WO2018120979A1 - 一种含有1,2,4-三嗪基团的双极性主体材料及应用 - Google Patents

一种含有1,2,4-三嗪基团的双极性主体材料及应用 Download PDF

Info

Publication number
WO2018120979A1
WO2018120979A1 PCT/CN2017/105337 CN2017105337W WO2018120979A1 WO 2018120979 A1 WO2018120979 A1 WO 2018120979A1 CN 2017105337 W CN2017105337 W CN 2017105337W WO 2018120979 A1 WO2018120979 A1 WO 2018120979A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
host material
carbazole
bipolar host
Prior art date
Application number
PCT/CN2017/105337
Other languages
English (en)
French (fr)
Inventor
彭嘉欢
戴雷
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710680565.2A external-priority patent/CN108264505B/zh
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Publication of WO2018120979A1 publication Critical patent/WO2018120979A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • C07D253/061,2,4-Triazines
    • C07D253/0651,2,4-Triazines having three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the invention relates to a novel bipolar host material, belonging to the technical field of organic luminescent materials, in particular to a novel bipolar host material with a 1,2,4-triazine as a central core and an application thereof.
  • OLEDs Organic light-emitting diodes
  • Electroluminescence and electrophosphorescence are referred to as first generation and second generation OLEDs, respectively.
  • Fluorescent-based OLEDs have high stability, but are limited by the law of quantum statistics. Under the electric activation, the ratio of singlet excitons to triplet excitons is 1:3, so the fluorescent material is electro-induced. The quantum efficiency of luminescence is only 25% at most.
  • the phosphorescent material has a spin-orbit coupling effect of heavy atoms, which can comprehensively utilize singlet excitons and triplet excitons.
  • the theoretical internal quantum efficiency can reach 100%, but the phosphorescent-based OLED has a significant efficiency roll-off effect.
  • phosphorescent materials require the use of expensive metals such as Pt, Ir, etc., so the price of phosphorescent materials is relatively high.
  • the guest materials in OLED devices mainly use phosphorescent materials.
  • Phosphorescent materials can utilize singlet excitons and triplet excitons in combination to achieve 100% internal quantum efficiency. However, since the excited state exciton lifetime of the transition metal complex is relatively long, the triplet-triplet state (T 1 -T 1 ) is quenched in the actual operation of the device. To overcome this problem, researchers often dope phosphorescent materials into organic host materials. Therefore, for high-efficiency organic light-emitting diodes, it is important to develop high-performance host materials as well as guest materials.
  • CBP 4,4'-bis(9-carbazolyl)biphenyl
  • T g glass transition temperature
  • CBP is a P-type material
  • the hole mobility is much higher than the electron mobility, which is not conducive to carrier injection and transmission balance, and the luminous efficiency is low.
  • the present invention provides a bipolar host material having a driving voltage higher than that required for an existing host (CBP) material, a glass transition temperature to be easily crystallized, a carrier injection and a transmission imbalance, and the like, which is 1, 2
  • CBP existing host
  • 4-triazinyl has a strong electron donating ability such as diphenylamines, carbazole, acridine and the like as a linking group to form a DA-type or DAD-type bipolar material.
  • R 1 - R 6 are represented by a substituted or unsubstituted acridinyl group, a phenothiazine group, a phenoxazinyl group, a carbazole, a diphenylamine, a hydrogen, a halogen, a C1-C4 alkyl group, and at least R 1 - R 6
  • One is a substituted or unsubstituted acridinyl group, a phenothiazine group, a phenoxazinyl group, a carbazole, a diphenylamine, and the substituent is a C1-C4 alkyl group, a phenyl group, or an alkylphenyl group.
  • R 5 and R 6 are independently represented as hydrogen; one of R 1 and R 2 is hydrogen, and the other is substituted or unsubstituted acridinyl, phenothiazine, phenoxazinyl, carbazole Diphenylamine; one of R 3 and R 4 is hydrogen and the other is alkyl substituted or unsubstituted acridinyl, phenothiazine, phenoxazinyl, oxazole, diphenylamine.
  • R 1 is the same as R 3 and R 2 is the same as R 4 .
  • R 1 and R 3 are hydrogen
  • R 2 and R 4 are a C1-C4 alkyl group or a phenyl-substituted or unsubstituted acridinyl group or a carbazole.
  • the compound of the formula (I) is the following structural compound
  • An organic electroluminescent device comprising a cathode, an anode and an organic layer, the organic layer being one or more of a hole transport layer, a hole blocking layer, an electron transport layer, and a light-emitting layer. It is particularly noted that the above organic layers may be present in each of the layers as needed.
  • the compound of the formula (I) is a material of a hole transport layer.
  • the organic layer of the electronic device of the present invention has a total thickness of from 1 to 1000 nm, preferably from 1 to 500 nm, more preferably from 5 to 300 nm.
  • the organic layer may be formed into a film by steaming or spin coating.
  • the preparation method of the above bipolar material comprises the following preparation steps:
  • the dihalo-substituted arylethanedione (a) is reacted with a substituted or unsubstituted aroyl hydrazide (b) under sodium t-butoxide to obtain an imine intermediate solution, a filtered solution, and the solvent is removed under reduced pressure. After adding acetic acid, ammonium acetate was added and heated to reflux. 3,5,6-(substituted or unsubstituted phenyl)-1,2,4-triazine (c) is obtained.
  • the unsubstituted acridine group, phenothiazine group, phenoxazinyl group, oxazole, and diphenylamine (d) are subjected to a palladium-catalyzed Buchwald reaction to obtain the bipolar host material.
  • Compound a is obtained by halogenation of a halogenated benzaldehyde by a benzoin condensation reaction; compound b is obtained by hydrazide formation of a substituted methyl benzoate; and compound d is commercially available.
  • the compounds of the present invention have a higher glass transition temperature than the conventional host material CBP, and the present invention significantly improves the thermal stability of the host material.
  • the organic electroluminescent device prepared by using the bipolar host material of the invention has high stability, has better application prospect, and is more in line with the requirements of the organic light emitting diode for the host material.
  • Figure 1 is a DSC curve of Compound 4.
  • FIG. 2 is a structural view of the device of the present invention, wherein 10 represents a glass substrate, 20 represents an anode, and 30 represents a hole injection.
  • the layer, 40 represents a hole transport layer, 50 represents a light-emitting layer, 60 represents a hole blocking layer, 70 represents an electron transport layer, 80 represents an electron injection layer, and 90 represents a cathode.
  • 3 is a current density-current efficiency diagram of the device of the embodiment and the comparative example (where 4 is an embodiment and 5 is a comparative example)
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the product identification data is as follows:
  • the glass transition temperature of Compound 4 was tested by differential scanning calorimetry (DSC) at a heating and cooling rate of 20 ° C/min under nitrogen atmosphere.
  • the glass transition temperature T g of Compound 4 was measured to be 129 ° C ( FIG. 1 ).
  • the glass transition temperature of CBP reported in the literature is only 62 °C.
  • the compound of the present invention has a higher glass transition temperature than the conventional host material CBP, and the present invention remarkably improves the thermal stability of the host material.
  • the device structure is ITO/MoO 3 (10 nm) / NPB (40 nm) / Compound 4: Ir (ppy): (7 wt%, 30 nm) / BCP (10 nm) / Alq 3 (30 nm) / LiF (1 nm) / AL (100 nm )
  • the transparent conductive ITO glass substrate (including 10 and 20) was treated as follows: previously washed with a detergent solution, deionized water, ethanol, acetone, deionized water, and then subjected to oxygen plasma treatment for 30 seconds.
  • a BCP having a thickness of 10 nm was vapor-deposited on the light-emitting layer as the hole blocking layer 60.
  • the device device has a startup voltage of 4.1V, a current density of 3.33 mA/cm 2 at a luminance of 1000 nit, a current efficiency of 30.33 cd/A, a luminous efficiency of 14.16 lm/W, and a green light CIEx of 0.303, CIEy.
  • the current was 0.626; the current was at an operating current density of 20 mA/cm 2 , the luminance was 4836 cd/m 2 , the current efficiency was 24.18 cd/A, the emitted green light CIEx was 0.299, and the CIEy was 0.626.
  • the device structure is ITO/MoO 3 (10 nm) / NPB (40 nm) / CBP: Ir (ppy): (7 wt%, 30 nm) / BCP (10 nm) / Alq 3 (30 nm) / LiF (1 nm) / AL (100 nm)
  • Example 4 The method was the same as in Example 4 except that a commonly used commercially available compound CBP was used as a host material to prepare a comparative electroluminescent organic semiconductor diode device.
  • the prepared device has a starting voltage of 6.2 V, a current density of 3.89 mA/cm 2 at a luminance of 1000 nit, a current efficiency of 25.52 cd/A, a luminous efficiency of 6.85 lm/W, and a green light CIEx of 0.312.
  • CIEy is 0.612; at an operating current density of 20 mA/cm 2 , the luminance was 4579 cd/m 2 , the current efficiency was 22.9 cd/A, the emitted green light CIEx was 0.311, and the CIEy was 0.612.
  • the electroluminescent device prepared by using the bipolar host material of the invention has a lower starting voltage than the device prepared by the widely used host material CBP, and the current efficiency is higher at the same current density, which is more favorable.
  • the carrier injection and transmission balance, the device prepared by using the organic material of the invention has better electroluminescence performance, and is more in line with the requirements of the high-performance organic semiconductor device for the host material.

Abstract

本发明涉及一种含有1,2,4-三嗪基团的双极性主体材料及应用,基于1,2,4-三嗪基的双极性主体材料,具有式(I)所述结构的化合物,其中,R1-R6为示为取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺、氢、卤素、取代或未取代的烷基。R1-R6至少一个为取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺。实验表明,本发明的化合物比常用主体材料CBP具有更高的玻璃化转变温度,热稳定性好;使用本发明化合物的电致发光器件启亮电压更低,在相同电流密度下,电流效率更高,更利于载流子注入和传输平衡,使用本发明的有机材料制备的器件具有更好的电致发光性能,更符合高性能有机半导体器件对主体材料的要求。

Description

一种含有1,2,4-三嗪基团的双极性主体材料及应用 技术领域
本发明涉及新型的双极性主体材料,属于有机发光材料技术领域,具体涉及一种以1,2,4-三嗪为中心核的新型的双极性主体材料及其应用。
背景技术
有机发光二极管(OLED)具有相应速度快、耗能低、亮度高、视角广、可弯曲、主动发光等特性,受到了科学界和产业界的高度重视。其在显示、照明等方面的应用具有较大的潜力。电致荧光和电致磷光分别被称为第一代和第二代OLED。基于荧光材料的OLED具有稳定性高的特点,但受限于量子统计学定律,在电激活作用下,产生的单线态激子和三线态激子的比例为1:3,所以荧光材料电致发光内量子效率最大仅有25%。而磷光材料具有重原子的自旋轨道耦合作用,可以综合利用单线态激子和三线态激子,理论的内量子效率可达100%,但是基于磷光的OLED具有明显的效率滚降效应,在高亮度应用中有一定的阻碍。另外,磷光材料需用使用Pt,Ir等贵价金属,因此磷光材料价格较高。而目前,OLED器件中客体材料主要应用磷光材料。
磷光材料可以综合利用单线态激子和三线态激子,实现100%的内量子效率。然而,由于过渡金属配合物的激发态激子寿命相对过长,导致三线态-三线态(T1-T1)在器件实际工作中淬灭。为了克服这个问题,研究者们常将磷光材料掺杂于有机主体材料中。因此,对于高效有机发光二极管,开发高性能的主体材料以及客体材料十分重要。
目前,广泛应用于磷光器件的主体材料为CBP(4,4’-二(9-咔唑基)联苯),但是它要求的驱动电压较高、玻璃化转变温度(Tg)低(Tg=62℃),易于结晶。另外,CBP是一种P型材料,空穴迁移率远高于电子迁移率,不利于载流子注入和传输平衡,且发光效率低。
发明内容
针对现有主体(CBP)材料要求的驱动电压较高、玻璃化转变温度易于结晶、载流子注入和传输不平衡等问题,本发明提供一种双极性主体材料,该材料以1,2,4-三嗪基作为强拉电子中心核,具有强给电子能力的二苯胺类、咔唑、吖啶等衍生物作为连接基团,形成D-A型、D-A-D型双极性材料。
基于1,2,4-三嗪基的双极性主体材料,具有式(I)所述结构的化合物,
Figure PCTCN2017105337-appb-000001
其中,R1-R6表示为取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺,氢,卤素,C1-C4烷基,R1-R6至少一个为取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺,所述取代为C1-C4的烷基取代、苯基取代、或烷苯基取代。
优选:其中,R5、R6独立地表示为氢;R1与R2中的一个为氢,另一个为取代或者未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺;R3与R4中的一个为氢,另一个为烷基取代或者未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺。
更优选:其中R1与R3相同,R2与R4相同。
进一步优选:R1、R3为氢,R2、R4为C1-C4烷基或苯基取代或者未取代的吖啶基、咔唑。
式(I)所述的化合物为下列结构化合物
Figure PCTCN2017105337-appb-000002
有机电致发光器件,包括阴极、阳极和有机层,所述有机层为空穴传输层、空穴阻挡层、电子传输层、发光层中的一层或多层。需要特别指出,上述有机层可以根据需要,这些有机层不必每层都存在。
所述式(I)所述的化合物为空穴传输层的材料。
本发明的电子器件有机层的总厚度为1-1000nm,优选1-500nm,更优选5-300nm。
所述有机层可以通过蒸渡或旋涂形成薄膜。
如上面提到,本发明的式(I)所述的化合物如下,但不限于所列举的结构:
Figure PCTCN2017105337-appb-000003
Figure PCTCN2017105337-appb-000004
上述双极材料的制备方法,包括以下制备步骤:
首先将二卤素取代芳基乙二酮(a)与取代或未取代的芳酰肼(b)在叔丁醇钠条件下反应,得到亚胺中间体溶液,抽滤的溶液,减压除去溶剂后加入醋酸,并加入醋酸铵加热回流。得到3,5,6-(取代或未取代的苯基)-1,2,4-三嗪(c)。最后3,5,6-三(卤素取代苯)-1,2,4-三嗪(c)与取代或 未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺(d)通过钯催化的Buchwald反应,得到所述的双极主体材料。
Figure PCTCN2017105337-appb-000005
化合物a是由卤代苯甲醛通过安息香缩合反应,再氧化所得;化合物b是通过取代的苯甲酸甲酯的酰肼化制得;化合物d为市售所得。
Figure PCTCN2017105337-appb-000006
实验表明,本发明的化合物比常用主体材料CBP具有更高的玻璃化转变温度,本发明显著提高了主体材料的热稳定性。使用本发明的双极性主体材料制备的有机电致发光器件,稳定性高,具有更好的应用前景,更符合有机发光二极管对主体材料的要求。
附图说明
图1为化合物4的DSC曲线;
图2为本发明的器件结构图,其中10代表为玻璃基板,20代表为阳极,30代表为空穴注入 层,40代表为空穴传输层,50代表发光层,60代表为空穴阻挡层,70代表为电子传输层,80代表为电子注入层,90代表为阴极。
图3为实施例器件与比较例器件电流密度-电流效率图(其中4为实施例,5为比较例)
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)5,6-二(4-溴苯基)-3-苯基-1,2,4-三嗪(c1)的合成
合成路线如下所示:
Figure PCTCN2017105337-appb-000007
具体合成步骤为:
称取叔丁醇钠(1.44g,15mmol)加至干燥四氢呋喃(50mL)中,加入苯酰肼(1.36g,10mmol)(b1),随后加入1,2-二(4-溴苯基)乙基-1,2-二酮(3.68g,10mmol)(a1)(通过4-溴苯甲醛的安息香缩合再氧化制备),搅拌1小时,抽滤并用二氯甲烷洗涤,得滤液。旋转蒸发仪除去溶剂后,加入20mL冰醋酸和醋酸铵(7.7g,100mmol),升温至回流反应搅拌4小时。反应结束后,自然冷却至室温,析出黄色固体,砂芯漏斗抽滤,水洗。硅胶柱层析分离得到3g黄色固体。产率:64%。
(2)9,9’-((3-苯基-1,2,4-三嗪-5,6-二基)二(4,1-亚苯基))二(9H-咔唑)(1)的合成
合成路线如下所示:
Figure PCTCN2017105337-appb-000008
具体合成步骤为:
称取5,6-二(4-溴苯基)-3-苯基-1,2,4-三嗪(0.93g,2mmol)(c1),咔唑(0.67g,4mmol), Pd2(dba)3(0.19g,0.2mmol),NaOtBu(0.77g,8mmol)于25mL三口烧瓶中,换氮气三次。三叔丁基膦甲苯溶液(0.16g,0.4mmol)溶于10mL干燥的甲苯中,注入到反应瓶中。升温回流16小时。反应结束后,加入5%的亚硫酸氢钠溶液,二氯甲烷萃取,合并有机层,无水硫酸镁干燥。砂芯漏斗过滤,旋干溶剂,以正己烷:二氯甲烷=2:1为洗脱剂,硅胶层析柱提纯,分离得到1.27g黄色粉末固体。产率:93.5%。产物鉴定数据如下:
1H NMR(400MHz,CDCl3)δ=8.80-8.69(m,2H),8.16(d,J=7.7Hz,4H),8.06(d,J=8.4Hz,2H),7.99(d,J=8.4Hz,2H),7.73(d,J=8.4Hz,4H),7.67-7.57(m,3H),7.56-7.48(m,4H),7.44(t,J=7.6Hz,4H),7.32(dt,J=3.2,7.2Hz,4H)ppm.13C NMR(100MHz,CDCl3)=161.6,154.8,154.6,140.4,140.2,139.3,134.6,134.2,134.2,131.9,131.6,131.1,129.0,128.5,127.0,126.7,126.3,126.2,123.9,123.7,120.6,120.5,120.5,120.5,109.7ppm.Ms(ESI:Mz 640)(M+1)实施例2
(1)5,6-二(3-溴苯基)-3-苯基-1,2,4-三嗪(c2)的合成
合成路线如下所示:
Figure PCTCN2017105337-appb-000009
具体合成步骤为:
称取叔丁醇钠(1.44g,15mmol)加至干燥四氢呋喃(50mL)中,加入苯酰肼(1.36g,10mmol)(b1),随后加入1,2-二(3-溴苯基)乙基-1,2-二酮(3.68g,10mmol)(a2)(通过3-溴苯甲醛的安息香缩合再氧化制备),搅拌1小时,抽滤并用二氯甲烷洗涤,得滤液。旋转蒸发仪除去溶剂后,加入20mL冰醋酸和醋酸铵(7.7g,100mmol),升温至回流反应搅拌4小时。反应结束后,减压旋干过量的醋酸。硅胶柱层析分离得到3.2g浅黄色油状物。产率:69%。
(2)10,10’-((3-苯基-1,2,4-三嗪-5,6-二基)二(3,1-亚苯基))二(9,9-二甲基吖啶)(4)的合成
合成路线如下所示:
Figure PCTCN2017105337-appb-000010
具体合成步骤为:
称取5,6-二(3-溴苯基)-3-苯基-1,2,4-三嗪(0.93g,2mmol)(c2),9,9-二甲基吖啶(0.84g,4mmol)(d2),Pd2(dba)3(0.19g,0.2mmol),NaOtBu(0.77g,8mmol)于25mL三口烧瓶中,换氮气三次。三叔丁基膦甲苯溶液(0.16g,0.4mmol)溶于10mL干燥的甲苯中,注入到反应瓶中。升温回流16小时。反应结束后,加入5%的亚硫酸氢钠溶液,二氯甲烷萃取,合并有机层,无水硫酸镁干燥。砂芯漏斗过滤,旋干溶剂,以正己烷:二氯甲烷=2:1为洗脱剂,硅胶层析柱提纯,分离得到1.3g黄色粉末固体。再用10mL二氯甲烷溶解,加入20mL乙酸乙酯,放置于5℃冰箱析晶,得到1.1g浅黄色晶体。产率:74%。
产物鉴定数据如下:
1H NMR(400MHz,CDCl3)δ=8.81-8.67(m,2H),8.03(d,J=8.4Hz,2H),7.97(d,J=8.3Hz,2H),7.67-7.56(m,3H),7.52-7.38(m,8H),6.92(dt,J=3.4,6.4Hz,8H),6.34(dd,J=3.5,5.9Hz,4H),1.68(s,12H)ppm.13C NMR(100MHz,CDCl3)δ=161.8,155.1,155.0,144.0,142.8,140.6,140.5,135.3,135.3,134.6,132.5,132.1,132.0,131.8,131.2,130.7,130.4,129.0,128.6,126.5,125.3,125.2,121.2,121.0,114.3,114.0,36.1,36.1,31.6,31.0,30.9,22.7,14.2
实施例3
玻璃化转变温度测试:
氮气保护下,以20℃/min的加热和冷却速率用示差扫描量热法(DSC)测试化合物4的玻璃化转变温度。测得化合物4的玻璃化转变温度Tg为129℃(图1)。而文献所报道的CBP的玻璃化转变温度仅为62℃。
可见,本发明中的化合物比常用主体材料CBP具有更高的玻璃化转变温度,本发明显著提高了主体材料的热稳定性。
实施例4
有机电致发光器件的制备
器件结构为ITO/MoO3(10nm)/NPB(40nm)/化合物4:Ir(ppy):(7wt%,30nm)/BCP(10nm)/Alq3(30nm)/LiF(1nm)/AL(100nm)
器件制备方式描述如下:见图2
首先,将透明导电ITO玻璃基板(包含10和20)按照以下步骤处理:预先用洗涤剂溶液、去离子水,乙醇,丙酮,去离子水洗净,再经氧等离子处理30秒。
然后,在ITO上蒸渡10nm厚的MoO3作为空穴注入层30。
然后,在空穴注入层上蒸渡40nm厚的NPB作为空穴传输层40。
然后,在空穴传输层上蒸渡30nm厚的化合物4:Ir(ppy):(7wt%)作为发光层50。
然后,在发光层上蒸渡10nm厚的BCP作为空穴阻挡层60。
然后,在空穴阻挡层上蒸渡30nm厚的Alq3作为电子传输层70。
然后,在电子传输层上蒸渡1nm厚的Alq3作为电子注入层80。
最后,在电子注入层上蒸渡100nm厚的铝作为器件阴极90。
所制备的器件器件启亮电压为4.1V,在1000nit亮度下,电流密度为3.33mA/cm2,电流效率为30.33cd/A,发光效率为14.16lm/W,发射绿光CIEx为0.303,CIEy为0.626;电流在20mA/cm2的工作电流密度下,亮度4836cd/m2,电流效率为24.18cd/A,发射绿光CIEx为0.299,CIEy为0.626。
比较例
电致发光器件的制备
器件结构为ITO/MoO3(10nm)/NPB(40nm)/CBP:Ir(ppy):(7wt%,30nm)/BCP(10nm)/Alq3(30nm)/LiF(1nm)/AL(100nm)
方法同实施例4,但使用常用市售化合物CBP作为主体材料,制作对比用电致发光有机半导体二极管器件。
所制备的器件启亮电压为6.2V,在1000nit亮度下,电流密度为3.89mA/cm2,电流效率为25.52cd/A,发光效率为6.85lm/W,发射绿光CIEx为0.312,CIEy为0.612;在20mA/cm2的工作电流密度下,亮度4579cd/m2,电流效率为22.9cd/A,发射绿光CIEx为0.311,CIEy为0.612。
实验表明,使用本发明的双极性主体材料制备的电致发光器件,比于广泛使用的主体材料CBP制备的器件,启亮电压更低,在相同电流密度下,电流效率更高,更利于载流子注入和传输平衡,使用本发明的有机材料制备的器件具有更好的电致发光性能,更符合高性能有机半导体器件对主体材料的要求。

Claims (10)

  1. 基于1,2,4-三嗪基的双极性主体材料,具有式(I)所述结构的化合物,
    Figure PCTCN2017105337-appb-100001
    其中,R1-R6表示为取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺,氢,卤素,C1-C4烷基,且R1-R6至少一个为取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺,所述取代为C1-C4的烷基取代、苯基取代、或烷苯基取代。
  2. 根据权利要求1所述的双极主体材料,其中,R5、R6为氢;R1与R2中的一个为氢,另一个为取代或者未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺;R3与R4中的一个为氢,另一个为烷基取代或者未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺。
  3. 根据权利要求2所述的双极主体材料,其中R1与R3相同,R2与R4相同。
  4. 根据权利要求3所述的双极主体材料,R1、R3为氢,R2、R4为C1-C4烷基或苯基取代或者未取代的吖啶基、咔唑。
  5. 根据权利要求2所述的双极主体材料,为下列结构的化合物:
    Figure PCTCN2017105337-appb-100002
    Figure PCTCN2017105337-appb-100003
    Figure PCTCN2017105337-appb-100004
  6. 根据权利要求5所述的双极主体材料,为下列结构的化合物:
    Figure PCTCN2017105337-appb-100005
  7. 权利要求2-6任一双极主体材料的制备方法,包括以下制备步骤:
    (1)将二卤素取代芳基乙二酮与未取代的芳酰肼在叔丁醇钠条件下于溶剂中反应,得到亚胺中间体溶液,过滤,溶液减压除去溶剂后加入醋酸,并加入醋酸铵加热回流;得到5,6-二(卤素取代苯)-3-苯基-1,2,4-三嗪;
    (2)5,6-二(卤素取代苯)-3-苯基-1,2,4-三嗪与烷基或苯基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、二苯胺通过钯催化的Buchwald反应,得到所述的双极主体材料。
  8. 根据权利要求7所述的方法,所述二卤素取代芳基乙二酮为二溴芳基乙二酮,通过3-溴苯甲醛的安息香缩合再氧化而制得。
  9. 根据权利要求7所述的方法,所述步骤(1)中的溶剂为干燥的四氢呋喃。
  10. 权利要求1-6任一所述的双极主体材料在有机电致发光器件中的应用。
PCT/CN2017/105337 2016-12-30 2017-10-09 一种含有1,2,4-三嗪基团的双极性主体材料及应用 WO2018120979A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611253636.2 2016-12-30
CN201611253636 2016-12-30
CN201710680565.2A CN108264505B (zh) 2016-12-30 2017-08-10 一种含有1,2,4-三嗪基团的双极性主体材料及应用
CN201710680565.2 2017-08-10

Publications (1)

Publication Number Publication Date
WO2018120979A1 true WO2018120979A1 (zh) 2018-07-05

Family

ID=62706842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105337 WO2018120979A1 (zh) 2016-12-30 2017-10-09 一种含有1,2,4-三嗪基团的双极性主体材料及应用

Country Status (1)

Country Link
WO (1) WO2018120979A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968062A (zh) * 2016-07-25 2016-09-28 上海道亦化工科技有限公司 含有1,2,4-三嗪基团的化合物及其有机电致发光器件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968062A (zh) * 2016-07-25 2016-09-28 上海道亦化工科技有限公司 含有1,2,4-三嗪基团的化合物及其有机电致发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YEPENG XIANG^: "Asymmetric-triazine-cored triads as thermally activated de- layed fluorescence emitters for high-efficiency yellow OLEDs with slow effi- ciency roll-off", J. MATER. CHEM. C, vol. 4, no. 42, 23 September 2016 (2016-09-23), pages 9998 - 10004, XP055511282, ISSN: 2050-7534 *

Similar Documents

Publication Publication Date Title
JP4788202B2 (ja) 発光材料およびこれを用いた有機電界発光素子
KR101317511B1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
JP2017538657A (ja) 含窒素縮合環化合物およびそれを用いた有機発光素子
TW201006908A (en) Compound for organic electric field light-emitting element and organic electric field light-emitting element
KR101597865B1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
CN107257787B (zh) 杂环化合物和包含其的有机发光元件
CN113166120A (zh) 化合物及包含其的有机发光器件
KR101891432B1 (ko) 아민계 화합물 및 이를 포함하는 유기 전자 소자
KR20140070425A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
TWI743146B (zh) 具有苯并唑環結構之化合物及有機電致發光元件
WO2019054233A1 (ja) 有機エレクトロルミネッセンス素子
TWI651318B (zh) 含有螺[芴-9,2’-咪唑]基團的雙極主體材料的有機電致發光器件
KR20120043878A (ko) 유기 전기 발광 소자용 유기 화합물 및 이를 이용한 유기 전기발광 소자
TWI651309B (zh) 一種基於螺[芴-9,2’-咪唑]的雙極性主體材料、合成方法及應用
TWI657081B (zh) 含有1,2,4-三嗪基團的雙極性主體材料的有機電致發光器件
KR20140012920A (ko) 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
TWI824763B (zh) 具有嘧啶環構造之化合物以及有機電致發光元件
KR20170092130A (ko) 화합물 및 이를 포함하는 유기발광소자
WO2018120979A1 (zh) 一种含有1,2,4-三嗪基团的双极性主体材料及应用
TWI657080B (zh) 一種含有1,2,4-三嗪基團的雙極性主體材料及應用
KR102098920B1 (ko) 붕소원자를 포함하는 유기 화합물 및 이를 이용한 유기 전기발광소자
WO2018120978A1 (zh) 含有1,2,4-三嗪基团的双极性主体材料的有机电致发光器件
KR20210017428A (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
KR102665302B1 (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20190021128A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886750

Country of ref document: EP

Kind code of ref document: A1