。在本实施方式中,将涂布好底层201的基板1放入到无尘烘箱内进行烘烤,烘烤温度为80-200℃,烘烤时间为2-10min。从而使涂布的底层101达到更好的固化效果,烘烤过程中,采用无尘烘箱不需要充入氮气,减少了工作难度以及成本。
(e3)在底层201上滴入红外吸收胶水,低速旋转,利用离心力将红外吸收胶水均匀地涂布在烘烤后的底层201上,同时将多余红外吸收胶水体甩出,从而形成吸收层202。在本实施方式中,旋转速度为200-1000rpm,旋转时间为8-15s,使红外吸收胶水在基板1上能够涂布均匀,保证能够形成均匀厚度的吸收层202。
(e4)烘烤涂布好吸收层202的基板1。根据本发明的一种实施方式,涂布好的吸收层202需要烘干处理。在本实施方式中,烘烤温度为80-200℃,烘烤时间为60-120min。使涂布好的吸收层202能够稳定附着在 基板1上。
(e5)采用超声波清洗工艺清洗烘烤后的基板1。根据本发明的一种实施方式,将上述步骤中涂布旋涂层2并烘烤过的基板1流入超声波工序清洗,去除烘烤后的旋涂层2表面的杂质或污垢,使旋涂层2表面洁净度良好。
(f)在旋涂层2上蒸镀减反射膜层3。根据本发明的一种实施方式,基板1经过上述步骤涂布好旋涂层2并确保其外观合格后,送入镀减反膜层3的工序。在旋涂层2中的吸收层202上蒸镀减反膜层3。在本实施方式中,镀制的减反射膜层3的层数为8-10层,其厚度为0.4μm-0.7μm。减反射膜层3可以采用低温镀制,有效保护了旋涂层2的稳定性,并且本实施方式中,减反射膜的带宽比常规蓝玻璃镀膜片的减反射膜的带宽宽,带宽变宽后使得通光量比例增大,从而提高照片的亮度,提高了成像质量。
利用本发明的制备方法所得到的红外截止滤光片,可以在不同厚度的基板1上涂布吸收膜202,通过控制转速等工艺参数,就可以实现相同的中心波长。根据本发明制备的红外截止滤光片,避免了蓝玻璃镀膜片中蓝玻璃不同厚度决定不同的中心波长的缺点,降低了对基体厚度的要求,有效的降低了生产难度,从而节约了生产成本。
根据本发明的制备方法所得到的红外截止滤光片,可以使用0.11mm、0.21mm、0.3mm、0.55mm的白玻璃。而现有蓝玻璃的厚度为0.21mm、0.3mm,没有好的方法解决蓝玻璃批量做的很薄(例如0.11mm)的难题。同时,蓝玻璃随着厚度的减小其强度也随着直线下降,通过本制备方法制得的红外截止滤光片则避免了蓝玻璃的这种缺点。为突出本制备方法生产的红外截止滤光片的优点,特以0.11mm白玻璃通过本制备方法制得的红外截止滤光片与0.21mm的CXA系列蓝玻璃镀膜片做穿刺力对比测量。如表1所示(单位:kgf):
Figure PCTCN2017116530-appb-000001
表1
表1是0.11mm白玻璃通过本制备方法制得的红外截止滤光片与0.21mm的CXA系列蓝玻璃镀膜片做穿刺力对比测量数据。穿刺力是指受外力作用时产生的抵抗外力作用的力。本测量数据采用SUNDOO推力计测量所得,表1中AR指减反射膜层,IR指红外截止膜层。从表1中可知,本制备方法所得的0.11mm红外截止滤光片的减反射膜层的穿刺力平均值为2.64,0.21mmCXA系列蓝玻璃镀膜片的减反射膜层的穿刺力平均值为1.86。从而可得,0.11mm红外截止滤光片的减反射膜层的穿刺力优于0.21mmCXA系列蓝玻璃镀膜片的减反射膜层的穿刺力。本制备方法所得的0.11mm红外截止滤光片的红外截止膜层的穿刺力平均值为2.88,0.21mmCXA系列蓝玻璃镀膜片的红外截止膜层的穿刺力平均值为1.37。从而可得,0.11mm红外截止滤光片的红外截止膜层的穿刺力优于0.21mmCXA系列蓝玻璃的红外截止膜层的穿刺力。由表1可知,利用本制备方法所得的红外截止滤光片强度要优于蓝玻璃镀膜片。
利用本发明的制备方法所得到的红外截止滤光片,其特性数据以图表的形式列出,如表2所示,
Figure PCTCN2017116530-appb-000002
表2
表2为根据本发明的制备方法制得的红外截止滤光片的特性数据。由表2中数据可知,按照本发明的制备方法制得的红外截止滤光片在0°-30°的入射角范围内,其数据均满足表中所列各项目的特性要求。
上述内容仅为本发明的具体实施方式的例举,对于其中未详尽描述的设备和结构,应当理解为采取本领域已有的通用设备及通用方法来予以实施。
以上所述仅为本发明的一个实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种红外截止滤光片,其特征在于,包括由白玻璃(101)和镀制在所述白玻璃(101)的一个面上的红外截止膜层(102)所组成的基板(1),镀制在所述白玻璃(101)的另一个面上的旋涂层(2)和镀制在所述旋涂层(2)上的减反射膜层(3);
    所述旋涂层(2)包括均由有机物构成的底层(201)和吸收层(202)。
  2. 根据权利要求1所述的红外截止滤光片,其特征在于,所述红外截止膜层(102)和所述减反射膜层(3)均是由高折射率材料层和低折射率材料层交替沉积镀制而成。
  3. 根据权利要求2所述的红外截止滤光片,其特征在于,所述高折射率材料层可由TiO 2、Ti 3O 5、Ta 2O 5、H4中的一种构成或者几种组成。
  4. 根据权利要求2或3所述的红外截止滤光片,其特征在于,所述低折射率材料层可由SiO 2、MgF 2中的一种构成或者两种组成。
  5. 根据权利要求4所述的红外截止滤光片,其特征在于,所述红外截止膜层(102)的镀制层数为43-50层。
  6. 根据权利要求5所述的红外截止滤光片,其特征在于,所述红外截止膜层(102)的镀制厚度为5μm-7μm。
  7. 根据权利要求4所述的红外截止滤光片,其特征在于,所述减反射膜层(3)的镀制层数为8-10层。
  8. 根据权利要求7所述的红外截止滤光片,其特征在于,所述减反射膜层(3)的镀制厚度为0.4μm-0.7μm。
  9. 制备如权利要求1-8之一所述的红外截止滤光片的方法,其特征在于,包括以下步骤:
    (a)采用超声波清洗工艺清洗白玻璃(101);
    (b)在白玻璃(101)的一个面上镀制红外截止膜层(102);
    (c)采用等离子清洗工艺清洗基板(1);
    (d)采用超声波清洗工艺清洗基板(1);
    (e)在基板(1)的未镀制红外截止膜层(102)的一面上镀制旋涂层 (2);
    (f)在旋涂层(2)上蒸镀减反射膜层(3)。
  10. 根据权利要求9所述的制备红外截止滤光片的方法,其特征在于,所述(b)步骤中,采用电子枪蒸发、离子源辅助的真空镀膜方法沉积镀制红外截止膜层(102)。
  11. 根据权利要求9所述的制备红外截止滤光片的方法,其特征在于,所述(c)步骤中,等离子清洗工艺的功率为300-450W,作用时间为100-600s。
  12. 根据权利要求9所述的制备红外截止滤光片的方法,其特征在于,所述(e)步骤包括以下步骤:
    (e1)在基板(1)的未镀制红外截止膜层(102)的一面上滴入少许结合剂,高速旋转,利用离心力将结合剂均匀地涂布在基板的表面上,同时将多余结合剂甩出,从而形成底层(201);
    (e2)烘烤涂布好底层(201)的基板(1);
    (e3)在底层(201)上滴入红外吸收胶水,低速旋转,利用离心力将红外吸收胶水均匀地涂布底层(201)之上,同时将多余的红外吸收胶水甩出,从而形成吸收层(202);
    (e4)烘烤涂布好吸收层(202)的基板(1);
    (e5)采用超声波清洗工艺清洗烘烤后的基板(1)。
  13. 根据权利要求12所述的制备红外截止滤光片的方法,其特征在于,所述(e1)步骤中,旋转速度为3000-5500rpm。
  14. 根据权利要求12所述的制备红外截止滤光片的方法,其特征在于,所述(e2)步骤中,采用无尘烘箱烘烤,烘烤温度为80-200℃,烘烤时为2-10min。
  15. 根据权利要求12所述的制备红外截止滤光片的方法,其特征在于,所述(e3)步骤中,旋转速度为200-1000rpm,旋转时间为8-15s。
  16. 根据权利要求12所述的制备红外截止滤光片的方法,其特征在于,所述(e4)步骤中,采用无尘烘箱烘烤,烘烤温度为80-200℃,烘烤时间为60-120min。
PCT/CN2017/116530 2016-12-26 2017-12-15 红外截止滤光片及其制备方法 WO2018121290A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/081,343 US11073639B2 (en) 2016-12-26 2017-12-15 Infrared cut-off filter and preparation method thereof
KR1020187027869A KR102481155B1 (ko) 2016-12-26 2017-12-15 적외선 차단 필터 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611221522 2016-12-26
CN201611221522.X 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018121290A1 true WO2018121290A1 (zh) 2018-07-05

Family

ID=58949435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116530 WO2018121290A1 (zh) 2016-12-26 2017-12-15 红外截止滤光片及其制备方法

Country Status (4)

Country Link
US (1) US11073639B2 (zh)
KR (1) KR102481155B1 (zh)
CN (2) CN106772746B (zh)
WO (1) WO2018121290A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828704A (zh) * 2018-08-27 2018-11-16 北京中盾安华数码技术有限公司 一种红外激光隔断光子晶体薄膜

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772746B (zh) * 2016-12-26 2023-05-05 信阳舜宇光学有限公司 红外截止滤光片及其制备方法
CN107643554A (zh) * 2017-11-01 2018-01-30 舜宇光学(中山)有限公司 减反膜镜片及其制备方法
US10921496B2 (en) * 2018-04-11 2021-02-16 Largan Precision Co., Ltd. Optical image lens assembly, imaging apparatus and electronic device
CN108897085A (zh) * 2018-08-06 2018-11-27 信阳舜宇光学有限公司 滤光片及包含该滤光片的红外图像传感系统
CN110376671A (zh) * 2019-08-19 2019-10-25 杭州美迪凯光电科技股份有限公司 一种屏下指纹识别用滤光片及其生产工艺
JP7361569B2 (ja) * 2019-10-29 2023-10-16 宇部エクシモ株式会社 巻糸パッケージ及びその製造方法
KR102261988B1 (ko) * 2019-11-29 2021-06-08 한국과학기술원 광학 필터 및 광학 필터의 제조 방법
CN110971800A (zh) * 2019-12-17 2020-04-07 Oppo广东移动通信有限公司 摄像头镜片、摄像头组件和电子设备
CN111675491B (zh) * 2020-06-09 2022-07-19 杭州美迪凯光电科技股份有限公司 一种极小尺寸红外窄带镀膜滤光片的加工方法
CN111812762B (zh) * 2020-07-16 2022-02-22 杭州美迪凯光电科技股份有限公司 改善眩光鬼影现象的红外截止滤光器及其制备方法
CN114355494B (zh) * 2020-08-25 2024-03-01 广州市佳禾光电科技有限公司 双通滤光片及制备方法
TWI752677B (zh) * 2020-11-12 2022-01-11 晶瑞光電股份有限公司 紅外截止濾光片結構
CN112684531B (zh) * 2020-12-29 2022-07-26 上海戎科特种装备有限公司 一种耐高低温且可见光高透过的夜视兼容滤光片及制备方法
CN113307506A (zh) * 2021-06-22 2021-08-27 江苏星浪光学仪器有限公司 一种将旋涂液涂抹基板的新型滤光片制作工艺
CN113548807A (zh) * 2021-07-19 2021-10-26 东莞市微科光电科技有限公司 一种提高滤光片玻璃强度的方法
CN114019599A (zh) * 2021-10-29 2022-02-08 浙江京浜光电科技有限公司 一种低应力蓝玻璃红外截止滤光片及其生产方法
CN115061226B (zh) * 2022-04-19 2023-05-12 深圳菲比特光电科技有限公司 一种减反增透膜的成膜方法
CN115128712B (zh) * 2022-06-17 2023-08-29 福建福特科光电股份有限公司 一种防雾膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267496A1 (en) * 2009-06-22 2010-12-29 Samsung Electronics Co., Ltd. Hybrid IR filter for digital camera
CN104516038A (zh) * 2013-09-30 2015-04-15 鸿富锦精密工业(深圳)有限公司 红外截止滤光片
CN105074513A (zh) * 2013-04-04 2015-11-18 株式会社Lms 近红外截止滤光片及包括近红外截止滤光片的固态摄像装置
CN105353435A (zh) * 2015-12-10 2016-02-24 广州市佳禾光电科技有限公司 一种吸收式滤光保护玻璃
CN105676330A (zh) * 2016-03-11 2016-06-15 温岭市现代晶体有限公司 新型红外截止滤光片及其加工工艺
CN105911625A (zh) * 2016-05-09 2016-08-31 浙江水晶光电科技股份有限公司 一种混合吸收型红外截止滤光片及其制备方法
CN106772746A (zh) * 2016-12-26 2017-05-31 信阳舜宇光学有限公司 红外截止滤光片及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290003A (ja) * 2000-04-05 2001-10-19 Sony Corp 表示装置用フィルターとその製造方法及び表示装置
JP4986457B2 (ja) * 2005-04-05 2012-07-25 株式会社Adeka シアニン化合物、光学フィルター及び光学記録材料
JP5050681B2 (ja) * 2007-06-19 2012-10-17 日油株式会社 ディスプレイ用減反射性近赤外線低減材及びこれを用いた電子画像表示装置
US8202927B2 (en) * 2007-08-09 2012-06-19 Dai Nippon Printing Co., Ltd. Near-infrared absorbing composition and near-infrared absorbing filter
JP2009222801A (ja) * 2008-03-13 2009-10-01 Hitachi Maxell Ltd 光学フィルム
JP5741283B2 (ja) * 2010-12-10 2015-07-01 旭硝子株式会社 赤外光透過フィルタ及びこれを用いた撮像装置
CN103608705B (zh) * 2011-06-06 2016-10-12 旭硝子株式会社 滤光片、固体摄像元件、摄像装置用透镜和摄像装置
TWI547725B (zh) * 2011-11-16 2016-09-01 鴻海精密工業股份有限公司 鏡頭模組
CN102809772B (zh) * 2012-08-08 2015-01-07 晋谱(福建)光电科技有限公司 蓝玻璃红外截止滤光片
JP2014071356A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 赤外線カットフィルム、赤外線カット合わせガラスおよび赤外線カット部材
JP6269657B2 (ja) * 2013-04-10 2018-01-31 旭硝子株式会社 赤外線遮蔽フィルタ、固体撮像素子、および撮像・表示装置
CN203287553U (zh) * 2013-05-31 2013-11-13 温岭市现代晶体有限公司 一种红外截止滤光片
KR101856554B1 (ko) * 2014-02-20 2018-05-10 후지필름 가부시키가이샤 감광성 수지 조성물, 경화물 및 그 제조 방법, 수지 패턴 제조 방법, 경화막, 액정 표시 장치, 유기 el 표시 장치, 적외선 차단 필터, 또한 고체 촬상 장치
JP2016071278A (ja) * 2014-10-01 2016-05-09 キヤノン電子株式会社 光学フィルタ及び光量調整装置並びに撮像装置
KR101764084B1 (ko) * 2015-01-14 2017-08-01 아사히 가라스 가부시키가이샤 근적외선 커트 필터 및 고체 촬상 장치
US10830931B2 (en) * 2015-07-09 2020-11-10 Nippon Sheet Glass Company, Limited Infrared cut filter, imaging device, and method for producing infrared cut filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267496A1 (en) * 2009-06-22 2010-12-29 Samsung Electronics Co., Ltd. Hybrid IR filter for digital camera
CN105074513A (zh) * 2013-04-04 2015-11-18 株式会社Lms 近红外截止滤光片及包括近红外截止滤光片的固态摄像装置
CN104516038A (zh) * 2013-09-30 2015-04-15 鸿富锦精密工业(深圳)有限公司 红外截止滤光片
CN105353435A (zh) * 2015-12-10 2016-02-24 广州市佳禾光电科技有限公司 一种吸收式滤光保护玻璃
CN105676330A (zh) * 2016-03-11 2016-06-15 温岭市现代晶体有限公司 新型红外截止滤光片及其加工工艺
CN105911625A (zh) * 2016-05-09 2016-08-31 浙江水晶光电科技股份有限公司 一种混合吸收型红外截止滤光片及其制备方法
CN106772746A (zh) * 2016-12-26 2017-05-31 信阳舜宇光学有限公司 红外截止滤光片及其制备方法
CN206339678U (zh) * 2016-12-26 2017-07-18 信阳舜宇光学有限公司 红外截止滤光片

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828704A (zh) * 2018-08-27 2018-11-16 北京中盾安华数码技术有限公司 一种红外激光隔断光子晶体薄膜

Also Published As

Publication number Publication date
CN106772746B (zh) 2023-05-05
US11073639B2 (en) 2021-07-27
CN106772746A (zh) 2017-05-31
KR20190092260A (ko) 2019-08-07
US20190317249A1 (en) 2019-10-17
CN206339678U (zh) 2017-07-18
KR102481155B1 (ko) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2018121290A1 (zh) 红外截止滤光片及其制备方法
TWI432770B (zh) 光學系統
CN102736138B (zh) 防反射膜以及光学元件
CN1766679A (zh) 起偏器及其制造方法
JP6786248B2 (ja) 光学素子およびその製造方法
JP6790831B2 (ja) 光学フィルタ及び撮像装置
CN104090312A (zh) 一种高附着力红外金属反射膜及其制备方法
CN102809772B (zh) 蓝玻璃红外截止滤光片
CN107678081A (zh) 一种低雾度红外截止滤光片及其镀膜方法
JP6292830B2 (ja) 光学素子、光学系および光学機器
JP2013083871A (ja) 反射防止膜及び反射防止膜の製造方法
CN105911625A (zh) 一种混合吸收型红外截止滤光片及其制备方法
TW201834995A (zh) 附有介電質多層膜的玻璃板及其製造方法
CN206557417U (zh) 一种金属吸收型cover窗口片
CN107315212B (zh) 双通道滤波器及采用旋涂蓝色染料制备双通道滤波器的方法
TWI557439B (zh) 紅外截止濾光片及鏡頭模組
JP2016045497A (ja) 無反射ナノコーティング構造及びその製造方法
CN106054288A (zh) 一种超广角半球透镜增透膜及其镀制方法
WO2015030246A1 (ja) 眼鏡レンズ
US20170371080A1 (en) Crystal coating optical low pass filter and manufacturing method thereof
CN114355494B (zh) 双通滤光片及制备方法
CN101493534A (zh) 一种显示器减反射屏及其制备方法
CN107065053A (zh) 制备滤光片的方法
CN112255719A (zh) 一种红外深度蓝玻璃滤光片
CN206638841U (zh) 一种手机用白玻璃滤光片

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187027869

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886049

Country of ref document: EP

Kind code of ref document: A1