WO2018117224A1 - スチレン系樹脂押出発泡体およびその製造方法 - Google Patents

スチレン系樹脂押出発泡体およびその製造方法 Download PDF

Info

Publication number
WO2018117224A1
WO2018117224A1 PCT/JP2017/045954 JP2017045954W WO2018117224A1 WO 2018117224 A1 WO2018117224 A1 WO 2018117224A1 JP 2017045954 W JP2017045954 W JP 2017045954W WO 2018117224 A1 WO2018117224 A1 WO 2018117224A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
styrene
resin
parts
extruded foam
Prior art date
Application number
PCT/JP2017/045954
Other languages
English (en)
French (fr)
Inventor
武紀 菊地
栗原 俊二
清水 浩司
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2018558072A priority Critical patent/JP7129344B2/ja
Publication of WO2018117224A1 publication Critical patent/WO2018117224A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic

Definitions

  • the present invention relates to a styrene resin extruded foam obtained by extrusion foaming using a styrene resin and a foaming agent, and a method for producing the same.
  • Styrenic resin extruded foam is generally produced by heating and melting a styrene resin composition using an extruder or the like, then adding a foaming agent under high pressure conditions, cooling to a predetermined resin temperature, Manufactured continuously by extruding into a zone.
  • the styrene resin extruded foam is used as, for example, a heat insulating material of a structure because of good workability and heat insulating properties.
  • demands for energy saving of houses, buildings, and the like have increased, and technical development of highly heat-insulating foams more than before has been desired.
  • Proposed methods for producing highly heat-insulating foams include a method of controlling the bubble diameter of an extruded foam within a predetermined range, a method of adding a heat radiation inhibitor, and a method of using a foaming agent with low thermal conductivity. Has been.
  • Patent Document 1 proposes a manufacturing method in which the average cell diameter in the thickness direction of the extruded foam is changed to fine bubbles of 0.05 to 0.18 mm, and the bubble deformation rate of the extruded foam is controlled.
  • Patent Document 2 proposes a production method in which graphite or titanium oxide is added in a predetermined range as a heat ray radiation inhibitor.
  • Patent Documents 1 to 6 are not sufficient for the purpose of obtaining a styrene resin extruded foam having an excellent heat insulating property and a sufficient thickness suitable for use.
  • An object of the present invention is to easily obtain an extruded foam of a styrene resin having excellent heat insulation and having a sufficient thickness suitable for use.
  • the styrene resin extruded foam according to one embodiment of the present invention is a styrene resin extruded foam containing hydrofluoroolefin as a foaming agent, and contains a styrene-acrylonitrile copolymer resin of 40% by weight or more. Water and / or alcohol as a foaming agent is further added to 0.5 parts by weight or more and 2.0 parts by weight or less with respect to 100 parts by weight of the resin.
  • (A) is a schematic diagram for demonstrating an example of the measuring method of an average bubble diameter in the styrene-type resin extrusion foam which concerns on one Embodiment of this invention.
  • the lower diagram of (a) is a cross-sectional view of the upper diagram (extruded styrene resin foam) of (a) cut along A-A ′.
  • (B) is a coordinate representing the relationship between the width direction (X axis), the extrusion direction (Y axis), and the thickness direction (Z axis) in (a). Each axis is orthogonal to each other.
  • Patent Documents 1 to 6 have the following problems. Specifically, in the technique described in Patent Document 1, first, when the average bubble diameter is in a fine range, the distance between the bubble walls of the foam is shortened. The range of motion was narrow, and deformation of the bubbles was difficult. Therefore, there has been a problem that it is not easy to impart a beautiful surface to the extruded foam and to increase the thickness of the extruded foam.
  • the hydrofluoroolefin used in these conventional techniques has low solubility in the styrene resin, and separation from the styrene resin is quick when extrusion foaming.
  • the separated hydrofluoroolefin becomes the nucleation point and the bubble diameter becomes finer.
  • the resin is cooled and solidified by the latent heat of vaporization of the hydrofluoroolefin (the fluidity of the molten resin is lowered), there is a problem similar to the technique described in Patent Document 1.
  • the use of a styrene-acrylonitrile copolymer resin as a styrene resin is disclosed, but the purpose of use is different from that of the present invention.
  • the present invention provides a heat insulation of a styrene resin extruded foam by a production method using (1) a specific amount of styrene-acrylonitrile copolymer resin and (2) a specific amount of water and / or alcohol.
  • a styrene resin extruded foam according to an embodiment of the present invention is a styrene resin extruded foam containing hydrofluoroolefin as a foaming agent and containing 40% by weight or more of a styrene-acrylonitrile copolymer resin. Water and / or alcohol as a foaming agent is further added in an amount of 0.5 to 2.0 parts by weight based on 100 parts by weight of the resin.
  • a styrene resin composition containing an appropriate amount of other additives is heated and melted using an extruder or the like, and then a foaming agent is added under high-pressure conditions and cooled to a predetermined resin temperature. Thereafter, it can be continuously produced by extruding it into a low pressure region.
  • the styrene resin extruded foam according to an embodiment of the present invention is a styrene resin in order to improve the phenomenon that a sufficient thickness cannot be given to the extruded foam when hydrofluoroolefin is used as a foaming agent.
  • the vaporization amount or vaporization rate of the hydrofluoroolefin immediately after foaming of the extruded foam can be suppressed.
  • (1) maintenance of high plasticity of the resin melt due to the hydrofluoroolefin remaining in the resin melt, and (2) resin melt due to the latent heat of vaporization of the hydrofluoroolefin Cooling and solidification can be suppressed.
  • the extruded foam and / or resin melt has sufficient plasticity for imparting shape to the extruded foam and / or resin melt.
  • the content of the styrene-acrylonitrile copolymer resin in one embodiment of the present invention is 40% by weight or more, preferably 40% by weight or more and 90% by weight or less, and preferably 40% by weight or more and 80% by weight or less in the styrene resin. More preferred. When the content of the styrene-acrylonitrile copolymer resin is less than 40% by weight, the amount of the styrene-acrylonitrile copolymer resin is too small to provide a sufficient thickness.
  • the amount of the acrylonitrile component in the styrene-acrylonitrile copolymer resin used in one embodiment of the present invention is preferably 10% by weight to 45% by weight, more preferably 15% by weight to 40% by weight, and more preferably 20% by weight. It is particularly preferably 45% by weight or less. When the amount of the acrylonitrile component in the styrene-acrylonitrile copolymer resin is less than 10% by weight, the amount of the acrylic nitrile component is too small to provide a sufficient thickness.
  • the amount of the acrylonitrile component of the styrene-acrylonitrile copolymer resin is more than 45% by weight, the fluidity of the molten resin at the time of foaming is lowered due to the small amount of the styrene component, which may hinder foaming.
  • the styrene resin other than the styrene-acrylonitrile copolymer resin used in one embodiment of the present invention is not particularly limited.
  • Styrene monomer styrene, methyl styrene, ethyl styrene, isopropyl styrene, dimethyl styrene
  • homopolymer or a copolymer comprising a combination of two or more monomers or
  • a copolymer obtained by copolymerizing one or two or more of a body divinylbenzene, butadiene, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, maleic anhydride, itaconic anhydride, etc.
  • Monomers such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, maleic anhydride, and itaconic anhydride to be copolymerized with styrenic monomers are the compression strength of the styrene resin extrusion foam produced The amount can be used so as not to deteriorate the physical properties.
  • the styrene resin used in an embodiment of the present invention is not limited to a homopolymer or copolymer of the styrene monomer, and (1) a homopolymer or copolymer of the styrene monomer. And (2) a blend of the styrenic monomer and a copolymer of another monomer.
  • the styrene resin used in one embodiment of the present invention includes (1) a homopolymer or copolymer of the styrene monomer, (2) a diene rubber reinforced polystyrene or an acrylic rubber reinforced polystyrene, It may be a blend of Furthermore, the styrene resin used in one embodiment of the present invention is a styrene resin having a branched structure for the purpose of adjusting the melt flow rate (hereinafter referred to as MFR), the melt viscosity at the time of molding, the melt tension, and the like. There may be.
  • MFR melt flow rate
  • the base resin may contain a resin that does not contain a styrene monomer.
  • styrenic resin in one embodiment of the present invention a resin having an MFR of 0.1 to 50 g / 10 min is used.
  • the molding processability at the time of extrusion foam molding is excellent.
  • Molding Easy to adjust the discharge rate during processing to the desired value (iii) Foamability (excellent adjust the foam thickness, width, apparent density, closed cell rate, surface properties, etc.
  • the MFR of the styrenic resin is more preferably 0.3 to 30 g / 10 minutes, and preferably 0.5 to 25 g / 10 minutes from the viewpoint of the balance between moldability and foamability, mechanical strength and toughness. Particularly preferred.
  • MFR is measured according to method A of JIS K7210 (1999) and test condition H.
  • a polystyrene resin is particularly preferable from the viewpoint of economy and processability.
  • a polystyrene resin is particularly preferable from the viewpoint of economy and processability.
  • rubber-reinforced polystyrene when higher impact resistance is required for the extruded foam, it is preferable to use rubber-reinforced polystyrene.
  • styrenic resins may be used alone, or two or more different styrenic resins such as copolymerization component, molecular weight and molecular weight distribution, branched structure, and / or MFR may be mixed and used. .
  • hydrofluoroolefin is used as a foaming agent in order to improve the heat insulation of the extruded foam.
  • the hydrofluoroolefin used in one embodiment of the present invention is not particularly limited, but tetrafluoropropene is preferable from the viewpoint of low gas thermal conductivity and safety.
  • tetrafluoropropene include trans-1,3,3,3-tetrafluoropropene (trans-HFO-1234ze) and cis-1,3,3,3-tetrafluoropropene (cis-HFO-1234ze). ), 2,3,3,3-tetrafluoropropene (trans-HFO-1234yf) and the like.
  • the hydrofluoroolefin used in the present invention may be a chlorinated hydrofluoroolefin.
  • the chlorinated hydrofluoroolefin is not particularly limited, but hydrochlorotrifluoropropene is preferred from the viewpoints of low gas thermal conductivity and safety.
  • Specific examples of hydrochlorotrifluoropropene include trans-1-chloro-3,3,3-trifluoropropene (trans-HCFO-1233zd).
  • hydrofluoroolefins may be used alone or in combination of two or more.
  • the addition amount of the hydrofluoroolefin according to an embodiment of the present invention is preferably 3.0 parts by weight or more and 14.0 parts by weight or less, and preferably 4.0 parts by weight or more and 13.0 parts by weight with respect to 100 parts by weight of the styrenic resin. Is more preferably 4.5 parts by weight or more and 12.0 parts by weight or less.
  • the amount of hydrofluoroolefin added is less than 3.0 parts by weight with respect to 100 parts by weight of the styrene resin, the effect of improving the heat insulation by the hydrofluoroolefin cannot be expected so much.
  • Hydrofluoroolefin is an environmentally friendly foaming agent that has a zero or extremely low ozone depletion potential, a very low global warming potential. Moreover, since hydrofluoroolefin has a low thermal conductivity in the gaseous state and is flame retardant or non-flammable, it can be used as a foaming agent for styrene resin extruded foams. Excellent heat insulation and flame retardancy can be imparted.
  • the hydrofluoroolefin when a hydrofluoroolefin having low solubility in a styrenic resin such as tetrafluoropropene is used, the hydrofluoroolefin is separated from the resin melt and / or vaporized as the amount of addition increases. To do. As a result, the hydrofluoroolefin becomes a nucleation point, (i) the foam bubbles are refined, (ii) the foaming agent remaining in the resin is reduced, and the plasticity of the resin melt is lowered. (Iii) The resin melt is cooled and solidified due to the latent heat of vaporization of the foaming agent. As a result, it tends to be difficult to increase the thickness of the extruded foam.
  • water and / or alcohol is used to improve the tendency not to give the extruded foam sufficient thickness when using hydrofluoroolefin as a blowing agent. To do.
  • the alcohol used in one embodiment of the present invention is not particularly limited, but saturated alcohols having 1 to 4 carbon atoms (methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, tert- Butyl alcohol, etc.) is preferable because it has a high effect of giving a sufficient thickness to the extruded foam.
  • saturated alcohols having 1 to 4 carbon atoms methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, tert- Butyl alcohol, etc.
  • ethanol, propyl alcohol, and i-propyl alcohol are more preferable from the viewpoint of availability and price.
  • the addition amount of water and / or alcohol according to one embodiment of the present invention is 0.5 part by weight or more and 2.0 parts by weight or less, and 0.5 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the styrenic resin. 0.8 parts by weight or less is preferable, and 0.5 parts by weight or more and 1.5 parts by weight or less is more preferable.
  • the amount of water and / or alcohol added is less than 0.5 parts by weight based on 100 parts by weight of the styrene resin, the effect of giving sufficient thickness to the extruded foam by water and / or alcohol is not so much. I can't expect it.
  • an effect of increasing the plasticity of the molten resin and / or an effect of assisting foaming can be obtained by using another foaming agent. Therefore, the extrusion pressure is reduced, and the foam can be stably produced.
  • foaming agents include, for example, saturated hydrocarbons having 3 to 5 carbon atoms (propane, n-butane, i-butane (hereinafter sometimes referred to as “isobutane”), n-pentane, i-pentane, neopentane.
  • Ethers dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methyl furan, tetrahydrofuran, tetrahydropyran, etc.
  • ketones dimethyl ketone, methyl ethyl ketone, diethyl
  • Ketone methyl-n-propyl ketone, methyl-n-butyl ketone, methyl-i-butyl ketone, methyl-n-amyl ketone, methyl-n-hexyl ketone, ethyl-n-propyl ketone, ethyl-n-butyl ketone
  • Esters formic acid methyl ester, formic acid ethyl ester, formic acid propyl ester, formic acid butyl ester, formic acid amyl ester,
  • At least one member selected from the group consisting of saturated hydrocarbons having 3 to 5 carbon atoms, dimethyl ether, and alkyl chloride is used because of its excellent foamability and moldability when producing extruded foams. It is preferable to do.
  • saturated hydrocarbons having 3 to 5 carbon atoms propane, n-butane, i-butane, or a mixture thereof is preferable from the viewpoint of foamability.
  • propane, n-butane, i-butane, or a mixture thereof is preferable from the viewpoint of foamability.
  • n-butane, i-butane, or a mixture thereof is preferable, and i-butane is particularly preferable.
  • alkyl chlorides methyl chloride or ethyl chloride is (1) foamability when producing extruded foam, and (2) moldability and flame retardancy of the obtained extruded foam. Particularly preferred from the balance.
  • the addition amount of the saturated hydrocarbon having 3 to 5 carbon atoms is preferably 1.0 part by weight or more and 3.0 parts by weight or less, and 1.0 part by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the styrene resin. Is more preferable, and 1.0 to 2.0 parts by weight is particularly preferable.
  • the total addition amount thereof is preferably 0.5 to 15 parts by weight with respect to 100 parts by weight of the styrene resin. It is more preferably 0 part by weight or more and 10 parts by weight or less, and particularly preferably 2.0 parts by weight or more and 8.0 parts by weight or less.
  • the total addition amount of dimethyl ether, methyl chloride, and ethyl chloride is less than 0.5 parts by weight with respect to 100 parts by weight of the styrene resin, the addition amount is too small. Is difficult to obtain.
  • the amount of the foaming agent added is preferably 2 to 20 parts by weight, more preferably 2 to 15 parts by weight with respect to 100 parts by weight of the styrene resin as the whole foaming agent. If the addition amount of the foaming agent is less than 2 parts by weight, the foaming ratio is low, and characteristics such as light weight and heat insulation as a resin foam may be difficult to be exhibited. Due to the amount of the agent, defects such as voids may occur in the foam.
  • water and / or alcohol it is preferable to add a water-absorbing substance in order to stably perform extrusion foam molding.
  • a water-absorbing substance used in one embodiment of the present invention include a water-absorbing polymer (polyacrylate polymer, starch-acrylic acid graft copolymer, polyvinyl alcohol polymer, vinyl alcohol-acrylic).
  • particle diameters having hydroxyl groups on the surface Fine powder of 1000 nm or less anhydrous silica (silicon oxide) having silanol groups on the surface [for example, AEROSIL manufactured by Nippon Aerosil Co., Ltd.
  • water-absorbing or water-swelling layered silicate smectite
  • Swellable fluorine mica etc.
  • porous materials Zeola DOO, activated carbon, alumina, silica gel, porous glass, activated clay, diatomaceous earth, bentonite, etc.
  • the addition amount of the water-absorbing substance is appropriately adjusted depending on the addition amount of water and / or alcohols, and is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the styrenic resin. 0.1 to 3 parts by weight is more preferable.
  • the pressure when adding or injecting a foaming agent is not particularly limited, and may be a pressure higher than the internal pressure of an extruder or the like. That's fine.
  • the content of the flame retardant is such that the added amount of the foaming agent, the apparent density of the foam, and the flame retardant synergistic effect so that excellent flame retardancy can be obtained in the flammability test (measurement method A) specified in JIS A 9521. It is more preferable to adjust appropriately according to the type or content of the additive having the.
  • a brominated flame retardant is preferably used as the flame retardant.
  • brominated flame retardants used in one embodiment of the present invention include hexabromocyclododecane, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether, tetrabromobisphenol A -Bis (2,3-dibromopropyl) ether, tris (2,3-dibromopropyl) isocyanurate, and aliphatic bromine-containing polymers such as brominated styrene-butadiene block copolymers. These may be used alone or in combination of two or more.
  • a mixed brominated flame retardant comprising tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether and tetrabromobisphenol A-bis (2,3-dibromopropyl) ether , (2) brominated styrene-butadiene block copolymer, and (3) hexabromocyclododecane are preferably used because they have good extrusion operation and do not adversely affect the heat resistance of the foam. These substances may be used alone or as a mixture.
  • the content of the brominated flame retardant in the styrene resin extruded foam according to an embodiment of the present invention is preferably 0.5 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. 1.0 to 5.0 parts by weight is more preferable with respect to 100 parts by weight of the resin, and 1.5 to 5.0 parts by weight is even more preferable. If the brominated flame retardant content is less than 0.5 parts by weight, good properties such as flame retardancy tend to be difficult to obtain. On the other hand, if the content exceeds 5.0 parts by weight, It may impair the stability and surface properties during body production.
  • a radical generator can be used in combination for the purpose of improving the flame retardancy of the styrene resin extruded foam.
  • the radical generator include 2,3-dimethyl-2,3-diphenylbutane, poly-1,4-diisopropylbenzene, 2,3-diethyl-2,3-diphenylbutane, 3,4- Dimethyl-3,4-diphenylhexane, 3,4-diethyl-3,4-diphenylhexane, 2,4-diphenyl-4-methyl-1-pentene, 2,4-diphenyl-4-ethyl-1-pentene, etc. Is mentioned.
  • peroxides such as dicumyl peroxide
  • peroxides those that are stable under the resin processing temperature conditions are preferable, and specifically, 2,3-dimethyl-2,3-diphenylbutane and poly-1,4-diisopropylbenzene are preferable.
  • a preferable addition amount of the radical generator is 0.05 to 0.5 parts by weight with respect to 100 parts by weight of the styrene resin.
  • a phosphorus flame retardant such as phosphate ester and phosphine oxide
  • a phosphorus flame retardant can be used in combination as long as the thermal stability performance is not impaired.
  • phosphate ester examples include triphenyl phosphate, tris (tributylbromoneopentyl) phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, Examples thereof include tris (2-ethylhexyl) phosphate, tris (butoxyethyl) phosphate, condensed phosphate ester, and the like, and triphenyl phosphate or tris (tributylbromoneopentyl) phosphate is particularly preferable.
  • triphenylphosphine oxide is preferable. These phosphate esters and phosphine oxides may be used alone or in combination of two or more. A preferable addition amount of the phosphorus flame retardant is 0.1 to 2 parts by weight with respect to 100 parts by weight of the styrene resin.
  • a stabilizer for stabilizing the resin and / or the flame retardant can be used as necessary.
  • specific examples of the stabilizer include (i) epoxy compounds (such as bisphenol A diglycidyl ether type epoxy resin, cresol novolac type epoxy resin, and phenol novolak type epoxy resin), ( ii) polyhydric alcohol esters having one or more hydroxyl groups in the molecule (specifically, polyhydric alcohols (pentaerythritol, dipentaerythritol, tripentaerythritol, etc.) and monovalent or divalent carboxylic acids (acetic acid, An ester with propionic acid, adipic acid, glutamic acid, etc.
  • the ester is a mixture of esters having one or more hydroxyl groups in the molecule, even if the mixture contains a small amount of the starting polyhydric alcohol.
  • phenolic stabilizer triethylene glycol-bis- -(3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, pentaerythritol tetrakis [3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate], and octadecyl 3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate),
  • phosphite stabilizer (3,9-bis (2,4-di-tert-butylphenoxy) -2, 4,8,10-Tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2
  • the styrene-based resin extruded foam according to one embodiment of the present invention may contain a heat ray radiation inhibitor for improving heat insulation.
  • the heat radiation inhibitor is graphite.
  • the graphite used in an embodiment of the present invention include scaly graphite, scaly graphite, earthy graphite, spherical graphite, and artificial graphite. Among these, it is preferable to use those whose main component is scaly graphite or scaly graphite from the viewpoint of high heat ray radiation suppressing effect.
  • the graphite preferably has a fixed carbon content of 80% or more, and more preferably 85% or more.
  • the foam which has high heat insulation is obtained by making fixed carbon content into the said range.
  • the dispersed particle diameter of graphite is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the dispersed particle size in the above range, the specific surface area of graphite increases and the probability of collision with heat ray radiation increases, so that the effect of suppressing heat ray radiation is enhanced.
  • a particle having a primary particle diameter of 15 ⁇ m or less may be selected.
  • the dispersed particle size is an arithmetic average value of particle sizes per particle calculated from the particle size of each particle dispersed in the foam.
  • the particle diameter of each particle is measured by enlarging the foam cross section with a microscope or the like.
  • the primary particle size means a volume average particle size (d50).
  • the graphite content is preferably 1.0 part by weight or more and 5.0 parts by weight or less, and 1.5 parts by weight or more and 3.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. More preferred.
  • the content is less than 1.0 part by weight, a sufficient heat ray radiation suppressing effect cannot be obtained. If the content exceeds 5.0 parts by weight, the effect of suppressing heat radiation corresponding to the content cannot be obtained, and there is no cost merit.
  • the heat ray radiation suppressing agent refers to a substance having a characteristic of reflecting, scattering, and / or absorbing light in the near infrared or infrared region (for example, a wavelength region of about 800 to 3000 nm). By containing a heat ray radiation inhibitor, a foam having high heat insulation can be obtained.
  • white particles such as titanium oxide, barium sulfate, zinc oxide, aluminum oxide, and antimony oxide can be used in addition to graphite as the heat ray radiation inhibitor. These may be used alone or in combination of two or more. Among these, titanium oxide or barium sulfate is preferable, and titanium oxide is more preferable from the viewpoint of a great effect of suppressing radiation radiation.
  • the dispersed particle size of the white particles is not particularly limited. Considering the point of effectively reflecting infrared rays and giving a preferable color to the foam, for example, titanium oxide preferably has a thickness of 0.1 ⁇ m to 10 ⁇ m, more preferably 0.15 ⁇ m to 5 ⁇ m.
  • the content of the white particles in an embodiment of the present invention is preferably 1.0 part by weight or more and 3.0 parts by weight or less, and 1.5 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the styrene resin. More preferred are parts by weight or less.
  • the white particles have a smaller heat ray radiation suppressing effect than graphite, and if the white particle content is less than 1.0 part by weight, even if the white particles are contained, there is almost no heat ray radiation suppressing effect. If the content of the white particles exceeds 3.0 parts by weight, the effect of suppressing the heat radiation corresponding to the content cannot be obtained, but the flame retardancy of the foam tends to be lowered.
  • the total content of the heat ray radiation inhibitor is preferably 1.0 part by weight or more and 6.0 parts by weight or less, and 2.0 parts by weight or more and 5.5 parts by weight or less with respect to 100 parts by weight of the styrene resin. 0 parts by weight or less is more preferable. If the total content of the heat radiation inhibitor is less than 1.0 part by weight, it is difficult to obtain heat insulation. On the other hand, as the content of a solid additive such as a heat ray radiation suppressor increases, the nucleation point increases, so that the foam bubbles become finer or the fluidity of the molten resin decreases, thereby causing extrusion.
  • an inorganic compound sica, calcium silicate, wollastonite, kaolin, clay, Mica, calcium carbonate, etc.
  • processing aids sodium stearate, calcium stearate, magnesium stearate, barium stearate, liquid paraffin, olefin wax, stearylamide compound, etc.
  • light-resistant stabilizer phenolic antioxidant
  • Phosphorus stabilizers nitrogen stabilizers, sulfur stabilizers, benzotriazoles, hindered amines, etc.
  • cell diameter regulators talc, etc.
  • flame retardants other than the above antistatic agents
  • colorants such as pigments
  • An additive such as a plasticizer may be contained in the styrene resin.
  • a method of adding various additives to the styrene resin for example, (1) a method of adding various additives to the styrene resin and mixing them by dry blending, (2) a supply provided in the middle of the extruder A method of adding various additives to the styrene resin melted from the part, (3) A master batch in which various additives of high concentration are added to the styrene resin in advance using an extruder, kneader, Banbury mixer, roll, etc. A method of preparing and mixing the masterbatch and the styrene resin by dry blending, or (4) a method of supplying various additives to the extruder by a supply facility different from the styrene resin, and the like.
  • the thermal conductivity of the styrene-based resin extruded foam according to one embodiment of the present invention is not particularly limited, but for example, it has been considered that it functions as a heat insulating material for a building, or a heat insulating material for a cold storage or a cold car. From the viewpoint of heat insulation, the thermal conductivity after one week of production measured at an average temperature of 23 ° C. is preferably 0.0284 W / mK or less, more preferably 0.0244 W / mK or less. It is particularly preferable that it is 0.0224 W / mK or less.
  • the apparent density of the styrene resin extruded foam according to an embodiment of the present invention is, for example, a heat insulating property when considering that it functions as a heat insulating material for a building, or a heat insulating material for a cold storage or a cold car. From the viewpoint of lightness, it is preferably 20 kg / m 3 or more and 45 kg / m 3 or less, more preferably 25 kg / m 3 or more and 40 kg / m 3 or less.
  • the closed cell ratio of the styrene resin extruded foam according to an embodiment of the present invention is more preferably 95% or more.
  • the closed cell ratio is less than 90%, the foaming agent may be dissipated from the extruded foam at an early stage, and the heat insulating property may be deteriorated.
  • the average cell diameter in the thickness direction of the styrene resin extruded foam according to an embodiment of the present invention is preferably 0.05 mm or more and 0.5 mm or less, more preferably 0.05 mm or more and 0.4 mm or less, and 0.05 mm or more. 0.3 mm or less is particularly preferable.
  • the smaller the average bubble diameter the shorter the distance between the bubble walls of the foam, so that the range of movement of the foam in the extruded foam when imparting a shape to the extruded foam is narrow, making it difficult to deform the bubbles. As a result, it tends to be difficult to impart a beautiful surface to the extruded foam and to increase the thickness of the extruded foam.
  • the average cell diameter in the thickness direction of the styrene resin extruded foam is smaller than 0.05 mm, it tends to be difficult to give a beautiful surface to the extruded foam and to obtain the thickness of the extruded foam. It will be something.
  • the average cell diameter in the thickness direction of the styrene resin extruded foam is more than 0.3 mm, sufficient heat insulation may not be obtained.
  • the average cell diameter of the styrene resin extruded foam according to one embodiment of the present invention was measured using a microscope (in the examples, [manufactured by KEYENCE, DIGITAL MICROSCOPE VHX-900]). It can be evaluated as described below.
  • the magnified photograph of 100 times is taken.
  • Three straight lines of 2 mm are arbitrarily drawn in the thickness direction of the enlarged photograph (three for each observation point and for each observation direction), and the number of bubbles a intersecting or in contact with the straight line is measured.
  • the average bubble diameter A in the thickness direction for each observation location is obtained by the following equation (1).
  • the average value at three locations (each in two directions) is defined as the average cell diameter A (average value) in the thickness direction of the styrene resin extruded foam.
  • Average bubble diameter A (mm) in the thickness direction for each observation location 2 ⁇ 3 / number of bubbles a (1).
  • the YZ plane in (b) of FIG. 1 is observed with the microscope, and an enlarged photograph of 100 times is taken.
  • Three straight lines of 2 mm are arbitrarily drawn in the extruding direction of the enlarged photograph (three at each observation point), and the number b of bubbles that intersect or touch the straight line is measured.
  • the average bubble diameter B in the extrusion direction for each observation location is obtained by the following equation (2). Let the average value of three places be the average bubble diameter B (average value) of the extrusion direction of a styrene resin extrusion foam.
  • Average bubble diameter B (mm) in the extrusion direction for each observation location 2 ⁇ 3 / number of bubbles b (2).
  • the magnified photograph of 100 times is taken.
  • Three straight lines of 2 mm are arbitrarily drawn in the width direction of the enlarged photograph (three at each observation point), and the number c of bubbles in contact with the straight line is measured. From the measured number c of bubbles, the average bubble diameter C in the width direction for each observation location is obtained by the following equation (3).
  • the average value of three places be the average cell diameter C (average value) of the width direction of a styrene-type resin extrusion foam.
  • Average bubble diameter C (mm) in the width direction for each observation location 2 ⁇ 3 / number of bubbles c (3).
  • the cell deformation rate of the styrene resin extruded foam according to an embodiment of the present invention is preferably 0.7 or more and 2.0 or less, more preferably 0.8 or more and 1.5 or less, and 0.8 or more and 1.2 or less. The following is more preferable.
  • the bubble deformation rate is smaller than 0.7, the compressive strength becomes low, and the extruded foam may not be able to ensure the strength suitable for the application. Further, since the bubbles try to return to a spherical shape, there is a tendency that the dimension (shape) maintainability of the extruded foam is inferior.
  • the bubble deformation rate is more than 2.0, the number of bubbles in the thickness direction of the extruded foam is reduced, so that the effect of improving the heat insulation property by the bubble shape is reduced.
  • the bubble deformation rate of the styrene resin extruded foam according to one embodiment of the present invention can be obtained from the above-described average cell diameter by the following formula (4).
  • Bubble deformation rate (no unit) average bubble diameter A (average value) / ⁇ (average bubble diameter B (average value) + average bubble diameter C (average value)) / 2 ⁇ (4).
  • the thickness of the styrene-based resin extruded foam according to an embodiment of the present invention is, for example, a heat insulating property and a bending strength when considering that it functions as a heat insulating material for buildings, or a heat insulating material for a cold storage or a cold car. From the viewpoint of compressive strength, it is preferably 10 mm or more and 150 mm or less, more preferably 20 mm or more and 130 mm or less, and particularly preferably 30 mm or more and 120 mm or less.
  • both surfaces of the plane perpendicular to the thickness direction are on one side in the thickness direction.
  • the product thickness may be cut to a depth of about 5 mm.
  • the thickness in the styrene resin extruded foam according to an embodiment of the present invention refers to the thickness that is not cut as it is extruded and foam-formed.
  • the shape of the styrene-based resin extruded foam according to an embodiment of the present invention is, for example, a heat insulating material for buildings, or a heat insulating material for a cold storage or a cold car, for example, an extrusion direction, a width direction, and a thickness. It is preferably plate-shaped with no undulation in any direction. As described above, for example, when (1) hydrofluoroolefin is used, (2) when a heat ray radiation inhibitor is used, or (3) when the average cell diameter of the styrene-based extruded foam is refined, etc.
  • any one of the extrusion direction, width direction, thickness direction of the extruded foam is corrugated, plate-like and It may not be possible.
  • a styrene resin and, if necessary, a flame retardant, a stabilizer, a heat radiation inhibitor, or other additives, etc. is supplied to a heating and melting part such as an extruder.
  • a heating and melting part such as an extruder.
  • the order in which these materials are added is not particularly limited.
  • hydrofluoroolefin, water and / or alcohol, and, if necessary, other foaming agents can be added to the styrene resin under high pressure conditions at any stage.
  • a mixture of (1) styrenic resin, (2) hydrofluoroolefin, and water and / or alcohol, and (3) other additive and / or other foaming agent is made into a fluid gel (in other words, It is a resin melt) and cooled to a temperature suitable for extrusion foaming. Thereafter, the fluid gel is extruded and foamed into a low pressure region through a die to form a foam.
  • the heating temperature in the heating and melting part may be equal to or higher than the temperature at which the styrene-based resin used melts, but the temperature at which molecular degradation of the resin due to the influence of additives and the like is suppressed as much as possible, for example, 150 ° C to 260 ° C The degree is preferred.
  • the melt kneading time in the heating and melting part is uniquely defined because it varies depending on the amount of styrene resin extruded per unit time and / or the type of the extruder (used as the heating and melting part and the melt kneading part). The time required for uniformly dispersing and mixing the styrene-based resin, the foaming agent, and the additive is appropriately set.
  • melt kneading unit examples include a screw type extruder.
  • apparatus used for the heat melting part and the melt kneading part is not particularly limited as long as it is used for ordinary extrusion foaming.
  • the foam molding method in the manufacturing method according to an embodiment of the present invention for example, first, the molten resin is released from the high pressure region to the low pressure region through a slit die (a slit die having a linear opening for extrusion molding). Thus, an extruded foam is obtained. Next, a plate-like foam having a large cross-sectional area is formed using a molding die placed in close contact with or in contact with the slit die and a molding roll placed adjacent to the downstream side of the molding die. The method is taken. By adjusting the flow surface shape of the molding die and the die temperature, the desired cross-sectional shape of the foam, the surface property of the foam, and the quality of the foam can be obtained.
  • the present invention includes the following configurations.
  • the foaming agent is characterized in that at least one member selected from the group consisting of dimethyl ether, ethyl chloride, and methyl chloride is added in an amount of 0.5 to 15 parts by weight based on 100 parts by weight of the styrenic resin.
  • at least one member selected from the group consisting of dimethyl ether, ethyl chloride, and methyl chloride is added in an amount of 0.5 to 15 parts by weight based on 100 parts by weight of the styrenic resin.
  • the present invention also includes the following configurations.
  • ⁇ 1> (i) a heating and melting step in which a styrene resin is heated and melted; (ii) a mixing step in which a foaming agent containing a hydrofluoroolefin is added to and mixed with the styrene resin under high pressure conditions.
  • a method for producing a styrenic resin extruded foam comprising foaming the resulting mixture under low pressure conditions, the styrenic resin comprising a styrene-acrylonitrile copolymer resin 40% by weight or more; the foaming agent further contains water and / or alcohol; the amount of water and / or alcohol added is 0 with respect to 100 parts by weight of the styrenic resin.
  • a method for producing an extruded foam of a styrenic resin characterized by being from 5 parts by weight to 2.0 parts by weight.
  • styrene-based resin contains 40% by weight or more and 90% by weight or less of the styrene-acrylonitrile copolymer resin.
  • the mixture further includes a heat ray radiation inhibitor; the content of the heat ray radiation inhibitor in the mixture is 1.0 part by weight or more and 6.0 parts by weight with respect to 100 parts by weight of the styrenic resin.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the hydrofluoroolefin is tetrafluoropropene.
  • the mixture further includes a flame retardant; the content of the flame retardant in the mixture is 0.5 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the styrenic resin.
  • a styrene resin extruded foam characterized by the following.
  • ⁇ 8> The styrene resin extruded foam according to ⁇ 7>, wherein the apparent density is 20 kg / m 3 or more and 45 kg / m 3 or less, and the closed cell ratio is 90% or more.
  • the raw materials used in the examples and comparative examples are as follows.
  • Base resin / styrene resin A [PS Japan, G9401; polystyrene resin]
  • Styrene resin B [Asahi Kasei Co., Ltd., Stylac 767; Styrene-acrylonitrile copolymer resin].
  • Stabilizer bisphenol-A-glycidyl ether [EP-13, manufactured by ADEKA Corporation] ⁇ Dipentaerythritol-adipic acid reaction mixture [Ajinomoto Fine Techno Co., Ltd., Plenizer ST210] Triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate [Songwon Japan Co., Ltd., Sonnox 2450FF].
  • test piece was measured according to the procedure C of ASTM-D2856-70, and the closed cell ratio of each test piece was obtained by the following calculation formula (6).
  • the average value of 3 places was made into the closed cell rate of a styrene-type resin extrusion foam.
  • V1 (cm 3 ) is the true volume of the test piece measured using an air-comparing hydrometer [Tokyo Science Co., Ltd., air-comparing hydrometer, model 1000 type] Is removed.)
  • V2 (cm 3 ) is an apparent volume calculated from the outer dimensions of the test piece measured using a caliper [manufactured by Mitutoyo Corporation, M-type standard caliper N30].
  • W (g) is the total weight of the test piece.
  • (rho) (g / cm ⁇ 3 >) is the density of the styrene resin which comprises an extrusion foam, and was 1.05 (g / cm ⁇ 3 >).
  • a sealed container About 130 g of a sealable glass container (hereinafter referred to as a “sealed container”), about 1.2 g of a test piece cut out from the foam (the exact weight depends on the apparent density) is sealed with a vacuum pump. The container was evacuated. Thereafter, the sealed container was heated at 170 ° C. for 10 minutes, and the foaming agent in the foam was taken out into the sealed container. After the sealed container returned to room temperature, helium was introduced into the sealed container to return to atmospheric pressure. Thereafter, a mixed gas containing 40 ⁇ L of HFO-1234ze was taken out with a microsyringe, and evaluated under the above equipment a) to c) and the measurement conditions.
  • Molten resin was supplied to the ruder and extruded through a die (attached to the tip of the ruder and having a small hole) at a discharge rate of 250 kg / hr.
  • the obtained strand-shaped resin was cooled and solidified in a water bath at 30 ° C. and then cut to obtain a master batch.
  • Example 1 [Preparation of resin mixture] Styrenic resin as a base resin (styrene resin A [manufactured by PS Japan Co., Ltd., G9401; polystyrene resin] 50% by weight and styrene resin B [manufactured by Asahi Kasei Co., Ltd., stylac 767; styrene-acrylonitrile copolymer Combined resin] 50% by weight, total 100 parts by weight), and 100 parts by weight of styrene resin, flame retardant (tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether and tetra Mixed brominated flame retardant with bromobisphenol A-bis (2,3-dibromopropyl) ether [Daiichi Kogyo Seiyaku Co., Ltd., GR-125P] 3.0 parts by weight], flame retardant aid (triphenylphosphine) Oxide [
  • the resin mixture supplied to the first extruder was heated to a resin temperature of 240 ° C. to be melted or plasticized and kneaded, and a foaming agent (2.5 parts by weight of HFO-1234ze, 100 parts by weight of base resin, isobutane 1 6 parts by weight, 2.2 parts by weight of dimethyl ether, and 1.0 part by weight of water) were pressed into the resin near the tip of the first extruder. Thereafter, in a second extruder and a cooler connected to the first extruder, the resin temperature is cooled to 122 ° C., and a die having a rectangular cross section (slit die) having a thickness of 6 mm and a width of 400 mm provided at the tip of the cooler.
  • a foaming agent 2.5 parts by weight of HFO-1234ze, 100 parts by weight of base resin, isobutane 1 6 parts by weight, 2.2 parts by weight of dimethyl ether, and 1.0 part by weight of water
  • extrusion foaming was performed in the atmosphere at a foaming pressure of 3.0 MPa. Thereafter, an extrusion foamed plate having a cross-sectional shape having a thickness of 60 mm ⁇ width of 1000 mm is obtained by a molding die placed in close contact with the die and a molding roll installed on the downstream side thereof, and the thickness is 50 mm ⁇ width of 910 mm ⁇ by a cutter. Cut to a length of 1820 mm.
  • the evaluation results of the obtained foam are shown in Table 1.
  • Examples 2 to 16 As shown in Tables 1 and 2, extruded foams were obtained in the same manner as in Example 1, except that the types of blending, addition amounts, and / or production conditions were changed. The physical properties of the obtained extruded foam are shown in Tables 1 and 2. As described above, graphite was added in advance in the form of a styrene-based resin masterbatch when preparing the resin mixture. When the master batch was used, the base resin was 100 parts by weight in total with the base resin contained in the master batch.
  • Example 2 The amount of HFO-1234ze added was changed.
  • Example 6 Alcohol was used instead of water as a foaming agent.
  • Examples 7 to 12 Heat ray radiation inhibitor was added, and the amount of HFO-1234ze added was changed.
  • Example 13 A heat radiation inhibitor was added to increase the amount of styrene-acrylonitrile copolymer resin.
  • Example 14 A heat radiation inhibitor was added, and a mixture of water and alcohol was used as a foaming agent.
  • Examples 15 and 16 A heat ray radiation inhibitor was added, and alcohol was used as a foaming agent instead of water.
  • Example 1 A styrene-acrylic copolymer resin was not blended. Comparative Example 2: A heat radiation inhibitor was added, and no styrene-acrylic copolymer resin was blended. Comparative Example 3: The amount of styrene-acrylic copolymer resin was reduced. Comparative Example 4: The amount of water added as a blowing agent was reduced. Comparative Example 5: The amount of water added as a blowing agent was increased. Comparative Example 6: Alcohol was used as a foaming agent instead of water, and the amount added was reduced.
  • Comparative Examples 4 to 6 when the amount of water or alcohol added is less or more than a specific range, a foam with sufficient thickness cannot be obtained (Comparative Examples 4 and 6), The heat insulating property of the foam is inferior (Comparative Example 5). Furthermore, pores are generated in the foam or undulations occur, and a foam having a good appearance and shape cannot be obtained.
  • the styrene resin extruded foam of the present invention has excellent heat insulation with a thermal conductivity of 0.028 W / mK or less, and has a sufficient thickness suitable for use. It becomes a styrene resin extruded foam.
  • the blending amount of the styrene-acrylonitrile copolymer resin is not less than a specific amount, and (2) a predetermined amount of water and / or alcohol is used as the foaming agent. This suggests that an extruded foam having high heat insulation and sufficient thickness can be obtained only by combining both of these conditions.
  • Examples 1 to 16 are Examples 6 to 16, and more preferred examples are Examples 11 to 16.
  • the styrene resin extruded foam according to an embodiment of the present invention has excellent heat insulation properties and is suitable for use. Therefore, the styrene resin extruded foam can be suitably used as a heat insulating material for a house or a structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明の課題は、優れた断熱性を有し、更に、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得ることにある。発泡剤としてハイドロフルオロオレフィンを含有するスチレン系樹脂押出発泡体であって、スチレン-アクリロニトリル共重合体樹脂を40重量%以上含有するスチレン系樹脂100重量部に対して、更に発泡剤として水、及び/又はアルコールを0.5重量部以上2.0重量部以下添加することを特徴とする、スチレン系樹脂押出発泡体により達成できる。

Description

スチレン系樹脂押出発泡体およびその製造方法
 本発明は、スチレン系樹脂及び発泡剤を用いて押出発泡して得られる、スチレン系樹脂押出発泡体およびその製造方法に関する。
 スチレン系樹脂押出発泡体は、一般に、押出機などを用いてスチレン系樹脂組成物を加熱溶融し、ついで発泡剤を高圧条件下にて添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出すことにより連続的に製造される。
 スチレン系樹脂押出発泡体は、良好な施工性や断熱性から、例えば構造物の断熱材として用いられる。近年、住宅、建築物などの省エネルギー化の要求が高まり、従来以上の高断熱性発泡体の技術開発が望まれている。
 高断熱性発泡体を製造する手法としては、押出発泡体の気泡径を所定の範囲に制御する方法や、熱線輻射抑制剤を添加する方法、熱伝導率の低い発泡剤を使用する方法が提案されている。
 例えば、特許文献1には、押出発泡体の厚み方向の平均気泡径を0.05~0.18mmの微細気泡とし、更に押出発泡体の気泡変形率を制御する製造方法が提案されている。
 また、特許文献2には、熱線輻射抑制剤として、グラファイトや酸化チタンを所定の範囲で添加する製造方法が提案されている。
 更に、オゾン破壊係数が0(ゼロ)であるとともに、地球温暖化係数も小さい環境に優しいフッ素化されたオレフィン(ハイドロフルオロオレフィン、HFOともいう。)を使用するスチレン系樹脂押出発泡体の製造方法が提案されている(例えば、特許文献3~6参照。)。
特開2004-59595 特開2013-221110 特表2008-546892 特表2012-516381 WO15/093195 特開2016-138291
 しかしながら、上記特許文献1~6に記載の技術は、優れた断熱性を有し、使用に適した十分な厚みのスチレン系樹脂押出発泡体を得るという目的において、十分ではなかった。
 本発明の課題は、優れた断熱性を有し、更に、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得ることにある。
 本発明の一態様に係るスチレン系樹脂押出発泡体は、発泡剤としてハイドロフルオロオレフィンを含有するスチレン系樹脂押出発泡体であって、スチレン-アクリロニトリル共重合体樹脂を40重量%以上含有するスチレン系樹脂100重量部に対して、更に発泡剤として水、及び/又はアルコールを0.5重量部以上2.0重量部以下添加することを特徴とする。
 本発明により、優れた断熱性を有し、更に、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得ることができる。
(a)は、本発明の一実施形態に係るスチレン系樹脂押出発泡体において、平均気泡径の測定方法の一例を説明するための模式図である。(a)の下図は、(a)の上図(スチレン系樹脂押出発泡体)をA-A’で切断した断面図である。(b)は、(a)における、幅方向(X軸)、押出方向(Y軸)および厚み方向(Z軸)の関係を表す、座標である。それぞれの軸は、互いに直交している。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態及び/又は実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態及び/又は実施例についても、本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含むかつBより小さい)」を意図する。
 本発明者らが鋭意検討した結果、上述した特許文献1~6には以下の問題点があることを見出した。具体的には、まず、特許文献1に記載の技術では、平均気泡径を微細な範囲とした場合、発泡体の気泡壁間距離が短くなるために、押出発泡して形状付与する際の気泡の可動域が狭く、気泡の変形が困難であった。そのため、押出発泡体に美麗な表面を付与すること、及び押出発泡体の厚みを出すことが容易でなくなるという問題があった。
 次に、特許文献2に記載の技術では、固体添加剤を大量に使用した場合、造核点が増えるために発泡体の気泡が微細化し、特許文献1に記載の技術と同様の問題が生じた。その上、溶融樹脂の流動性が低下し、押出発泡体に美麗な表面を付与すること、及び押出発泡体の厚みを出すことがより難しくなる問題があった。
 また、特許文献3~6に記載の技術では、これらの従来技術で使用するハイドロフルオロオレフィンは、スチレン系樹脂への溶解性が低く、押出発泡する際にスチレン系樹脂からの分離が早いため、分離したハイドロフルオロオレフィンが造核点となり気泡径が微細化する。その上、ハイドロフルオロオレフィンの気化潜熱により樹脂が冷却及び固化(溶融樹脂の流動性が低下する)されるので、特許文献1に記載の技術と同様の問題があった。また、これらの技術では、スチレン系樹脂としてスチレン-アクリロ二トリル共重合体樹脂の使用も開示されているが本発明とは使用の目的が異なるものであった。
 具体的には、これらの文献は、スチレン-アクリロニトリル共重合体樹脂の使用が、十分な厚みを有する押出発泡体の製造に有利となりうる点に関して、開示も示唆もしていない。これに対し、本発明は、(1)特定量のスチレン-アクリロニトリル共重合体樹脂、及び(2)特定量の水及び/又はアルコール、を使用する製造方法により、スチレン系樹脂押出発泡体の断熱性を維持しつつ、十分な厚みを与えられる、との発見に着想を得たものである。更に、前記製造方法によれば、難燃性であり、外観美麗な押出発泡体を得ることも容易である。
 以上のように、高断熱性発泡体を製造するための従来技術は、いずれも押出発泡体を押出発泡して成形加工する際の発泡体の気泡変形率、及び/又は、溶融樹脂の流動性を低下させるので、押出発泡体に美麗な表面を付与すること、及び押出発泡体の厚みを出すことに問題があった。従って、高断熱性発泡体を製造するための従来技術は、優れた断熱性を有し、更に、外観美麗、及び/又は、十分な厚みを有するスチレン系樹脂押出発泡体を容易に得るには至っておらず、未だ課題を有するものであった。
 本発明者らは、このような課題を解決すべく、本発明を完成させた。以下に本発明の実施形態について説明する。
 〔1.スチレン系樹脂押出発泡体〕
 本発明の一実施形態に係るスチレン系樹脂押出発泡体は、発泡剤としてハイドロフルオロオレフィンを含有するスチレン系樹脂押出発泡体であって、スチレン-アクリロニトリル共重合体樹脂を40重量%以上含有するスチレン系樹脂100重量部に対して、更に発泡剤として水、及び/又はアルコールを0.5重量部以上2.0重量部以下添加する。さらに必要に応じて、その他の添加剤を適量含有するスチレン系樹脂組成物を、押出機などを用いて加熱溶融し、ついで発泡剤を高圧条件下にて添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出すことにより連続的に製造することができる。
 (1-1.スチレン系樹脂)
 本発明の一実施形態に係るスチレン系樹脂押出発泡体は、発泡剤としてハイドロフルオロオレフィンを使用した際に、押出発泡体に十分な厚みを与えられなくなる現象を改善するために、スチレン系樹脂としてスチレン-アクリロニトリル共重合体樹脂を含有する。所定の量のスチレン-アクリロニトリル共重合体樹脂と、後述する所定の量の水、及び/又はアルコールを含有することで、押出発泡して押出発泡体に形状付与する際、押出発泡体に十分な厚みを出すことが可能となる。(1)スチレン-アクリロニトリル共重合体樹脂と(2)水、及び/又はアルコールとを含有することにより、押出発泡体に十分な厚みを与えられる理由は、次のように推測される。すなわち、スチレン系樹脂に水、及び/又はアルコールを添加することで、発泡剤として用いるハイドロフルオロオレフィンの樹脂溶融物に対する分散性、及び溶解性が向上する。更に、スチレン系樹脂として水やアルコールと親和性の良いスチレン-アクリロニトリル共重合体樹脂を含有することで、より大きな効果が得られる。樹脂溶融物に対するハイドロフルオロオレフィンの分散性、及び溶解性が向上すると、押出発泡体の発泡直後のハイドロフルオロオレフィンの気化量、又は気化速度が抑えられる。これにより、続く成形のタイミングで、(1)樹脂溶融物に残存しているハイドロフルオロオレフィンによる、樹脂溶融物の高い可塑性の維持、及び、(2)ハイドロフルオロオレフィンの気化潜熱による樹脂溶融物の冷却固化の抑制、ができる。結果として、押出発泡体、及び/又は樹脂溶融物が、押出発泡体及び/又は樹脂溶融物に対する形状付与に対して、十分な可塑性を有するものと考えている。
 本発明の一実施形態におけるスチレン-アクリロニトリル共重合体樹脂の含有量はスチレン系樹脂のうち40重量%以上であり、40重量%以上90重量%以下が好ましく、40重量%以上80重量%以下がより好ましい。スチレン-アクリロニトリル共重合体樹脂の含有量が40重量%未満の場合には、スチレン-アクリロニトリル共重合体樹脂の量が少なすぎるため、十分な厚みを与えられない。
 本発明の一実施形態で用いるスチレン-アクリロニトリル共重合体樹脂中のアクリル二トリル成分量は、10重量%以上45重量%以下が好ましく、15重量%以上40重量%以下がより好ましく、20重量%以上45重量%以下が特に好ましい。スチレン-アクリロニトリル共重合体樹脂のアクリル二トリル成分量が10重量%未満の場合には、アクリル二トリル成分量が少なすぎるため、十分な厚みを与えられない。スチレン-アクリロニトリル共重合体樹脂のアクリル二トリル成分量が45重量%より多い場合には、スチレン成分量が少ないために発泡時の溶融樹脂の流動性が低下し、発泡を阻害するおそれがある。
 本発明の一実施形態で用いるスチレン-アクリロニトリル共重合体樹脂以外のスチレン系樹脂としては、特に限定はなく、(i)スチレン系単量体(スチレン、メチルスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ビニルトルエン、ビニルキシレン等)の単独重合体または2種以上の単量体の組み合わせからなる共重合体や、(ii)前記スチレン系単量体と、他の単量体(ジビニルベンゼン、ブタジエン、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、無水マレイン酸、無水イタコン酸など)の1種または2種以上と、を共重合させた共重合体などが挙げられる。スチレン系単量体と共重合させるアクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、無水マレイン酸、無水イタコン酸などの単量体は、製造されるスチレン系樹脂押出発泡体の圧縮強度等の物性を低下させない程度の量を用いることができる。
 また、本発明の一実施形態に用いるスチレン系樹脂は、前記スチレン系単量体の単独重合体または共重合体に限られず、(1)前記スチレン系単量体の単独重合体または共重合体と、(2)前記スチレン系単量体と他の単量体との共重合体と、のブレンド物であってもよい。例えば、本発明の一実施形態に用いるスチレン系樹脂は、(1)前記スチレン系単量体の単独重合体もしくは共重合体と、(2)ジエン系ゴム強化ポリスチレンまたはアクリル系ゴム強化ポリスチレンと、のブレンド物であってもよい。更に、本発明の一実施形態で用いるスチレン系樹脂は、メルトフローレート(以下、MFRという。)、成形加工時の溶融粘度、溶融張力などを調整する目的で、分岐構造を有するスチレン系樹脂であってもよい。
 なお、製造される発泡体が十分な厚みを有する限り、基材樹脂にスチレン系単量体を含んでいない樹脂を含有させてもよい。
 本発明の一実施形態におけるスチレン系樹脂としては、MFRが0.1~50g/10分のものを用いることが、(i)押出発泡成形する際の成形加工性に優れる点、(ii)成形加工時の吐出量を所望の値に調整しやすい点、(iii)発泡性(発泡体の厚み、幅、見掛け密度、独立気泡率、及び、表面性などを所望の状況に調整しやすいこと)に優れる点、(iv)外観などに優れたスチレン系樹脂押出発泡体が得られる点、並びに、(v)特性(例えば、圧縮強度、曲げ強度または曲げたわみ量といった機械的強度や、靱性など)のバランスがとれた、スチレン系樹脂押出発泡体が得られる点から、好ましい。更に、スチレン系樹脂のMFRは、成形加工性および発泡性と、機械的強度及び靱性とのバランスの点から、0.3~30g/10分が更に好ましく、0.5~25g/10分が特に好ましい。なお、本発明の一実施形態において、MFRは、JIS K7210(1999年)のA法、及び、試験条件Hにより測定される。また、複数種類の樹脂の混合物を基材樹脂として用いる場合は、当該混合物全体のMFRが前記範囲にあることが好ましい。
 本発明の一実施形態においては、スチレン-アクリロニトリル共重合体樹脂以外のスチレン系樹脂としては、経済性及び加工性の面からポリスチレン樹脂が特に好適である。また、押出発泡体に、より高い耐熱性が要求される場合には、(メタ)アクリル酸共重合ポリスチレン、無水マレイン酸変性ポリスチレンを用いることが好ましい。また、押出発泡体に、より高い耐衝撃性が求められる場合には、ゴム強化ポリスチレンを用いることが好ましい。これらスチレン系樹脂は、単独で使用してもよく、また、共重合成分、分子量や分子量分布、分岐構造、及び/又はMFRなどの異なるスチレン系樹脂を2種以上混合して使用してもよい。
 (1-2.発泡剤)
 本発明の一実施形態では、押出発泡体の断熱性を向上させるため、発泡剤としてハイドロフルオロオレフィンを使用する。
 本発明の一実施形態で用いるハイドロフルオロオレフィンとしては、特に制限はないが、テトラフルオロプロペンが、低い気体の熱伝導率や安全性の観点から好ましい。テトラフルオロプロペンとしては、具体的にはトランス-1,3,3,3-テトラフルオロプロペン(トランス-HFO-1234ze)、シス-1,3,3,3-テトラフルオロプロペン(シス-HFO-1234ze)、2,3,3,3-テトラフルオロプロペン(トランス-HFO-1234yf)などが挙げられる。
 また、本発明で用いるハイドロフルオロオレフィンは、塩素化されたハイドロフルオロオレフィンでも良い。塩素化されたハイドロフルオロオレフィンとしては、特に制限はないが、ハイドロクロロトリフルオロプロペンが、低い気体の熱伝導率や安全性の観点から好ましい。ハイドロクロロトリフルオロプロペンとしては、具体的にはトランス-1-クロロ-3,3,3-トリフルオロプロペン(トランス-HCFO-1233zd)などが挙げられる。
 これらのハイドロフルオロオレフィンは、単独で用いてもよいし、2種以上を併用してもよい。
 本発明の一実施形態に係るハイドロフルオロオレフィンの添加量は、スチレン系樹脂100重量部に対して3.0重量部以上14.0重量部以下が好ましく、4.0重量部以上13.0重量部以下がより好ましく、4.5重量部以上12.0重量部以下が特に好ましい。ハイドロフルオロオレフィンの添加量がスチレン系樹脂100重量部に対して3.0重量部より少ない場合には、ハイドロフルオロオレフィンによる断熱性の向上効果があまり期待できない。一方、ハイドロフルオロオレフィンの添加量がスチレン系樹脂100重量部に対して14.0重量部を超える場合には、(1)押出発泡時にハイドロフルオロオレフィンが樹脂溶融物から分離して、押出発泡体の表面にスポット孔(ハイドロフルオロオレフィンの局所的塊が、押出発泡体表面を突き破って外気へ放出された痕。)が発生したり、(2)独立気泡率が低下して断熱性を損なったりするおそれがある。
 ハイドロフルオロオレフィンは、オゾン層破壊係数がゼロか極めて小さいものであり、地球温暖化係数が非常に小さく、環境に優しい発泡剤である。しかも、ハイドロフルオロオレフィンは、気体状態の熱伝導率が低く、且つ難燃性、又は不燃性であることから、スチレン系樹脂押出発泡体の発泡剤として用いることにより、スチレン系樹脂押出発泡体に優れた断熱性、及び難燃性を付与することができる。
 一方、前記のテトラフルオロプロペンのようなスチレン系樹脂に対する溶解性が低いハイドロフルオロオレフィンを使用した場合には、添加量の増量に伴ってハイドロフルオロオレフィンが樹脂溶融物から分離、及び/又は、気化する。これにより、ハイドロフルオロオレフィンが造核点となって、(i)発泡体の気泡が微細化すること、(ii)樹脂に残存している発泡剤が減少して樹脂溶融物の可塑性が低下すること、(iii)発泡剤の気化潜熱による樹脂溶融物の冷却及び固化が生じること、を招く。その結果、押出発泡体の厚みを出すことが難しくなる傾向にある。特に、前記したようにハイドロフルオロオレフィンの添加量がスチレン系樹脂100重量部に対して14.0重量部を超える場合には、押出発泡体表面におけるスポット孔の発生も伴って、十分な厚みが与えられない傾向がより顕著なものとなる。
 本発明の一実施形態では、前述したように、発泡剤としてハイドロフルオロオレフィンを使用した際に押出発泡体に十分な厚みを与えられない傾向を改善するために、水、及び/又はアルコールを使用する。
 本発明の一実施形態で用いるアルコールとしては、特に制限はないが、炭素数1~4の飽和アルコール類(メタノール、エタノール、プロピルアルコール、i-プロピルアルコール、ブチルアルコール、i-ブチルアルコール、tert-ブチルアルコールなど)が押出発泡体に十分な厚みを与える効果が高く、好ましい。それらの中でも、エタノール、プロピルアルコール、i-プロピルアルコールが、入手の容易性、及び価格の点からより好ましい。
 本発明の一実施形態に係る水、及び/又はアルコールの添加量は、スチレン系樹脂100重量部に対して0.5重量部以上2.0重量部以下であり、0.5重量部以上1.8重量部以下が好ましく、0.5重量部以上1.5重量部以下がより好ましい。水、及び/又はアルコールの添加量がスチレン系樹脂100重量部に対して0.5重量部より少ない場合には、水、及び/又はアルコールによる、押出発泡体に十分な厚みを与える効果があまり期待できない。一方、水、及び/又はアルコールの添加有量がスチレン系樹脂100重量部に対して2.0重量部を超える場合には、水、及び/又はアルコールの量が多すぎるため、押出し機中で水、及び/又はアルコールが樹脂に分散、溶解しきれなくなり、気孔が発生するなどして発泡体の外観が悪化する。更に、発泡体としての諸特性を悪化させる。
 本発明の一実施形態では、さらに、他の発泡剤を用いることにより、発泡体製造時の溶融樹脂の可塑性を高める効果、及び/又は発泡を補助する効果が得られる。そのため、押出圧力が低減され、安定的に発泡体の製造が可能となる。
 他の発泡剤としては、例えば、炭素数3~5の飽和炭化水素(プロパン、n-ブタン、i-ブタン(以下、「イソブタン」と呼ぶこともある)、n-ペンタン、i-ペンタン、ネオペンタンなど);エーテル類(ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒドロフラン、テトラヒドロピランなど);ケトン類(ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、メチル-i-ブチルケトン、メチル-n-アミルケトン、メチル-n-ヘキシルケトン、エチル-n-プロピルケトン、エチル-n-ブチルケトンなど);カルボン酸エステル類(蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステルなど);ハロゲン化アルキル(塩化メチル、塩化エチルなど)などの有機発泡剤;二酸化炭素などの無機発泡剤;アゾ化合物、テトラゾールなどの化学発泡剤などを用いることができる。これら他の発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。
 他の発泡剤の中でも、押出発泡体を製造する際の発泡性、及び成形性に優れる点から、炭素数3~5の飽和炭化水素、ジメチルエーテル、及び塩化アルキルからなる群の少なくとも1種を使用することが好ましい。炭素数3~5の飽和炭化水素のなかでは、発泡性の点から、プロパン、n-ブタン、i-ブタン、又は、これらの混合物が好ましい。また、発泡体の断熱性能の点から、n-ブタン、i-ブタン、又は、これらの混合物が好ましく、特に好ましくはi-ブタンである。一方、塩化アルキルの中では、塩化メチル、又は、塩化エチルが、(1)押出発泡体を製造する際の発泡性、及び(2)成形性と得られた押出発泡体の難燃性とのバランスから特に好ましい。
 但し、他の発泡剤として炭素数3~5の飽和炭化水素を用いる場合には、押出発泡体中に残存する炭素数3~5の飽和炭化水素の量が多過ぎると、押出発泡体の難燃性が低下するおそれがあるため、押出発泡体に添加される量は制限されることが好ましい。炭素数3~5の飽和炭化水素の添加量は、スチレン系樹脂100重量部に対して1.0重量部以上3.0重量部以下が好ましく、1.0重量部以上2.5重量部以下がより好ましく、1.0重量部以上2.0重量部以下が特に好ましい。
 また、他の発泡剤としてジメチルエーテル、塩化メチル、塩化エチルを使用する場合、それらの合計添加量は、スチレン系樹脂100重量部に対して0.5重量部以上15重量部以下が好ましく、1.0重量部以上10重量部以下がより好ましく、2.0重量部以上8.0重量部以下が特に好ましい。ジメチルエーテル、塩化メチル、塩化エチルの合計添加量がスチレン系樹脂100重量部に対して0.5重量部より少ないと、添加量が少なすぎるため、押出発泡体の発泡性向上効果、成形性向上効果が得られ難い。ジメチルエーテル、塩化メチル、塩化エチルの合計添加量がスチレン系樹脂100重量部に対して15重量部を超える場合には、得られた押出発泡体中に残存する量が多すぎて、難燃性を低下させるおそれがある。
 本発明の一実施形態における発泡剤の添加量は、発泡剤全体として、スチレン系樹脂100重量部に対して、2~20重量部が好ましく、2~15重量部がより好ましい。発泡剤の添加量が2重量部より少ないと、発泡倍率が低く、樹脂発泡体としての軽量性、及び断熱性などの特性が発揮されにくい場合があり、20重量部より多いと、過剰な発泡剤量の為、発泡体中にボイドなどの不良を生じる場合がある。
 本発明の一実施形態においては、水、及び/又はアルコールを用いるため、安定して押出発泡成形を行うために、吸水性物質を添加することが好ましい。本発明の一実施形態において用いられる吸水性物質の具体例としては、吸水性高分子(ポリアクリル酸塩系重合体、澱粉-アクリル酸グラフト共重合体、ポリビニルアルコール系重合体、ビニルアルコール-アクリル酸塩系共重合体、エチレン-ビニルアルコール系共重合体、アクリロニトリル-メタクリル酸メチル-ブタジエン系共重合体、ポリエチレンオキサイド系共重合体およびこれらの誘導体など)の他、表面に水酸基を有する粒子径1000nm以下の微粉末(表面にシラノール基を有する無水シリカ(酸化ケイ素)[例えば、日本アエロジル(株)製AEROSILなどが市販されている]など);吸水性又は水膨潤性の層状珪酸塩(スメクタイト、膨潤性フッ素雲母など)、並びにこれらの有機化処理品;多孔性物質(ゼオライト、活性炭、アルミナ、シリカゲル、多孔質ガラス、活性白土、けい藻土、ベントナイトなど)等があげられる。吸水性物質の添加量は、水、及び/又はアルコール類の添加量などによって、適宜調整されるものであるが、スチレン系樹脂100重量部に対して、0.01~5重量部が好ましく、0.1~3重量部がより好ましい。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法において、発泡剤を添加または注入する際の圧力は、特に制限するものではなく、押出機などの内圧力よりも高い圧力であればよい。
 (1-3.難燃剤)
 本発明の一実施形態では、スチレン系樹脂押出発泡体において、スチレン系樹脂100重量部に対して難燃剤を0.5重量部以上8.0重量部以下含有させることにより、得られるスチレン系樹脂押出発泡体に難燃性を付与することができる。難燃剤の含有量が0.5重量部未満では、難燃性などの発泡体としての良好な諸特性が得られがたい傾向があり、一方、8.0重量部を超えると、発泡体製造時の安定性、表面性などを損なう場合がある。但し、難燃剤の含有量は、JIS A 9521に規定の燃焼性試験(測定方法A)で優れた難燃性が得られるように、発泡剤添加量、発泡体の見掛け密度、難燃相乗効果を有する添加剤などの種類あるいは含有量などに応じて、適宜調整されることがより好ましい。
 難燃剤としては、臭素系難燃剤が好ましく用いられる。本発明の一実施形態で用いられる臭素系難燃剤の具体的な例としては、ヘキサブロモシクロドデカン、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテル、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピル)エーテル、トリス(2,3-ジブロモプロピル)イソシアヌレート、及び脂肪族臭素含有ポリマー(臭素化スチレン-ブタジエンブロックコポリマーなど)が挙げられる。これらは、単独で用いても、2種以上を混合して用いても良い。
 これらのうち、(1)テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテル、及びテトラブロモビスフェノールA-ビス(2,3-ジブロモプロピル)エーテルからなる混合臭素系難燃剤、(2)臭素化スチレン-ブタジエンブロックコポリマー、及び(3)ヘキサブロモシクロドデカンが、押出運転が良好である、発泡体の耐熱性に悪影響を及ぼさない等の理由から、望ましく用いられる。これらの物質は単独で用いても、または混合物として用いても良い。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体における臭素系難燃剤の含有量は、スチレン系樹脂100重量部に対して、0.5重量部以上5.0重量部以下が好ましく、スチレン系樹脂100重量部に対して1.0重量部以上5.0重量部以下がより好ましく、1.5重量部以上5.0重量部以下が更に好ましい。臭素系難燃剤の含有量が0.5重量部未満では、難燃性などの発泡体としての良好な諸特性が得られがたい傾向があり、一方、5.0重量部を超えると、発泡体製造時の安定性、表面性などを損なう場合がある。
 本発明の一実施形態においては、スチレン系樹脂押出発泡体の難燃性能を向上させる目的で、ラジカル発生剤を併用することができる。前記ラジカル発生剤は、具体的には、2,3-ジメチル-2,3-ジフェニルブタン、ポリ-1,4-ジイソプロピルベンゼン、2,3-ジエチル-2,3-ジフェニルブタン、3,4-ジメチル-3,4-ジフェニルヘキサン、3,4-ジエチル-3,4-ジフェニルヘキサン、2,4-ジフェニル-4-メチル-1-ペンテン、2,4-ジフェニル-4-エチル-1-ペンテン等が挙げられる。これらの他に、過酸化物(ジクミルパーオキサイドなど)も用いられる。その中でも、樹脂加工温度条件にて、安定なものが好ましく、具体的には2,3-ジメチル-2,3-ジフェニルブタン、及びポリ-1,4-ジイソプロピルベンゼンが好ましい。前記ラジカル発生剤の好ましい添加量としては、スチレン系樹脂100重量部に対して、0.05~0.5重量部である。
 更に、難燃性能を向上させる目的で、言い換えれば難燃助剤として、熱安定性能を損なわない範囲で、リン系難燃剤(リン酸エステル及びホスフィンオキシドなど)を併用することができる。リン酸エステルとしては、トリフェニルホスフェート、トリス(トリブチルブロモネオペンチル)ホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、または縮合リン酸エステル等が挙げられ、特にトリフェニルホフェート、又はトリス(トリブチルブロモネオペンチル)ホスフェートが好ましい。又、ホスフィンオキシド型のリン系難燃剤としては、トリフェニルホスフィンオキシドが好ましい。これらリン酸エステル及びホスフィンオキシドは単独で用いても良いし、2種以上併用しても良い。リン系難燃剤の好ましい添加量としては、スチレン系樹脂100重量部に対して0.1~2重量部である。
 (1-4.安定剤)
 本発明の一実施形態においては、必要に応じて樹脂、及び/又は、難燃剤を安定させるための安定剤を使用することが出来る。特に限定されるものでは無いが、安定剤の具体的な例としては、(i)エポキシ化合物(ビスフェノールAジグリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂など)、(ii)分子中に1個以上の水酸基を有する多価アルコールエステル(詳細には、多価アルコール(ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトールなど)と、1価又は2価のカルボン酸(酢酸、プロピオン酸、アジピン酸、グルタミン酸など)とのエステル。前記エステルは、分子中に1つ以上の水酸基を持つエステルの混合物である。前記混合物には、原料の多価アルコールを少量含まれていてもよい)(iii)フェノール系安定剤(トリエチレングリコール-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、ペンタエリトリトールテトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]、及びオクタデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナートなど)、(iv)ホスファイト系安定剤(3,9-ビス(2,4-ジ-tert-ブチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、及びテトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト)など)、などが発泡体の難燃性能を低下させることなく、かつ、発泡体の熱安定性を向上させることから、好適に用いられる。
 (1-5.熱線輻射抑制剤)
 本発明の一実施形態に係るスチレン系樹脂押出発泡体は、断熱性向上のため、熱線輻射抑制剤を含有してもよい。一例において、熱線輻射抑制剤はグラファイトである。本発明の一実施形態で使用するグラファイトは、例えば、鱗状黒鉛、鱗片状黒鉛、土状黒鉛、球状黒鉛、人造黒鉛などが挙げられる。これらの中でも、熱線輻射抑制効果が高い点から、主成分が鱗状黒鉛又は鱗片状黒鉛のものを用いることが好ましい。グラファイトは、固定炭素分が80%以上のものが好ましく、85%以上のものがより好ましい。固定炭素分を上記範囲とすることで高い断熱性を有する発泡体が得られる。
 グラファイトの分散粒径は15μm以下が好ましく、10μm以下がより好ましい。分散粒径を上記範囲とすることで、グラファイトの比表面積が大きくなり、熱線輻射との衝突確率が高くなるため、熱線輻射抑制効果が高くなる。分散粒径を前記範囲とするためには、一次粒径が15μm以下のものを選択すればよい。
 尚、前記分散粒径とは、発泡体中に分散しているそれぞれの粒子の粒径から算出される、粒子1個あたりの粒径の算術平均値である。前記それぞれの粒子の粒径は、発泡体断面を顕微鏡などにより拡大して計測される。前記一次粒径とは体積平均粒径(d50)を意味する。
 本発明の一実施形態におけるグラファイトの含有量は、スチレン系樹脂100重量部に対して1.0重量部以上5.0重量部以下が好ましく、1.5重量部以上3.0重量部以下がより好ましい。含有量が1.0重量部未満では、十分な熱線輻射抑制効果が得られない。含有量が5.0重量部超では、含有量相応の熱線輻射抑制効果が得られずコストメリットが無い。
 前記熱線輻射抑制剤とは、近赤外または赤外領域(例えば、800~3000nm程度の波長域)の光を反射、散乱、及び/又は吸収する特性を有する物質をいう。熱線輻射抑制剤を含有させることにより、高い断熱性を有する発泡体となり得る。
 本発明の一実施形態では、熱線輻射抑制剤として、グラファイト以外にも、酸化チタン、硫酸バリウム、酸化亜鉛、酸化アルミニウム、酸化アンチモンなどの白色系粒子を使用することができる。これらは、単独で使用しても良く、2種以上を併用しても良い。これらの中でも、線輻射抑制効果が大きい点から、酸化チタン又は硫酸バリウムが好ましく、酸化チタンがより好ましい。白色系粒子の分散粒径については、特に限定されるものではない。効果的に赤外線を反射し、また発泡体に好ましい発色を与える点を考慮すれば、例えば、酸化チタンでは0.1μm~10μmが好ましく、0.15μm~5μmがより好ましい。
 本発明の一実施形態における白色系粒子の含有量としては、スチレン系樹脂100重量部に対して、1.0重量部以上3.0重量部以下が好ましく、1.5重量部以上2.5重量部以下がより好ましい。白色系粒子は、グラファイトと比較して熱線輻射抑制効果が小さく、白色系粒子の含有量が1.0重量部未満では、上記白色系粒子を含有しても熱線輻射抑制効果は殆どない。白色系粒子の含有量が3.0重量部超では、含有量相応の熱線輻射抑制効果が得られない一方で、発泡体の難燃性が低下する傾向がある。
 本発明の一実施形態における熱線輻射抑制剤の合計含有量は、スチレン系樹脂100重量部に対して、1.0重量部以上6.0重量部以下が好ましく、2.0重量部以上5.0重量部以下がより好ましい。熱線輻射抑制剤の合計含有量が1.0重量部未満では、断熱性が得られがたい。一方、熱線輻射抑制剤のような固体添加剤の含有量が増すほど、造核点が増えるために、発泡体の気泡が微細化したり、溶融樹脂の流動性が低下したりすることで、押出発泡体に美麗な表面を付与すること、及び押出発泡体の厚みを出すことが難しくなる傾向にある。熱線輻射抑制剤の合計含有が6.0重量部超では、特にこれらの傾向が顕著となり、更に、押出安定性を損なう傾向、及び難燃性が損なわれる傾向がある。
 (1-6.その他の添加剤)
 本発明の一実施形態においては、さらに、必要に応じて、本発明の一実施形態に係る効果を阻害しない範囲で、例えば、無機化合物(シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、炭酸カルシウムなど);加工助剤(ステアリン酸ナトリウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物など);耐光性安定剤(フェノール系抗酸化剤、リン系安定剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類、ヒンダードアミン類など);気泡径調整剤(タルクなど);前記以外の難燃剤;帯電防止剤;顔料などの着色剤;可塑剤、などの添加剤を、スチレン系樹脂に含有させてもよい。
 スチレン系樹脂に各種添加剤を添加する方法としては、例えば、(1)スチレン系樹脂に対して各種添加剤を添加してドライブレンドにより混合する方法、(2)押出機の途中に設けた供給部より溶融したスチレン系樹脂に各種添加剤を添加する方法、(3)あらかじめ押出機、ニーダー、バンバリーミキサー、ロールなどを用いてスチレン系樹脂へ高濃度の各種添加剤を含有させたマスターバッチを作製し、当該マスターバッチとスチレン系樹脂とをドライブレンドにより混合する方法、又は、(4)スチレン系樹脂とは別の供給設備により各種添加剤を押出機に供給する方法、などが挙げられる。スチレン系樹脂に各種添加剤を添加する手順としては、例えば、スチレン系樹脂に対して各種添加剤を添加して混合した後、押出機に供給して加熱溶融し、更に発泡剤を添加して混合する手順が挙げられるが、各種添加剤又は発泡剤をスチレン系樹脂に添加するタイミングや混練時間は特に限定されない。
 (1-7.物性)
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の熱伝導率は特に限定はないが、例えば建築用断熱材、又は、保冷庫用若しくは保冷車用の断熱材として機能することを考慮した断熱性の観点から、平均温度を23℃として測定した、製造1週間後における熱伝導率が0.0284W/mK以下であることが好ましく、0.0244W/mK以下であることがより好ましく、0.0224W/mK以下であることが特に好ましい。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の見掛け密度は、例えば建築用断熱材、又は、保冷庫用若しくは保冷車用の断熱材として機能することを考慮した際の、断熱性および、軽量性の観点から、20kg/m以上45kg/m以下であることが好ましく、より好ましくは25kg/m以上40kg/m以下である。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の独立気泡率は、90%以上が好ましく、95%以上がより好ましい。独立気泡率が90%未満の場合には、発泡剤が押出発泡体から早期に散逸し、断熱性が低下するおそれがある。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の厚み方向の平均気泡径は、0.05mm以上0.5mm以下が好ましく、0.05mm以上0.4mm以下がより好ましく、0.05mm以上0.3mm以下が特に好ましい。一般に、平均気泡径が小さいほど、発泡体の気泡壁間距離が短くなるために、押出発泡体に形状付与する際の押出発泡体の気泡の可動域が狭く、気泡の変形が困難となる。その結果、押出発泡体に美麗な表面を付与すること、及び押出発泡体の厚みを出すことが難しくなる傾向にある。スチレン系樹脂押出発泡体の厚み方向の平均気泡径が0.05mmより小さいと、特に、押出発泡体に美麗な表面を付与すること、及び押出発泡体の厚みを出すことが難しくなる傾向が顕著なものとなる。一方、スチレン系樹脂押出発泡体の厚み方向の平均気泡径が0.3mm超えの場合、十分な断熱性が得られないおそれがある。
 尚、本発明の一実施形態に係るスチレン系樹脂押出発泡体の平均気泡径は、マイクロスコープ(実施例では、[(株)KEYENCE製、DIGITAL MICROSCOPE VHX-900]を用いた)を用いて、次に記載の通り評価することができる。
 得られたスチレン系樹脂押出発泡体の幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の計3箇所の、厚み方向中央部(図1の(a)の黒丸印の地点)について、図1の(b)におけるZX平面及びYZ平面を前記マイクロスコープにて観察し、100倍の拡大写真を撮影する。前記拡大写真の厚み方向に任意に2mmの直線を3本引き(各観察箇所、各観察方向につき3本。)、その直線に交わる又は接する気泡の個数aを計測する。計測した気泡の個数aから、次式(1)により観察箇所毎の厚み方向の平均気泡径Aを求める。3箇所(各箇所2方向ずつ)の平均値をスチレン系樹脂押出発泡体の厚み方向の平均気泡径A(平均値)とする。
 観察箇所毎の厚み方向の平均気泡径A(mm)=2×3/気泡の個数a
                              ・・・(1)。
 得られたスチレン系樹脂押出発泡体の幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の計3箇所の、厚み方向中央部(図1の(a)の黒丸印の地点)について、図1の(b)におけるYZ平面を前記マイクロスコープにて観察し、100倍の拡大写真を撮影する。前記拡大写真の押出方向に任意に2mmの直線を3本引き(各観察箇所につき3本。)、その直線に交わる又は接する気泡の個数bを計測する。計測した気泡の個数bから、次式(2)により観察箇所毎の押出方向の平均気泡径Bを求める。3箇所の平均値をスチレン系樹脂押出発泡体の押出方向の平均気泡径B(平均値)とする。
 観察箇所毎の押出方向の平均気泡径B(mm)=2×3/気泡の個数b
                              ・・・(2)。
 得られたスチレン系樹脂押出発泡体の幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の計3箇所の、厚み方向中央部(図1の(a)の黒丸印の地点)について、図1の(b)におけるZX平面を前記マイクロスコープにて観察し、100倍の拡大写真を撮影する。前記拡大写真の幅方向に任意に2mmの直線を3本引き(各観察箇所につき3本。)、その直線に接する気泡の個数cを計測する。計測した気泡の個数cから、次式(3)により観察箇所毎の幅方向の平均気泡径Cを求める。3箇所の平均値をスチレン系樹脂押出発泡体の幅方向の平均気泡径C(平均値)とする。
 観察箇所毎の幅方向の平均気泡径C(mm)=2×3/気泡の個数c
                              ・・・(3)。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の気泡変形率は、0.7以上2.0以下が好ましく、0.8以上1.5以下がより好ましく、0.8以上1.2以下が更に好ましい。気泡変形率が0.7よりも小さい場合、圧縮強度が低くなり、押出発泡体において、用途に適した強度を確保できないおそれがある。また、気泡が球状に戻ろうとするため、押出発泡体の寸法(形状)維持性に劣る傾向がある。一方、気泡変形率が2.0超えの場合、押出発泡体の厚み方向における気泡数が少なくなるため、気泡形状による断熱性向上効果が小さくなる。
 尚、本発明の一実施形態に係るスチレン系樹脂押出発泡体の気泡変形率は、前記した平均気泡径から、次式(4)により求めることができる。
 気泡変形率(単位なし)=平均気泡径A(平均値)/{(平均気泡径B(平均値)+平均気泡径C(平均値))/2}・・・(4)。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体における厚みは、例えば建築用断熱材、又は保冷庫用若しくは保冷車用の断熱材として機能することを考慮した際の、断熱性、曲げ強度及び圧縮強度の観点から、10mm以上150mm以下であることが好ましく、より好ましくは20mm以上130mm以下であり、特に好ましくは30mm以上120mm以下である。
 尚、スチレン系樹脂押出発泡体では、本発明の実施例、及び比較例に記載したように、押出発泡成形して形状を付与した後に、厚み方向と垂直な平面の両表面を厚み方向に片側5mm程度の深さでカットして製品厚みとする場合がある。別途記載がない限り、本発明の一実施形態に係るスチレン系樹脂押出発泡体における厚みとは、押出発泡成形して形状を付与したままのカットしていない厚みのことである。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の形状は、例えば建築用断熱材、又は保冷庫用若しくは保冷車用の断熱材として好適に使用するために、押出方向、幅方向、厚み方向のいずれの方向にも波打ちがなく板状であることが好ましい。前記したように、例えば(1)ハイドロフルオロオレフィンを用いた場合、(2)熱線輻射抑制剤を使用した場合、又は、(3)スチレン系押出発泡体の平均気泡径が微細化した場合などには、溶融樹脂の流動性が低下したり、押出発泡して形状付与する際の押出発泡体の気泡の可動域が狭く、気泡の変形が困難であったりする。そのため、押出発泡成形して前記厚みへの調整を試みた際に上手く形状付与できず、押出発泡体の押出方向、幅方向、厚み方向のいずれか一方向以上が波打ちしており、板状とならない場合がある。
 以上に説明した通り、本発明の一実施形態により、優れた断熱性を有し、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得ることができる。
 〔2.スチレン系樹脂押出発泡体の製造方法〕
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法は、前記した〔1.スチレン系樹脂押出発泡体〕に記載のスチレン系樹脂押出発泡体を製造するために用いられる、製造方法である。本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法で使用される構成のうち、〔1.スチレン系樹脂押出発泡体〕にて既に説明した構成については、ここではその説明を省略する。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法としては、まず、スチレン系樹脂、及び、必要に応じて、難燃剤、安定剤、熱線輻射抑制剤、又はその他の添加剤等を押出機等の加熱溶融部に供給する。これらの材料を加える順序は、特に限定されない。また、任意の段階で高圧条件下にてハイドロフルオロオレフィン、並びに、水、及び/又はアルコール、さらには必要に応じてその他の発泡剤をスチレン系樹脂に添加することができる。そして、(1)スチレン系樹脂、(2)ハイドロフルオロオレフィン、並びに、水、及び/又はアルコール、並びに(3)その他の添加剤及び/又はその他の発泡剤、の混合物を流動ゲル(言い換えれば、樹脂溶融物である)となし、押出発泡に適する温度に冷却する。その後、ダイを通して該流動ゲルを低圧領域に押出発泡して、発泡体を形成する。
 前記加熱溶融部における加熱温度は、使用されるスチレン系樹脂が溶融する温度以上であればよいが、添加剤などの影響による樹脂の分子劣化ができる限り抑制される温度、例えば150℃~260℃程度が好ましい。加熱溶融部における溶融混練時間は、単位時間当たりのスチレン系樹脂の押出量、及び/又は、押出機(加熱溶融部及び溶融混練部として用いられる)の種類により異なるので一義的に規定することはできず、スチレン系樹脂と、発泡剤及び添加剤とが均一に分散混合されるに要する時間として適宜設定される。
 溶融混練部としては、例えばスクリュー型の押出機などが挙げられる。しかし、加熱溶融部および溶融混練部に用いられる装置は、通常の押出発泡に用いられるものであれば特に制限されない。
 本発明の一実施形態に係る製造方法における発泡成形方法としては、例えば、まず、スリットダイ(押出成形用の開口部が直線状であるスリットダイ)を通じて、高圧領域から低圧領域へ溶融樹脂を開放して、押出発泡体を得る。次に、スリットダイと密着又は接して設置された成形金型、及び該成形金型の下流側に隣接して設置された成形ロールなどを用いて、断面積の大きい板状発泡体を成形する方法が採られる。成形金型の流動面形状および金型温度を調整することによって、所望の発泡体の断面形状、発泡体の表面性、発泡体品質が得られる。
 〔本発明の構成〕
 本発明は、以下の構成を包含している。
 [1]発泡剤としてハイドロフルオロオレフィンを含有するスチレン系樹脂押出発泡体であって、スチレン-アクリロニトリル共重合体樹脂を40重量%以上含有するスチレン系樹脂100重量部に対して、更に発泡剤として水、及び/又はアルコールを0.5重量部以上2.0重量部以下添加することを特徴とする、スチレン系樹脂押出発泡体。
 [2]前記スチレン系樹脂が、前記スチレン-アクリロニトリル共重合体樹脂を40重量%以上90重量%以下含有することを特徴とする、[1]に記載のスチレン系樹脂押出発泡体。
 [3]前記スチレン系樹脂100重量部に対してグラファイトを1.0重量部以上、5.0重量部以下含有することを特徴とする、[1]又は[2]に記載のスチレン系樹脂押出発泡体。
 [4]前記ハイドロフルオロオレフィンがテトラフルオロプロペンであることを特徴とする、[1]~[3]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [5]発泡剤として更に、ジメチルエーテル、塩化エチル、塩化メチルからなる群の少なくとも1種をスチレン系樹脂100重量部に対して0.5重量部以上15重量部以下添加することを特徴とする、[1]~[4]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [6]見掛け密度が20kg/m以上45kg/m以下、独立気泡率が90%以上であることを特徴とする、[1]~[5]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [7]厚みが10mm以上150mm以下であることを特徴とする、[1]~[6]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [8]臭素系難燃剤を、スチレン系樹脂100重量部に対して0.5重量部以上5.0重量部以下含有することを特徴とする、[1]~[7]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [9][1]~[8]のいずれか1つに記載のスチレン系樹脂押出発泡体の製造方法。
 [10](i)スチレン系樹脂を加熱溶融させる、加熱溶融工程、(ii)高圧条件下において、前記スチレン系樹脂に、ハイドロフルオロオレフィンを含んでいる発泡剤を添加して混合する、混合工程、及び、(iii)得られた混合物を低圧条件下で発泡させる、発泡工程;を含む、[9]に記載のスチレン系樹脂押出発泡体の製造方法。
 本発明はまた、以下の構成をも包含している。
 <1>(i)スチレン系樹脂を加熱溶融させる、加熱溶融工程、(ii)高圧条件下において、前記スチレン系樹脂に、ハイドロフルオロオレフィンを含んでいる発泡剤を添加して混合する、混合工程、及び、(iii)得られた混合物を低圧条件下で発泡させる、発泡工程を含む、スチレン系樹脂押出発泡体の製造方法であって;前記スチレン系樹脂は、スチレン-アクリロニトリル共重合体樹脂を40重量%以上含んでおり;前記発泡剤は、水、及び/又はアルコールを更に含んでおり、;前記水、及び/又はアルコールの添加量は、前記スチレン系樹脂100重量部に対して、0.5重量部以上2.0重量部以下であることを特徴とする、スチレン系樹脂押出発泡体の製造方法。
 <2>前記スチレン系樹脂は、前記スチレン-アクリロニトリル共重合体樹脂を40重量%以上90重量%以下含んでいることを特徴とする、<1>に記載の製造方法。
 <3>前記混合物は、熱線輻射抑制剤を更に含んでおり;前記混合物における前記熱線輻射抑制剤の含有量は、前記スチレン系樹脂100重量部に対して、1.0重量部以上6.0重量部以下であることを特徴とする、<1>又は<2>に記載の製造方法。
 <4>前記ハイドロフルオロオレフィンは、テトラフルオロプロペンであることを特徴とする、<1>~<3>のいずれか1つに記載の製造方法。
 <5>前記発泡剤は、下記(1)および(2)のうち、少なくとも1種以上を更に含んでいる、請求項1~4のいずれか1項に記載の製造方法。
 (1)前記スチレン系樹脂100重量部に対して1.0重量部以上3.0重量部以下の、炭素数3~5の飽和炭化水素。
 (2)前記スチレン系樹脂100重量部に対して合計0.5重量部以上15重量部以下の、ジメチルエーテル及び/又は塩化アルキル。
 <6>前記混合物は、難燃剤を更に含んでおり;前記混合物における前記難燃剤の含有量は、前記スチレン系樹脂100重量部に対して、0.5重量部以上5.0重量部以下であることを特徴とする、請求項1~5のいずれか1項に記載の製造方法。
 <7>スチレン系樹脂およびハイドロフルオロオレフィンを含む、スチレン系樹脂押出発泡体であって;前記スチレン系樹脂は、スチレン-アクリロニトリル共重合体樹脂を40重量%以上含んでおり;前記スチレン系樹脂押出発泡体の厚みは、30mm以上150mm以下であり;前記スチレン系樹脂押出発泡体の、平均温度を23℃として測定した、製造1週間後における熱伝導率は、0.0284W/mK以下であることを特徴とする、スチレン系樹脂押出発泡体。
 <8>見掛け密度が20kg/m以上45kg/m以下であり、独立気泡率が90%以上であることを特徴とする、<7>に記載のスチレン系樹脂押出発泡体。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。更に、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 以下、本発明の実施例について説明する。なお、本発明が以下の実施例に限定されないことは勿論である。
 実施例および比較例において使用した原料は、次の通りである。
 ○基材樹脂
・スチレン系樹脂A [PSジャパン(株)製、G9401;ポリスチレン樹脂]
・スチレン系樹脂B [旭化成(株)製、スタイラック767;スチレン-アクリロニトリル共重合体樹脂]。
 ○熱線輻射抑制剤
・グラファイト [(株)丸豊鋳材製作所製、M-885;鱗片状黒鉛、一次粒径5.5μm、固定炭素分89%]。
 ○難燃剤
・テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテル、及びテトラブロモビスフェノールA-ビス(2,3-ジブロモプロピル)エーテルの混合臭素系難燃剤[第一工業製薬(株)製、GR-125P]。
 ○難燃助剤
・トリフェニルホスフィンオキシド [住友商事ケミカル]。
 ○安定剤
・ビスフェノール-A-グリシジルエーテル [(株)ADEKA製、EP-13]
・ジペンタエリスリトール-アジピン酸反応混合物 [味の素ファインテクノ(株)製、
プレンライザーST210]
・トリエチレングリコール-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート [Songwon Japan(株)製、ソンノックス2450FF]。
 ○その他添加剤
・タルク [林化成(株)製、タルカンパウダーPK-Z]
・ステアリン酸カルシウム [堺化学工業(株)製、SC-P]
・ベントナイト [(株)ホージュン製、ベンゲルブライトK11]
・シリカ [エボニックデグサジャパン(株)製、カープレックスBS-304F]
・エチレンビスステアリン酸アミド [日油(株)製、アルフローH-50S]。
 ○発泡剤
・トランス-HFO-1234ze [ハネウェルジャパン(株)製]
・ジメチルエーテル [岩谷産業(株)製]
・イソブタン [三井化学(株)製]
・塩化エチル [日本特殊化学工業(株)製]
・水 [大阪府摂津市水道水]
・エタノール [和光純薬工業(株)製、エタノール 試薬特級]
 実施例および比較例について、以下の手法に従ってスチレン系樹脂押出発泡体の厚み(カット前)、見掛け密度、独立気泡率、平均気泡径、気泡変形率、押出発泡体中のスチレン系樹脂100gに対するHFO-1234ze残存量、熱伝導率、発泡体形状を評価した。
 (1)スチレン系樹脂押出発泡体の厚み(カット前)
 ノギス[(株)ミツトヨ製、M型標準ノギスN30]を用いて、幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の厚み(図1の(a)における白丸の地点の厚み)、計3点を測定した。3点の平均値をスチレン系樹脂押出発泡体の厚みとした。
 (2)見掛け密度(kg/m
得られたスチレン系樹脂押出発泡体の重量を測定すると共に、長さ寸法、幅寸法、厚み寸法を測定した。
 測定された重量および各寸法から、以下の式(5)に基づいて発泡体密度を求め、単位をkg/mに換算した。
見掛け密度(g/cm)=発泡体重量(g)/発泡体体積(cm)・・・(5)。
 (3)独立気泡率
 得られたスチレン系樹脂押出発泡体の幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の計3箇所から厚さ40mm×長さ(押出方向)25mm×幅25mmの試験片を切り出した。前記試験片を切り出す際は、厚み方向の中央部(図1の(a)の黒丸印の地点)近傍の独立気泡率を測定できるように、前記スチレン系樹脂押出発泡体の表面を切除した。前記試験片について、ASTM-D2856-70の手順Cに従って測定し、以下の計算式(6)にて各試験片の独立気泡率を求めた。3箇所の平均値をスチレン系樹脂押出発泡体の独立気泡率とした。
独立気泡率(%)=(V1-W/ρ)×100/(V2-W/ρ)・・・(6)
 ここで、V1(cm)は空気比較式比重計[東京サイエンス(株)製、空気比較式比重計、型式1000型]を用いて測定した試験片の真の体積(独立気泡でない部分の容積が除かれる。)である。V2(cm)は、ノギス[(株)ミツトヨ製、M型標準ノギスN30]を用いて測定した試験片の外側寸法より算出した見掛けの体積である。W(g)は試験片の全重量である。また、ρ(g/cm)は押出し発泡体を構成するスチレン系樹脂の密度であり、1.05(g/cm)とした。
 (4)厚み方向の平均気泡径と気泡変形率
 得られたスチレン系樹脂押出発泡体について、前述の通り評価した。
 (5)押出発泡体中のスチレン系樹脂100gに対するHFO-1234ze残存量
 得られたスチレン系樹脂押出発泡体をJIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、-10%R.H.)の条件下に静置した。その後、製造直後(製造から2時間以内)、及び製造から1週間後のHFO-1234ze残存量を以下の設備、手順にて評価した。
a)使用機器;ガスクロマトグラフ GC-2014 [(株)島津製作所製]
b)使用カラム;G-Column G-950 25UM [化学物質評価研究機構製]
c)測定条件;
・注入口温度:65℃
・カラム温度:80℃
・検出器温度:100℃
・キャリーガス:高純度ヘリウム
・キャリーガス流量:30mL/分
・検出器:TCD
・電流:120mA。
 約130ccの密閉可能なガラス容器(以下、「密閉容器」と言う)に、発泡体から切り出した約1.2gの試験片(正確な重量は、見掛け密度により異なる)を入れ、真空ポンプにより密閉容器内の空気抜きを行った。その後、密閉容器を170℃で10分間加熱し、発泡体中の発泡剤を密閉容器内に取り出した。密閉容器が常温に戻った後、密閉容器内にヘリウムを導入して大気圧に戻した。その後、マイクロシリンジにより40μLのHFO-1234zeを含む混合気体を取り出し、上記a)~c)の使用機器、測定条件にて評価した。
 (6)熱伝導率
 JIS A 9521に準じて、厚さ製品厚み×長さ(押出方向)300mm×幅300mmに切り出した試験片を用い、熱伝導率測定装置[英弘精機(株)、HC-074]にて平均温度23℃での熱伝導率を測定した。測定は、スチレン系樹脂押出発泡体の製造後、前記寸法の試験片に切削し、更に、JIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、-10%R.H.)の条件下に静置した状態で、製造から1週間経過した後に行った。
 (7)発泡体形状
 成形ロール以降カット以前の押出発泡体を目視し、下記の評価基準によって評価した。
○:押出発泡体の押出方向、幅方向、厚み方向のいずれの方向にも波打ちがなく板状である。
×:押出発泡体の押出方向、幅方向、厚み方向のいずれか一方向以上が波打ちしており板状でない。
 なお、気孔の有無を目視により観察し、気孔が確認される場合には、「気孔あり」と判定した。
 実施例および比較例について、グラファイトは以下の手法に従って作製したマスターバッチにより添加した。
 [グラファイトマスターバッチの作製]
 バンバリーミキサーに、基材樹脂であるスチレン系樹脂A[PSジャパン(株)製、G9401]100重量部、並びに、スチレン系樹脂A100重量部に対して、グラファイト[(株)丸豊鋳材製作所製、M-885]102重量部、及びエチレンビスステアリン酸アミド[日油(株)製、アルフローH-50S]2.0重量部を投入して、5kgf/cmの荷重をかけた状態で、加熱冷却を行わずに20分間溶融混練した。この際、樹脂温度を測定したところ190℃であった。溶融樹脂をルーダーに供給して、ダイス(前記ルーダーの先端に取り付けられており、小穴を有している)を通して吐出量250kg/hrで押し出した。得られたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチを得た。
 (実施例1)
 [樹脂混合物の作製]
 基材樹脂であるスチレン系樹脂(スチレン系樹脂A[PSジャパン(株)製、G9401;ポリスチレン樹脂]50重量%とスチレン系樹脂B[旭化成(株)製、スタイラック767;スチレン-アクリロニトリル共重合体樹脂]50重量%、合計100重量部)、並びに、スチレン系樹脂100重量部に対して、難燃剤(テトラブロモビスフェノールA-ビス(2、3-ジブロモ-2-メチルプロピル)エーテルと、テトラブロモビスフェノールA-ビス(2、3-ジブロモプロピル)エーテルとの混合臭素系難燃剤[第一工業製薬(株)製、GR-125P]3.0重量部)、難燃剤助剤(トリフェニルホスフィンオキシド [住友商事ケミカル]1.0重量部)、気泡径調整剤(タルク[林化成(株)製、タルカンパウダーPK-Z]0.50重量部)、3種類の安定剤(ビスフェノール-A-グリシジルエーテル[(株)ADEKA製、EP-13]0.20重量部;トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート[Songwon Japan(株)製、ソンノックス2450FF]0.20重量部;及びジペンタエリスリトール-アジピン酸反応混合物[味の素ファインテクノ製、プレンライザーST210]0.10重量部)、滑剤(ステアリン酸カルシウム[堺化学工業(株)製、SC-P]0.20重量部)、2種類の吸水媒体(ベントナイト[(株)ホージュン製、ベンゲルブライトK11]0.40重量部;及び、シリカ[エボニックデグサジャパン(株)製、カープレックスBS-304F]0.40重量部)をドライブレンドした。
 [押出発泡体の作製]
 得られた樹脂混合物、口径150mmの単軸押出機(第一押出機)、口径200mmの単軸押出機(第二押出機)、及び冷却機を直列に連結した押出機へ、約950kg/hrで供給した。
 第一押出機に供給した樹脂混合物を、樹脂温度240℃に加熱して溶融又は可塑化、混練し、発泡剤(基材樹脂100重量部に対して、HFO-1234ze2.5重量部、イソブタン1.6重量部、ジメチルエーテル2.2重量部、及び水1.0重量部)を第一押出機の先端付近で樹脂中に圧入した。その後、第一押出機に連結された第二押出機及び冷却機中にて、樹脂温度を122℃に冷却し、冷却機先端に設けた厚さ6mm×幅400mmの長方形断面の口金(スリットダイ)より、発泡圧力3.0MPaにて大気中へ押出発泡させた。その後、口金に密着させて設置した成形金型と、その下流側に設置した成形ロールとにより、厚み60mm×幅1000mmである断面形状の押出発泡板を得、カッターにて厚み50mm×幅910mm×長さ1820mmにカットした。得られた発泡体の評価結果を表1に示す。
 (実施例2~16)
 表1、表2に示すように、各種配合の種類、添加量、及び/又は製造条件を変更した以外は、実施例1と同様の操作により、押出発泡体を得た。得られた押出発泡体の物性を表1、表2に示す。尚、グラファイトは、前記したようにあらかじめスチレン系樹脂のマスターバッチの形態として、樹脂混合物の作製時に投入した。マスターバッチを使用した場合、基材樹脂はマスターバッチ中に含まれる基材樹脂と合計して100重量部とした。
 それぞれの実施例について、実施例1との主要な相違点は、以下の通りである。
・実施例2~5:HFO-1234zeの添加量を変化させた。
・実施例6:発泡剤として、水の代わりにアルコールを用いた。
・実施例7~12:熱線輻射抑制剤を添加し、HFO-1234zeの添加量を変化させた。
・実施例13:熱線輻射抑制剤を添加し、スチレン-アクリロニトリル共重合体樹脂の配合量を増やした。
・実施例14:熱線輻射抑制剤を添加し、発泡剤として水とアルコールとの混合物を用いた。
・実施例15、16:熱線輻射抑制剤を添加し、発泡剤として水の代わりにアルコールを用いた。
 (比較例1~6)
 表3に示すように、各種配合の種類、添加量、及び/又は製造条件を変更した以外は、実施例1と同様の操作により、押出発泡体を得た。得られた押出発泡体の物性を表3に示す。尚、グラファイトは、前記したようにあらかじめスチレン系樹脂のマスターバッチの形態として、樹脂混合物の作製時に投入した。マスターバッチを使用した場合、基材樹脂はマスターバッチ中に含まれる基材樹脂と合計して100重量部とした。
 それぞれの比較例について、実施例1との主要な相違点は、以下の通りである。
・比較例1:スチレン-アクリル共重合体樹脂を配合しなかった。
・比較例2:熱線輻射抑制剤を添加し、チレン-アクリル共重合体樹脂を配合しなかった。
・比較例3:スチレン-アクリル共重合体樹脂の配合量を少なくした。
・比較例4:発泡剤として添加する水の量を減らした。
・比較例5:発泡剤として添加する水の量を増やした。
・比較例6:発泡剤として水の代わりにアルコールを用い、添加量を減らした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例1~2からわかるように、ハイドロフルオロオレフィンの使用により、更には熱線輻射抑制剤の添加により、押出発泡体に十分な厚みが与えられなくなる。実施例1、10、14、15と比較例1、2との比較から明らかなように、所定量のスチレン-アクリロニトリル共重合体樹脂と水、又はアルコールを使用することで、押出発泡体に十分な厚みを与えることができる。
 また、比較例3からわかるように、スチレン-アクリロニトリル共重合体樹脂の含有量が特定の範囲より少ないと、たとえ所定量の水、及び/又はアルコールを発泡剤として使用しても、押出発泡体に十分な厚みを与えられない。
 更に、比較例4~6からわかるように、水、又はアルコールの添加量が特定の範囲より少ない場合や多い場合は、十分な厚みの発泡体が得られなかったり(比較例4、6)、発泡体の断熱性が劣ったり(比較例5)する。更に、発泡体に気孔が発生したり、波打ちが発生したりして、外観・形状の良好な発泡体が得られない。
 本発明のスチレン系樹脂押出発泡体は、実施例1~16からわかるように、熱伝導率が0.028W/mK以下と優れた断熱性を有し、更に、使用に適した十分な厚みのスチレン系樹脂押出発泡体となる。更に、比較例1~6からは、(1)スチレン-アクリロニトリル共重合体樹脂の配合量を特定量以上とすること、及び(2)発泡剤として、所定量の水、及び/又はアルコールを用いること、の両条件を組み合わせることによってのみ、高い断熱性と、十分な厚みを有する押出発泡体が得られることが示唆される。
 熱伝導率によって表される断熱性の観点から、実施例1~16のうち好ましい実施例は実施例6~16、より好ましい実施例は実施例11~16である。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体は、優れた断熱性を有し、更に、使用に適している。そのため、当該スチレン系樹脂押出発泡体を、住宅、又は構造物の断熱材として好適に用いることができる。

Claims (10)

  1.  発泡剤としてハイドロフルオロオレフィンを含有するスチレン系樹脂押出発泡体であって、スチレン-アクリロニトリル共重合体樹脂を40重量%以上含有するスチレン系樹脂100重量部に対して、更に発泡剤として水、及び/又はアルコールを0.5重量部以上2.0重量部以下添加することを特徴とする、スチレン系樹脂押出発泡体。
  2.  前記スチレン系樹脂が、前記スチレン-アクリロニトリル共重合体樹脂を40重量%以上90重量%以下含有することを特徴とする、請求項1に記載のスチレン系樹脂押出発泡体。
  3.  前記スチレン系樹脂100重量部に対してグラファイトを1.0重量部以上、5.0重量部以下含有することを特徴とする、請求項1または請求項2に記載のスチレン系樹脂押出発泡体。
  4.  前記ハイドロフルオロオレフィンがテトラフルオロプロペンであることを特徴とする、請求項1~請求項3のいずれか1項に記載のスチレン系樹脂押出発泡体。
  5.  発泡剤として更に、ジメチルエーテル、塩化エチル、塩化メチルからなる群の少なくとも1種をスチレン系樹脂100重量部に対して0.5重量部以上15重量部以下添加することを特徴とする、請求項1~請求項4のいずれか1項に記載のスチレン系樹脂押出発泡体。
  6.  見掛け密度が20kg/m以上45kg/m以下、独立気泡率が90%以上であることを特徴とする、請求項1~請求項5のいずれか1項に記載のスチレン系樹脂押出発泡体。
  7.  厚みが10mm以上150mm以下であることを特徴とする、請求項1~請求項6のいずれか1項に記載のスチレン系樹脂押出発泡体。
  8.  臭素系難燃剤を、スチレン系樹脂100重量部に対して0.5重量部以上5.0重量部以下含有することを特徴とする、請求項1~請求項7のいずれか1項に記載のスチレン系樹脂押出発泡体。
  9.  請求項1~請求項8のいずれか1項に記載のスチレン系樹脂押出発泡体の製造方法。
  10.  スチレン系樹脂を加熱溶融させる、加熱溶融工程、
     高圧条件下において、前記スチレン系樹脂に、ハイドロフルオロオレフィンを含んでいる発泡剤を添加して混合する、混合工程、及び、
     得られた混合物を低圧条件下で発泡させる、発泡工程
    を含む、請求項9に記載のスチレン系樹脂押出発泡体の製造方法。
PCT/JP2017/045954 2016-12-21 2017-12-21 スチレン系樹脂押出発泡体およびその製造方法 WO2018117224A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018558072A JP7129344B2 (ja) 2016-12-21 2017-12-21 スチレン系樹脂押出発泡体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-247313 2016-12-21
JP2016247313 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018117224A1 true WO2018117224A1 (ja) 2018-06-28

Family

ID=62627729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045954 WO2018117224A1 (ja) 2016-12-21 2017-12-21 スチレン系樹脂押出発泡体およびその製造方法

Country Status (2)

Country Link
JP (1) JP7129344B2 (ja)
WO (1) WO2018117224A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164733A (ja) * 2019-03-29 2020-10-08 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
CN114945470A (zh) * 2020-01-16 2022-08-26 旭化成建材株式会社 酚醛树脂发泡体层叠板和复合板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156468A (ja) * 2006-12-22 2008-07-10 Denki Kagaku Kogyo Kk 耐熱性押出発泡ボードおよびその製造方法
JP2010527399A (ja) * 2007-05-15 2010-08-12 ダウ グローバル テクノロジーズ インコーポレイティド 良好な表面品質、高断熱性および低密度を有するアルケニル芳香族発泡体
JP2011518917A (ja) * 2008-04-25 2011-06-30 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー ポジティブスキュー・スチレン−アクリロニトリルコポリマー発泡体
JP2013194101A (ja) * 2012-03-16 2013-09-30 Jsp Corp ポリスチレン系樹脂押出発泡断熱板の製造方法
WO2015093195A1 (ja) * 2013-12-20 2015-06-25 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
WO2015170602A1 (ja) * 2014-05-09 2015-11-12 株式会社カネカ スチレン系樹脂押出発泡体の製造方法
JP2016138291A (ja) * 2016-05-12 2016-08-04 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡断熱板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6714017B6 (ja) * 2015-04-15 2020-07-22 ダウ グローバル テクノロジーズ エルエルシー 垂直方向に伸長された気泡を有する断熱発泡体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156468A (ja) * 2006-12-22 2008-07-10 Denki Kagaku Kogyo Kk 耐熱性押出発泡ボードおよびその製造方法
JP2010527399A (ja) * 2007-05-15 2010-08-12 ダウ グローバル テクノロジーズ インコーポレイティド 良好な表面品質、高断熱性および低密度を有するアルケニル芳香族発泡体
JP2011518917A (ja) * 2008-04-25 2011-06-30 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー ポジティブスキュー・スチレン−アクリロニトリルコポリマー発泡体
JP2013194101A (ja) * 2012-03-16 2013-09-30 Jsp Corp ポリスチレン系樹脂押出発泡断熱板の製造方法
WO2015093195A1 (ja) * 2013-12-20 2015-06-25 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
WO2015170602A1 (ja) * 2014-05-09 2015-11-12 株式会社カネカ スチレン系樹脂押出発泡体の製造方法
JP2016138291A (ja) * 2016-05-12 2016-08-04 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡断熱板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164733A (ja) * 2019-03-29 2020-10-08 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
JP7335715B2 (ja) 2019-03-29 2023-08-30 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
CN114945470A (zh) * 2020-01-16 2022-08-26 旭化成建材株式会社 酚醛树脂发泡体层叠板和复合板

Also Published As

Publication number Publication date
JP7129344B2 (ja) 2022-09-01
JPWO2018117224A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5892300B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6588428B2 (ja) スチレン系樹脂押出発泡体の製造方法
JP6650466B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6722753B2 (ja) スチレン系樹脂押出発泡体及びその製造方法
WO2018117224A1 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7057068B2 (ja) スチレン系樹脂押出発泡体を含む断熱材およびその製造方法
JP7080714B2 (ja) スチレン系樹脂押出発泡体
JP2015113416A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6181522B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7011422B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
WO2018163905A1 (ja) スチレン系樹脂押出発泡体及びその製造方法
JP6609636B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6639517B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7479175B2 (ja) スチレン系樹脂押出発泡体の製造方法
JP2018184563A (ja) スチレン系樹脂押出発泡体の製造方法
JP2019094472A (ja) スチレン系樹脂押出発泡体
JP2022145216A (ja) スチレン系樹脂押出発泡体の製造方法
JP2018100352A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP2023062653A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP2022064639A (ja) スチレン系樹脂押出発泡体、及びその製造方法
JP2018184562A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP2018150450A (ja) スチレン系樹脂押出発泡体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885426

Country of ref document: EP

Kind code of ref document: A1