WO2018119965A1 - Oled显示装置及其制作方法 - Google Patents

Oled显示装置及其制作方法 Download PDF

Info

Publication number
WO2018119965A1
WO2018119965A1 PCT/CN2016/113320 CN2016113320W WO2018119965A1 WO 2018119965 A1 WO2018119965 A1 WO 2018119965A1 CN 2016113320 W CN2016113320 W CN 2016113320W WO 2018119965 A1 WO2018119965 A1 WO 2018119965A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layers
metal oxide
transparent conductive
thickness
Prior art date
Application number
PCT/CN2016/113320
Other languages
English (en)
French (fr)
Inventor
汤金明
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/505,105 priority Critical patent/US10319301B2/en
Publication of WO2018119965A1 publication Critical patent/WO2018119965A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an OLED display device and a method of fabricating the same.
  • OLED Organic Light-Emitting Diode
  • organic electroluminescent display also known as an organic electroluminescent display
  • OLED Organic Light-Emitting Diode
  • High definition and contrast ratio, near 180° viewing angle, wide temperature range, flexible display and large-area full-color display, etc., are recognized by the industry as the most promising display device.
  • the OLED display device Since the OLED display device has self-luminescence relative to the LCD display device, the structure is simple and low-cost, the reaction speed is fast, the viewing angle is wide, the color saturation is high, the contrast is high, the light and thin can be curled, and the like, more and more smart phones and wearable devices , began to use OLED display devices.
  • the OLED device generally includes a substrate, an anode disposed on the substrate, a hole injection layer disposed on the anode, a hole transport layer disposed on the hole injection layer, and a light-emitting layer disposed on the hole transport layer.
  • the principle of illumination of OLED devices is that semiconductor materials and organic luminescent materials are driven by electric fields, causing luminescence by carrier injection and recombination.
  • a full color display OLED display device it generally includes a plurality of red, green, and blue OLED devices, and the luminescent layers of the red, green, and blue OLED devices are red, green, and blue luminescent layers, respectively.
  • the hole transport layers in different color OLED devices are generally set to different thicknesses to adjust the optical paths of red, green and blue light, using Fabry
  • the -Perot resonance principle calculates the optimal optical path, so that the red, green and blue luminescent layers are respectively located at the position of the second anti-node, so that the luminous efficiency is maximized.
  • the hole transport layer of the red, green, and blue OLED device is required to be prepared by using three different precision metal masks (FMM, Fine Metal Mask) and processed by three evaporation processes, thereby increasing production cost. And the process time is extended, and the product yield is reduced due to the complexity of the process.
  • FMM Fine Metal Mask
  • An object of the present invention is to provide an OLED display device capable of achieving optimum luminous efficiency of red, green, and blue OLED devices, and having low production cost and simple process.
  • Another object of the present invention is to provide a method for fabricating an OLED display device, which can achieve optimal illumination efficiency of red, green, and blue OLED devices, and has low production cost and simple process.
  • the present invention provides an OLED display device including a substrate, a pixel defining layer disposed on the substrate, a plurality of through holes disposed on the pixel defining layer, and the plurality of through holes respectively disposed a plurality of red OLED devices, a plurality of green OLED devices and a plurality of blue OLED devices in the via hole;
  • the red OLED device includes a first transparent conductive metal oxide layer, a first metal layer, a first PEDOT:PSS conductive film layer, a second transparent conductive metal oxide layer, which are sequentially disposed from bottom to top on the substrate, a first hole injecting layer, a first hole transporting layer, a red light emitting layer, a first electron transporting layer, and a first cathode; the first transparent conductive metal oxide layer, the first metal layer, and the first PEDOT:PSS The conductive film layer and the second transparent conductive metal oxide layer together constitute a first anode;
  • the green OLED device includes a third transparent conductive metal oxide layer, a second metal layer, a second PEDOT:PSS conductive film layer, a fourth transparent conductive metal oxide layer, which are sequentially disposed from bottom to top on the substrate, a second hole injection layer, a second hole transport layer, a green light-emitting layer, a second electron transport layer, and a second cathode; the third transparent conductive metal oxide layer, the second metal layer, and the second PEDOT:PSS The conductive film layer and the fourth transparent conductive metal oxide layer together constitute a second anode;
  • the blue OLED device includes a fifth transparent conductive metal oxide layer, a third metal layer, a third PEDOT:PSS conductive film layer, and a sixth transparent conductive metal oxide layer disposed in this order from bottom to top on the substrate. a third hole injecting layer, a third hole transporting layer, a blue light emitting layer, a third electron transporting layer, and a third cathode; the fifth transparent conductive metal oxide layer, the third metal layer, and the third PEDOT
  • the PSS conductive film layer and the sixth transparent conductive metal oxide layer together constitute a third anode.
  • the materials of the first, second, and third PEDOT:PSS conductive film layers are the same, and the refractive index is ⁇ P , and the materials of the second, fourth, and sixth transparent conductive metal oxide layers are the same, and the refractive index is the same Is ⁇ I , the materials of the first, second, and third hole injection layers are the same, and the refractive index is ⁇ J , the materials of the first, second, and third hole transport layers are the same, and the refractive index is ⁇ T , the red light emitted by the red light-emitting layer has a peak wavelength of ⁇ R , the green light emitted by the green light-emitting layer has a peak wavelength of ⁇ G , and the blue light emitted by the blue light-emitting layer has a peak wavelength of ⁇ B ;
  • the thickness of the first PEDOT:PSS conductive film layer is defined as d RP
  • the thickness of the second transparent conductive metal oxide layer is defined as d RI
  • the thickness of the first hole injection layer is defined as d RJ
  • the thickness of the first hole transport layer 36 is defined as d RT , and the relationship between the d RP , d RI , d RJ , and d RT satisfies the relationship (1):
  • n R is a natural number
  • the thickness of the second PEDOT:PSS conductive film layer is defined as d GP
  • the thickness of the fourth transparent conductive metal oxide layer is defined as d GI
  • the thickness of the second hole injection layer is defined as d GJ
  • the thickness of the second hole transport layer is defined as d GT , and the relationship between the d GP , d GI , d GJ , and d GT satisfies the relationship (2):
  • n G is a natural number
  • the thickness of the third PEDOT:PSS conductive film layer is defined as d BP
  • the thickness of the sixth transparent conductive metal oxide layer is defined as d BI
  • the thickness of the third hole injection layer is defined as d BJ
  • the thickness of the third hole transport layer is defined as d BT , and the relationship between d BP , d BI , d BJ , and d BT satisfies the relationship (3):
  • n B is a natural number
  • the plurality of through holes on the pixel defining layer are tapered, and the size of the through hole gradually increases from an end away from the substrate toward an end close to the substrate.
  • the red luminescent layer comprises a host material and a doping dye, the host material is CBP, the doping dye is a red phosphorescent dye, and the red phosphorescent dye is Ir(DBQ) 2 (acac);
  • the green light-emitting layer comprises a host material and a doping dye, the host material is CBP, the doping dye is a green phosphorescent dye, and the green phosphorescent dye is Ir(ppy) 3 ;
  • the blue light-emitting layer includes a host material and a doping dye, the host material is AND, the doping dye is a blue fluorescent dye, and the blue fluorescent dye is BUBD-1;
  • the material of the first, second, third, fourth, fifth, and sixth transparent conductive metal oxide layers is indium tin oxide; the materials of the first, second, and third metal layers are silver;
  • the first, second, and third cathodes are of the same material, each comprising a low work function metal, a low work function metal and an alloy formed of at least one of copper, gold, and silver, a low work function metal nitride, and a low At least one of work function metal fluorides; the low work function metal comprising at least one of lithium, magnesium, calcium, strontium, aluminum, and indium;
  • the material of the first, second, and third hole injection layers includes HAT(CN) 6 , and the structural formula of the HAT (CN) 6 is
  • the materials of the first, second, and third electron transport layers are the same, and each includes BPhen, and the structural formula of the BPhen is
  • the invention also provides a method for fabricating an OLED display device, comprising the following steps:
  • Step 1 Providing a substrate, forming a pixel defining layer on the substrate, wherein the pixel defining layer is provided with a plurality of through holes spaced apart, and the plurality of through holes define a plurality of red pixel regions on the substrate , a plurality of green pixel regions and a plurality of blue pixel regions;
  • the first transparent conductive metal oxide layer, the first metal layer, the first PEDOT:PSS conductive film layer and the second transparent conductive metal oxide layer stacked in this order from bottom to top constitute the first anode;
  • a third transparent conductive metal oxide layer, a second metal layer, a second PEDOT:PSS conductive film layer, and a fourth transparent conductive metal oxide layer stacked in this order from bottom to top constitute a second anode;
  • a fifth transparent conductive metal oxide layer, a third metal layer, a third PEDOT:PSS conductive film layer, and a sixth transparent conductive metal oxide layer which are stacked in this order from bottom to top constitute a first Three anodes;
  • Step 2 cleaning the first, second, and third anodes
  • Step 3 vaporizing the first, second, and third hole injecting layers on the first, second, and third anodes in the same vapor deposition process
  • a red OLED device, a green OLED device, and a blue OLED device are respectively formed in the plurality of via holes of the pixel defining layer corresponding to the red pixel region, the green pixel region, and the blue pixel region.
  • the materials of the first, second, and third PEDOT:PSS conductive film layers are the same, and the refractive index is ⁇ P , and the materials of the second, fourth, and sixth transparent conductive metal oxide layers are the same, and the refractive index is the same Is ⁇ I , the materials of the first, second, and third hole injection layers are the same, and the refractive index is ⁇ J , the materials of the first, second, and third hole transport layers are the same, and the refractive index is
  • ⁇ T the red light emitted by the red light-emitting layer has a peak wavelength of ⁇ R
  • the green light emitted by the green light-emitting layer has a peak wavelength of ⁇ G
  • the blue light emitted by the blue light-emitting layer has a peak wavelength of ⁇ B ;
  • the thickness of the first PEDOT:PSS conductive film layer is defined as d RP
  • the thickness of the second transparent conductive metal oxide layer is defined as d RI
  • the thickness of the first hole injection layer is defined as d RJ
  • the thickness of the first hole transporting layer is defined as d RT , and the relationship between the d RP , d RI , d RJ , and d RT satisfies the relationship (1):
  • n R is a natural number
  • the thickness of the second PEDOT:PSS conductive film layer is defined as d GP
  • the thickness of the fourth transparent conductive metal oxide layer is defined as d GI
  • the thickness of the second hole injection layer is defined as d GJ
  • the thickness of the second hole transport layer is defined as d GT , and the relationship between the d GP , d GI , d GJ , and d GT satisfies the relationship (2):
  • n G is a natural number
  • the thickness of the third PEDOT:PSS conductive film layer is defined as d BP
  • the thickness of the sixth transparent conductive metal oxide layer is defined as d BI
  • the thickness of the third hole injection layer is defined as d BJ
  • the thickness of the third hole transport layer is defined as d BT , and the relationship between d BP , d BI , d BJ , and d BT satisfies the relationship (3):
  • n B is a natural number
  • the plurality of through holes on the pixel defining layer are tapered, and the size of the through hole gradually increases from an end away from the substrate toward an end close to the substrate.
  • step 1 depositing the first, second, third, fourth, fifth, sixth transparent conductive metal oxide layers and the first, second, and third portions by magnetron sputtering Metal layer
  • a PEDOT:PSS aqueous solution was sprayed on the first, second, and third metal layers by inkjet printing.
  • the red luminescent layer comprises a host material and a doping dye, the host material is CBP, the doping dye is a red phosphorescent dye, and the red phosphorescent dye is Ir(DBQ) 2 (acac);
  • the green light-emitting layer comprises a host material and a doping dye, the host material is CBP, the doping dye is a green phosphorescent dye, and the green phosphorescent dye is Ir(ppy) 3 ;
  • the blue light-emitting layer includes a host material and a doping dye, the host material is AND, the doping dye is a blue fluorescent dye, and the blue fluorescent dye is BUBD-1;
  • the invention also provides a method for fabricating an OLED display device, comprising the following steps:
  • Step 1 Providing a substrate, forming a pixel defining layer on the substrate, wherein the pixel defining layer is provided with a plurality of through holes spaced apart, and the plurality of through holes define a plurality of red pixel regions on the substrate , a plurality of green pixel regions and a plurality of blue pixel regions;
  • the first transparent conductive metal oxide layer, the first metal layer, the first PEDOT:PSS conductive film layer and the second transparent conductive metal oxide layer stacked in this order from bottom to top constitute the first anode;
  • a third transparent conductive metal oxide layer, a second metal layer, a second PEDOT:PSS conductive film layer, and a fourth transparent conductive metal oxide layer stacked in this order from bottom to top constitute a second Anode
  • a fifth transparent conductive metal oxide layer, a third metal layer, a third PEDOT:PSS conductive film layer, and a sixth transparent conductive metal oxide layer which are stacked in this order from bottom to top constitute a first Three anodes;
  • Step 2 cleaning the first, second, and third anodes
  • Step 3 vaporizing the first, second, and third hole injecting layers on the first, second, and third anodes in the same vapor deposition process
  • the materials of the first, second, and third PEDOT:PSS conductive film layers are the same, and the refractive index is ⁇ P , and the materials of the second, fourth, and sixth transparent conductive metal oxide layers are the same, and The refractive index is ⁇ I , the materials of the first, second, and third hole injection layers are the same, and the refractive index is ⁇ J , and the materials of the first, second, and third hole transport layers are the same, and The refractive index is ⁇ T , the peak wavelength of the red light emitted by the red light-emitting layer is ⁇ R , the peak wavelength of the green light emitted by the green light-emitting layer is ⁇ G , and the peak wavelength of the blue light emitted by the blue light-emitting layer Is ⁇ B ;
  • the thickness of the first PEDOT:PSS conductive film layer is defined as d RP
  • the thickness of the second transparent conductive metal oxide layer is defined as d RI
  • the thickness of the first hole injection layer is defined as d RJ
  • the thickness of the first hole transporting layer is defined as d RT , and the relationship between the d RP , d RI , d RJ , and d RT satisfies the relationship:
  • n R is a natural number
  • the thickness of the second PEDOT:PSS conductive film layer is defined as d GP
  • the thickness of the fourth transparent conductive metal oxide layer is defined as d GI
  • the thickness of the second hole injection layer is defined as d GJ
  • the thickness of the second hole transport layer is defined as d GT , and the relationship between the d GP , d GI , d GJ , and d GT satisfies the relationship:
  • n G is a natural number
  • the thickness of the third PEDOT:PSS conductive film layer is defined as d BP
  • the thickness of the sixth transparent conductive metal oxide layer is defined as d BI
  • the thickness of the third hole injection layer is defined as d BJ
  • the thickness of the third hole transport layer is defined as d BT , and the relationship between the d BP , d BI , d BJ , and d BT satisfies the relationship:
  • n B is a natural number
  • the plurality of through holes on the pixel defining layer are tapered, and the size of the through hole gradually increases from an end away from the substrate toward an end close to the substrate.
  • An OLED display device and a method of fabricating the same according to the present invention wherein first, second, and third PEDOT:PSS conductive film layers are respectively disposed in red, green, and blue OLED devices, and The first, second, and third PEDOT:PSS conductive film layers are disposed at different thicknesses to achieve optimal illumination efficiency of the red, green, and blue OLED devices, respectively, the first, second, and third PEDOT
  • the PSS conductive film layer is prepared by the inkjet printing method, and has low production cost and simple process.
  • the OLED display device of the present invention is respectively disposed in the red, green and blue OLED devices. 1.
  • the thickness of the second and third hole transport layers is equal, so that an ordinary metal mask can be formed in the same vapor deposition process, thereby saving three precision metal masks, reducing production cost, and reducing Process time.
  • FIG. 1 is a schematic structural view of an OLED display device of the present invention
  • FIG. 2 is a flow chart of a method of fabricating an OLED display device of the present invention.
  • an OLED display device includes a substrate 10 , a pixel defining layer 20 disposed on the substrate 10 , a plurality of through holes 21 disposed on the pixel defining layer 20 , and respectively a plurality of red OLED devices 30, a plurality of green OLED devices 40 and a plurality of blue OLED devices 50 in the plurality of vias 21;
  • the red OLED device 30 includes a first transparent conductive metal oxide layer 31, a first metal layer 32, a first PEDOT:PSS conductive film layer 33, and a second transparent conductive layer disposed in this order from the bottom to the top of the substrate 10.
  • the first transparent conductive metal oxide layer 31, the first metal layer 32, the first PEDOT: PSS conductive film layer 33 and the second transparent conductive metal oxide layer 34 together constitute a first anode 301;
  • the green OLED device 40 includes a third transparent conductive metal oxide layer 41, a second metal layer 42, a second PEDOT:PSS conductive film layer 43, and a fourth transparent conductive layer disposed on the substrate 10 in order from bottom to top.
  • the third transparent conductive metal oxide layer 41, the second metal layer 42, the second PEDOT: PSS conductive film layer 43 and the fourth transparent conductive metal oxide layer 44 together constitute a second anode 401;
  • the blue OLED device 50 includes a fifth transparent conductive metal oxide layer 51, a third metal layer 52, a third PEDOT: PSS conductive film layer 53, and a sixth transparent layer which are sequentially disposed from the bottom to the top on the substrate 10.
  • the object layer 51, the third metal layer 52, the third PEDOT:PSS conductive film layer 53, and the sixth transparent conductive metal oxide layer 54 collectively constitute a third anode 501.
  • the materials of the first, second, and third PEDOT:PSS conductive film layers 33, 43, and 53 are the same, and the refractive index is ⁇ P , and the second, fourth, and sixth transparent conductive metal oxides
  • the materials of the layers 34, 44, 54 are the same, and the refractive index is ⁇ I
  • the materials of the first, second, and third hole injection layers 35, 45, 55 are the same, and the refractive index is ⁇ J
  • the first The materials of the second and third hole transport layers 36, 46, 56 are the same, and the refractive index is ⁇ T
  • the red light emitted by the red light-emitting layer 37 has a peak wavelength of ⁇ R
  • the green light-emitting layer 47 The peak wavelength of the emitted green light is ⁇ G
  • the peak wavelength of the blue light emitted by the blue light-emitting layer 57 is ⁇ B ;
  • the thickness of the first PEDOT:PSS conductive film layer 33 is defined as d RP
  • the thickness of the second transparent conductive metal oxide layer 34 is defined as d RI
  • the thickness of the first hole injection layer 35 is defined as d RJ
  • the thickness of the first hole transport layer 36 is defined as d RT
  • the relationship between the d RP , d RI , d RJ , and d RT satisfies the relationship (1):
  • n R is a natural number
  • the thickness of the second PEDOT:PSS conductive film layer 43 is defined as d GP
  • the thickness of the fourth transparent conductive metal oxide layer 44 is defined as d GI
  • the thickness of the second hole injection layer 45 is defined as d GJ
  • the thickness of the second hole transport layer 46 is defined as d GT
  • the relationship between the d GP , d GI , d GJ , and d GT satisfies the relationship (2):
  • n G is a natural number
  • the thickness of the third PEDOT:PSS conductive film layer 53 is defined as d BP
  • the thickness of the sixth transparent conductive metal oxide layer 54 is defined as d BI
  • the thickness of the third hole injection layer 55 is defined as d BJ
  • the thickness of the third hole transport layer 56 is defined as d BT
  • the relationship between the d BP , d BI , d BJ , and d BT satisfies the relationship (3):
  • n B is a natural number
  • the present invention adjusts the first, second, and third of the red, green, and blue OLED devices 30, 40, 50 PEDOT: the thickness of the PSS conductive film layers 33, 43, 53 to achieve the best luminous efficiency of the red, green, and blue OLED devices 30, 40, 50, respectively
  • the first, second, and third PEDOT PSS conductive
  • the film layers 33, 43, and 53 can be prepared by an inkjet printing method, and the production cost is low, and the process is simple.
  • the red, green, and blue OLED devices 30 and 40 of the OLED display device of the present invention Compared with the conventional OLED display device, the red, green, and blue OLED devices 30 and 40 of the OLED display device of the present invention.
  • the first, second, and third hole transporting layers 36, 46, 56 of 50 have the same thickness, and thus can be formed in the same vapor deposition process by using a common metal mask (CMM).
  • CCM common metal mask
  • the first, second, and third anodes 301, 302, and 303 are all reflective electrodes, and the first, second, and third cathodes 39, 49, and 59 are all The translucent electrode, such that the red, green, and blue OLED devices 30, 40, 50 are all top emitting OLED devices, and the OLED display device of the present invention is a top emitting OLED display device.
  • the distance d from the light-emitting layer to the reflective anode in the top-emitting OLED device needs to satisfy the following relationship (4):
  • d represents the distance from the light-emitting layer to the reflective anode
  • represents the light-emitting layer and the reflective anode
  • the refractive index of the material between the poles, ⁇ represents the peak wavelength of the light emitted by the light-emitting layer, and m represents a natural number.
  • the distance d satisfies the following relation (5):
  • the distance d from the light-emitting layer to the reflective anode is equal to the PEDOT:PSS conductive film layer and the transparent conductive metal oxide layer above the metal layer.
  • the substrate 10 is a transparent rigid substrate or a transparent flexible substrate, and the transparent rigid substrate may be a glass substrate, and the material of the flexible substrate includes at least one of a polyester compound and a polyimide compound.
  • the substrate 10 is a glass substrate.
  • the plurality of through holes 21 on the pixel defining layer 20 are tapered, and the size of the through holes 21 gradually increases from an end away from the substrate 10 toward an end close to the substrate 10.
  • the pixel defining layer 20 is an organic insulating material, preferably polyimide (PI).
  • PI polyimide
  • the material of the first, second, third, fourth, fifth, and sixth transparent conductive metal oxide layers 31, 34, 41, 44, 51, 54 is indium tin oxide.
  • the material of the first, second, and third metal layers 32, 42, 52 is silver.
  • the PEDOT:PSS conductive film layer has a refractive index of 1.65, and has the advantages of high electrical conductivity, high mechanical strength, high visible light transmittance, and superior stability, and is a water-soluble polymer, which is easy to prepare and thereafter. Treatment and curing.
  • the materials of the first, second, and third cathodes 39, 49, and 59 are the same, and each includes an alloy formed by a low work function metal, a low work function metal, and at least one of copper, gold, and silver. At least one of a work function metal nitride and a low work function metal fluoride; the low work function metal comprising at least one of lithium, magnesium, calcium, strontium, aluminum, and indium.
  • the first, second, and third cathodes 39, 49, 59 are magnesium-silver alloy layers, and are made of magnesium. a composite layer formed by superposing a silver alloy layer and a silver layer, a composite layer composed of a lithium fluoride layer or a lithium nitride layer and a silver layer, or a composite layer composed of a lithium fluoride layer or a lithium nitride layer and an aluminum layer .
  • the first, second and third cathodes 39, 49, 59 are magnesium-silver alloy layers.
  • the material of the first, second, and third hole injection layers 35, 45, and 55 includes HAT(CN) 6 , and the structural formula of the HAT (CN) 6 is
  • materials of the first, second, and third hole transport layers 36, 46, and 56 include HTM081 of Merck Corporation.
  • the red light emitting layer 37 includes a host material and a doping dye, the host material is CBP, and the doping dye is a red phosphorescent dye.
  • the red phosphorescent dye is Ir(DBQ) 2 (acac ).
  • the doping dye has a concentration of 3 wt% to 5 wt%.
  • the green light-emitting layer 47 includes a host material and a doping dye, the host material is CBP, and the doping dye is a green phosphorescent dye.
  • the green phosphorescent dye is Ir(ppy) 3 .
  • the doping dye has a concentration of 3 wt% to 15 wt%, preferably 3 wt% to 10 wt%, more preferably 5 wt% to 10 wt%.
  • the blue light emitting layer 57 includes a host material and a doping dye, the host material is AND, the doping dye is a blue fluorescent dye, and preferably, the blue fluorescent dye is BUBD-1. .
  • the doping dye has a concentration of 3 wt% to 5 wt%.
  • the peak wavelength of the red light emitted by the red light-emitting layer 37 is 612 nm
  • the peak wavelength of the green light emitted by the green light-emitting layer 47 is 512 nm
  • the peak wavelength of the blue light emitted by the blue light-emitting layer 57 is 468 nm.
  • the materials of the first, second, and third electron transport layers 38, 48, and 58 are the same, and each includes BPhen, and the structural formula of the BPhen is
  • the first, second, third, fourth, fifth, and sixth transparent conductive metal oxide layers 31, 34, 41, 44, 51, 54 have a thickness of 10 nm to 200 nm, preferably 10 nm. 100 nm, more preferably 10 nm to 50 nm.
  • the first, second, and third metal layers 32, 42, 52 have a thickness of 80 nm to 300 nm, preferably 80 nm to 200 nm, and more preferably 100 nm to 150 nm.
  • the thickness of the first, second, and third hole injection layers 35, 45, 55 is 5 nm to 30 nm, preferably 5 nm to 20 nm, and more preferably 5 nm to 10 nm.
  • the first, second, and third hole transporting layers 36, 46, 56 have a thickness of 20 nm to 400 nm, preferably 50 nm to 300 nm, and more preferably 50 nm to 200 nm.
  • the red light-emitting layer 37 has a thickness of 10 nm to 30 nm, preferably 15 nm to 25 nm, and more preferably 20 nm to 25 nm.
  • the green light-emitting layer 47 has a thickness of 10 nm to 50 nm, preferably 20 nm to 40 nm, and more preferably 30 nm to 40 nm.
  • the blue light-emitting layer 57 has a thickness of 10 nm to 50 nm, preferably 20 nm to 40 nm, and more preferably 30 nm to 40 nm.
  • the thickness of the first, second, and third electron transport layers 38, 48, 58 is 5 nm to 50 nm, preferably 20 nm to 40 nm, and more preferably 25 nm to 35 nm.
  • the first, second, and third PEDOT:PSS conductive film layers 33, 43, and 53 are respectively disposed in the red, green, and blue OLED devices 30, 40, 50, and the first,
  • the second and third PEDOT:PSS conductive film layers 33, 43, and 53 are set to different thicknesses to achieve the best luminous efficiencies of the red, green, and blue OLED devices 30, 40, and 50, respectively.
  • the third PEDOT: PSS conductive film layers 33, 43, 53 are all inkjet printing
  • the method has the advantages of low preparation cost and simple process.
  • the OLED display device of the present invention is respectively disposed in the first and second of the red, green and blue OLED devices 30, 40, 50.
  • the third hole transporting layers 36, 46, 56 are equal in thickness, so that a common metal mask (CMM) can be formed in the same vapor deposition process, thereby saving three precision metal masks and reducing production costs. And reduce the process time.
  • CCMM common metal mask
  • the present invention further provides a method for fabricating the above OLED display device, comprising the following steps:
  • Step 1 providing a substrate 10 , forming a pixel defining layer 20 on the substrate 10 , wherein the pixel defining layer 20 is provided with a plurality of through holes 21 disposed at intervals, and the plurality of through holes 21 are on the substrate 10 Defining a plurality of red pixel regions 11, a plurality of green pixel regions 12, and a plurality of blue pixel regions 13;
  • first, second, and third metal layers 32, 42, 52 on the first, third, and fifth transparent conductive metal oxide layers 31, 41, 51, respectively;
  • the first transparent conductive metal oxide layer 31, the first metal layer 32, the first PEDOT:PSS conductive film layer 33, and the second transparent conductive metal oxide layer are laminated in this order from bottom to top. 34 together constitute a first anode 301;
  • a third transparent conductive metal oxide layer 41, a second metal layer 42, a second PEDOT: PSS conductive film layer 43, and a fourth transparent conductive metal oxide layer are sequentially stacked from bottom to top. 44 together constitute a second anode 401;
  • the fifth transparent conductive metal oxide layer 51, the third metal layer 52, the third PEDOT:PSS conductive film layer 53, and the sixth transparent conductive metal oxide are laminated in this order from bottom to top.
  • the plurality of through holes 21 on the pixel defining layer 20 are tapered, and the size of the through holes 21 gradually increases from an end away from the substrate 10 toward an end close to the substrate 10.
  • the first, second, third, fourth, fifth, sixth transparent conductive metals are deposited under a vacuum of 1 ⁇ 10 ⁇ 5 Pa by magnetron sputtering.
  • the oxide layers 31, 34, 41, 44, 51, 54 were deposited at a rate of 60 nm/min.
  • the PEDOT:PSS aqueous solution is sprayed on the first, second, and third metal layers 32, 42, 52 by inkjet printing.
  • the first, second, and third metal layers 32, 42, 52 are deposited by a magnetron sputtering method under a vacuum of 1 ⁇ 10 ⁇ 5 Pa, and the deposition rate is 2400 nm. /min.
  • the plurality of through holes 21 on the pixel defining layer 20 are tapered, and the size of the through hole 21 gradually increases from an end away from the substrate 10 toward an end close to the substrate 10, this can be ensured.
  • Forming the first, second, third, fourth, fifth, and sixth transparent conductive metal oxide layers 31, 34, 41, 44, 51, 54 and the first by magnetron sputtering When the second and third metal layers 32, 42, 52 are not sputtered on the wall of the plurality of through holes 21, the corresponding structural layers of the plurality of through holes 21 are prevented from passing through the through holes.
  • the wall of the hole 21 and the top surface of the pixel defining layer 20 are connected.
  • the KEDeva inkjet printing device is used to spray the PEDOT:PSS aqueous solution, and after the PEDOT:PSS aqueous solution is sprayed, the solution is leveled for 3 minutes, and 256 nm ultraviolet light is used for curing and removing moisture to form First, second, and third PEDOT: PSS conductive film layers 33, 43, and 53.
  • Step 2 Clean the first, second, and third anodes 301, 401, and 501.
  • the substrate 10 with the first, second, and third anodes 301, 401, and 501 is first ultrasonically treated in a commercial cleaning agent (such as detergent) in deionized water.
  • a commercial cleaning agent such as detergent
  • Rinse, ultrasonically degrease in acetone/ethanol (1/1 by volume) mixed solvent bake in a clean environment until completely remove water, then wash with ultraviolet light and ozone, and use low energy cation beam (argon, nitrogen plasma)
  • the surface is bombarded to obtain clean first, second, and third anodes 301, 401, and 501.
  • Step 3 in the same vapor deposition process on the first, second, and third anodes 301, 401, 501, respectively, the first, second, and third hole injection layers 35, 45, 55;
  • the red pixel region 11, the green pixel region 12, and the blue pixel region 13 respectively form a red OLED device 30 and a green color.
  • the materials of the first, second, and third PEDOT:PSS conductive film layers 33, 43, and 53 are the same, and the refractive index is ⁇ P , and the second, fourth, and sixth transparent conductive metal oxides
  • the materials of the layers 34, 44, 54 are the same, and the refractive index is ⁇ I
  • the materials of the first, second, and third hole injection layers 35, 45, 55 are the same, and the refractive index is ⁇ J
  • the first The materials of the second and third hole transport layers 36, 46, 56 are the same, and the refractive index is ⁇ T
  • the red light emitted by the red light-emitting layer 37 has a peak wavelength of ⁇ R
  • the green light-emitting layer 47 The peak wavelength of the emitted green light is ⁇ G
  • the peak wavelength of the blue light emitted by the blue light-emitting layer 57 is ⁇ B ;
  • the thickness of the first PEDOT:PSS conductive film layer 33 is defined as d RP
  • the thickness of the second transparent conductive metal oxide layer 34 is defined as d RI
  • the thickness of the first hole injection layer 35 is defined as d RJ
  • the thickness of the first hole transport layer 36 is defined as d RT
  • the relationship between the d RP , d RI , d RJ , and d RT satisfies the relationship (1):
  • n R is a natural number
  • the thickness of the second PEDOT:PSS conductive film layer 43 is defined as d GP
  • the thickness of the fourth transparent conductive metal oxide layer 44 is defined as d GI
  • the thickness of the second hole injection layer 45 is defined as d GJ
  • the thickness of the second hole transport layer 46 is defined as d GT
  • the relationship between the d GP , d GI , d GJ , and d GT satisfies the relationship (2):
  • n G is a natural number
  • the thickness of the third PEDOT:PSS conductive film layer 53 is defined as d BP
  • the thickness of the sixth transparent conductive metal oxide layer 54 is defined as d BI
  • the thickness of the third hole injection layer 55 is defined as d BJ
  • the thickness of the third hole transport layer 56 is defined as d BT
  • the relationship between the d BP , d BI , d BJ , and d BT satisfies the relationship (3):
  • n B is a natural number
  • the first, second, and third hole injection layers 35, 45, and 55 are prepared by using a common metal mask (CMM) and by an evaporation process;
  • CCM common metal mask
  • the first, second, and third hole transporting layers 36, 46, 56 are formed by a common metal mask (CMM) and processed by an evaporation process;
  • CCM common metal mask
  • the red, green and blue light-emitting layers 37, 47, 57 are respectively prepared by three different precision metal masks (FMM) and by three different evaporation processes;
  • the first, second, and third electron transport layers 38, 48, 58 are formed by a common metal mask (CMM) and processed by an evaporation process;
  • CCM common metal mask
  • the first, second, and third cathodes 39, 49, 59 are fabricated using a common metal mask (CMM) and by an evaporation process.
  • CCM common metal mask
  • the common metal mask is a metal mask having only one opening, and the opening corresponds to all red, green, and blue pixel regions 11 on the substrate 10 that need to be evaporated. , 12, 13 and a pixel defining layer 20 between all of the red, green, and blue pixel regions 11, 12, 13 that need to be evaporated.
  • the plurality of through holes 21 on the pixel defining layer 20 are tapered, and the size of the through hole 21 gradually increases from an end away from the substrate 10 toward an end close to the substrate 10, this can be ensured.
  • CMS common metal mask
  • the target material is not vapor-deposited on the wall, and the corresponding structural layers of the plurality of through holes 21 are prevented from being connected via the hole walls of the through holes 21 and the top surface of the pixel defining layer 20.
  • step 3 all the evaporation processes are performed in a vacuum chamber having a degree of vacuum of 1 ⁇ 10 -6 to 2 ⁇ 10 ⁇ 4 Pa.
  • the evaporation rates of the first, second, and third hole injection layers 35, 45, and 55 are 0.05 nm/s.
  • the evaporation rates of the first, second, and third hole transport layers 36, 46, and 56 are 0.1 nm/s.
  • the red light-emitting layer 37 is formed by vapor-depositing a host material and a doping dye in a dual source manner, wherein the evaporation rate of the host material is 0.1 nm/s, and the doping dye is steamed.
  • the plating rate was 0.003 nm/s.
  • the green light-emitting layer 47 is formed by vapor-depositing a host material and a doping dye in a dual source manner, wherein the evaporation rate of the host material is 0.1 nm/s, and the doping dye is steamed.
  • the plating rate was 0.01 nm/s.
  • the blue light-emitting layer 57 is formed by vapor-depositing a host material and a doping dye in a two-source co-evaporation manner, wherein the host material has an evaporation rate of 0.1 nm/s, and the dye-doped The evaporation rate was 0.005 nm/s.
  • the evaporation rates of the first, second, and third electron transport layers 38, 48, and 58 are 0.1 nm/s.
  • the first, second, and third cathodes 39, 49, and 59 are magnesium-silver alloy layers
  • the first, second, and third cathodes 39, 49, and 59 are prepared by using magnesium. It is vapor-deposited by co-steaming with silver double source, wherein the evaporation rate of magnesium is 0.09 nm/s, and the evaporation rate of silver is 0.01 nm/s.
  • the above OLED display device is fabricated by disposing first, second, and third PEDOT:PSS conductive film layers 33, 43, and 53 in red, green, and blue OLED devices 30, 40, 50, respectively, and The first, second, and third PEDOT:PSS conductive film layers 33, 43, and 53 are disposed at different thicknesses to achieve optimum luminous efficiency of the red, green, and blue OLED devices 30, 40, and 50, respectively.
  • First, second, third PEDOT: PSS conductive film layers 33, 43, 53 are all prepared by inkjet printing method, the production cost is low, the process is simple, compared with the conventional OLED display device, the OLED display device of the present invention respectively
  • the thicknesses of the first, second, and third hole transport layers 36, 46, 56 disposed in the red, green, and blue OLED devices 30, 40, 50 are equal, so that a common metal mask (CMM) can be used. Formed in the same evaporation process, saving three precision metal masks, reducing production costs and reducing process time.
  • CCMM common metal mask
  • the red OLED device includes a first transparent conductive metal oxide layer 31, a first metal layer 32, a first PEDOT:PSS conductive film layer 33, and a second transparent conductive layer disposed on the substrate 10 from bottom to top. a metal oxide layer 34, a first hole injection layer 35, a first hole transport layer 36, a red light-emitting layer 37, a first electron transport layer 38, and a first cathode 39;
  • the first transparent conductive metal oxide layer 31 has a thickness of 20 nm; the first metal layer 32 has a thickness of 150 nm; the first PEDOT:PSS conductive film layer 33 has a thickness of X R nm;
  • the thickness of the transparent conductive metal oxide layer 34 is 20 nm;
  • the material of the first hole injection layer 35 is HAT(CN) 6 and the thickness is 5 nm;
  • the material of the first hole transport layer 36 is HTM081, and the thickness is 20 nm;
  • the red light-emitting layer 37 comprises a host material CBP and a red phosphorescent dye Ir(DBQ) 2 (acac), the red phosphorescent dye Ir(DBQ) 2 (acac) having a concentration of 3 wt%, the red light-emitting layer 37
  • the thickness of the first electron transport layer 38 is Bphen and the thickness is 20 nm;
  • the first cathode 39 is a magnesium-silver alloy layer, and the mass ratio
  • the green OLED device 40 includes a third transparent conductive metal oxide layer 41, a second metal layer 42, and a second PEDOT:PSS conductive film layer disposed on the substrate 10 in order from bottom to top. 43, a fourth transparent conductive metal oxide layer 44, a second hole injection layer 45, a second hole transport layer 46, a green light-emitting layer 47, a second electron transport layer 48, and a second cathode 49;
  • the thickness of the third transparent conductive metal oxide layer 41 is 20 nm; the thickness of the second metal layer 42 is 150 nm; the thickness of the second PEDOT:PSS conductive film layer 43 is X G nm;
  • the thickness of the transparent conductive metal oxide layer 44 is 20 nm;
  • the material of the second hole injection layer 45 is HAT(CN) 6 and the thickness is 5 nm;
  • the material of the second hole transport layer 46 is HTM081, and the thickness is 20 nm;
  • the green light-emitting layer 47 comprises a host material CBP and a green phosphorescent dye Ir(ppy) 3 , the concentration of the green phosphorescent dye Ir(ppy) 3 is 10% by weight, and the thickness of the green light-emitting layer 47 is 30 nm;
  • the material of the second electron transport layer 48 is Bphen, and the thickness is 20 nm;
  • the second cathode 49 is a magnesium-silver alloy layer, and the mass ratio of magnesium to silver in
  • the blue OLED device 50 includes a fifth transparent conductive metal oxide layer 51, a third metal layer 52, a third PEDOT: PSS conductive film layer 53, and a sixth transparent layer which are sequentially disposed from the bottom to the top on the substrate 10.
  • the thickness of the fifth transparent conductive metal oxide layer 51 is 20 nm; the thickness of the third metal layer 52 is 150 nm; the thickness of the third PEDOT:PSS conductive film layer 53 is X B nm; The thickness of the transparent conductive metal oxide layer 54 is 20 nm; the material of the third hole injection layer 55 is HAT(CN) 6 and the thickness is 5 nm; the material of the third hole transport layer 56 is HTM081, and the thickness is 20 nm; the blue light-emitting layer 57 includes a host material CBP and a blue fluorescent dye BUBD-1, the blue fluorescent dye BUBD-1 has a concentration of 5 wt%, and the blue light-emitting layer 57 has a thickness of 20 nm; The material of the third electron transport layer 58 is Bphen and has a thickness of 20 nm; the third cathode 59 is a magnesium-silver alloy layer, and the mass ratio of magnesium to silver in the magnesium-silver alloy layer is 9:1, the third
  • the red OLED device includes a first transparent conductive metal oxide layer 31, a first metal layer 32, a second transparent conductive metal oxide layer 34, and a first cavity disposed in this order from the bottom to the top of the substrate 10.
  • the first transparent conductive metal oxide layer 31 has a thickness of 20 nm; the first metal layer 32 has a thickness of 150 nm; and the second transparent conductive metal oxide layer 34 has a thickness of 20 nm; the first cavity
  • the material of the injection layer 35 is HAT(CN) 6 and has a thickness of 5 nm; the material of the first hole transport layer 36 is HTM081 and the thickness is X 1 nm; the red light-emitting layer 37 comprises a host material CBP and a red phosphorescent dye.
  • the concentration of the red phosphorescent dye Ir(DBQ) 2 (acac) is 3 wt%, the thickness of the red light-emitting layer 37 is 30 nm;
  • the material of the first electron-transport layer 38 is Bphen, a thickness of 20nm;
  • the first cathode 39 is a magnesium-silver alloy layer, the mass ratio of magnesium to silver in the magnesium-silver alloy layer is 9:1, the thickness of the first cathode 39 is 20nm;
  • the green OLED device 40 includes a third transparent conductive metal oxide layer 41, a second metal layer 42, a fourth transparent conductive metal oxide layer 44, and a second cavity which are sequentially disposed from the bottom to the top on the substrate 10.
  • the thickness of the third transparent conductive metal oxide layer 41 is 20 nm; the thickness of the second metal layer 42 is 150 nm; the thickness of the fourth transparent conductive metal oxide layer 44 is 20 nm; the second cavity
  • the material of the injection layer 45 is HAT(CN) 6 and the thickness is 5 nm; the material of the second hole transport layer 46 is HTM081, and the thickness is X 2 nm; the green light-emitting layer 47 comprises a host material CBP and a green phosphorescent dye.
  • the second cathode 49 is a magnesium-silver alloy layer, the mass ratio of magnesium to silver in the magnesium-silver alloy layer is 9:1, and the thickness of the second cathode 49 is 20 nm;
  • the blue OLED device 50 includes a fifth transparent conductive metal oxide layer 51, a third metal layer 52, a sixth transparent conductive metal oxide layer 54, and a third space which are sequentially disposed on the substrate 10 from bottom to top. a hole injection layer 55, a third hole transport layer 56, a blue light-emitting layer 57, a third electron transport layer 58, and a third cathode 59;
  • the thickness of the fifth transparent conductive metal oxide layer 51 is 20 nm; the thickness of the third metal layer 52 is 150 nm; the thickness of the sixth transparent conductive metal oxide layer 54 is 20 nm; the third cavity
  • the material of the injection layer 55 is HAT(CN) 6 and the thickness is 5 nm; the material of the third hole transport layer 56 is HTM081, and the thickness is X 3 nm; the blue light-emitting layer 57 includes the host material CBP and blue.
  • Fluorescent dye BUBD-1 the concentration of the blue fluorescent dye BUBD-1 is 5wt%, the thickness of the blue light-emitting layer 57 is 20nm; the material of the third electron transport layer 58 is Bphen, the thickness is 20nm;
  • the third cathode 59 is a magnesium-silver alloy layer, the mass ratio of magnesium to silver in the magnesium-silver alloy layer is 9:1, and the thickness of the third cathode 59 is 20 nm;
  • Comparative Example 1 differs from Embodiment 1 in that the red, green, and blue OLEDs are The first, second, and third PEDOT:PSS conductive film layers 33, 43, and 53 are not disposed in the devices 30, 40, and 50, respectively, and the first hole transporting layer 36, the second hole transporting layer 46, and the first The thickness of the three hole transport layer 56 is not equal.
  • Example 1 Brightness cd/m 2 Chroma CIE-X Chroma CIE-Y W screen 165 0.300 0.313 R screen 59 0.660 0.330 G screen 158 0.237 0.711 B screen 13 0.144 0.044
  • the red, green, and blue OLED devices 30, 40 are realized by setting the first, second, and third PEDOT:PSS conductive film layers 33, 43, and 53 to different thicknesses.
  • the luminous efficiencies of the first, second, and third PEDOT:PSS conductive film layers 33, 43, and 53 are all prepared by an inkjet printing method, and the production cost is low, and the process is simple.
  • the second and third hole transporting layers 36, 46, 56 have the same thickness, so that a common metal mask (CMM) can be formed in the same vapor deposition process, thereby saving three precision metal masks.
  • CCMM common metal mask
  • the red, green, and blue OLED devices 30, 40, 50 are realized by setting the first, second, and third hole transport layers 36, 46, 56 to different thicknesses.
  • the luminous efficiencies are respectively optimized, and the thicknesses of the first, second, and third hole transporting layers 36, 46, 56 are different, and thus the first, second, and third hole transporting layers 36, 46, 56 Need to adopt three lanes
  • Different precision metal masks (FMM) are prepared by three evaporation processes, so the production cost is high and the process time is long;
  • Embodiment 1 of the present invention is that the use of three precision metal masks (FMM) is reduced, the OLED evaporation process is simplified and optimized, and the cost is greatly improved. Product yield.
  • FMM three precision metal masks
  • the present invention provides an OLED display device and a method of fabricating the same, by disposing first, second, and third PEDOT:PSS conductive film layers in red, green, and blue OLED devices, respectively, and The first, second, and third PEDOT:PSS conductive film layers are set to different thicknesses to achieve optimal illumination efficiency of the red, green, and blue OLED devices, respectively, the first, second, and third PEDOT:PSS
  • the conductive film layers are all prepared by an inkjet printing method, and the production cost is low, and the process is simple.
  • the OLED display device of the present invention is respectively disposed in the red, green, and blue OLED devices.
  • the second and third hole transport layers have the same thickness, so that a common metal mask (CMM) can be formed in the same vapor deposition process, thereby saving three precision metal masks and reducing production costs, and Reduce process time.
  • CCMM common metal mask

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示装置及其制作方法,通过在红、绿、蓝色OLED器件(30、40、50)中分别设置第一、第二、第三PEDOT:PSS导电膜层(33、43、53),并且将所述第一、第二、第三PEDOT:PSS导电膜层(33、43、53)设置为不同的厚度来实现红、绿、蓝色OLED器件(30、40、50)的发光效率分别达到最佳,所述第一、第二、第三PEDOT:PSS导电膜层(33、43、53)均采用喷墨打印方法制备,生产成本低,制程简单,与传统的OLED显示装置相比,该OLED显示装置中分别设置于红、绿、蓝色OLED器件(30、40、50)中的第一、第二、第三空穴传输层的厚度(36、46、56)相等,因此可以采用一道普通金属掩膜板在同一道蒸镀制程中形成,从而节约了三道精密金属掩膜板,降低生产成本,并且减少制程时间。

Description

OLED显示装置及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED显示装置及其制作方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器,也称为有机电致发光显示器,是一种新兴的平板显示装置,由于其具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
由于OLED显示装置相对于LCD显示装置具有自发光,结构简单低成本,反应速度快、广视角、色饱和度高、对比度高、轻薄可卷曲等优点,越来越多的智能手机以及可穿戴设备,开始采用OLED显示装置。
OLED器件通常包括:基板、设于基板上的阳极、设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层、及设于电子注入层上的阴极。OLED器件的发光原理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。具体的,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
具体的,对于全彩显示OLED显示装置来说,其通常包括多个红、绿、蓝色OLED器件,所述红、绿、蓝色OLED器件的发光层分别为红、绿、蓝色发光层,为了使红、绿、蓝色OLED器件分别达到最优化的发光效率,一般将不同颜色OLED器件中的空穴传输层设置为不同的厚度,来调节红、绿、蓝光的光程,利用Fabry-Perot(法布里-珀罗)共振原理计算出最佳光程,使红、绿、蓝色发光层分别位于第二反波节的位置,从而发光效率达到最大。这就要求所述红、绿、蓝色OLED器件的空穴传输层需要采用三道不同的精密金属掩膜板(FMM,Fine Metal Mask)并且通过三道蒸镀制程制备,从而增加了生产成本并延长了制程时间,同时由于制程的复杂性导致产品良率降低。
发明内容
本发明的目的在于提供一种OLED显示装置,能够实现红、绿、蓝色OLED器件的发光效率分别达到最佳,并且生产成本低,制程简单。
本发明的目的还在于提供一种OLED显示装置的制作方法,能够实现红、绿、蓝色OLED器件的发光效率分别达到最佳,并且生产成本低,制程简单。
为实现上述目的,本发明提供一种OLED显示装置,包括基板、设于所述基板上的像素定义层、设于所述像素定义层上的数个通孔、以及分别设于所述数个通孔内的数个红色OLED器件、数个绿色OLED器件及数个蓝色OLED器件;
所述红色OLED器件包括在所述基板上从下到上依次设置的第一透明导电金属氧化物层、第一金属层、第一PEDOT:PSS导电膜层、第二透明导电金属氧化物层、第一空穴注入层、第一空穴传输层、红色发光层、第一电子传输层、及第一阴极;所述第一透明导电金属氧化物层、第一金属层、第一PEDOT:PSS导电膜层及第二透明导电金属氧化物层共同构成第一阳极;
所述绿色OLED器件包括在所述基板上从下到上依次设置的第三透明导电金属氧化物层、第二金属层、第二PEDOT:PSS导电膜层、第四透明导电金属氧化物层、第二空穴注入层、第二空穴传输层、绿色发光层、第二电子传输层、及第二阴极;所述第三透明导电金属氧化物层、第二金属层、第二PEDOT:PSS导电膜层及第四透明导电金属氧化物层共同构成第二阳极;
所述蓝色OLED器件包括在所述基板上从下到上依次设置的第五透明导电金属氧化物层、第三金属层、第三PEDOT:PSS导电膜层、第六透明导电金属氧化物层、第三空穴注入层、第三空穴传输层、蓝色发光层、第三电子传输层、及第三阴极;所述第五透明导电金属氧化物层、第三金属层、第三PEDOT:PSS导电膜层及第六透明导电金属氧化物层共同构成第三阳极。
所述第一、第二、第三PEDOT:PSS导电膜层的材料相同,且折射率为ηP,所述第二、第四、第六透明导电金属氧化物层的材料相同,且折射率为ηI,所述第一、第二、第三空穴注入层的材料相同,且折射率为ηJ,所述第一、第二、第三空穴传输层的材料相同,且折射率为ηT,所述红色发光层发出的红光的峰值波长为λR,所述绿色发光层发出的绿光的峰值波长 为λG,所述蓝色发光层发出的蓝光的峰值波长为λB
所述第一PEDOT:PSS导电膜层的厚度定义为dRP,所述第二透明导电金属氧化物层的厚度定义为dRI,所述第一空穴注入层的厚度定义为dRJ,所述第一空穴传输层36的厚度定义为dRT,所述dRP、dRI、dRJ、dRT之间的关系满足关系式(1):
ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4    (1);
其中,mR为自然数;
所述第二PEDOT:PSS导电膜层的厚度定义为dGP,所述第四透明导电金属氧化物层的厚度定义为dGI,所述第二空穴注入层的厚度定义为dGJ,所述第二空穴传输层的厚度定义为dGT,所述dGP、dGI、dGJ、dGT之间的关系满足关系式(2):
ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4   (2);
其中,mG为自然数;
所述第三PEDOT:PSS导电膜层的厚度定义为dBP,所述第六透明导电金属氧化物层的厚度定义为dBI,所述第三空穴注入层的厚度定义为dBJ,所述第三空穴传输层的厚度定义为dBT,所述dBP、dBI、dBJ、dBT之间的关系满足关系式(3):
ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4    (3);
其中,mB为自然数;
并且,dRI=dGI=dBI,dRJ=dGJ=dBJ,dRT=dGT=dBT,mR=mG=mB,由于λR、λG、λB互不相等,因此dRP、dGP、dBP互不相等。
所述像素定义层上的数个通孔均呈锥形,并且所述通孔的尺寸从远离所述基板的一端向靠近所述基板的一端逐渐增大。
所述红色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为红色磷光染料,所述红色磷光染料为Ir(DBQ)2(acac);
所述绿色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为绿色磷光染料,所述绿色磷光染料为Ir(ppy)3
所述蓝色发光层中包括主体材料与掺杂染料,所述主体材料为AND,所述掺杂染料为蓝色荧光染料,所述蓝色荧光染料为BUBD-1;
所述CBP的结构式为
Figure PCTCN2016113320-appb-000001
所述Ir(DBQ)2(acac)的结构式为
Figure PCTCN2016113320-appb-000002
所述Ir(ppy)3的结构式为
Figure PCTCN2016113320-appb-000003
所述BUBD-1的结构式为
Figure PCTCN2016113320-appb-000004
所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层的材料为氧化铟锡;所述第一、第二、第三金属层的材料为银;
所述第一、第二、第三阴极的材料相同,均包括低功函数金属、低功函数金属与铜、金、银中的至少一种形成的合金、低功函数金属氮化物、以及低功函数金属氟化物中的至少一种;所述低功函数金属包括锂、镁、钙、锶、铝、铟中的至少一种;
所述第一、第二、第三空穴注入层的材料包括HAT(CN)6,所述HAT(CN)6的结构式为
Figure PCTCN2016113320-appb-000005
所述第一、第二、第三电子传输层的材料相同,均包括BPhen,所述BPhen的结构式为
Figure PCTCN2016113320-appb-000006
本发明还提供一种OLED显示装置的制作方法,包括如下步骤:
步骤1、提供基板,在所述基板上形成像素定义层,所述像素定义层上设有间隔设置的数个通孔,所述数个通孔在所述基板上限定出数个红色像素区域、数个绿色像素区域及数个蓝色像素区域;
在所述基板的红色像素区域、绿色像素区域及蓝色像素区域中分别形 成第一、第三、第五透明导电金属氧化物层;
在所述第一、第三、第五透明导电金属氧化物层上分别形成第一、第二、第三金属层;
在所述第一、第二、第三金属层上分别喷涂PEDOT:PSS水溶液,固化并去除水分后,形成第一、第二、第三PEDOT:PSS导电膜层;
在所述第一、第二、第三PEDOT:PSS导电膜层上分别沉积第二、第四、第六透明导电金属氧化物层;
所述红色像素区域中,从下到上依次层叠设置的第一透明导电金属氧化物层、第一金属层、第一PEDOT:PSS导电膜层及第二透明导电金属氧化物层共同构成第一阳极;
所述绿色像素区域中,从下到上依次层叠设置的第三透明导电金属氧化物层、第二金属层、第二PEDOT:PSS导电膜层及第四透明导电金属氧化物层共同构成第二阳极;
所述蓝色像素区域中,从下到上依次层叠设置的第五透明导电金属氧化物层、第三金属层、第三PEDOT:PSS导电膜层及第六透明导电金属氧化物层共同构成第三阳极;
步骤2、清洗所述第一、第二、第三阳极;
步骤3、在同一道蒸镀制程中分别在所述第一、第二、第三阳极上蒸镀第一、第二、第三空穴注入层;
在同一道蒸镀制程中分别在所述第一、第二、第三空穴注入层上蒸镀第一、第二、第三空穴传输层;
在三道不同的蒸镀制程中分别在所述第一、第二、第三空穴传输层上蒸镀红、绿、蓝色发光层;
在同一道蒸镀制程中分别在所述红、绿、蓝色发光层上蒸镀第一、第二、第三电子传输层;
在同一道蒸镀制程中分别在所述第一、第二、第三电子传输层上蒸镀第一、第二、第三阴极;
从而在所述像素定义层的数个通孔内分别对应所述红色像素区域、绿色像素区域、蓝色像素区域形成红色OLED器件、绿色OLED器件、及蓝色OLED器件。
所述第一、第二、第三PEDOT:PSS导电膜层的材料相同,且折射率为ηP,所述第二、第四、第六透明导电金属氧化物层的材料相同,且折射率为ηI,所述第一、第二、第三空穴注入层的材料相同,且折射率为ηJ,所述第一、第二、第三空穴传输层的材料相同,且折射率为ηT,所述红色发 光层发出的红光的峰值波长为λR,所述绿色发光层发出的绿光的峰值波长为λG,所述蓝色发光层发出的蓝光的峰值波长为λB
所述第一PEDOT:PSS导电膜层的厚度定义为dRP,所述第二透明导电金属氧化物层的厚度定义为dRI,所述第一空穴注入层的厚度定义为dRJ,所述第一空穴传输层的厚度定义为dRT,所述dRP、dRI、dRJ、dRT之间的关系满足关系式(1):
ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4   (1);
其中,mR为自然数;
所述第二PEDOT:PSS导电膜层的厚度定义为dGP,所述第四透明导电金属氧化物层的厚度定义为dGI,所述第二空穴注入层的厚度定义为dGJ,所述第二空穴传输层的厚度定义为dGT,所述dGP、dGI、dGJ、dGT之间的关系满足关系式(2):
ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4       (2);
其中,mG为自然数;
所述第三PEDOT:PSS导电膜层的厚度定义为dBP,所述第六透明导电金属氧化物层的厚度定义为dBI,所述第三空穴注入层的厚度定义为dBJ,所述第三空穴传输层的厚度定义为dBT,所述dBP、dBI、dBJ、dBT之间的关系满足关系式(3):
ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4      (3);
其中,mB为自然数;
并且,dRI=dGI=dBI,dRJ=dGJ=dBJ,dRT=dGT=dBT,mR=mG=mB,由于λR、λG、λB互不相等,因此dRP、dGP、dBP互不相等。
所述像素定义层上的数个通孔均呈锥形,并且所述通孔的尺寸从远离所述基板的一端向靠近所述基板的一端逐渐增大。
所述步骤1中,采用磁控溅射的方式沉积所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层以及所述第一、第二、第三金属层;
采用喷墨打印的方法在所述第一、第二、第三金属层上分别喷涂PEDOT:PSS水溶液。
所述红色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为红色磷光染料,所述红色磷光染料为Ir(DBQ)2(acac);
所述绿色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为绿色磷光染料,所述绿色磷光染料为Ir(ppy)3
所述蓝色发光层中包括主体材料与掺杂染料,所述主体材料为AND,所述掺杂染料为蓝色荧光染料,所述蓝色荧光染料为BUBD-1;
所述CBP的结构式为
Figure PCTCN2016113320-appb-000007
所述Ir(DBQ)2(acac)的结构式为
Figure PCTCN2016113320-appb-000008
所述Ir(ppy)3的结构式为
Figure PCTCN2016113320-appb-000009
所述BUBD-1的结构式为
Figure PCTCN2016113320-appb-000010
本发明还提供一种OLED显示装置的制作方法,包括如下步骤:
步骤1、提供基板,在所述基板上形成像素定义层,所述像素定义层上设有间隔设置的数个通孔,所述数个通孔在所述基板上限定出数个红色像素区域、数个绿色像素区域及数个蓝色像素区域;
在所述基板的红色像素区域、绿色像素区域及蓝色像素区域中分别形成第一、第三、第五透明导电金属氧化物层;
在所述第一、第三、第五透明导电金属氧化物层上分别形成第一、第二、第三金属层;
在所述第一、第二、第三金属层上分别喷涂PEDOT:PSS水溶液,固化并去除水分后,形成第一、第二、第三PEDOT:PSS导电膜层;
在所述第一、第二、第三PEDOT:PSS导电膜层上分别沉积第二、第四、第六透明导电金属氧化物层;
所述红色像素区域中,从下到上依次层叠设置的第一透明导电金属氧化物层、第一金属层、第一PEDOT:PSS导电膜层及第二透明导电金属氧化物层共同构成第一阳极;
所述绿色像素区域中,从下到上依次层叠设置的第三透明导电金属氧化物层、第二金属层、第二PEDOT:PSS导电膜层及第四透明导电金属氧化物层共同构成第二阳极;
所述蓝色像素区域中,从下到上依次层叠设置的第五透明导电金属氧化物层、第三金属层、第三PEDOT:PSS导电膜层及第六透明导电金属氧化物层共同构成第三阳极;
步骤2、清洗所述第一、第二、第三阳极;
步骤3、在同一道蒸镀制程中分别在所述第一、第二、第三阳极上蒸镀第一、第二、第三空穴注入层;
在同一道蒸镀制程中分别在所述第一、第二、第三空穴注入层上蒸镀第一、第二、第三空穴传输层;
在三道不同的蒸镀制程中分别在所述第一、第二、第三空穴传输层上蒸镀红、绿、蓝色发光层;
在同一道蒸镀制程中分别在所述红、绿、蓝色发光层上蒸镀第一、第二、第三电子传输层;
在同一道蒸镀制程中分别在所述第一、第二、第三电子传输层上蒸镀第一、第二、第三阴极;
从而在所述像素定义层的数个通孔内分别对应所述红色像素区域、绿色像素区域、蓝色像素区域形成红色OLED器件、绿色OLED器件、及蓝色OLED器件;
其中,所述第一、第二、第三PEDOT:PSS导电膜层的材料相同,且折射率为ηP,所述第二、第四、第六透明导电金属氧化物层的材料相同,且折射率为ηI,所述第一、第二、第三空穴注入层的材料相同,且折射率为ηJ,所述第一、第二、第三空穴传输层的材料相同,且折射率为ηT,所述红色发光层发出的红光的峰值波长为λR,所述绿色发光层发出的绿光的峰值波长为λG,所述蓝色发光层发出的蓝光的峰值波长为λB
所述第一PEDOT:PSS导电膜层的厚度定义为dRP,所述第二透明导电金属氧化物层的厚度定义为dRI,所述第一空穴注入层的厚度定义为dRJ,所述第一空穴传输层的厚度定义为dRT,所述dRP、dRI、dRJ、dRT之间的关系满足关系式:
ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4;
其中,mR为自然数;
所述第二PEDOT:PSS导电膜层的厚度定义为dGP,所述第四透明导电金属氧化物层的厚度定义为dGI,所述第二空穴注入层的厚度定义为dGJ,所述第二空穴传输层的厚度定义为dGT,所述dGP、dGI、dGJ、dGT之间的关系满足关系式:
ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4;
其中,mG为自然数;
所述第三PEDOT:PSS导电膜层的厚度定义为dBP,所述第六透明导电金属氧化物层的厚度定义为dBI,所述第三空穴注入层的厚度定义为dBJ,所述第三空穴传输层的厚度定义为dBT,所述dBP、dBI、dBJ、dBT之间的关系满足关系式:
ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4;
其中,mB为自然数;
并且,dRI=dGI=dBI,dRJ=dGJ=dBJ,dRT=dGT=dBT,mR=mG=mB,由于λR、λG、λB互不相等,因此dRP、dGP、dBP互不相等;
其中,所述像素定义层上的数个通孔均呈锥形,并且所述通孔的尺寸从远离所述基板的一端向靠近所述基板的一端逐渐增大。
本发明的有益效果:本发明提供的一种OLED显示装置及其制作方法,通过在红、绿、蓝色OLED器件中分别设置第一、第二、第三PEDOT:PSS导电膜层,并且将所述第一、第二、第三PEDOT:PSS导电膜层设置为不同的厚度来实现红、绿、蓝色OLED器件的发光效率分别达到最佳,所述第一、第二、第三PEDOT:PSS导电膜层均采用喷墨打印方法制备,生产成本低,制程简单,与传统的OLED显示装置相比,本发明的OLED显示装置中分别设置于红、绿、蓝色OLED器件中的第一、第二、第三空穴传输层的厚度相等,因此可以采用一道普通金属掩膜板在同一道蒸镀制程中形成,从而节约了三道精密金属掩膜板,降低生产成本,并且减少制程时间。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的OLED显示装置的结构示意图;
图2为本发明的OLED显示装置的制作方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种OLED显示装置,包括基板10、设于所述基板10上的像素定义层20、设于所述像素定义层20上的数个通孔21、以及分别设于所述数个通孔21内的数个红色OLED器件30、数个绿色OLED器件40及数个蓝色OLED器件50;
所述红色OLED器件30包括在所述基板10上从下到上依次设置的第一透明导电金属氧化物层31、第一金属层32、第一PEDOT:PSS导电膜层33、第二透明导电金属氧化物层34、第一空穴注入层35、第一空穴传输层36、红色发光层37、第一电子传输层38、及第一阴极39;所述第一透明导电金属氧化物层31、第一金属层32、第一PEDOT:PSS导电膜层33及第二透明导电金属氧化物层34共同构成第一阳极301;
所述绿色OLED器件40包括在所述基板10上从下到上依次设置的第三透明导电金属氧化物层41、第二金属层42、第二PEDOT:PSS导电膜层43、第四透明导电金属氧化物层44、第二空穴注入层45、第二空穴传输层46、绿色发光层47、第二电子传输层48、及第二阴极49;所述第三透明导电金属氧化物层41、第二金属层42、第二PEDOT:PSS导电膜层43及第四透明导电金属氧化物层44共同构成第二阳极401;
所述蓝色OLED器件50包括在所述基板10上从下到上依次设置的第五透明导电金属氧化物层51、第三金属层52、第三PEDOT:PSS导电膜层53、第六透明导电金属氧化物层54、第三空穴注入层55、第三空穴传输层56、蓝色发光层57、第三电子传输层58、及第三阴极59;所述第五透明导电金属氧化物层51、第三金属层52、第三PEDOT:PSS导电膜层53及第六透明导电金属氧化物层54共同构成第三阳极501。
具体的,所述第一、第二、第三PEDOT:PSS导电膜层33、43、53的材料相同,且折射率为ηP,所述第二、第四、第六透明导电金属氧化物层34、44、54的材料相同,且折射率为ηI,所述第一、第二、第三空穴注入层35、45、55的材料相同,且折射率为ηJ,所述第一、第二、第三空穴传输层36、46、56的材料相同,且折射率为ηT,所述红色发光层37发出的红光的峰值波长为λR,所述绿色发光层47发出的绿光的峰值波长为λG,所述蓝色发光层57发出的蓝光的峰值波长为λB
所述第一PEDOT:PSS导电膜层33的厚度定义为dRP,所述第二透明导电金属氧化物层34的厚度定义为dRI,所述第一空穴注入层35的厚度定义为dRJ,所述第一空穴传输层36的厚度定义为dRT,所述dRP、dRI、dRJ、dRT之间的关系满足关系式(1):
ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4     (1);
其中,mR为自然数;
所述第二PEDOT:PSS导电膜层43的厚度定义为dGP,所述第四透明导电金属氧化物层44的厚度定义为dGI,所述第二空穴注入层45的厚度定义为dGJ,所述第二空穴传输层46的厚度定义为dGT,所述dGP、dGI、dGJ、dGT之间的关系满足关系式(2):
ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4     (2);
其中,mG为自然数;
所述第三PEDOT:PSS导电膜层53的厚度定义为dBP,所述第六透明导电金属氧化物层54的厚度定义为dBI,所述第三空穴注入层55的厚度定义为dBJ,所述第三空穴传输层56的厚度定义为dBT,所述dBP、dBI、dBJ、dBT之间的关系满足关系式(3):
ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4     (3);
其中,mB为自然数;
并且,通常情况下,dRI=dGI=dBI,dRJ=dGJ=dBJ,dRT=dGT=dBT,mR=mG=mB,由于λR、λG、λB互不相等,因此dRP、dGP、dBP互不相等,也即是说,本发明通过调节红、绿、蓝色OLED器件30、40、50中的第一、第二、第三PEDOT:PSS导电膜层33、43、53的厚度来分别实现红、绿、蓝色OLED器件30、40、50的发光效率达到最佳,所述第一、第二、第三PEDOT:PSS导电膜层33、43、53均可以采用喷墨打印方法制备,生产成本低,制程简单,与传统的OLED显示装置相比,本发明OLED显示装置的红、绿、蓝色OLED器件30、40、50中的第一、第二、第三空穴传输层36、46、56的厚度相同,因此可以采用一道普通金属掩膜板(CMM,Common Metal Mask)在同一道蒸镀制程中形成,从而节约了三道精密金属掩膜板,降低生产成本,并且减少制程时间。
具体的,本发明的OLED显示装置中,所述第一、第二、第三阳极301、302、303均为反射电极,所述第一、第二、第三阴极39、49、59均为半透明电极,从而所述红、绿、蓝色OLED器件30、40、50均为顶发射OLED器件,本发明的OLED显示装置为顶发射OLED显示装置。
具体的,以上关系式(1)、(2)、(3)的推理过程为:
根据Fabry-Perot共振原理,为使顶发光OLED器件的发光效率达到最佳,所述顶发光OLED器件中从发光层到反射阳极的距离d需要满足以下关系式(4):
[{(2m+1)/4}-(1/8)]λ<ηd<[{(2m+1)/4}+(1/8)]λ   (4);
其中,d表示从发光层到反射阳极的距离,η表示所述发光层与反射阳 极之间的材料的折射率,λ表示发光层发出的光的峰值波长,m表示自然数。
进一步优选的,所述距离d满足以下关系式(5):
[{(2m+1)/4}-(1/16)]λ<ηd<[{(2m+1)/4}+(1/16)]λ     (5);
由此得出,最优选的,所述距离d=(2m+1)λ/(4η)。
具体到本发明的红/绿/蓝色OLED器件30/40/50中,从发光层到反射阳极的距离d等于位于所述金属层上方的PEDOT:PSS导电膜层、透明导电金属氧化物层、空穴注入层及空穴传输层的厚度之和。
具体到所述红色OLED器件30中,从红色发光层37到第一阳极301的距离dR=dRP+dRI+dRJ+dRT,从而η*dR=ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4。
具体到所述绿色OLED器件40中,从绿色发光层47到第二阳极401的距离dG=dBP+dBI+dBJ+dBT,从而η*dG=ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4。
具体到所述蓝色OLED器件50中,从蓝色发光层57到第三阳极501的距离dB=dBP+dBI+dBJ+dBT,从而η*dB=ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4。
具体的,所述基板10为透明刚性基板或透明柔性基板,所述透明刚性基板可以是玻璃基板,所述柔性基板的材料包括聚酯类化合物与聚酰亚胺类化合物中的至少一种。本发明实施例中,所述基板10为玻璃基板。
具体的,所述像素定义层20上的数个通孔21均呈锥形,并且所述通孔21的尺寸从远离所述基板10的一端向靠近所述基板10的一端逐渐增大。
具体的,所述像素定义层20为有机绝缘材料,优选为聚酰亚胺(PI)。
具体的,所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层31、34、41、44、51、54的材料为氧化铟锡。
具体的,所述第一、第二、第三金属层32、42、52的材料为银。
具体的,所述PEDOT:PSS导电膜层的折射率为1.65,具有高电导率、高机械强度、高可见光透射率与优越的稳定性等优势,且为水溶性的高分子,易于制备和后处理及固化。
具体的,所述第一、第二、第三阴极39、49、59的材料相同,均包括低功函数金属、低功函数金属与铜、金、银中的至少一种形成的合金、低功函数金属氮化物、以及低功函数金属氟化物中的至少一种;所述低功函数金属包括锂、镁、钙、锶、铝、铟中的至少一种。
优选的,所述第一、第二、第三阴极39、49、59为镁银合金层、由镁 银合金层与银层叠加构成的复合层、由氟化锂层或氮化锂层与银层叠加构成的复合层、或者由氟化锂层或氮化锂层与铝层叠加构成的复合层。本发明实施例中,所述第一、第二、第三阴极39、49、59为镁银合金层。
具体的,所述第一、第二、第三空穴注入层35、45、55的材料包括HAT(CN)6,所述HAT(CN)6的结构式为
Figure PCTCN2016113320-appb-000011
具体的,所述第一、第二、第三空穴传输层36、46、56的材料包括merck公司的HTM081。
具体的,所述红色发光层37包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为红色磷光染料,优选的,所述红色磷光染料为Ir(DBQ)2(acac)。具体的,所述红色发光层37中,所述掺杂染料的浓度为3wt%-5wt%。
具体的,所述绿色发光层47包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为绿色磷光染料,优选的,所述绿色磷光染料为Ir(ppy)3。具体的,所述绿色发光层47中,所述掺杂染料的浓度为3wt%-15wt%,优选为3wt%-10wt%,更优选为5wt%-10wt%。
具体的,所述蓝色发光层57中包括主体材料与掺杂染料,所述主体材料为AND,所述掺杂染料为蓝色荧光染料,优选的,所述蓝色荧光染料为BUBD-1。具体的,所述蓝色发光层57中,所述掺杂染料的浓度为3wt%-5wt%。
具体的,所述CBP的结构式为
Figure PCTCN2016113320-appb-000012
所述Ir(DBQ)2(acac)的结构式为
Figure PCTCN2016113320-appb-000013
所述Ir(ppy)3的结构式为
Figure PCTCN2016113320-appb-000014
所述BUBD-1的结构式为
Figure PCTCN2016113320-appb-000015
具体的,所述红色发光层37发出的红光的峰值波长为612nm,所述绿色发光层47发出的绿光的峰值波长为512nm,所述蓝色发光层57发出的蓝光的峰值波长为468nm。
具体的,所述第一、第二、第三电子传输层38、48、58的材料相同,均包括BPhen,所述BPhen的结构式为
Figure PCTCN2016113320-appb-000016
具体的,所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层31、34、41、44、51、54的厚度为10nm-200nm,优选为10nm-100nm,更优选为10nm-50nm。
具体的,所述第一、第二、第三金属层32、42、52的厚度为80nm-300nm,优选为80nm-200nm,更优选为100nm-150nm。
具体的,所述第一、第二、第三空穴注入层35、45、55的厚度为5nm-30nm,优选为5nm-20nm,更优选为5nm-10nm。
具体的,所述第一、第二、第三空穴传输层36、46、56的厚度为20nm-400nm,优选为50nm-300nm,更优选为50nm-200nm。
具体的,所述红色发光层37的厚度为10nm-30nm,优选为15nm-25nm,更优选为20nm-25nm。
具体的,所述绿色发光层47的厚度为10nm-50nm,优选为20nm-40nm,更优选为30nm-40nm。
具体的,所述蓝色发光层57的厚度为10nm-50nm,优选为20nm-40nm,更优选为30nm-40nm。
具体的,所述第一、第二、第三电子传输层38、48、58的厚度为5nm-50nm,优选为20nm-40nm,更优选为25nm-35nm。
上述OLED显示装置,通过在红、绿、蓝色OLED器件30、40、50中分别设置第一、第二、第三PEDOT:PSS导电膜层33、43、53,并且将所述第一、第二、第三PEDOT:PSS导电膜层33、43、53设置为不同的厚度来实现红、绿、蓝色OLED器件30、40、50的发光效率分别达到最佳,所述第一、第二、第三PEDOT:PSS导电膜层33、43、53均采用喷墨打印方 法制备,生产成本低,制程简单,与传统的OLED显示装置相比,本发明的OLED显示装置中分别设置于红、绿、蓝色OLED器件30、40、50中的第一、第二、第三空穴传输层36、46、56的厚度相等,因此可以采用一道普通金属掩膜板(CMM)在同一道蒸镀制程中形成,从而节约了三道精密金属掩膜板,降低生产成本,并且减少制程时间。
请参阅图2,同时参阅图1,本发明还提供一种上述OLED显示装置的制作方法,包括如下步骤:
步骤1、提供基板10,在所述基板10上形成像素定义层20,所述像素定义层20上设有间隔设置的数个通孔21,所述数个通孔21在所述基板10上限定出数个红色像素区域11、数个绿色像素区域12及数个蓝色像素区域13;
在所述基板10的红色像素区域11、绿色像素区域12及蓝色像素区域13中分别形成第一、第三、第五透明导电金属氧化物层31、41、51;
在所述第一、第三、第五透明导电金属氧化物层31、41、51上分别形成第一、第二、第三金属层32、42、52;
在所述第一、第二、第三金属层32、42、52上分别喷涂PEDOT:PSS水溶液,固化并去除水分后,形成第一、第二、第三PEDOT:PSS导电膜层33、43、53;
在所述第一、第二、第三PEDOT:PSS导电膜层33、43、53上分别沉积第二、第四、第六透明导电金属氧化物层34、44、54;
所述红色像素区域11中,从下到上依次层叠设置的第一透明导电金属氧化物层31、第一金属层32、第一PEDOT:PSS导电膜层33及第二透明导电金属氧化物层34共同构成第一阳极301;
所述绿色像素区域12中,从下到上依次层叠设置的第三透明导电金属氧化物层41、第二金属层42、第二PEDOT:PSS导电膜层43及第四透明导电金属氧化物层44共同构成第二阳极401;
所述蓝色像素区域13中,从下到上依次层叠设置的第五透明导电金属氧化物层51、第三金属层52、第三PEDOT:PSS导电膜层53及第六透明导电金属氧化物层54共同构成第三阳极501。
具体的,所述像素定义层20上的数个通孔21均呈锥形,并且所述通孔21的尺寸从远离所述基板10的一端向靠近所述基板10的一端逐渐增大。
具体的,所述步骤1中,采用磁控溅射的方式,在1×10-5Pa的真空下沉积所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层31、34、41、44、51、54,沉积速率为60nm/min。
具体的,所述步骤1中,采用喷墨打印的方法在所述第一、第二、第三金属层32、42、52上分别喷涂PEDOT:PSS水溶液。
具体的,所述步骤1中,采用磁控溅射的方式,在1×10-5Pa的真空下沉积所述第一、第二、第三金属层32、42、52,沉积速率为2400nm/min。
由于所述像素定义层20上的数个通孔21均呈锥形,并且所述通孔21的尺寸从远离所述基板10的一端向靠近所述基板10的一端逐渐增大,这样可以保证在采用磁控溅射的方式来形成所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层31、34、41、44、51、54及所述第一、第二、第三金属层32、42、52时,所述数个通孔21的孔壁上不会被溅射上靶材料,避免数个通孔21中对应的结构层经由通孔21的孔壁及像素定义层20的顶面相连接。
具体的,所述步骤1中,采用Kateeva公司的喷墨打印设备进行PEDOT:PSS水溶液的喷涂,PEDOT:PSS水溶液喷涂完成后,流平3分钟,采用256nm的紫外光进行固化并去除水分,形成第一、第二、第三PEDOT:PSS导电膜层33、43、53。
步骤2、清洗所述第一、第二、第三阳极301、401、501。
具体的,所述步骤2中,首先将带有所述第一、第二、第三阳极301、401、501的基板10在商用清洗剂(如洗洁精)中超声处理,在去离子水中冲洗,在丙酮/乙醇(体积比1/1)混合溶剂中超声除油,在洁净环境下烘烤至完全除去水分,然后用紫外光和臭氧清洗,并采用低能阳离子束(氩气、氮气等离子体)轰击表面,得到洁净的第一、第二、第三阳极301、401、501。
步骤3、在同一道蒸镀制程中分别在所述第一、第二、第三阳极301、401、501上蒸镀第一、第二、第三空穴注入层35、45、55;
在同一道蒸镀制程中分别在所述第一、第二、第三空穴注入层35、45、55上蒸镀第一、第二、第三空穴传输层36、46、56;
在三道不同的蒸镀制程中分别在所述第一、第二、第三空穴传输层36、46、56上蒸镀红、绿、蓝色发光层37、47、57;
在同一道蒸镀制程中分别在所述红、绿、蓝色发光层37、47、57上蒸镀第一、第二、第三电子传输层38、48、58;
在同一道蒸镀制程中分别在所述第一、第二、第三电子传输层38、48、58上蒸镀第一、第二、第三阴极39、49、59;
从而在所述像素定义层20的数个通孔21内分别对应所述红色像素区域11、绿色像素区域12、蓝色像素区域13形成红色OLED器件30、绿色 OLED器件40、及蓝色OLED器件50。
具体的,所述第一、第二、第三PEDOT:PSS导电膜层33、43、53的材料相同,且折射率为ηP,所述第二、第四、第六透明导电金属氧化物层34、44、54的材料相同,且折射率为ηI,所述第一、第二、第三空穴注入层35、45、55的材料相同,且折射率为ηJ,所述第一、第二、第三空穴传输层36、46、56的材料相同,且折射率为ηT,所述红色发光层37发出的红光的峰值波长为λR,所述绿色发光层47发出的绿光的峰值波长为λG,所述蓝色发光层57发出的蓝光的峰值波长为λB
所述第一PEDOT:PSS导电膜层33的厚度定义为dRP,所述第二透明导电金属氧化物层34的厚度定义为dRI,所述第一空穴注入层35的厚度定义为dRJ,所述第一空穴传输层36的厚度定义为dRT,所述dRP、dRI、dRJ、dRT之间的关系满足关系式(1):
ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4    (1);
其中,mR为自然数;
所述第二PEDOT:PSS导电膜层43的厚度定义为dGP,所述第四透明导电金属氧化物层44的厚度定义为dGI,所述第二空穴注入层45的厚度定义为dGJ,所述第二空穴传输层46的厚度定义为dGT,所述dGP、dGI、dGJ、dGT之间的关系满足关系式(2):
ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4       (2);
其中,mG为自然数;
所述第三PEDOT:PSS导电膜层53的厚度定义为dBP,所述第六透明导电金属氧化物层54的厚度定义为dBI,所述第三空穴注入层55的厚度定义为dBJ,所述第三空穴传输层56的厚度定义为dBT,所述dBP、dBI、dBJ、dBT之间的关系满足关系式(3):
ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4     (3);
其中,mB为自然数;
并且,通常情况下,dRI=dGI=dBI,dRJ=dGJ=dBJ,dRT=dGT=dBT,mR=mG=mB,由于λR、λG、λB互不相等,因此dRP、dGP、dBP互不相等。
具体的,所述步骤3中,所述第一、第二、第三空穴注入层35、45、55采用一道普通金属掩膜板(CMM)并且通过一道蒸镀制程制备;
所述第一、第二、第三空穴传输层36、46、56采用一张普通金属掩膜板(CMM)并且通过一道蒸镀制程制备;
所述红、绿、蓝色发光层37、47、57分别采用三张不同的精密金属掩膜板(FMM)并且通过三道不同的蒸镀制程制备;
所述第一、第二、第三电子传输层38、48、58采用一张普通金属掩膜板(CMM)并且通过一道蒸镀制程制备;
所述第一、第二、第三阴极39、49、59采用一张普通金属掩膜板(CMM)并且通过一道蒸镀制程制备。
具体的,所述普通金属掩膜板(CMM)为仅具有一个开孔的金属掩膜板,所述开孔对应于所述基板10上所有需要蒸镀的红色、绿色、蓝色像素区域11、12、13以及位于所有需要蒸镀的红色、绿色、蓝色像素区域11、12、13之间的像素定义层20。
由于所述像素定义层20上的数个通孔21均呈锥形,并且所述通孔21的尺寸从远离所述基板10的一端向靠近所述基板10的一端逐渐增大,这样可以保证在采用普通金属掩膜板(CMM)来蒸镀所述第一、第二、第三空穴注入层35、45、55、所述第一、第二、第三空穴传输层36、46、56、所述第一、第二、第三电子传输层38、48、58、及所述第一、第二、第三阴极39、49、59时,所述数个通孔21的孔壁上不会被蒸镀上靶材料,避免数个通孔21中对应的结构层经由通孔21的孔壁及像素定义层20的顶面相连接。
具体的,所述步骤3中,所有蒸镀制程在真空度为1×10-6至2×10-4Pa的真空腔内进行。
具体的,所述第一、第二、第三空穴注入层35、45、55的蒸镀速率为0.05nm/s。
具体的,所述第一、第二、第三空穴传输层36、46、56的蒸镀速率为0.1nm/s。
具体的,所述红色发光层37采用主体材料与掺杂染料双源共蒸的方式蒸镀而成,其中,所述主体材料的蒸镀速率为0.1nm/s,所述掺杂染料的蒸镀速率为0.003nm/s。
具体的,所述绿色发光层47采用主体材料与掺杂染料双源共蒸的方式蒸镀而成,其中,所述主体材料的蒸镀速率为0.1nm/s,所述掺杂染料的蒸镀速率为0.01nm/s。
具体的,所述蓝色发光层57采用主体材料与掺杂染料双源共蒸的方式蒸镀而成,其中,所述主体材料的蒸镀速率为0.1nm/s,所述掺杂染料的蒸镀速率为0.005nm/s。
具体的,所述第一、第二、第三电子传输层38、48、58的蒸镀速率为0.1nm/s。
具体的,上述OLED显示装置的制作方法中,各结构层的具体材料以 及厚度范围的选择如前文所述,此处不再赘述。
具体的,当所述第一、第二、第三阴极39、49、59为镁银合金层时,所述第一、第二、第三阴极39、49、59的制备方法为:采用镁与银双源共蒸的方式蒸镀而成,其中,镁的蒸镀速率为0.09nm/s,银的蒸镀速率为0.01nm/s。
上述OLED显示装置的制作方法,通过在红、绿、蓝色OLED器件30、40、50中分别设置第一、第二、第三PEDOT:PSS导电膜层33、43、53,并且将所述第一、第二、第三PEDOT:PSS导电膜层33、43、53设置为不同的厚度来实现红、绿、蓝色OLED器件30、40、50的发光效率分别达到最佳,所述第一、第二、第三PEDOT:PSS导电膜层33、43、53均采用喷墨打印方法制备,生产成本低,制程简单,与传统的OLED显示装置相比,本发明的OLED显示装置中分别设置于红、绿、蓝色OLED器件30、40、50中的第一、第二、第三空穴传输层36、46、56的厚度相等,因此可以采用一道普通金属掩膜板(CMM)在同一道蒸镀制程中形成,从而节约了三道精密金属掩膜板,降低生产成本,并且减少制程时间。
以下通过本发明的实施例1与采用现有技术的对比例1的对比对本发明的OLED显示装置及其制作方法的优点进行分析:
实施例1
实施例1的OLED显示装置中:
所述红光OLED器件包括在所述基板10上从下到上依次设置的第一透明导电金属氧化物层31、第一金属层32、第一PEDOT:PSS导电膜层33、第二透明导电金属氧化物层34、第一空穴注入层35、第一空穴传输层36、红色发光层37、第一电子传输层38、及第一阴极39;
所述第一透明导电金属氧化物层31的厚度为20nm;所述第一金属层32的厚度为150nm;所述第一PEDOT:PSS导电膜层33的厚度为XR nm;所述第二透明导电金属氧化物层34的厚度为20nm;所述第一空穴注入层35的材料为HAT(CN)6,厚度为5nm;所述第一空穴传输层36的材料为HTM081,厚度为20nm;所述红色发光层37包括主体材料CBP与红色磷光染料Ir(DBQ)2(acac),所述红色磷光染料Ir(DBQ)2(acac)的浓度为3wt%,所述红色发光层37的厚度为30nm;所述第一电子传输层38的材料为Bphen,厚度为20nm;所述第一阴极39为镁银合金层,所述镁银合金层中镁与银的质量比为9:1,所述第一阴极39的厚度为20nm;
所述绿色OLED器件40包括在所述基板10上从下到上依次设置的第三透明导电金属氧化物层41、第二金属层42、第二PEDOT:PSS导电膜层 43、第四透明导电金属氧化物层44、第二空穴注入层45、第二空穴传输层46、绿色发光层47、第二电子传输层48、及第二阴极49;
所述第三透明导电金属氧化物层41的厚度为20nm;所述第二金属层42的厚度为150nm;所述第二PEDOT:PSS导电膜层43的厚度为XG nm;所述第四透明导电金属氧化物层44的厚度为20nm;所述第二空穴注入层45的材料为HAT(CN)6,厚度为5nm;所述第二空穴传输层46的材料为HTM081,厚度为20nm;所述绿色发光层47包括主体材料CBP与绿色磷光染料Ir(ppy)3,所述绿色磷光染料Ir(ppy)3的浓度为10wt%,所述绿色发光层47的厚度为30nm;所述第二电子传输层48的材料为Bphen,厚度为20nm;所述第二阴极49为镁银合金层,所述镁银合金层中镁与银的质量比为9:1,所述第二阴极49的厚度为20nm;
所述蓝色OLED器件50包括在所述基板10上从下到上依次设置的第五透明导电金属氧化物层51、第三金属层52、第三PEDOT:PSS导电膜层53、第六透明导电金属氧化物层54、第三空穴注入层55、第三空穴传输层56、蓝色发光层57、第三电子传输层58、及第三阴极59;
所述第五透明导电金属氧化物层51的厚度为20nm;所述第三金属层52的厚度为150nm;所述第三PEDOT:PSS导电膜层53的厚度为XB nm;所述第六透明导电金属氧化物层54的厚度为20nm;所述第三空穴注入层55的材料为HAT(CN)6,厚度为5nm;所述第三空穴传输层56的材料为HTM081,厚度为20nm;所述蓝色发光层57包括主体材料CBP与蓝色荧光染料BUBD-1,所述蓝色荧光染料BUBD-1的浓度为5wt%,所述蓝色发光层57的厚度为20nm;所述第三电子传输层58的材料为Bphen,厚度为20nm;所述第三阴极59为镁银合金层,所述镁银合金层中镁与银的质量比为9:1,所述第三阴极59的厚度为20nm;
为了使红、绿、蓝色发光层37、47、57分别位于反波节的位置,使得红、绿、蓝色OLED器件30、40、50的发光效率分别达到最佳,在mR=mG=mB=3的情况下根据前述关系式(1)、(2)、(3)分别计算出所述第一、第二、第三PEDOT:PSS导电膜层33、43、53的厚度为:XR=229nm,XG=183nm,XB=158nm。
对比例1
对比例1的OLED显示装置中:
所述红光OLED器件包括在所述基板10上从下到上依次设置的第一透明导电金属氧化物层31、第一金属层32、第二透明导电金属氧化物层34、第一空穴注入层35、第一空穴传输层36、红色发光层37、第一电子传输层 38、及第一阴极39;
所述第一透明导电金属氧化物层31的厚度为20nm;所述第一金属层32的厚度为150nm;所述第二透明导电金属氧化物层34的厚度为20nm;所述第一空穴注入层35的材料为HAT(CN)6,厚度为5nm;所述第一空穴传输层36的材料为HTM081,厚度为X1nm;所述红色发光层37包括主体材料CBP与红色磷光染料Ir(DBQ)2(acac),所述红色磷光染料Ir(DBQ)2(acac)的浓度为3wt%,所述红色发光层37的厚度为30nm;所述第一电子传输层38的材料为Bphen,厚度为20nm;所述第一阴极39为镁银合金层,所述镁银合金层中镁与银的质量比为9:1,所述第一阴极39的厚度为20nm;
所述绿色OLED器件40包括在所述基板10上从下到上依次设置的第三透明导电金属氧化物层41、第二金属层42、第四透明导电金属氧化物层44、第二空穴注入层45、第二空穴传输层46、绿色发光层47、第二电子传输层48、及第二阴极49;
所述第三透明导电金属氧化物层41的厚度为20nm;所述第二金属层42的厚度为150nm;所述第四透明导电金属氧化物层44的厚度为20nm;所述第二空穴注入层45的材料为HAT(CN)6,厚度为5nm;所述第二空穴传输层46的材料为HTM081,厚度为X2nm;所述绿色发光层47包括主体材料CBP与绿色磷光染料Ir(ppy)3,所述绿色磷光染料Ir(ppy)3的浓度为10wt%,所述绿色发光层47的厚度为30nm;所述第二电子传输层48的材料为Bphen,厚度为20nm;所述第二阴极49为镁银合金层,所述镁银合金层中镁与银的质量比为9:1,所述第二阴极49的厚度为20nm;
所述蓝色OLED器件50包括在所述基板10上从下到上依次设置的第五透明导电金属氧化物层51、第三金属层52、第六透明导电金属氧化物层54、第三空穴注入层55、第三空穴传输层56、蓝色发光层57、第三电子传输层58、及第三阴极59;
所述第五透明导电金属氧化物层51的厚度为20nm;所述第三金属层52的厚度为150nm;所述第六透明导电金属氧化物层54的厚度为20nm;所述第三空穴注入层55的材料为HAT(CN)6,厚度为5nm;所述第三空穴传输层56的材料为HTM081,厚度为X3nm;所述蓝色发光层57包括主体材料CBP与蓝色荧光染料BUBD-1,所述蓝色荧光染料BUBD-1的浓度为5wt%,所述蓝色发光层57的厚度为20nm;所述第三电子传输层58的材料为Bphen,厚度为20nm;所述第三阴极59为镁银合金层,所述镁银合金层中镁与银的质量比为9:1,所述第三阴极59的厚度为20nm;
可以看出,对比例1与实施例1的区别在于:所述红、绿、蓝色OLED 器件30、40、50中分别未设置第一、第二、第三PEDOT:PSS导电膜层33、43、53,并且所述第一空穴传输层36、第二空穴传输层46、第三空穴传输层56的厚度不等。
为了使红、绿、蓝色发光层37、47、57分别位于反波节的位置,使得红、绿、蓝色OLED器件30、40、50的发光效率分别达到最佳,所述第一、第二、第三空穴传输层36、46、56的厚度分别设置为:X1=236nm,X2=193nm,X3=169nm。
在相同电压驱动下,并且用于显示相同画面时,所述实施例1与对比例1的OLED显示装置的画面亮度及色度数据分别如表1与表2所示:
表1.实施例1的OLED显示装置的画面亮度及色度数据
实施例1 亮度cd/m2 色度CIE-X 色度CIE-Y
W画面 165 0.300 0.313
R画面 59 0.660 0.330
G画面 158 0.237 0.711
B画面 13 0.144 0.044
表2.对比例1的OLED显示装置的画面亮度及色度数据
对比例1 亮度cd/m2 色度CIE-X 色度CIE-Y
W画面 160 0.300 0.313
R画面 57 0.671 0.329
G画面 156 0.236 0.705
B画面 12 0.144 0.044
从上述表1与表2中可以看出,所述实施例1与对比例1的OLED显示装置的显示性能基本相同,但是:
所述实施例1中,通过将所述第一、第二、第三PEDOT:PSS导电膜层33、43、53设置为不同的厚度,来实现红、绿、蓝色OLED器件30、40、50的发光效率分别达到最佳,所述第一、第二、第三PEDOT:PSS导电膜层33、43、53均采用喷墨打印方法制备,生产成本低,制程简单,所述第一、第二、第三空穴传输层36、46、56的厚度相等,因此可以采用一道普通金属掩膜板(CMM)在同一道蒸镀制程中形成,从而节约了三道精密金属掩膜板,降低生产成本,并且减少制程时间;
所述对比例1中,通过将所述第一、第二、第三空穴传输层36、46、56设置为不同的厚度,来实现红、绿、蓝色OLED器件30、40、50的发光效率分别达到最佳,所述第一、第二、第三空穴传输层36、46、56的厚度不同,因此所述第一、第二、第三空穴传输层36、46、56需要采用三道 不同的精密金属掩膜板(FMM)并且通过三道蒸镀制程制备,因此生产成本高,且制程时间长;
因此,与对比例1相比,本发明的实施例1的优势在于减少了三道精密金属掩膜板(FMM)的使用,简化与优化了OLED蒸镀制程,在节约成本的同时大幅提高了产品良率。
综上所述,本发明提供一种OLED显示装置及其制作方法,通过在红、绿、蓝色OLED器件中分别设置第一、第二、第三PEDOT:PSS导电膜层,并且将所述第一、第二、第三PEDOT:PSS导电膜层设置为不同的厚度来实现红、绿、蓝色OLED器件的发光效率分别达到最佳,所述第一、第二、第三PEDOT:PSS导电膜层均采用喷墨打印方法制备,生产成本低,制程简单,与传统的OLED显示装置相比,本发明的OLED显示装置中分别设置于红、绿、蓝色OLED器件中的第一、第二、第三空穴传输层的厚度相等,因此可以采用一道普通金属掩膜板(CMM)在同一道蒸镀制程中形成,从而节约了三道精密金属掩膜板,降低生产成本,并且减少制程时间。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种OLED显示装置,包括基板、设于所述基板上的像素定义层、设于所述像素定义层上的数个通孔、以及分别设于所述数个通孔内的数个红色OLED器件、数个绿色OLED器件及数个蓝色OLED器件;
    所述红色OLED器件包括在所述基板上从下到上依次设置的第一透明导电金属氧化物层、第一金属层、第一PEDOT:PSS导电膜层、第二透明导电金属氧化物层、第一空穴注入层、第一空穴传输层、红色发光层、第一电子传输层、及第一阴极;所述第一透明导电金属氧化物层、第一金属层、第一PEDOT:PSS导电膜层及第二透明导电金属氧化物层共同构成第一阳极;
    所述绿色OLED器件包括在所述基板上从下到上依次设置的第三透明导电金属氧化物层、第二金属层、第二PEDOT:PSS导电膜层、第四透明导电金属氧化物层、第二空穴注入层、第二空穴传输层、绿色发光层、第二电子传输层、及第二阴极;所述第三透明导电金属氧化物层、第二金属层、第二PEDOT:PSS导电膜层及第四透明导电金属氧化物层共同构成第二阳极;
    所述蓝色OLED器件包括在所述基板上从下到上依次设置的第五透明导电金属氧化物层、第三金属层、第三PEDOT:PSS导电膜层、第六透明导电金属氧化物层、第三空穴注入层、第三空穴传输层、蓝色发光层、第三电子传输层、及第三阴极;所述第五透明导电金属氧化物层、第三金属层、第三PEDOT:PSS导电膜层及第六透明导电金属氧化物层共同构成第三阳极。
  2. 如权利要求1所述的OLED显示装置,其中,所述第一、第二、第三PEDOT:PSS导电膜层的材料相同,且折射率为ηP,所述第二、第四、第六透明导电金属氧化物层的材料相同,且折射率为ηI,所述第一、第二、第三空穴注入层的材料相同,且折射率为ηJ,所述第一、第二、第三空穴传输层的材料相同,且折射率为ηT,所述红色发光层发出的红光的峰值波长为λR,所述绿色发光层发出的绿光的峰值波长为λG,所述蓝色发光层发出的蓝光的峰值波长为λB
    所述第一PEDOT:PSS导电膜层的厚度定义为dRP,所述第二透明导电金属氧化物层的厚度定义为dRI,所述第一空穴注入层的厚度定义为dRJ,所述第一空穴传输层的厚度定义为dRT,所述dRP、dRI、dRJ、dRT之间的关系满 足关系式:
    ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4;
    其中,mR为自然数;
    所述第二PEDOT:PSS导电膜层的厚度定义为dGP,所述第四透明导电金属氧化物层的厚度定义为dGI,所述第二空穴注入层的厚度定义为dGJ,所述第二空穴传输层的厚度定义为dGT,所述dGP、dGI、dGJ、dGT之间的关系满足关系式:
    ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4;
    其中,mG为自然数;
    所述第三PEDOT:PSS导电膜层的厚度定义为dBP,所述第六透明导电金属氧化物层的厚度定义为dBI,所述第三空穴注入层的厚度定义为dBJ,所述第三空穴传输层的厚度定义为dBT,所述dBP、dBI、dBJ、dBT之间的关系满足关系式:
    ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4;
    其中,mB为自然数;
    并且,dRI=dGI=dBI,dRJ=dGJ=dBJ,dRT=dGT=dBT,mR=mG=mB,由于λR、λG、λB互不相等,因此dRP、dGP、dBP互不相等。
  3. 如权利要求1所述的OLED显示装置,其中,所述像素定义层上的数个通孔均呈锥形,并且所述通孔的尺寸从远离所述基板的一端向靠近所述基板的一端逐渐增大。
  4. 如权利要求1所述的OLED显示装置,其中,所述红色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为红色磷光染料,所述红色磷光染料为Ir(DBQ)2(acac);
    所述绿色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为绿色磷光染料,所述绿色磷光染料为Ir(ppy)3
    所述蓝色发光层中包括主体材料与掺杂染料,所述主体材料为AND,所述掺杂染料为蓝色荧光染料,所述蓝色荧光染料为BUBD-1;
    所述CBP的结构式为
    Figure PCTCN2016113320-appb-100001
    所述Ir(DBQ)2(acac)的结构式为
    Figure PCTCN2016113320-appb-100002
    所述Ir(ppy)3的结构式为
    Figure PCTCN2016113320-appb-100003
    所述BUBD-1的结构式为
    Figure PCTCN2016113320-appb-100004
  5. 如权利要求1所述的OLED显示装置,其中,所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层的材料为氧化铟锡;所述第一、第二、第三金属层的材料为银;
    所述第一、第二、第三阴极的材料相同,均包括低功函数金属、低功函数金属与铜、金、银中的至少一种形成的合金、低功函数金属氮化物、以及低功函数金属氟化物中的至少一种;所述低功函数金属包括锂、镁、钙、锶、铝、铟中的至少一种;
    所述第一、第二、第三空穴注入层的材料包括HAT(CN)6,所述HAT(CN)6的结构式为
    Figure PCTCN2016113320-appb-100005
    所述第一、第二、第三电子传输层的材料相同,均包括BPhen,所述BPhen的结构式为
    Figure PCTCN2016113320-appb-100006
  6. 一种OLED显示装置的制作方法,包括如下步骤:
    步骤1、提供基板,在所述基板上形成像素定义层,所述像素定义层上设有间隔设置的数个通孔,所述数个通孔在所述基板上限定出数个红色像素区域、数个绿色像素区域及数个蓝色像素区域;
    在所述基板的红色像素区域、绿色像素区域及蓝色像素区域中分别形成第一、第三、第五透明导电金属氧化物层;
    在所述第一、第三、第五透明导电金属氧化物层上分别形成第一、第二、第三金属层;
    在所述第一、第二、第三金属层上分别喷涂PEDOT:PSS水溶液,固化并去除水分后,形成第一、第二、第三PEDOT:PSS导电膜层;
    在所述第一、第二、第三PEDOT:PSS导电膜层上分别沉积第二、第四、第六透明导电金属氧化物层;
    所述红色像素区域中,从下到上依次层叠设置的第一透明导电金属氧化物层、第一金属层、第一PEDOT:PSS导电膜层及第二透明导电金属氧化物层共同构成第一阳极;
    所述绿色像素区域中,从下到上依次层叠设置的第三透明导电金属氧化物层、第二金属层、第二PEDOT:PSS导电膜层及第四透明导电金属氧化物层共同构成第二阳极;
    所述蓝色像素区域中,从下到上依次层叠设置的第五透明导电金属氧化物层、第三金属层、第三PEDOT:PSS导电膜层及第六透明导电金属氧化物层共同构成第三阳极;
    步骤2、清洗所述第一、第二、第三阳极;
    步骤3、在同一道蒸镀制程中分别在所述第一、第二、第三阳极上蒸镀第一、第二、第三空穴注入层;
    在同一道蒸镀制程中分别在所述第一、第二、第三空穴注入层上蒸镀第一、第二、第三空穴传输层;
    在三道不同的蒸镀制程中分别在所述第一、第二、第三空穴传输层上蒸镀红、绿、蓝色发光层;
    在同一道蒸镀制程中分别在所述红、绿、蓝色发光层上蒸镀第一、第二、第三电子传输层;
    在同一道蒸镀制程中分别在所述第一、第二、第三电子传输层上蒸镀第一、第二、第三阴极;
    从而在所述像素定义层的数个通孔内分别对应所述红色像素区域、绿色像素区域、蓝色像素区域形成红色OLED器件、绿色OLED器件、及蓝色OLED器件。
  7. 如权利要求6所述的OLED显示装置的制作方法,其中,所述第一、第二、第三PEDOT:PSS导电膜层的材料相同,且折射率为ηP,所述第二、第四、第六透明导电金属氧化物层的材料相同,且折射率为ηI,所述第一、第二、第三空穴注入层的材料相同,且折射率为ηJ,所述第一、第二、第三空穴传输层的材料相同,且折射率为ηT,所述红色发光层发出的红光的峰值波长为λR,所述绿色发光层发出的绿光的峰值波长为λG,所述蓝色发光层发出的蓝光的峰值波长为λB
    所述第一PEDOT:PSS导电膜层的厚度定义为dRP,所述第二透明导电金属氧化物层的厚度定义为dRI,所述第一空穴注入层的厚度定义为dRJ,所述第一空穴传输层的厚度定义为dRT,所述dRP、dRI、dRJ、dRT之间的关系满足关系式:
    ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4;
    其中,mR为自然数;
    所述第二PEDOT:PSS导电膜层的厚度定义为dGP,所述第四透明导电金属氧化物层的厚度定义为dGI,所述第二空穴注入层的厚度定义为dGJ,所述第二空穴传输层的厚度定义为dGT,所述dGP、dGI、dGJ、dGT之间的关系满足关系式:
    ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4;
    其中,mG为自然数;
    所述第三PEDOT:PSS导电膜层的厚度定义为dBP,所述第六透明导电金属氧化物层的厚度定义为dBI,所述第三空穴注入层的厚度定义为dBJ,所述第三空穴传输层的厚度定义为dBT,所述dBP、dBI、dBJ、dBT之间的关系满足关系式:
    ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4;
    其中,mB为自然数;
    并且,dRI=dGI=dBI,dRJ=dGJ=dBJ,dRT=dGT=dBT,mR=mG=mB,由于λR、λG、λB互不相等,因此dRP、dGP、dBP互不相等。
  8. 如权利要求6所述的OLED显示装置的制作方法,其中,所述像素定义层上的数个通孔均呈锥形,并且所述通孔的尺寸从远离所述基板的一端向靠近所述基板的一端逐渐增大。
  9. 如权利要求6所述的OLED显示装置的制作方法,其中,
    所述步骤1中,采用磁控溅射的方式沉积所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层以及所述第一、第二、第三金属层;
    采用喷墨打印的方法在所述第一、第二、第三金属层上分别喷涂PEDOT:PSS水溶液。
  10. 如权利要求6所述的OLED显示装置的制作方法,其中,所述红色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为红色磷光染料,所述红色磷光染料为Ir(DBQ)2(acac);
    所述绿色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为绿色磷光染料,所述绿色磷光染料为Ir(ppy)3
    所述蓝色发光层中包括主体材料与掺杂染料,所述主体材料为AND, 所述掺杂染料为蓝色荧光染料,所述蓝色荧光染料为BUBD-1;
    所述CBP的结构式为
    Figure PCTCN2016113320-appb-100007
    所述Ir(DBQ)2(acac)的结构式为
    Figure PCTCN2016113320-appb-100008
    所述Ir(ppy)3的结构式为
    Figure PCTCN2016113320-appb-100009
    所述BUBD-1的结构式为
    Figure PCTCN2016113320-appb-100010
  11. 一种OLED显示装置的制作方法,包括如下步骤:
    步骤1、提供基板,在所述基板上形成像素定义层,所述像素定义层上设有间隔设置的数个通孔,所述数个通孔在所述基板上限定出数个红色像素区域、数个绿色像素区域及数个蓝色像素区域;
    在所述基板的红色像素区域、绿色像素区域及蓝色像素区域中分别形成第一、第三、第五透明导电金属氧化物层;
    在所述第一、第三、第五透明导电金属氧化物层上分别形成第一、第二、第三金属层;
    在所述第一、第二、第三金属层上分别喷涂PEDOT:PSS水溶液,固化并去除水分后,形成第一、第二、第三PEDOT:PSS导电膜层;
    在所述第一、第二、第三PEDOT:PSS导电膜层上分别沉积第二、第四、第六透明导电金属氧化物层;
    所述红色像素区域中,从下到上依次层叠设置的第一透明导电金属氧化物层、第一金属层、第一PEDOT:PSS导电膜层及第二透明导电金属氧化物层共同构成第一阳极;
    所述绿色像素区域中,从下到上依次层叠设置的第三透明导电金属氧化物层、第二金属层、第二PEDOT:PSS导电膜层及第四透明导电金属氧化 物层共同构成第二阳极;
    所述蓝色像素区域中,从下到上依次层叠设置的第五透明导电金属氧化物层、第三金属层、第三PEDOT:PSS导电膜层及第六透明导电金属氧化物层共同构成第三阳极;
    步骤2、清洗所述第一、第二、第三阳极;
    步骤3、在同一道蒸镀制程中分别在所述第一、第二、第三阳极上蒸镀第一、第二、第三空穴注入层;
    在同一道蒸镀制程中分别在所述第一、第二、第三空穴注入层上蒸镀第一、第二、第三空穴传输层;
    在三道不同的蒸镀制程中分别在所述第一、第二、第三空穴传输层上蒸镀红、绿、蓝色发光层;
    在同一道蒸镀制程中分别在所述红、绿、蓝色发光层上蒸镀第一、第二、第三电子传输层;
    在同一道蒸镀制程中分别在所述第一、第二、第三电子传输层上蒸镀第一、第二、第三阴极;
    从而在所述像素定义层的数个通孔内分别对应所述红色像素区域、绿色像素区域、蓝色像素区域形成红色OLED器件、绿色OLED器件、及蓝色OLED器件;
    其中,所述第一、第二、第三PEDOT:PSS导电膜层的材料相同,且折射率为ηP,所述第二、第四、第六透明导电金属氧化物层的材料相同,且折射率为ηI,所述第一、第二、第三空穴注入层的材料相同,且折射率为ηJ,所述第一、第二、第三空穴传输层的材料相同,且折射率为ηT,所述红色发光层发出的红光的峰值波长为λR,所述绿色发光层发出的绿光的峰值波长为λG,所述蓝色发光层发出的蓝光的峰值波长为λB
    所述第一PEDOT:PSS导电膜层的厚度定义为dRP,所述第二透明导电金属氧化物层的厚度定义为dRI,所述第一空穴注入层的厚度定义为dRJ,所述第一空穴传输层的厚度定义为dRT,所述dRP、dRI、dRJ、dRT之间的关系满足关系式:
    ηP*dRPI*dRIJ*dRJT*dRT=(2mR+1)λR/4;
    其中,mR为自然数;
    所述第二PEDOT:PSS导电膜层的厚度定义为dGP,所述第四透明导电金属氧化物层的厚度定义为dGI,所述第二空穴注入层的厚度定义为dGJ,所述第二空穴传输层的厚度定义为dGT,所述dGP、dGI、dGJ、dGT之间的关系满足关系式:
    ηP*dGPI*dGIJ*dGJT*dGT=(2mG+1)λG/4;
    其中,mG为自然数;
    所述第三PEDOT:PSS导电膜层的厚度定义为dBP,所述第六透明导电金属氧化物层的厚度定义为dBI,所述第三空穴注入层的厚度定义为dBJ,所述第三空穴传输层的厚度定义为dBT,所述dBP、dBI、dBJ、dBT之间的关系满足关系式:
    ηP*dBPI*dBIJ*dBJT*dBT=(2mB+1)λB/4;
    其中,mB为自然数;
    并且,dRI=dGI=dBI,dRJ=dGJ=dBJ,dRT=dGT=dBT,mR=mG=mB,由于λR、λG、λB互不相等,因此dRP、dGP、dBP互不相等;
    其中,所述像素定义层上的数个通孔均呈锥形,并且所述通孔的尺寸从远离所述基板的一端向靠近所述基板的一端逐渐增大。
  12. 如权利要求11所述的OLED显示装置的制作方法,其中,
    所述步骤1中,采用磁控溅射的方式沉积所述第一、第二、第三、第四、第五、第六透明导电金属氧化物层以及所述第一、第二、第三金属层;
    采用喷墨打印的方法在所述第一、第二、第三金属层上分别喷涂PEDOT:PSS水溶液。
  13. 如权利要求11所述的OLED显示装置的制作方法,其中,所述红色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为红色磷光染料,所述红色磷光染料为Ir(DBQ)2(acac);
    所述绿色发光层包括主体材料与掺杂染料,所述主体材料为CBP,所述掺杂染料为绿色磷光染料,所述绿色磷光染料为Ir(ppy)3
    所述蓝色发光层中包括主体材料与掺杂染料,所述主体材料为AND,所述掺杂染料为蓝色荧光染料,所述蓝色荧光染料为BUBD-1;
    所述CBP的结构式为
    Figure PCTCN2016113320-appb-100011
    所述Ir(DBQ)2(acac)的结构式为
    Figure PCTCN2016113320-appb-100012
    所述Ir(ppy)3的结构式为
    Figure PCTCN2016113320-appb-100013
    所述BUBD-1的结构式为
    Figure PCTCN2016113320-appb-100014
PCT/CN2016/113320 2016-12-27 2016-12-30 Oled显示装置及其制作方法 WO2018119965A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/505,105 US10319301B2 (en) 2016-12-27 2016-12-30 OLED display device and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611227254.2 2016-12-27
CN201611227254.2A CN106531772B (zh) 2016-12-27 2016-12-27 Oled显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2018119965A1 true WO2018119965A1 (zh) 2018-07-05

Family

ID=58337725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113320 WO2018119965A1 (zh) 2016-12-27 2016-12-30 Oled显示装置及其制作方法

Country Status (3)

Country Link
US (1) US10319301B2 (zh)
CN (1) CN106531772B (zh)
WO (1) WO2018119965A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883508A (zh) * 2022-07-08 2022-08-09 京东方科技集团股份有限公司 显示基板及显示装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093674B (zh) * 2017-06-09 2020-03-17 上海天马有机发光显示技术有限公司 一种有机发光显示面板、制备方法及其显示装置
CN108288680B (zh) * 2017-12-29 2020-09-08 信利(惠州)智能显示有限公司 一种柔性amoled显示屏封装结构及其封装方法
CN109004101B (zh) * 2018-02-11 2021-07-20 宁波卢米蓝新材料有限公司 一种有机电致发光器件
CN108987603B (zh) * 2018-02-11 2021-07-20 宁波卢米蓝新材料有限公司 一种绿光有机电致发光器件
CN108987604B (zh) * 2018-02-11 2021-08-24 宁波卢米蓝新材料有限公司 一种红光有机电致发光器件
CN108717941B (zh) * 2018-05-28 2020-11-06 上海天马有机发光显示技术有限公司 有机发光显示面板及有机发光显示装置
CN109638051A (zh) * 2018-12-14 2019-04-16 武汉华星光电半导体显示技术有限公司 一种oled面板的制作方法及oled面板
CN109859666B (zh) * 2019-01-30 2022-09-02 宁波卢米蓝新材料有限公司 一种像素排列结构、显示面板及显示装置
CN110690353B (zh) 2019-09-06 2021-01-15 深圳市华星光电半导体显示技术有限公司 一种串联oled器件的制备方法
US11362133B2 (en) * 2019-09-11 2022-06-14 Jade Bird Display (shanghai) Limited Multi-color LED pixel unit and micro-LED display panel
CN110943179A (zh) * 2019-12-13 2020-03-31 京东方科技集团股份有限公司 有机电致发光显示器件、其制作方法及显示装置
KR20220023918A (ko) * 2020-08-21 2022-03-03 삼성디스플레이 주식회사 유기발광 다이오드 및 그 제조방법
CN113745406B (zh) * 2021-11-04 2022-02-08 惠科股份有限公司 像素结构及其制备方法和显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891265A (zh) * 2012-09-28 2013-01-23 昆山工研院新型平板显示技术中心有限公司 Oled阳极的增反结构和oled阴极的增反结构
EP2579313A1 (en) * 2011-09-22 2013-04-10 LG Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
CN103996696A (zh) * 2014-05-09 2014-08-20 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置
CN104637984A (zh) * 2013-11-11 2015-05-20 乐金显示有限公司 有机发光显示装置及其制造方法
CN105932166A (zh) * 2016-05-03 2016-09-07 深圳市华星光电技术有限公司 自发光型显示装置及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4165478B2 (ja) * 2003-11-07 2008-10-15 セイコーエプソン株式会社 発光装置及び電子機器
JP4734368B2 (ja) * 2008-03-31 2011-07-27 株式会社 日立ディスプレイズ 有機発光表示装置
WO2011134013A1 (en) * 2010-04-28 2011-11-03 Commonwealth Scientific And Industrial Research Organisation Electroluminescent devices based on phosphorescent iridium and related group viii metal multicyclic compounds
CN103187434A (zh) * 2013-04-01 2013-07-03 京东方科技集团股份有限公司 有机电致发光器件及制备有机电致发光器件的方法
JP6222719B2 (ja) * 2014-03-20 2017-11-01 株式会社Joled 有機el表示パネル、それを備えた表示装置および有機el表示パネルの製造方法
KR102360093B1 (ko) * 2015-07-22 2022-02-09 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2579313A1 (en) * 2011-09-22 2013-04-10 LG Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
CN102891265A (zh) * 2012-09-28 2013-01-23 昆山工研院新型平板显示技术中心有限公司 Oled阳极的增反结构和oled阴极的增反结构
CN104637984A (zh) * 2013-11-11 2015-05-20 乐金显示有限公司 有机发光显示装置及其制造方法
CN103996696A (zh) * 2014-05-09 2014-08-20 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置
CN105932166A (zh) * 2016-05-03 2016-09-07 深圳市华星光电技术有限公司 自发光型显示装置及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883508A (zh) * 2022-07-08 2022-08-09 京东方科技集团股份有限公司 显示基板及显示装置
CN114883508B (zh) * 2022-07-08 2022-11-01 京东方科技集团股份有限公司 显示基板及显示装置

Also Published As

Publication number Publication date
US10319301B2 (en) 2019-06-11
US20180226024A1 (en) 2018-08-09
CN106531772A (zh) 2017-03-22
CN106531772B (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2018119965A1 (zh) Oled显示装置及其制作方法
WO2018113017A1 (zh) Oled显示装置及其制作方法
US10446776B2 (en) Organic light-emitting diode (OLED) display panel and manufacturing method
US9214642B2 (en) OLED device and manufacturing method thereof, display apparatus
JP2015146468A (ja) 有機発光ディスプレイ装置
US8941102B2 (en) Organic electroluminescent element
US9105873B2 (en) Organic electroluminescent element
US8941103B2 (en) Organic electroluminescent element
KR101829847B1 (ko) 유기전계발광다이오드 및 그 제조방법
US8624485B2 (en) Electroluminescent device
US20110031476A1 (en) Organic electroluminescence element
Liu et al. Improved color quality in double-EML WOLEDs by using a tetradentate Pt (II) complex as a green/red emitter
CN104124391A (zh) 白光顶发光型有机发光二极管及其制备方法
JP2023126912A (ja) 有機エレクトロルミネセントデバイス
WO2018228198A1 (zh) 有机电致发光器件及制备方法、蒸镀设备
EP3451401B1 (en) Oled device and method for manufacturing same, and oled display panel
US20180342706A1 (en) Manufacturing method of organic light emitting diode display panel and organic light emitting diode display panel
US11043648B2 (en) White organic electroluminescent device and preparation method thereof
Xie et al. Blue top-emitting organic light-emitting devices based on wide-angle interference enhancement and suppression of multiple-beam interference
CN111081904A (zh) 氧化石墨烯薄膜的制备方法、oled器件及制备方法
JP2007220359A (ja) 発光素子、発光素子の製造方法、および基板処理装置
JP2014127303A (ja) 有機elデバイスの製造方法
CN107293645B (zh) 一种白光顶发光型有机发光二极管及其制备方法
Huseynova et al. Transparent bi-directional organic light-emitting diodes with color-tunable top emission
TW201603345A (zh) 有機發光裝置及其製作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15505105

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925990

Country of ref document: EP

Kind code of ref document: A1