WO2018120432A1 - 一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用 - Google Patents

一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用 Download PDF

Info

Publication number
WO2018120432A1
WO2018120432A1 PCT/CN2017/076572 CN2017076572W WO2018120432A1 WO 2018120432 A1 WO2018120432 A1 WO 2018120432A1 CN 2017076572 W CN2017076572 W CN 2017076572W WO 2018120432 A1 WO2018120432 A1 WO 2018120432A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum paste
aluminum
solar cell
paste
back surface
Prior art date
Application number
PCT/CN2017/076572
Other languages
English (en)
French (fr)
Inventor
孙铁囤
姚伟忠
汤平
Original Assignee
常州亿晶光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州亿晶光电科技有限公司 filed Critical 常州亿晶光电科技有限公司
Publication of WO2018120432A1 publication Critical patent/WO2018120432A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of back field aluminum paste for solar cells, and particularly relates to a back field aluminum paste for solar cells with permeability and a preparation method and application thereof.
  • Passivation film is an important component of crystalline silicon solar cell, which can reduce carrier recombination and improve conversion efficiency. It can also improve contact, reduce contact resistance and increase parallel resistance. At the same time, it also has anti-reflection effect.
  • the aluminum paste is also required to be formed into a strip-shaped local contact and a back surface contact by screen printing on the passivation film because of the existence of the passivation film. Under normal sintering conditions, it is difficult for the aluminum paste to penetrate the passivation film, and a good ohmic contact cannot be formed, resulting in an increase in series resistance and a reduction in photoelectric conversion efficiency of the cell.
  • the passivation film is often treated as follows: a plurality of through-type holes are formed on the passivation film by laser aperture method. So that the aluminum paste coated on the surface of the passivation film can make contact with the substrate of the solar cell through the hole, but this technology needs to rely on a complete set of equipment, the process is complicated, the cost is high; or it can also pass chemical corrosion
  • the method uses a silicon paste to screen a silicon paste layer having a point contact pattern on a composite passivation film, and then etches away a region of the composite passivation film not covered by the silicon paste layer by using a chemical etching solution, and then applies aluminum paste, but Chemical corrosion is inevitably polluted.
  • the present invention provides a back-field aluminum paste for solar cells having permeability, which is calculated by parts by weight:
  • the permeation aid is ammonium fluorosilicate
  • the patent finds that the pretreatment of the aluminum powder by the material can effectively promote the penetration of the aluminum powder through the passivation layer to form a good ohmic contact with the substrate of the solar cell.
  • the coupling agent is a titanate coupling agent, which helps to improve the dispersibility of the aluminum powder in the slurry.
  • the binder is one or a combination of an epoxy resin type binder, a silicone resin type binder, and a xylene resin type binder,
  • the organic vehicle is prepared by uniformly mixing ethyl cellulose and terpineol in a mass ratio of 1:10.
  • the invention also provides a preparation method of the above aluminum paste, the specific steps are as follows:
  • the terpineol is heated to 65-75 ° C under stirring, and ethyl cellulose is added thereto, and stirring is continued until the ethyl cellulose is dissolved, and naturally cooled to normal temperature (25 ° C, the same below);
  • the invention also provides an application of the above aluminum paste: after forming a passivation layer on the back surface of the battery, the aluminum paste is directly formed on the passivation surface by screen printing to form an electrode film, and dried.
  • the invention has the beneficial effects that the present invention can infiltrate the surface of the substrate of the solar cell without corroding or destroying the battery assembly, thereby forming a good ohmic contact, compared to the prior art aluminum paste coating technology. Easy to operate, no pollution.
  • the aluminum paste prepared in this embodiment is directly printed on the passivation surface by 250 mesh screen printing to form an aluminum electrode film into the muffle furnace 220. After drying at °C, the aluminum electrode film layer did not fall off; then the front side silver paste was printed on the other side, and it was sintered in a muffle furnace. The electrical data was tested after sintering: the average photoelectric conversion efficiency of the polycrystalline silicon solar cell was 22.4%.
  • Example 1 Compared with Example 1, no ammonium fluorosilicate was added, and the remaining components (and contents) and operation were the same as in Example 1:
  • the aluminum paste prepared in this comparative example was directly formed into an aluminum electrode film on the passivation surface by screen printing, and the specific operation was also the same as in Example 1.
  • the electrical data was tested after sintering as follows: the average polycrystalline silicon solar cell photoelectric conversion efficiency was 10.6%.
  • the aluminum paste prepared in this comparative example was directly formed into an aluminum electrode film on the passivation surface by screen printing, and the specific operation was the same as in Example 1.
  • the electrical data was tested after sintering as follows: the average polycrystalline silicon solar cell photoelectric conversion efficiency was 21.2%.
  • Example 2 The "halofluorosilicate" in Example 2 was replaced by an equimolar amount of "fluorosilic silicate", and the remaining components (and contents) were the same as in Example 2:
  • the aluminum paste prepared in this comparative example was directly formed into an aluminum electrode film on the passivation surface by screen printing, and the specific operation was also the same as in Example 2.
  • the electrical data was tested after sintering as follows: the average polycrystalline silicon solar cell photoelectric conversion efficiency was 9.8%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能电池用背场铝浆领域,特别涉及一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用。铝浆包括铝粉、渗透辅助剂、偶联剂、粘结剂、有机载体;在电池背表面形成一层钝化层后,直接将该铝浆通过丝网印刷在钝化面上形成电极膜,烘干,即可使铝浆渗透至太阳电池的衬底表面,形成了良好的欧姆接触。

Description

一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用 技术领域
本发明属于太阳能电池用背场铝浆领域,特别涉及一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用。
背景技术
钝化膜是晶体硅太阳能电池的重要部件,可以降低载流子复合,提高转化效率;还可以改善接触,降低接触电阻,增加并联电阻;同时,它还具有减反射作用。
在电池背表面形成了一层钝化层后,还需要于该钝化膜上采用丝网印刷的方法将铝浆制备成条形状局域接触和背面点接触,因为钝化膜的存在,在正常的烧结状态下,铝浆很难穿透钝化膜,无法形成良好的欧姆接触,导致串联电阻增大,降低电池片光电转化效率。
为了使得印刷上去的背场铝浆和太阳电池的衬底有良好的欧姆接触、收集电流,往往会对钝化膜进行如下处理:通过激光开孔法在钝化膜上形成若干贯穿型的孔洞,从而使涂覆在钝化膜表面的铝浆能够通过孔洞与太阳能电池的衬底实现接触,但这一技术需要依靠一整套的设备,工艺复杂,产生的成本高;或者还可以通过化学腐蚀法在复合钝化膜上采用硅浆料丝网印刷具有点接触图案的硅浆层,然后采用化学腐蚀液腐蚀掉复合钝化膜中未被硅浆层覆盖的区域,再上铝浆,但化学腐蚀又不可避免会产生污染。
发明内容
为解决上述技术问题,本发明提供了一种具有渗透性的太阳能电池用背场铝浆,按重量份数计算包括:
Figure PCTCN2017076572-appb-000001
其中,渗透辅助剂为氟硅酸铵,本专利发现采用该物质对铝粉进行预处理后,能够有效地促进铝粉渗透通过钝化层与太阳电池的衬底形成良好的欧姆接触,
偶联剂为钛酸酯偶联剂,有助于提高铝粉在浆料中的分散性,
粘结剂为环氧树脂型粘结剂、有机硅树脂型粘结剂、二甲苯树脂型粘结剂中的一种或几种的组合,
有机载体由乙基纤维素与松油醇按1:10的质量比混合均匀而成。
本发明还提供了一种上述铝浆的制备方法,具体步骤为:
(1)配制有机载体,
在搅拌状态下将松油醇加热至65~75℃,向其中加入乙基纤维素后继续搅拌至乙基纤维素溶解,自然冷却至常温(25℃,下同);
(2)将铝粉与渗透辅助剂混合均匀,得到经预处理的铝粉;
(3)向步骤(1)的有机载体中先加入偶联剂并充分分散,再加入步骤(2)中得到的经预处理的铝粉充分搅拌,最后加入粘结剂搅拌均匀得到铝浆。
本发明还提供了一种上述铝浆的应用:在电池背表面形成一层钝化层后,直接将该铝浆通过丝网印刷在钝化面上形成电极膜,烘干。
本发明的有益效果在于:相比于现有的铝浆涂覆技术,本发明无需对电池组件进行腐蚀、破坏即可使铝浆渗透至太阳电池的衬底表面,形成了良好的欧姆接触。操作方便、无污染。
具体实施方式
实施例1
(1)配制有机载体,
在搅拌状态下将25重量份的松油醇加热至70℃,向其中加入2.5重量份的乙基纤维素后继续搅拌至乙基纤维素完全溶解,自然冷却至常温;
(2)将72重量份的铝粉与3重量份的氟硅酸铵混合研磨均匀,得到经预处理的铝粉;
(3)向步骤(1)得到的有机载体中先加入1.2重量份的偶联剂TMC-101并充分分散,再加入步骤(2)中得到的经预处理的铝粉充分搅拌,最后加入4重量份的电子浆料用环氧树脂型粘结剂搅拌均匀得到铝浆。
在125mm×125mm的单晶硅片的背表面形成一层钝化层后,直接将本实施例制备的铝浆通过250目丝网印刷在钝化面上形成铝电极膜,进马弗炉220℃烘干,烘干以后铝电极膜层无脱落;然后换另一面印刷正面银浆,进马弗炉烧结,烧结后测试其电性数据为:平均多晶硅太阳能电池光电转换效率为22.4%。
对比实施例1
相比于实施例1未加入任何氟硅酸铵,其余各组分(及含量)、操作均同实施例1:
直接将本对比实施例制备的铝浆通过丝网印刷在钝化面上形成铝电极膜,具体操作也同实施例1。烧结后测试其电性数据为:平均多晶硅太阳能电池光电转换效率为10.6%。
实施例2
(1)配制有机载体,
在搅拌状态下将28重量份的松油醇加热至75℃,向其中加入2.8重量份的乙基纤维素后继续搅拌至乙基纤维素完全溶解,自然冷却至常温;
(2)将75重量份的铝粉与3.5重量份的氟硅酸铵混合研磨均匀,得到经预处理的铝粉;
(3)向步骤(1)得到的有机载体中先加入1.4重量份的偶联剂TMC-101并充分分散,再加入步骤(2)中得到的经预处理的铝粉充分搅拌,最后加入4重量份的电子浆料用有机硅树脂型粘结剂搅拌均匀得到铝浆。
直接将本对比实施例制备的铝浆通过丝网印刷在钝化面上形成铝电极膜,具体操作同实施例1。烧结后测试其电性数据为:平均多晶硅太阳能电池光电转换效率为21.2%。
对比实施例2
采用等摩尔量的“氟硅酸钠”代替实施例2中的“氟硅酸铵”,其余各组分(及含量)、操作均同实施例2:
直接将本对比实施例制备的铝浆通过丝网印刷在钝化面上形成铝电极膜,具体操作也同实施例2。烧结后测试其电性数据为:平均多晶硅太阳能电池光电转换效率为9.8%。

Claims (7)

  1. 一种具有渗透性的太阳能电池用背场铝浆,其特征在于:所述的铝浆按重量份数计算包括,
    Figure PCTCN2017076572-appb-100001
  2. 如权利要求1所述的具有渗透性的太阳能电池用背场铝浆,其特征在于:所述的渗透辅助剂为氟硅酸铵。
  3. 如权利要求1所述的具有渗透性的太阳能电池用背场铝浆,其特征在于:所述的偶联剂为钛酸酯偶联剂。
  4. 如权利要求1所述的具有渗透性的太阳能电池用背场铝浆,其特征在于:所述的粘结剂为环氧树脂型粘结剂、有机硅树脂型粘结剂、二甲苯树脂型粘结剂中的一种或几种的组合。
  5. 如权利要求1所述的具有渗透性的太阳能电池用背场铝浆,其特征在于:所述的有机载体由乙基纤维素与松油醇按1:10的质量比混合均匀而成。
  6. 一种如权利要求1至5任一项所述的铝浆的制备方法,其特征在于:所述的制备方法为,
    (1)配制有机载体;
    (2)将铝粉与渗透辅助剂混合均匀,得到经预处理的铝粉;
    (3)向步骤(1)的有机载体中先加入偶联剂并充分分散,再加入步骤(2)中得到的经预处理的铝粉充分搅拌,最后加入粘结剂搅拌均匀得到铝浆。
  7. 一种如权利要求1至5任一项所述的铝浆的应用,其特征在于:所述的应用为,在电池背表面形成一层钝化层后,直接将所述的铝浆通过丝网印刷在钝化面上形成电极膜,烘干。
PCT/CN2017/076572 2016-12-30 2017-03-14 一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用 WO2018120432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611254126.7 2016-12-30
CN201611254126.7A CN106782756B (zh) 2016-12-30 2016-12-30 一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2018120432A1 true WO2018120432A1 (zh) 2018-07-05

Family

ID=58953244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076572 WO2018120432A1 (zh) 2016-12-30 2017-03-14 一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN106782756B (zh)
WO (1) WO2018120432A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463142A (zh) * 2020-04-09 2020-07-28 浙江爱旭太阳能科技有限公司 一种高效检测perc铝浆腐蚀性的方法
CN117059303A (zh) * 2023-09-05 2023-11-14 江苏飞特尔通信有限公司 一种ltcc滤波器外部电极的导电铝浆及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113362981B (zh) * 2021-06-15 2023-01-13 华中科技大学温州先进制造技术研究院 一种n型硅太阳能电池的p型发射区银铝电极浆料用无机玻璃粘结剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314958A (zh) * 2011-08-31 2012-01-11 乐凯胶片股份有限公司 一种晶体硅太阳能电池背电极用导电铝浆及其制备方法
CN104157332A (zh) * 2014-08-29 2014-11-19 天津市职业大学 一种硅太阳能电池正面电极无铅银浆及其制备方法
US20140370643A1 (en) * 2011-08-22 2014-12-18 1366 Technologies Inc Formulation for acidic wet chemical etching of silicon wafers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630695B (zh) * 2009-08-05 2011-11-02 贵研铂业股份有限公司 晶体硅太阳能电池用无铅无镉电极浆料及其制备方法
CN102097154B (zh) * 2010-11-25 2012-07-25 长沙族兴新材料股份有限公司 太阳能电池用背场铝浆
CN102956730B (zh) * 2011-08-29 2016-06-29 比亚迪股份有限公司 一种太阳能电池背板及其制备方法以及一种太阳能电池
CN106098146A (zh) * 2016-07-08 2016-11-09 南通天盛新能源股份有限公司 高效晶体硅太阳能电池局域背场铝浆及在perc电池中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140370643A1 (en) * 2011-08-22 2014-12-18 1366 Technologies Inc Formulation for acidic wet chemical etching of silicon wafers
CN102314958A (zh) * 2011-08-31 2012-01-11 乐凯胶片股份有限公司 一种晶体硅太阳能电池背电极用导电铝浆及其制备方法
CN104157332A (zh) * 2014-08-29 2014-11-19 天津市职业大学 一种硅太阳能电池正面电极无铅银浆及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463142A (zh) * 2020-04-09 2020-07-28 浙江爱旭太阳能科技有限公司 一种高效检测perc铝浆腐蚀性的方法
CN117059303A (zh) * 2023-09-05 2023-11-14 江苏飞特尔通信有限公司 一种ltcc滤波器外部电极的导电铝浆及其制备方法
CN117059303B (zh) * 2023-09-05 2024-04-16 江苏飞特尔通信有限公司 一种ltcc滤波器外部电极的导电铝浆及其制备方法

Also Published As

Publication number Publication date
CN106782756B (zh) 2018-01-26
CN106782756A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Hong et al. Improvement and regeneration of perovskite solar cells via methylamine gas post‐treatment
CN107195354B (zh) 一种背钝化硅太阳能电池用正电极银浆及其制备方法
JP2017171934A (ja) 導電性インク
CN102804389A (zh) 在硅片正面上形成栅阴极的方法
WO2010125861A1 (ja) 裏面電極型太陽電池およびその製造方法
WO2009157727A2 (en) Conductive paste composition and method of preparing electrode using the same
US20150090330A1 (en) Solar cell contact structures formed from metal paste
WO2016124005A1 (zh) 一种全铝背场晶体硅太阳能电池用铝浆及其制备方法
WO2018120432A1 (zh) 一种具有渗透性的太阳能电池用背场铝浆及其制备方法和应用
CN105934828B (zh) 太阳能电池单元和太阳能电池单元的制造方法
US10483412B2 (en) High efficiency local back electrode aluminum paste for crystalline silicon solar cells and its application in PERC cells
WO2012138186A2 (ko) 전극 형성용 은 페이스트 조성물 및 이의 제조 방법
CN104617164A (zh) 纳米硅硼浆及其应用于制备太阳能电池的方法
JP6265789B2 (ja) シリコン用導電ペースト、銀電極の製造方法、及び太陽電池の製造方法
CN109300573A (zh) Perc太阳能电池用低银含高附着力背银浆料及其制备方法
CN109215837A (zh) 一种太阳能电池用银导电浆料及其制备方法
CN108922654B (zh) 一种低温可丝网印刷碳浆料及高导电性碳电极
CN107546326A (zh) 低熔点金属电极型钙钛矿太阳能电池
JP5477233B2 (ja) 太陽電池の製造方法
CN105845776A (zh) 局部背场n型光伏电池的制备方法及其电池和组件、系统
WO2013143350A1 (zh) 一种太阳电池、组件及太阳电池电极的制造方法
CN105405919A (zh) 一种彩色晶硅电池的制造方法
EP3702048B1 (en) Method for drying polyimide paste and method for producing solar cells capable of highly-efficient photoelectric conversion
JP2010263136A (ja) 電極、太陽電池セル及びその製造方法
US20190198707A1 (en) Method of forming an electrode structure and method of manufacturing a photovoltaic cell using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887176

Country of ref document: EP

Kind code of ref document: A1