WO2018119539A1 - Método indirecto de control por deslizamiento constante de máquinas eléctricas asíncronas - Google Patents

Método indirecto de control por deslizamiento constante de máquinas eléctricas asíncronas Download PDF

Info

Publication number
WO2018119539A1
WO2018119539A1 PCT/CL2017/050088 CL2017050088W WO2018119539A1 WO 2018119539 A1 WO2018119539 A1 WO 2018119539A1 CL 2017050088 W CL2017050088 W CL 2017050088W WO 2018119539 A1 WO2018119539 A1 WO 2018119539A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
block
stator
rotor
direct
Prior art date
Application number
PCT/CL2017/050088
Other languages
English (en)
French (fr)
Inventor
Juan Carlos TRAVIESO TORRES
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Publication of WO2018119539A1 publication Critical patent/WO2018119539A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Definitions

  • the present invention relates, in general, to a method of control of induction motors, to be applied in buildings (pumps, fans, elevators, compressors, etc.) as in the rest of the industries where motors are used induction, such as: refining and manufacturing (foundry, textile, rubber and plastic), medical equipment, production of manufactured goods (paper, textile, and food), etc.
  • DTC Direct Torque Control
  • FOC Field Oriented Control
  • the CSC method of the present application maintains the same functions that a high speed control speed variator has today, such as: speed variation, motor protection, variable reading (currents, power, voltages, speed, among others), adding the characteristic of reducing the electrical energy consumption of the induction motor.
  • the first is used for medium control performance, as in certain conveyor belts and positive displacement pumps, with more than 100% torque in the game and a 0.1% speed error in its sensorless mode ("sensorless") which is the most common (Bose, BK, 2002 and Vas P., 1998). Its block diagram is shown in Figure 1, where it is observed that it has Torque and Flow hypertésic controllers.
  • variable speed drives with the FOC method are used. These applications, such as: elevators, extruders and winders, require a starting torque of up to 150%, and once the speed is stabilized, its error with respect to the reference is 0.01%.
  • the block diagram of this speed variator is shown in Figure 2, which considers that the sliding ai is variable and that the calculation of the current "Set points" is simplified by considering that it only depends on the direct component of the flow of the rotor. When there is field orientation (FOC) the quadrature component ⁇ ⁇ 9 of the rotor flow is zero.
  • FOC field orientation
  • variable speed drives of induction motors Regardless of the year of emergence of each method for variable speed drives of induction motors, it was not until 1990 that the mass marketing of variable speed drives began. This is because the control of the AC motor (alternating current) is more complex compared to that of the DC motor (direct current) due to the difficulty of generating alternating signals of varying amplitude and frequency. Therefore, it was required the emergence and application of new high-speed semiconductor devices (such as the IGBT, of the English Insulated-Gate Bipolar Transistor ”) that made it possible to develop the power part, as well as the microcontroller where the method, control techniques, parameter estimation and required variables are programmed and executed (Vas P., 1998).
  • high-speed semiconductor devices such as the IGBT, of the English Insulated-Gate Bipolar Transistor
  • the speed variator with the CSC method of the present invention differs from the variator with the FOC method in that only the control card is replaced.
  • the rest of the components of the frequency inverter of the power part is maintained, therefore, its implementation continues to comply with all the aforementioned regulations.
  • the present invention provides a speed variator using the CSC method whose block diagram is shown in Figure 3.
  • the particularities, of the block diagram of Figure 3, are block 1 that calculates the value of the constant and greater slip ai that zero; and block 2 that calculates the Set Points of the stator current.
  • the calculation of the "Set points" of the components of the current required in the stator is more complex than for the FOC method, considering that it depends on both components, in direct and quadrature ⁇ ⁇ 9 of the rotor flow.
  • FOC field orientation
  • the present invention corresponds to a method of constant slip control (CSC) for speed-varying devices of asynchronous electric machines that deliver high control performance, managing to deliver the load torque with a lower stator current consumption than the existing Oriented Field Control (FOC) and Direct Torque Control (DTC) methods, by energizing the motor with an electric frequency that considers a constant slip equal to the inverse of the electric time constant of the rotor, and by modifying the interface between the output of the speed controller (torque demand) and the reference of the current controller.
  • CSC constant slip control
  • FOC Oriented Field Control
  • DTC Direct Torque Control
  • FIG. 3 Speed Variator Diagram with CSC method of the present invention.
  • FIG. 5 Flowchart of the CSC method of the present invention.
  • ⁇ rd ⁇ ⁇ rd + ⁇ ) sl ⁇ rq + ⁇ r ⁇ ⁇ ⁇ sd
  • ⁇ rq ⁇ ⁇ ⁇ rq ⁇ ⁇ ) sl ⁇ rd + ⁇ r ⁇ ⁇ ⁇ sq
  • the rotor flow components used by block 2 for the above calculations are obtained from block 3, according to various techniques used in various asynchronous motor speed variator schemes, such as a Luenberguer observer.
  • the current "Set Points" are compared with the modules of the motor current components, and in block 4 of Figure 3 they are controlled looking for their errors to zero at steady state, calculating the modules of the voltages that must be applied to the engine.
  • the multivariable current controller can be based on artificial neural networks, adaptive passivity or other.
  • the voltage modules are transformed to 3 coordinates and the Park Transform and Clarke Transform are rotated at synchronous frequency ⁇ 3 ⁇ 4 in block 6. and finally they are applied to the motor by the inverter in block 7.
  • the slip value can be equal, for example, to the nominal motor slip calculated based on the plate data:
  • the modules of the current consumed by the stator are calculated in block 8 based on the three-phase current measured. These modules are used to calculate the rotor flows in block 3 and also the current errors.

Abstract

La presente invención corresponde a un método de control por deslizamiento constante (CSC) para dispositivos variadores de velocidad de máquinas eléctricas asincrónicas que entregan altas prestaciones de control, logrando entregar el torque de carga con un consumo de corriente de estator menor que los métodos de Control por Campo Orientado (FOC) y de Control Directo del Par (DTC) existentes, mediante la energización del motor con una frecuencia eléctrica que considera un deslizamiento constante igual al inverso de la constante de tiempo eléctrica del rotor, y mediante la modificación de la interfaz existente entre la salida del controlador de velocidad (demanda de torque) y la referencia del controlador de corriente.

Description

MÉTODO INDIRECTO DE CONTROL POR DESLIZAMIENTO CONSTANTE DE MÁQUINAS ELÉCTRICAS ASINCRÓNICAS
MEMORIA DESCRIPTIVA
CAMPO DE APLICACIÓN La presente invención se relaciona, en general, con un método de control de motores de inducción, para ser aplicado en edificaciones (bombas, ventiladores, ascensores, compresores, etc.) como en el resto de las industrias donde se emplean motores de inducción, tales como: refinación y fabricación (fundición, textil, caucho y plástico), equipos en medicina, producción de bienes manufacturados (papel, textil, y alimentos), etc.
Desde 1950 aumentó el uso comercial de motores eléctricos que inicialmente eran de corriente continua (CC), operando a velocidad fija o variable. Estos paulatinamente fueron sustituidos por motores de inducción tipo jaula de ardilla de corriente alterna (CA) que poseen menor costo, tamaño, peso, y requerimiento de mantenimiento; además de poder trabajar en ambientes explosivos y corrosivos (Fitzgerald A.E at al, 1971 ; Bose, BK, 2002). Para el caso en que el motor es alimentado por variador de velocidad, se encuentran en el mercado tres métodos de control:
- Escalar, empleado en aplicaciones que requieren de bajas prestaciones de control;
- Control Directo del Par (DTC, de sus siglas en inglés "Direct Torque Control"), empleado para prestaciones de control medias; y
- Control por Campo Orientado (FOC, de sus siglas en inglés "Field Oriented Control") utilizado cuando se requieren altas prestaciones de control (Bose, BK, 2002).
El método CSC de la presente solicitud mantiene las mismas funciones que hoy en día tiene un variador de velocidad de altas prestaciones de control, tales como: variación de la velocidad, protección del motor, lectura de variables (corrientes, potencia, voltajes, velocidad, entre otras), adicionando la característica de disminuir el consumo de energía eléctrica del motor de inducción.
ANTECEDENTES
A la fecha existen los siguientes dos métodos de control empleados por los variadores de velocidad de motores de inducción para entregar medias y altas prestaciones de control:
1 . DTC, del inglés "Direct Torque Control", propuesto en 1985 (Depenbrock, 1985).
2. FOC, "Field Oriented Control", propuesto teóricamente en 1969 (Hasse, K., 1969).
El primero, es empleado para prestaciones de control medias, como en ciertas cintas transportadoras y bombas de desplazamiento positivo, con más de un 100% de torque en la partida y un error de velocidad de 0,1 % en su modalidad sin sensores ("sensorless") que es la más común (Bose, BK, 2002 and Vas P., 1998). Su diagrama en bloques se muestra en la Figura 1 , donde se observa que cuenta con controladores hiterésicos de Torque y Flujo.
Para aplicaciones de altas prestaciones de control, se emplean variadores de velocidad con el método FOC. Estas aplicaciones, tales como: ascensores, extrusoras y bobinadoras, requieren de un torque de arranque de hasta 150%, y que una vez estabilizada la velocidad su error respecto de la referencia sea de 0,01 %. El diagrama en bloques de este variador de velocidad se muestra en la Figura 2, el cual considera que el deslizamiento a i es variable y que el cálculo de los "Set points" de corriente es simplificado por considerar que sólo depende de la componente directa del flujo del rotor. Al existir orientación del campo (FOC) la componente en cuadratura ψί9 del flujo del rotor es cero.
Independiente del año de surgimiento de cada método para variadores de velocidad de motores de inducción, no fue hasta 1990 que comenzó la comercialización masiva de variadores de velocidad. Esto debido a que el control del motor de CA (corriente alterna) es más complejo en comparación con el del motor de CC (corriente continua) por la dificultad de generar señales alternas de amplitud y frecuencia variables. Por lo tanto, se requirió del surgimiento y aplicación de nuevos dispositivos semiconductores de alta velocidad (como el IGBT, del inglés Insulated-Gate Bipolar Transistor") que posibilitaron desarrollar la parte de potencia, así como también del microcontrolador donde se programa y ejecuta el método, las técnicas de control, estimación de parámetros y variables requeridas (Vas P., 1998).
El método FOC existente y que es mejorado mediante el método CSC propuesto en la presente solicitud, tiene sus bases en la tesis de Hasse, K., 1969 que finalmente originó la patente Transvector Control, Siemens-Zeitschrift en 1971 , página 765 a 768. Este método está basado en obtener un control independiente del torque y del flujo del motor a través del control de la corriente.
Es de destacar que existen además numerosos estudios para mejorar el comportamiento del método FOC, desde su surgimiento teórico hasta su aplicación práctica en 1990 y posteriores mejoras, (ejemplo: Patente US US5, 278,486, mejoramiento al FOC). Estos estudios se refieren a propuestas de nuevos controladores de Velocidad, Torque y/o Flujo, así como también, de estimadores de parámetros y/o variables (flujo) que requiere el FOC. Todo esto, empleando diversas técnicas de control, tales como: Control por Modelo de Referencia, Lógica Difusa, Redes Neuronales Artificiales, Superficies Deslizantes y Control Adaptable. La presente solicitud no se relaciona con mejoras a bloques o etapas de los métodos existentes sino que plantea una propuesta de un método totalmente nuevo. Normativa Aplicable
Los variadores existentes con método FOC de los proveedores más importantes del mercado (Rockwell Automation, 2008) cumplen con las siguientes normativas: · Instalación de acuerdo a EN 61800-5-1 y EN 61800-3.
• Emisión electromagnética de acuerdo a las normas EN5501 1 y EN 55022.
• Protección eléctrica de acuerdo a la norma EN81 -1 .
• Encapsulado de acuerdo a las normas NEMA o IP (equivalentes)
« Electrónica diseñada de acuerdo a estándares de seguridad CSA, UL,
CE y equivalentes
Físicamente, el variador de velocidad con el método CSC de la presente invención, se diferencia del variador con método FOC en que sólo se sustituye la tarjeta de control. El resto de las componentes del variador de frecuencia de la parte de potencia se mantiene, por lo tanto, su implementación sigue cumpliendo con todas las normativas antes mencionadas.
La primera vez que se mencionó la idea de operar con deslizamiento constante exactamente igual al inverso de la constante de tiempo del rotor fue en (Feng Xiaogang & Chen Boshi, 1996), mostrándose matemáticamente que en estado estacionario para ese valor se reduciría el consumo de corriente. En esta condición el motor entrega el torque electromagnético requerido por la carga pero con una corriente del estator mínima. No se entrega entonces un método para realizar dicha operación.
Esto también fue enunciado por (Travieso J.C. y Hernández, P., 2007) quien describe la utilización de un variador de velocidad con el método FOC como el de la Figura 2, aplicando un deslizamiento constante en el cálculo de la frecuencia eléctrica del motor. Como resultado, si bien pudo comprobarse que hay reducción del consumo de corriente en estado estacionario, se perdió el control del motor, no pudiendo asegurar que la velocidad del rotor adquiriera un valor igual al de la referencia ("Set Point") y dejando de entregar altas prestaciones de control. Ya el documento de Travieso J.C. y Hernández P. alerta sobre la necesidad de hacer modificaciones al método FOC más allá de imponer un deslizamiento constante, esto debido a las dificultades de la operación con deslizamiento constante, pues el motor se torna en un sistema no lineal con alto grado de acoplamiento entre sus variables. El documento de K. Ganesan et al, 2014 describe un método CSC simplificado pero para bajas prestaciones y basado en simulaciones.
El estado de la técnica no describe un método CSC como el de la presente invención, que permita un control de altas prestaciones de un motor de inducción. MÉTODO CSC
Para aplicaciones de altas prestaciones de control, tales como: ascensores, extrusoras y bobinadoras, que requieren de un torque de arranque de hasta 150%, y que una vez estabilizada la velocidad su error respecto de la referencia sea de 0,01 %, se propone el método de Control por Deslizamiento Constante.
La presente invención proporciona un variador de velocidad utilizando el método de CSC cuyo diagrama en bloques se muestra en la Figura 3. Las particularidades, del diagrama en bloques de la figura 3, son el bloque 1 que calcula el valor del deslizamiento a i constante y mayor que cero; y el bloque 2 que calcula los Set Points de la corriente del estator. El cálculo de los "Set points" de las componentes de la corriente requerida en el estator resulta más complejo que para el método FOC por considerar que depende de ambas componente, en directa y en cuadratura ψί9 del flujo del rotor. No existe aquí orientación del campo (FOC) por lo que la componente en cuadratura Ψί9 del flujo del rotor es distinta de cero, a diferencia del método FOC que persigue hacer cero dicha componente.
RESUMEN
La presente invención corresponde a un método de control por deslizamiento constante (CSC) para dispositivos variadores de velocidad de máquinas eléctricas asincrónicas que entregan altas prestaciones de control, logrando entregar el torque de carga con un consumo de corriente de estator menor que los métodos de Control por Campo Orientado (FOC) y de Control Directo del Par (DTC) existentes, mediante la energización del motor con una frecuencia eléctrica que considera un deslizamiento constante igual al inverso de la constante de tiempo eléctrica del rotor, y mediante la modificación de la interfaz existente entre la salida del controlador de velocidad (demanda de torque) y la referencia del controlador de corriente.
BREVE DESCRIPCION DE LAS FIGURAS
Figura 1 : Diagrama de Variador de Velocidad con método DTC, (Arte previo)
Figura 2: Diagrama de Variador de Velocidad con método FOC Indirecto, (Arte previo)
Figura 3: Diagrama de Variador de Velocidad con método CSC de la presente invención.
Figura 5: Diagrama de Flujo del método CSC de la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENSIÓN
Describiendo el diagrama de bloques de control de la Figura 3 (de izquierda a derecha) y el diagrama de flujo de la Figura 4 (de arriba abajo), se tiene que como todo esquema de un variador de velocidad de máquinas asincrónicas para altas prestaciones comprende: Fijar el "Set point" de velocidad angular del rotor ω* (o velocidad de operación deseada), el cual el que es comparado con la velocidad real (medida o sensada) del motor cor para calcular el error de velocidad como:
*
Controlar la velocidad angular del rotor (bloque 5) buscando que el error de la velocidad tienda a cero de manera rápida y no oscilatoria. Usualmente se utiliza un controlador del tipo Proporcional Integral (Pl) que finalmente calcula el "Set Point" del torque electromagnético o torque requerido por la carga, como:
Figure imgf000011_0001
En base a los "Set Points" del torque Tem y |a corriente nominal del motor I sn obtenida de la placa del motor, se calculan los "Set Points" de corriente del estator en el bloque 2 (destacado en gris e, la figura 3). Esta etapa del método no es descrita por el estado de la técnica.
Calcula el "Set Point" de la componente en cuadratura de la corriente del estator mediante la siguiente ecuación:
"sq
Ψ ra , 3p ^L m Ψ ra ,
Ec. 3 Despejando dicha componente de la ecuación 3, de las ecuaciones de la máquina asincrónica en coordenadas de la velocidad sincrónica, se tiene:
R L L 1
sd ^ sd e sq r rd ^ ^ r rq ^ sd
R T T R 1
/ = -m J J " m Ψ i "' i y
sd .» sd sq τ τ rd ? rq sq
oLs oLsLr aL s r r Ls
R L
Ψ rd = ~ ^rd + ú)sl ^ rq + ^r ~¡~ ^ sd
R L
Ψ rq = ~¡~ ^rq ~ ú)sl ^ rd + ^r ~¡~ ^sq
T = ?>PLm , j _ ψ j )
em \ rd sq rq sd >
Lr Ec. 4
También, se calcula el "Set Point" de la componente directa de la corriente del estator cómo sigue:
Figure imgf000012_0001
Las componentes del flujo del rotor empleadas por el bloque 2 para los cálculos anteriores, se obtienen del bloque 3, de acuerdo a diversas técnicas empleadas en varios esquemas de variadores de velocidad de motores asincrónicos, tales como un observador de Luenberguer.
Nuevamente siguiendo un esquema tradicional los "Set Points" de corriente se comparan con los módulos de las componentes de corrientes del motor, y en el bloque 4 de la figura 3 se controlan buscando que sus errores tiendan a cero en estado estacionario, calculando los módulos de los voltajes que hay que aplicar al motor. El controlador de corriente multivariable puede ser basado en redes neuronales artificiales, pasividad adaptable u otro.
Los módulos de los voltajes se transforman a 3 coordenadas y se hace girar a la frecuencia sincrónica <¾ en el bloque 6 empleado la Transformada de Park y la Transformada de Clarke; y finalmente son aplicados al motor por el inversor en el bloque 7.
Para transformar los módulos del voltaje (llamados componentes directa y en cuadratura del voltaje) en el voltaje trifásico en el bloque 6, se requiere conocer la frecuencia sincrónica cos que es calculada como la suma de velocidad angular medida del rotor más el deslizamiento ω γ que calculado aquí con un valor constante mayor que cero en el bloque 1 (destacado en gris).
El valor del deslizamiento puede ser igual, por ejemplo, al deslizamiento nominal del motor calculado en base a los datos de placa:
Figure imgf000013_0001
También puede considerarse el valor constante identificado en Feng
Xiaogang & Chen Boshi, 1996 y Travieso J.C. y Hernández, P., 2007.
Figure imgf000013_0002
u otro valor. Basado también en la frecuencia sincrónica s se calculan en el bloque 8 los módulos de la corriente consumida por el estator (llamados componentes directa y en cuadratura de la corriente) en base a la corriente trifásica que se mide. Estos módulos son empleados para calcular los flujos del rotor en el bloque 3 y también los errores de corriente.

Claims

REIVINDICACIONES
1 . Método para el control de un motor de inducción, CARACTERIZADO porque comprende:
* establecer el "Set point" de velocidad angular requerida en el rotor G) r . medir la velocidad angular del rotor real cor; calcular el error de velocidad angular del rotor
Figure imgf000015_0001
ω*Γ aplicar un controlador proporcional integral (Pl) para logra que el error de velocidad angular del rotor tienda a cero, estableciendo el torque electromagnético requerido por la carga; calcular la corriente requerida en el estator (bloque 2) de acuerdo al torque electromagnético requerido (proveniente del Bloque 5), el flujo del rotor
(calculado en el Bloque 3), y la corriente nominal del motor Isn obtenida de los datos de placa, identificando sus componentes directa y en cuadratura. medir la corriente consumida por el estator y calcular sus componentes (bloque 8) en directa y en cuadratura; calcular el Flujo del rotor (Bloque 3) en base a la componente de corriente en directa y cuadratura; calcular los errores de las componentes de la corriente del estator, restando la corriente requerida a la corriente medida o consumida real; aplicar un controlador multivariable (bloque 4) de las componentes de corriente del estator buscando que sus errores tiendan a cero, por medio de identificar las componentes en directa y en cuadratura requeridas del voltaje del estator; calcular la frecuencia sincrónica ¿¾ como suma de la velocidad angular de rotor más el deslizamiento calculado con un valor constante mayor que cero (bloque 1 );
transformar (en el bloque 6) las componentes directa y en cuadratura del voltaje del estator, en el voltaje trifásico a aplica al motor, en función de la frecuencia sincrónica ¿¾ ; y aplicar, mediante el inversor (bloque 7) el voltaje trifásico al estator del motor de inducción .
2. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque el deslizamiento constante es igual al deslizamiento nominal del motor calculado en base a los datos de placa:
2τξ
^rnom
3. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque el deslizamiento constante es calculado según
R
slip
4. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque el "Set Point" de la componente en cuadratura de la corriente del estator se calcula mediante la siguiente ecuación:
sq Ψ , 3pL Ψ , em
ra 1 m ra 5. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque el "Set Point" de la componente directa de la corriente del estator se calcula cómo:
I * _ * sn
sd f¿
PCT/CL2017/050088 2016-12-29 2017-12-27 Método indirecto de control por deslizamiento constante de máquinas eléctricas asíncronas WO2018119539A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2016003397A CL2016003397A1 (es) 2016-12-29 2016-12-29 Método indirecto de control por deslizamiento constante de máquinas eléctricas asincrónicas para altas prestaciones de control (invención en servicio)
CL3397-2016 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018119539A1 true WO2018119539A1 (es) 2018-07-05

Family

ID=62707524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2017/050088 WO2018119539A1 (es) 2016-12-29 2017-12-27 Método indirecto de control por deslizamiento constante de máquinas eléctricas asíncronas

Country Status (2)

Country Link
CL (1) CL2016003397A1 (es)
WO (1) WO2018119539A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138299A (zh) * 2019-05-22 2019-08-16 河南科技大学 基于转子电阻在线辨识的无轴承异步电机逆解耦控制系统
CN110247599A (zh) * 2019-06-25 2019-09-17 湖南大学 基于端电压优化控制的异步电机高效率运行方法
CN111835255A (zh) * 2019-04-17 2020-10-27 华北电力大学(保定) 考虑电气损耗的定子电流矢量定向下pmsm转矩脉动综合抑制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316093A (zh) * 2008-07-23 2008-12-03 株洲南车时代电气股份有限公司 一种直线感应电机恒转差频率矢量控制方法及系统
CN103825522A (zh) * 2014-02-27 2014-05-28 株洲南车时代电气股份有限公司 一种电机最佳工作点在线计算方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316093A (zh) * 2008-07-23 2008-12-03 株洲南车时代电气股份有限公司 一种直线感应电机恒转差频率矢量控制方法及系统
CN103825522A (zh) * 2014-02-27 2014-05-28 株洲南车时代电气股份有限公司 一种电机最佳工作点在线计算方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835255A (zh) * 2019-04-17 2020-10-27 华北电力大学(保定) 考虑电气损耗的定子电流矢量定向下pmsm转矩脉动综合抑制方法
CN111835255B (zh) * 2019-04-17 2023-08-11 华北电力大学(保定) 考虑电气损耗的定子电流矢量定向下pmsm转矩脉动抑制方法
CN110138299A (zh) * 2019-05-22 2019-08-16 河南科技大学 基于转子电阻在线辨识的无轴承异步电机逆解耦控制系统
CN110138299B (zh) * 2019-05-22 2020-10-16 河南科技大学 基于转子电阻在线辨识的无轴承异步电机逆解耦控制系统
CN110247599A (zh) * 2019-06-25 2019-09-17 湖南大学 基于端电压优化控制的异步电机高效率运行方法

Also Published As

Publication number Publication date
CL2016003397A1 (es) 2018-08-10

Similar Documents

Publication Publication Date Title
WO2018119539A1 (es) Método indirecto de control por deslizamiento constante de máquinas eléctricas asíncronas
EP2471172B1 (en) System and method for motor speed estimation of an electric motor
CN105227020B (zh) 风扇马达驱动装置以及送风装置
ES2948952T3 (es) Dispositivo de control de inversor y sistema de accionamiento de motor eléctrico
JP2008043030A (ja) 電動機の制御装置
BRPI0803535B8 (pt) métodos de controle orientado por campo para um acionamento elétrico e de operação para um acionamento para tracionar um objeto, arranjo de motor elétrico, e, controlador de posição e/ou velocidade para o controle orientado por campo de um acionamento elétrico
JP2014507113A (ja) 埋込永久磁石型機械を特性化するための方法および装置
ES2654860T3 (es) Dispositivo para controlar un inversor
JP6059285B2 (ja) 誘導電動機制御装置
EP2828530B1 (en) A determination method and a control method for a fluid displacement device, controller and system
JP2015154503A (ja) モータ装置
BR112016021810B1 (pt) Método para geração de uma tensão variável de saída, e, dispositivo de controle
WO2010125525A1 (en) A control system for a hydraulic elevator apparatus
BR112016019850B1 (pt) Método, controlador, e, dispositivo de armazenamento legível por computador
CN107528517B (zh) 旋转电机的控制方法
CN104753434A (zh) 电动机消磁错误感知装置及方法
KR101590251B1 (ko) 정지형 회전자 시정수 추정 방법
RU2570363C1 (ru) Способ определения параметров асинхронного электродвигателя
Jonsky et al. Comparison of control methods for H-bridge fed five-phase permanent magnet synchronous motors
US10205411B2 (en) Control method for starting a synchronous electric motor
JP2009247134A (ja) ロータ位置検出装置、ロータ位置検出方法、モータの制御装置、及びモータの制御方法
WO2022137612A1 (ja) 電力変換装置
JP2018164360A (ja) 同期電動機の制御装置
WO2019159629A1 (ja) モータ制御回路、モータシステムおよび脱調検出方法
KR20150017072A (ko) 인버터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885628

Country of ref document: EP

Kind code of ref document: A1