WO2018117127A1 - 未分化iPS細胞の除去剤 - Google Patents

未分化iPS細胞の除去剤 Download PDF

Info

Publication number
WO2018117127A1
WO2018117127A1 PCT/JP2017/045612 JP2017045612W WO2018117127A1 WO 2018117127 A1 WO2018117127 A1 WO 2018117127A1 JP 2017045612 W JP2017045612 W JP 2017045612W WO 2018117127 A1 WO2018117127 A1 WO 2018117127A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
compound
same
alkyl
Prior art date
Application number
PCT/JP2017/045612
Other languages
English (en)
French (fr)
Inventor
平峯 靖
真代 藤原
坂 仁志
太志 長谷川
Original Assignee
大日本住友製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本住友製薬株式会社 filed Critical 大日本住友製薬株式会社
Priority to JP2018558015A priority Critical patent/JP7123809B2/ja
Priority to US16/471,474 priority patent/US11434472B2/en
Publication of WO2018117127A1 publication Critical patent/WO2018117127A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4174Arylalkylimidazoles, e.g. oxymetazolin, naphazoline, miconazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system having sulfur as a ring hetero atom, e.g. ticlopidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/88Nitrogen atoms, e.g. allantoin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere

Definitions

  • the present invention relates to an agent for removing undifferentiated iPS cells containing an imidazolylamide derivative and a salt thereof.
  • iPS cells Artificial pluripotent stem cells
  • iPS cells induced pluripotent stem cells
  • teratomas if undifferentiated iPS cells are mixed
  • a tumor called Teratoma is formed (Non-patent Document 1).
  • cancers malignant tumors
  • iPS cells remain in the final product and teratomas are formed from the cells, May be compromised in safety and effectiveness. Therefore, when developing an iPS cell-derived cell product, it is extremely important that there is no undifferentiated iPS cell capable of teratoma formation in the product.
  • Examples of a substance capable of inducing cell death against iPS cells include, for example, a fusion protein of a glycoprotein that recognizes iPS cells and a toxin (Non-patent Document 2), and an antibody that recognizes iPS cells and induces cell death (non-patent document 2).
  • Patent Literature 3 compounds that inhibit fatty acid desaturation (Patent Literature 1, Non-Patent Literature 4), and the like are known.
  • the imidazolylamide derivative of the present invention is not known as such a substance.
  • the iPS cell recognition glycoprotein-toxin fusion protein, iPS cell-removing antibody works efficiently on monolayer iPS cells cultured in plane, but is a large molecule with a large molecular weight. When added to a cell mass that does not have a vascular system, the efficiency of penetrating into the cell mass is considered to be extremely poor.
  • Non-Patent Documents 5 and 6 disclose 4-aminoimidazole derivatives useful as anti-obesity agents. However, there is no disclosure that these compounds can induce cell death against iPS cells.
  • the problem to be solved by the present invention is to provide a method for efficiently removing undifferentiated iPS cells present in iPS cell-derived cell medicines.
  • the present inventors have found that a compound represented by the following formula (1) having a cancer cell sphere formation ability inhibitory action or a salt thereof (hereinafter also referred to as “the present compound”).
  • the present inventors have found that undifferentiated iPS cells present in iPS cell-derived cell medicines can be efficiently removed, and have completed the present invention.
  • Q 1 is phenyl (the group is (1) a halogen atom, (2) C 1-6 alkyl (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of halogen atoms, hydroxy, and C 1-6 alkoxy), (3) C 1-6 alkoxy (this group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of halogen atoms, hydroxy, C 1-6 alkoxy and phenyl) , (4) amino (the group may be substituted with the same or different 1-2 C 1-6 alkyl), (5) C 6-10 aryl (the group is substituted with 1 to 4 groups of the same or different types selected from the group consisting of a halogen atom, C 1-6 alkyl, and C 1-6 alkoxy) May be) (6) C 6-10 aryloxy (the group is substituted with 1 to 4 groups of the same or different types selected from the group consisting of a halogen atom, C 1-6 alky
  • Q 1 is selected from the group consisting of phenyl (the group is a halogen atom, and C 1-6 alkyl (the group may be substituted with the same or different 1 to 3 halogen atoms)) Or (1) or (2) which may be substituted with the same or different 1 to 4 groups).
  • W 2 -Q 2 is —NHC (O) —Q 2 , —NHC (O) —CH ⁇ CH—Q 2 , —C (O) NH—Q 2 , or —NHC (O) CH 2 is O-Q 2, removing agent as claimed in any one of [1] to [3].
  • Ring Q 2 is (1) Phenyl (the group is (A) a halogen atom, (B) C 1-6 alkyl (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of halogen atoms, hydroxy, and C 1-6 alkoxy), (C) C 1-6 alkoxy (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of a halogen atom, hydroxy, and C 1-6 alkoxy), (D) C 3-7 cycloalkyl, (E) C 2-6 alkenyl, (F) cyano, (G) amino (the group may be substituted with 1 or 2 C 1-6 alkyls of the same or different type), and (h) a group consisting of C 1-6 alkyl-carbonylamino Optionally substituted with 1 to 4 groups of the same or different types), (2) 5- to 10-membered heteroaryl (the group is the same or different 1 to 4 groups selected from the
  • Ring Q 2 is (1) Phenyl (the group is substituted with one or two same or different groups selected from the group consisting of C 1-6 alkoxy optionally substituted with hydroxy and C 1-6 alkyl-carbonylamino) May be) (2) The following formula (2): (Where R 11 , R 12 , and R 13 are each independently (A) a hydrogen atom, (B) a halogen atom, (C) C 1-6 alkyl (the group may be substituted with the same or different 1 to 3 fluorine atoms), or (d) amino (the group is the same or different 1 to 2 fluorine atoms) Which may be substituted with C 1-6 alkyl) Or (3) the following formula (21): Wherein X 1 represents N or CR 14 ; X 2 represents N or CR 15 ; X 3 represents N or CR 16 ; Where X 1 , X 2 and X 3 are not simultaneously N; R 14 , R 15 , and R 16 are each independently (A) a hydrogen atom
  • W 2 -Q 2 is —NHC (O) —Q 2 or —C (O) NH—Q 2 ;
  • R 11, and R 12 be each is hydrogen atom;
  • R 13 is a hydrogen atom, C 1-4 alkyl (the group may be substituted with 1 to 3 fluorine atoms), or amino;
  • R 14 , R 15 , and R 16 are each independently a hydrogen atom or a fluorine atom;
  • n is 1;
  • m is 0 or 1;
  • p is 1 or 2;
  • W 2 -Q 2 is —NHC (O) —CH ⁇ CH—Q 2 ;
  • Ring Q 2 is phenyl (the same or different 1-2 groups selected from the group consisting of C 1-6 alkoxy optionally substituted with hydroxy and C 1-6 alkyl-carbonylamino)
  • the removal agent according to any one of [1] to [7], which may be substituted with
  • An iPS cell remover comprising a compound represented by the formula (1) according to [1] or a salt thereof selected from the following compounds: (2E) -3- [4- (Acetylamino) phenyl] -N- (1- [3- (trifluoromethyl) benzyl] -1H-imidazol-4-yl) prop-2-enamide (Example 1 1) N- [1- (3-Chlorobenzyl) -1H-imidazol-4-yl] -3,4-dimethoxybenzamide (Example 10-1) and 6- (hydroxymethyl) -N- ⁇ 1- [3 -(Trifluoromethyl) benzyl] -1H-imidazol-4-yl ⁇ nicotinamide (Example 22).
  • a method for removing iPS cells comprising adding a compound represented by the formula (1) according to any one of [1] to [12] or a salt thereof to a culture solution containing iPS cells. .
  • [14] A step of adding a compound represented by the formula (1) or a salt thereof according to any one of [1] to [12] to a culture solution containing a cell mass prepared using iPS cells as a material.
  • An iPS cell-free iPS comprising a step of contacting a compound represented by the formula (1) or a salt thereof according to any one of [1] to [12] with an iPS cell-derived cell population
  • a method for producing a cell-derived cell population
  • step (1) a step of inducing differentiation of a cell population containing iPS cells; and (2) the cell population obtained in step (1) is represented by the formula (1) according to any one of [1] to [12].
  • step (2) the cell population obtained in step (1) is represented by the formula (1) according to any one of [1] to [12].
  • Contacting with the compound represented or a salt thereof; A method for producing an iPS cell-derived cell population not containing cells that maintain pluripotency.
  • iPS cell-derived cell population that does not contain iPS cells, which is produced by the production method according to [17] or [18].
  • the cell population according to [19] which contains cells for transplantation.
  • a pharmaceutical composition comprising a cell contained in the cell population according to [19] as an active ingredient.
  • the compound of the present invention can efficiently remove undifferentiated iPS cells from iPS cell-derived cell medicines.
  • Human iPS cells (1st and 2nd stage) and HeLa cells (3rd and 4th stage) were treated with each concentration of the compound of Example 1-2 for 24 hours, bright field observation (1st and 3rd stage) and DAPI The results of nuclear staining (2nd and 4th stages) are shown.
  • Human iPS cells (first and second rows) and HeLa cells (third and third rows) were treated with each concentration of the compound of Example 10-2 for 24 hours, and bright field observation (first and third rows) and The results of DAPI nuclear staining (2nd and 4th stages) are shown.
  • Human iPS cells (1st and 2nd row) and HeLa cells (3rd and 4th row) were treated with each concentration of the compound of Example 22 for 24 hours, bright field observation (1st and 3rd row) and DAPI nuclei. The results of staining (2nd and 4th stages) are shown. The results of quantifying the remaining iPS cells (black bars) and HeLa cells (white bars) after treatment with the compounds of Examples 1-2, 10-2, and 22 by DAPI nuclear staining are shown. Cell aggregates induced to differentiate from human iPS cells were treated with each concentration of the compound of Example 1-2 for 24 hours.
  • the results of immunohistochemical staining (first stage) of Oct3 / 4 positive cells, DAPI nuclear staining (second stage), and immunohistological staining (third stage) of Cleaved Caspase-3 positive cells for the cell aggregate are shown.
  • Cell aggregates induced to differentiate from human iPS cells were treated with each concentration of the compound of Example 10-2 for 24 hours.
  • the results of immunohistochemical staining (first stage) of Oct3 / 4 positive cells, DAPI nuclear staining (second stage), and immunohistological staining (third stage) of Cleaved Caspase-3 positive cells for the cell aggregate are shown.
  • the percentage of Cleaved Caspase-3 positive cells contained in the cell aggregate after treatment with the compounds of Examples 1-2 and 10-2 was quantified by correction with DAPI nuclear staining.
  • DMSO negative control
  • the compound of Example 1-2, and the compound of Example 10-2 the average of the quantitative results of three cases is shown.
  • C 1-6 alkyl is synonymous with alkyl having 1 to 6 carbons.
  • halogen atom include fluorine atom, chlorine atom, bromine atom or iodine atom. Preferably, they are a fluorine atom and a chlorine atom.
  • C 1-6 alkyl means a straight or branched saturated hydrocarbon group having 1 to 6 carbon atoms. Preferred is “C 1-4 alkyl”. Specific examples of “C 1-6 alkyl” include, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl, hexyl, isohexyl, Examples thereof include 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 2-ethylbutyl and the like.
  • C 2-6 alkenyl means a straight or branched unsaturated hydrocarbon group having 2 to 6 carbon atoms containing 1 to 3 carbon-carbon double bonds. Preferred is “C 2-4 alkenyl”. Specific examples of “C 2-6 alkenyl” include, for example, ethenyl, propenyl, butenyl, pentenyl, hexenyl and the like.
  • C 1-4 alkylene is a divalent saturated hydrocarbon containing a linear or branched divalent saturated hydrocarbon group having 1 to 4 carbon atoms or a cyclic structure having 3 to 4 carbon atoms.
  • a hydrocarbon group is meant.
  • Specific examples of the linear or branched “C 1-4 alkylene” include, for example, methylene, ethylene, propylene, butylene, 1-methylmethylene, 1-ethylmethylene, 1-propylmethylene, 1-methylethylene, Examples include 2-methylethylene and 1-ethylethylene, and preferably include methylene and ethylene.
  • Specific examples of “C 1-4 alkylene” containing a cyclic structure include, for example, groups represented by the following groups.
  • C 1-6 alkyl part of “C 1-6 alkoxy” has the same meaning as the above “C 1-6 alkyl”. Preferred is “C 1-4 alkoxy”. Specific examples of “C 1-6 alkoxy” include, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy and the like.
  • C 3-10 cycloalkyl means a 3- to 10-membered monocyclic or polycyclic saturated or partially unsaturated hydrocarbon group. Preferred is “C 3-7 cycloalkyl”. Specific examples of “C 3-10 cycloalkyl” include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, cyclohexenyl, decalinyl, adamantyl, norbornyl and the like.
  • C 6-10 aryl means an aromatic hydrocarbon group having 6 to 10 carbon atoms. Preferred is “C 6 aryl” (phenyl). Specific examples of “C 6-10 aryl” include phenyl, 1-naphthyl, 2-naphthyl and the like.
  • the “C 6-10 aryl” is a non-containing group containing at least one hetero atom selected from phenyl and a 5- to 7-membered nitrogen atom, sulfur atom or oxygen atom, the same or different (for example, 1 to 4). Also included are groups fused to aromatic rings or 5- to 7-membered saturated or partially unsaturated hydrocarbon rings (cyclopentane or cyclohexane). However, in the case of polycyclic “C 6-10 aryl” in which an aromatic ring and a non-aromatic ring are condensed, only the aromatic ring has a “group” bond. Specific examples of the group include groups represented by the following formulas. The bond across the ring in the following formula means that the “group” is bonded at a substitutable position in the ring.
  • Examples of the “5-membered to 10-membered heteroaryl” include a 5- to 10-membered monocyclic or bicyclic aromatic heterocyclic group, and the group includes a nitrogen atom, a sulfur atom and an oxygen atom. 1 or more (for example 1 to 4) of the same or different heteroatoms selected from atoms are contained.
  • Bicyclic heteroaryl includes monocyclic heteroaryl and aromatic ring (benzene, pyridine, etc.) or non-aromatic ring (cyclohexane, pyrrolidine, piperidine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, etc.) Including those fused with and.
  • Specific examples of “heteroaryl” include, for example, groups represented by the following formulae.
  • the bond across the ring in the above formula means that the “group” is bonded at a substitutable position in the ring.
  • the following formula In the case of heteroaryl, it means 2-pyridyl, 3-pyridyl or 4-pyridyl.
  • heteroaryl is a bicyclic group
  • 2-benzimidazolyl 4-, 5-, 6- or 7-benzimidazolyl may be used.
  • C 1-6 alkyl part of “C 1-6 alkyl-carbonylamino” has the same meaning as the above “C 1-6 alkyl”. “C 1-4 alkyl-carbonylamino” is preferable, and methylcarbonylamino (acetylamino) is more preferable.
  • Optionally substituted C 6-10 aryl “optionally substituted C 6-10 aryloxy”, “ optionally substituted C 6-10 arylthio”, “ optionally substituted” C 3-10 cycloalkyl ”,“ optionally substituted 5 to 10 membered heteroaryl ”,“ optionally substituted benzene ring ”,“ optionally substituted pyridine ring ”, substituted
  • substituent in the “optional pyrimidine ring”, “optionally substituted pyridazine ring”, “optionally substituted pyrazine ring” and the like include, for example, (A) a halogen atom, (B) C 1-6 alkyl (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of halogen atoms, hydroxy, and C 1-6 alkoxy), (C) C 1-6 alkoxy (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of a halogen
  • a halogen atom, C 1-6 alkyl (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of a halogen atom, hydroxy, and C 1-6 alkoxy) C 1-6 alkoxy (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of halogen atoms, hydroxy, and C 1-6 alkoxy), Or cyano is mentioned. More preferably, a halogen atom or C 1-6 alkyl (the group may be substituted with 1 to 3 fluorine atoms) may be mentioned. In the case of polycyclic aryl or heteroaryl in which an aromatic ring and a non-aromatic ring are condensed, the above substituent may be substituted with either an aromatic ring or a non-aromatic ring.
  • W 1 , W 2 , R 1 , R 2 , ring Q 1 , and ring Q 2 are preferable as follows.
  • the general range is not limited to the range of compounds listed below.
  • W 1 is preferably methylene.
  • W 2 -Q 2 is preferably —NHC (O) —Q 2 , —NHC (O) —CH ⁇ CH—Q 2 , —C (O) NH—Q 2 , or —NHC (O) CH 2 O it is a -Q 2. More preferred is —NHC (O) —Q 2 or —NHC (O) —CH ⁇ CH—Q 2 .
  • R 1 and R 2 are preferably a hydrogen atom, a chlorine atom, or methyl. More preferably, it is a hydrogen atom.
  • Ring Q 1 is preferably phenyl (the group is (1) a halogen atom, (2) C 1-6 alkyl (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of halogen atoms, hydroxy, and C 1-6 alkoxy), Or (3) C 1-6 alkoxy (which may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of a halogen atom, hydroxy, C 1-6 alkoxy, and phenyl) Good), (4) amino (the group may be substituted with the same or different 1-2 C 1-6 alkyl), (5) C 6-10 aryl (the group is substituted with 1 to 4 groups of the same or different types selected from the group consisting of a halogen atom, C 1-6 alkyl, and C 1-6 alkoxy) May be) (6) C 6-10 aryloxy (the group is substituted with 1 to 4 groups of the same or different types selected from the group consisting of a halogen atom,
  • ring Q 1 is selected from the group consisting of phenyl (the group is a halogen atom, and C 1-6 alkyl (the group may be substituted with the same or different 1 to 3 halogen atoms)). Which may be substituted with 1 to 4 groups of the same or different selected from each other; more preferably, phenyl substituted with 1 to 3 halogen atoms of the same or different, or tri Fluoromethylphenyl is mentioned.
  • Ring Q 2 is preferably (1) Phenyl (the group is (A) a halogen atom, (B) C 1-6 alkyl (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of halogen atoms, hydroxy, and C 1-6 alkoxy), (C) C 1-6 alkoxy (the group may be substituted with 1 to 3 groups of the same or different types selected from the group consisting of a halogen atom, hydroxy, and C 1-6 alkoxy), (D) C 3-7 cycloalkyl, (E) C 2-6 alkenyl, (F) cyano, (G) amino (the group may be substituted with 1 or 2 C 1-6 alkyls of the same or different type), and (h) a group consisting of C 1-6 alkyl-carbonylamino Optionally substituted with 1 to 4 groups of the same or different types), (2) 5-membered or 6-membered heteroaryl (this group is the same or different 1 to 4 groups
  • the ring Q 3 is preferably a benzene ring or a pyridine ring.
  • Ring Q 4 is preferably an imidazole ring, an oxazole ring, or a thiazole ring; more preferably a thiazole ring.
  • Phenyl (the group is substituted with one or two same or different groups selected from the group consisting of C 1-6 alkoxy optionally substituted with hydroxy and C 1-6 alkyl-carbonylamino) May be) (2) The following formula (2): (Where R 11 , R 12 , and R 13 are each independently (A) a hydrogen atom, (B) a halogen atom, (C) C 1-6 alkyl (the group may be substituted with 1 to 3 fluorine atoms), or (d) amino (the group is the same or different 1 to 2 C 1-6 Or a group represented by the following formula (21): (which may be substituted with alkyl) Wherein X 1 represents N or CR 14 ; X 2 represents N or CR 15 ; X 3 represents N or CR 16 ; Where X 1 , X 2 and X 3 are not simultaneously N; R 14 , R 15 , and R 16 are each independently (A) a hydrogen atom, (B) a halogen atom, (
  • acetylaminophenyl (2) 6-hydroxymethylpyridin-3-yl (the pyridine may be further substituted with C 1-4 alkyl optionally substituted with 1 to 3 fluorine atoms, or amino), or (3)
  • the following formula (21) (Wherein X 1 represents N, CH, or CF; X 2 represents N, CH, or CF; X 3 represents N, CH, or CF; Where X 1 , X 2 and X 3 are not simultaneously N; n represents 1; m represents 0 or 1; p represents 1 or 2; When there are a plurality of R 4a s , each independently represents a group represented by a hydrogen atom or methyl.
  • the compounds of the present invention may exist in the form of hydrates and / or solvates, solvates such as these hydrates or ethanol solvates are also included in the compounds of the present invention. Further, the compounds of the present invention include all forms of crystal forms.
  • Examples of the salt of the compound represented by the formula (1) include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, phosphate and nitrate; and acetate, propionate and oxalate Organics such as succinate, lactate, malate, tartrate, citrate, maleate, fumarate, methanesulfonate, p-toluenesulfonate, benzenesulfonate, ascorbate Specific examples include acid salts and the like.
  • inorganic acid salts such as hydrochloride, hydrobromide, sulfate, phosphate and nitrate
  • acetate, propionate and oxalate Organics such as succinate, lactate, malate, tartrate, citrate, maleate, fumarate, methanesulfonate, p-toluenesulfonate, benzenesulfonate, ascorbate
  • Specific examples include acid salts and
  • the compound represented by the formula (1) may exist as a tautomer. Therefore, this invention compound also includes the tautomer of the compound represented by Formula (1).
  • the compound represented by formula (1) may have at least one asymmetric carbon atom. Accordingly, the compound of the present invention includes not only the racemic form of the compound represented by the formula (1) but also optically active forms of these compounds. When the compound represented by the formula (1) has two or more asymmetric carbon atoms, stereoisomerism may occur. Accordingly, the compounds of the present invention include stereoisomers of these compounds, mixtures thereof and isolated ones. Also included in either one or the compounds represented by more than one 1 deuterium converter converted to H and 2 H (D) be the formula (1) of the compound represented by formula (1) .
  • the compound represented by the formula (1) is synthesized by, for example, the production method shown below and a method combining a known compound and a known synthesis method.
  • the compound used as a raw material compound may be used as a salt.
  • These reactions are merely examples, and the compounds of the present invention can also be produced by other methods as appropriate based on the knowledge of those skilled in organic synthesis.
  • Protecting groups include those described in the literature (TW Greene and PMGM Wuts, “Protective Groups in Organic Synthesis”, 3rd Ed., John Wiley and Sons, Inc., New99, etc.). And, more specifically, as a protecting group for an amino group, for example, benzyloxycarbonyl, tert-butoxycarbonyl, acetyl, benzyl, etc., and for protecting a hydroxy group May include, for example, trialkylsilyl, acetyl, benzyl and the like.
  • the compound represented by the formula (1-7) is produced by bonding the partial structures at the portions a and b. [Wherein, W 1 , R 1 , R 2 , ring Q 1 , and ring Q 2 have the same meanings as the above [1]. ]
  • the bond formation method for the parts a and b can be exemplified as follows, but the order of bond formation can be appropriately changed.
  • W 1 , R 1 , R 2 , ring Q 1 , and ring Q 2 are as defined above [1];
  • R 101 represents C 1-6 alkyl;
  • L represents a leaving group (for example, Iodine atom, bromine atom, chlorine atom, substituted sulfonyloxy (eg, methanesulfonyloxy, p-toluenesulfonyloxy, etc.) and the like are represented.
  • a leaving group for example, Iodine atom, bromine atom, chlorine atom, substituted sulfonyloxy (eg, methanesulfonyloxy, p-toluenesulfonyloxy, etc.) and the like are represented.
  • the compound (1-1) a commercially available product or a product prepared by a known synthesis method (for example, a new edition of heterocyclic compound application (Kodansha Scientific edition)) can be used.
  • Step 1-1 Preparation process of Compound (1-2) (1-2), the compound (1-1) a known method (for example, Protective Groups in Organic Synthesis 3 rd Edition (John Wiley & Sons, Inc .), Comprehensive Organic Transformation, RC Laroc et al., VCH publisher Inc., 1989 etc.).
  • a known method for example, Protective Groups in Organic Synthesis 3 rd Edition (John Wiley & Sons, Inc .), Comprehensive Organic Transformation, RC Laroc et al., VCH publisher Inc., 1989 etc.
  • Step 1-2 Production Step of Compound (1-5)
  • Compound (1-5) is alkylated using compound (1-3) and compound (1-4) in the presence of a base in an inert solvent. Produced by reaction.
  • the base include, for example, organic bases such as triethylamine, diisopropylethylamine, pyridine; potassium carbonate, sodium carbonate, cesium carbonate, potassium bicarbonate, sodium bicarbonate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, phosphorus Inorganic bases such as potassium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, potassium hydroxide, sodium hydroxide, sodium hydride; metal alkoxides such as sodium methoxide and potassium tert-butoxide It is done.
  • organic bases such as triethylamine, diisopropylethylamine, pyridine
  • phosphorus Inorganic bases such as potassium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, potassium
  • the inert solvent include, for example, halogenated hydrocarbons such as chloroform and dichloromethane; aromatic hydrocarbons such as toluene; ether solvents such as diethyl ether, tetrahydrofuran (THF) and 1,4-dioxane; acetonitrile, Examples include aprotic polar solvents such as acetone, methyl ethyl ketone, N, N-dimethylformamide, N-methyl-2-pyrrolidinone and dimethyl sulfoxide; basic solvents such as pyridine; and mixed solvents thereof.
  • halogenated hydrocarbons such as chloroform and dichloromethane
  • aromatic hydrocarbons such as toluene
  • ether solvents such as diethyl ether, tetrahydrofuran (THF) and 1,4-dioxane
  • acetonitrile examples include aprotic polar solvents such as acetone, methyl eth
  • the reaction temperature is not particularly limited, but is usually selected from the range of 0 ° C to 150 ° C, preferably 20 ° C to 100 ° C.
  • the reaction time is usually 30 minutes to 48 hours, preferably 30 minutes to 10 hours.
  • Step 1-3 Production Step of Compound (1-6)
  • Compound (1-6) is produced by reducing the nitro group of compound (1-5). For example, reduction under acidic conditions using a metal such as zinc, iron, tin or a metal salt such as tin (II) chloride; using a sulfide such as sodium dithionite (Na 2 S 2 O 4 ) Reduction; catalytic reduction using a metal catalyst such as palladium / carbon, Raney nickel, platinum oxide / carbon, rhodium / carbon, etc. in a hydrogen atmosphere is applied.
  • a metal such as zinc, iron, tin or a metal salt such as tin (II) chloride
  • a sulfide such as sodium dithionite (Na 2 S 2 O 4 ) Reduction
  • catalytic reduction using a metal catalyst such as palladium / carbon, Raney nickel, platinum oxide / carbon, rhodium / carbon, etc. in a hydrogen atmosphere is applied.
  • the amount of metal or metal salt used is usually about 1 mol to 100 mol, preferably about 10 mol to 30 mol, per 1 mol of compound (1-5).
  • the amount of the acid to be used is generally about 1 mol to 100 mol, preferably about 10 mol to 30 mol, per 1 mol of compound (1-5).
  • the reduction reaction is usually performed in a solvent (eg, ethanol) that does not adversely influence the reaction.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 0 ° C to 100 ° C.
  • the reaction time is usually 30 minutes to 8 hours.
  • the amount of the metal catalyst used is usually 0.1% to 1000% by weight, preferably 1% to 100% by weight, based on the compound (1-5).
  • This reaction can be performed, for example, in alcohols such as methanol; ethers such as tetrahydrofuran; esters such as ethyl acetate.
  • the hydrogen pressure is usually 1 to 100 atmospheres, preferably 1 to 5 atmospheres.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 0 ° C to 120 ° C, preferably 20 ° C to 80 ° C.
  • the reaction time is usually 30 minutes to 72 hours, preferably 1 hour to 48 hours.
  • this reaction can be performed in the presence of an acid catalyst as necessary.
  • the acid catalyst include organic acids such as formic acid, acetic acid, and trifluoroacetic acid, and inorganic acids such as sulfuric acid, hydrochloric acid, and hydrobromic acid.
  • the amount of the acid to be used is 0.1 mol or more per 1 mol of compound (1-5).
  • Step 1-4 Production Step of Compound (1-7)
  • Compound (1-7) is obtained by reacting compound (1-2) and compound (1-6) in the presence of a condensing agent in an inert solvent. It is manufactured by.
  • the reaction may be further performed in the presence of a base.
  • the reaction temperature is not particularly limited, but is usually selected from the range of about ⁇ 20 ° C. to the boiling point of the solvent used.
  • the reaction time varies depending on the reaction temperature, the condensing agent used, the raw materials, the solvent and the like, but is usually 10 minutes to 48 hours.
  • the condensing agent examples include dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIPC), 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide (WSC), benzotriazol-1-yloxytris ( Dimethylamino) phosphonium hexafluorophosphate (BOP), diphenylphosphoryl azide (DPPA), N, N-carbonyldimimidazole (CDI), O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (HBTU), O— (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate ( HATU), diphenyl chlorophosphate and the like.
  • DCC dicyclohexylcarbod
  • N-hydroxysuccinimide HSu
  • 1-hydroxybenzotriazole HBt
  • 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine HOOBt
  • the additive can be added to carry out the reaction.
  • the base include, for example, organic bases such as triethylamine, diisopropylethylamine, pyridine; potassium carbonate, sodium carbonate, cesium carbonate, potassium bicarbonate, sodium bicarbonate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, phosphorus Inorganic bases such as potassium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, potassium hydroxide, sodium hydroxide, sodium hydride; metal alkoxides such as sodium methoxide and potassium tert-butoxide It is done.
  • organic bases such as triethylamine, diisopropylethylamine, pyridine
  • phosphorus Inorganic bases such as potassium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, potassium
  • the inert solvent include, for example, halogenated hydrocarbons such as chloroform and dichloromethane; aromatic hydrocarbons such as toluene; ether solvents such as diethyl ether, tetrahydrofuran (THF) and 1,4-dioxane; acetonitrile, Examples include aprotic polar solvents such as acetone, methyl ethyl ketone, dimethylformamide, N-methyl-2-pyrrolidinone, and dimethyl sulfoxide; basic solvents such as pyridine; and mixed solvents thereof.
  • halogenated hydrocarbons such as chloroform and dichloromethane
  • aromatic hydrocarbons such as toluene
  • ether solvents such as diethyl ether, tetrahydrofuran (THF) and 1,4-dioxane
  • acetonitrile examples include aprotic polar solvents such as acetone, methyl ethyl ket
  • Compound (1-7) can also be obtained by reacting compound (1-6) with an acid halide or acid anhydride derived from compound (1-2) in the presence of a base in an inert solvent. Manufactured.
  • the compound (2-1) a commercially available product or a compound produced by a known synthesis method (for example, International Publication No. 2014/125444) can be used.
  • Step 2-1 Production process compounds of the compound (2-2) (2-2), the compound (2-1) a known method (for example, Protective Groups in Organic Synthesis 3 rd Edition (John Wiley & Sons, Inc .), Comprehensive Organic Transformation, RC Laroc et al., VCH publisher Inc., 1989 etc.).
  • Step 2-2 Production Step of Compound (2-4)
  • Compound (2-4) is produced from compound (2-2) and compound (2-3) according to the method described in Step 1-4.
  • Step 3-1 Production Step of Compound (3-1)
  • Compound (3-1) is produced by introducing a protecting group into the imidazole nitrogen atom of compound (1-3) in an inert solvent.
  • the protecting group include 2- (trimethylsilyl) ethoxymethyl, benzyloxycarbonyl, tert-butoxycarbonyl, acetyl, benzyl and the like.
  • reaction for introducing a 2- (trimethylsilyl) ethoxymethyl group it is produced by reacting 2- (trimethylsilyl) ethoxymethyl chloride in the presence of a base in an inert solvent.
  • Examples of the base include potassium carbonate, sodium carbonate, cesium carbonate, potassium tert-butoxide, sodium hydride, sodium bis (trimethylsilyl) amide, lithium bis (trimethylsilyl) amide, potassium bis (trimethylsilyl) amide, lithium diisopropylamide and the like. Is mentioned.
  • Examples of the inert solvent include DMF, THF, acetonitrile, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 0 ° C to 150 ° C, preferably 0 ° C to 100 ° C.
  • the reaction time is usually 10 minutes to 24 hours, preferably 20 minutes to 6 hours.
  • Step 3-2 Production Step of Compound (3-2)
  • Compound (3-2) is produced from compound (3-1) according to the method described in Step 1-3.
  • Step 3-3 Step for producing compound (3-3)
  • Compound (3-3) is produced from compound (3-2) and compound (1-2) according to the method described in step 1-4.
  • Step 3-4 Production Step of Compound (3-4)
  • Compound (3-4) is produced by deprotecting the protecting group of the imidazole nitrogen atom of compound (3-3) in an inert solvent.
  • reaction for deprotecting 2- (trimethylsilyl) ethoxymethyl group it is produced by reacting an acid or a fluorine reagent in an inert solvent.
  • Examples of the acid include TFA, formic acid, hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid, ( ⁇ ) 10-camphor-sulfonic acid, and the like.
  • Examples of the fluorine reagent include hydrofluoric acid and tetrabutylammonium fluoride.
  • Examples of the solvent used include dichloromethane, 1,2-dichloroethane, 1,4-dioxane, THF, toluene, ethyl acetate, methanol, ethanol, 2-propanol, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 0 ° C to 150 ° C, preferably 0 ° C to 50 ° C.
  • the reaction time is usually 5 minutes to 24 hours, preferably 1 hour to 9 hours.
  • Step 3-5 Production Step of Compound (1-7)
  • Compound (1-7) is produced from compound (3-4) and compound (1-4) according to the method described in Step 1-2.
  • the compound represented by the formula (4-4) is produced, for example, by the method shown below. [Wherein, W 1 , R 1 , R 2 , ring Q 1 , and ring Q 2 have the same meanings as the above [1]; R 101 represents C 1-6 alkyl; and X represents a halogen atom. ]
  • Step 4-1 Production Step of Compound (4-2)
  • Compound (4-2) is obtained by reacting compound (4-1) with an acrylate ester in the presence of a palladium catalyst and a base in an inert solvent. Manufactured by.
  • the palladium catalyst include, for example, tetrakis (triphenylphosphine) palladium (0), dichlorodi (tri (o-tolylphosphine)) palladium, bis (dibenzylideneacetone) palladium (0), tris (dibenzylideneacetone) Examples include dipalladium (0), bis (tri-tert-butylphosphine) palladium (0), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride, and the like.
  • the base include inorganic bases such as potassium carbonate, sodium carbonate, cesium carbonate, potassium phosphate, potassium hydroxide, sodium hydroxide, triethylamine, diisopropylethylamine and the like.
  • the inert solvent include THF, acetonitrile, propionitrile, toluene, 1,2-dimethoxyethane, 1,4-dioxane, DMF, water, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 50 ° C. to 150 ° C., preferably 80 ° C. to 120 ° C., and the reaction can be performed under microwave irradiation.
  • the reaction time is usually 1 to 24 hours, preferably 2 to 12 hours.
  • Step 4-2 Preparation process of Compound (4-3) (4-3), the compound (4-2) a known method (for example, Protective Groups in Organic Synthesis 3 rd Edition (John Wiley & Sons, Inc .), Comprehensive Organic Transformation, RC Laroc et al., VCH publisher Inc., 1989 etc.).
  • Step 4-3 Step of producing compound (4-4)
  • Compound (4-4) is produced from compound (4-3) and compound (1-6) according to the method described in step 1-4.
  • the compound represented by the formula (5-5) is produced, for example, by the method shown below.
  • A represents a boronic acid or boronic ester
  • R 101 represents C 1-6 alkyl
  • R a and R b are the same or Differently, it represents a hydrogen atom or methyl
  • X represents a halogen atom
  • L represents a leaving group (for example, an iodine atom, a bromine atom, a chlorine atom, a substituted sulfonyl (for example, methanesulfonyl, p-toluenesulfonyl, etc.), etc.)
  • Step 5-1 Production Step of Compound (5-3)
  • Compound (5-3) is prepared by reacting compound (5-1) and compound (5-2) in the presence of a palladium catalyst and a base in an inert solvent. Produced by reacting.
  • the palladium catalyst include, for example, tetrakis (triphenylphosphine) palladium (0), bis (dibenzylideneacetone) palladium (0), tris (dibenzylideneacetone) dipalladium (0), bis (tri-tert-tert- Butylphosphine) palladium (0), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride, and the like.
  • Specific examples of the base include inorganic bases such as potassium carbonate, sodium carbonate, cesium carbonate, potassium phosphate, potassium hydroxide, and sodium hydroxide.
  • the inert solvent examples include THF, toluene, 1,2-dimethoxyethane, 1,4-dioxane, DMF, water, and a mixed solvent thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 50 ° C. to 150 ° C., preferably 80 ° C. to 120 ° C., and the reaction can be performed under microwave irradiation.
  • the reaction time is usually 1 to 24 hours, preferably 2 to 12 hours.
  • Step 5-2 Production Step of Compound (5-4)
  • Compound (5-4) is prepared by mixing compound (5-3) with osmium tetroxide solution (including immobilized catalyst and microencapsulation) or potassium osmate (IV) It is produced by reacting hydrate with sodium periodate in the presence of sodium periodate.
  • the solvent used include acetone, 1,4-dioxane, THF, tert-butanol, water, and a mixed solvent thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 0 ° C to 100 ° C, preferably 25 ° C to 50 ° C.
  • the reaction time is usually 1 hour to 72 hours, preferably 1 hour to 24 hours.
  • the compound (5-4) can also be produced by reacting a reducing agent such as dimethyl sulfide after passing through an oxygen stream containing ozone in a solvent such as dichloromethane, ethyl acetate, and methanol.
  • a reducing agent such as dimethyl sulfide
  • a solvent such as dichloromethane, ethyl acetate, and methanol.
  • the reaction temperature is not particularly limited, but is usually selected from the range of ⁇ 78 ° C. to room temperature.
  • the reaction time is 1 hour to 72 hours, preferably 6 hours to 24 hours.
  • Step 5-3 Production Step of Compound (5-5)
  • Compound (5-5) is produced by reacting compound (5-4) with a hydride reducing agent or an organometallic reagent.
  • hydride reducing agent examples include sodium borohydride, sodium cyanoborohydride and the like.
  • Examples of the solvent used for the reaction with the hydride reducing agent include methanol, ethanol, dichloromethane, toluene, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of ⁇ 78 ° C. to 50 ° C., preferably 0 ° C. to 25 ° C.
  • the reaction time is usually 5 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • Specific examples of the organometallic reagent include methyl magnesium bromide, methyl magnesium iodide, methyl lithium and the like.
  • Examples of the solvent used for the reaction with the organometallic reagent include THF, diethyl ether, a mixed solvent thereof and the like.
  • the reaction temperature is not particularly limited, but is usually selected from the range of ⁇ 78 ° C. to 25 ° C., preferably ⁇ 40 ° C. to 0 ° C.
  • the reaction time is usually 5 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • Step 6-1 Production Step of Compound (6-2)
  • Compound (6-2) is produced by reacting compound (6-1) with a brominating agent in the presence of a radical initiator in an inert solvent.
  • the radical initiator include azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), and the like.
  • Specific examples of the brominating agent include N-bromosuccinimide, bromine and the like.
  • Examples of the inert solvent include carbon tetrachloride, chlorobenzene, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 50 ° C to 150 ° C, preferably 80 ° C to 120 ° C.
  • the reaction time is usually 3 hours to 48 hours, preferably 4 hours to 12 hours.
  • Step 6-2 Production Step of Compound (6-4)
  • Compound (6-4) is produced by allowing silver nitrate to act on compound (6-2) in an inert solvent.
  • the inert solvent include acetonitrile, THF, 1,4-dioxane, a mixed solvent thereof and the like under hydrous conditions.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 50 ° C to 150 ° C, preferably 80 ° C to 120 ° C.
  • the reaction time is usually 3 hours to 48 hours, preferably 4 hours to 12 hours.
  • Step 6-3 Production Step of Compound (6-4)
  • Compound (6-4) can also be produced by reacting compound (6-3) with an organometallic reagent and then treating with a formylating agent.
  • organometallic reagent include isopropylmagnesium chloride-lithium chloride complex, isopropylmagnesium chloride, n-butyllithium and the like.
  • solvent used include THF, diethyl ether, toluene, and mixed solvents thereof.
  • Examples of the formylating agent include DMF, N-formylmorpholine and the like.
  • the reaction temperature is usually selected from the range of ⁇ 78 ° C. to 50 ° C., preferably ⁇ 30 ° C. to 25 ° C.
  • the reaction time is usually 30 minutes to 24 hours, preferably 1 hour to 6 hours.
  • Step 6-4 Production Step of Compound (6-5)
  • Compound (6-5) is produced by allowing a deoxygenating fluorinating agent to act on compound (6-4) in an inert solvent.
  • the deoxygenating fluorinating agent include, for example, diethylaminosulfur trifluoride (DAST), bis (2-methoxyethyl) aminosulfur trifluoride (Deoxo-Fluor (registered trademark)), XtalFluor-E (registered trademark).
  • XtalFluor-M registered trademark
  • 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride Feluoroid (registered trademark)
  • DBU diazabicycloundecene
  • triethylamine trihydrofluoride triethylamine dihydrofluoride
  • the inert solvent include dichloromethane, 1,2-dichloroethane, toluene, THF, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of ⁇ 20 ° C. to 50 ° C., preferably 0 ° C. to 25 ° C.
  • the reaction time is usually 10 minutes to 12 hours, preferably 30 minutes to 3 hours.
  • the compound (6-5) can also be produced by reacting the compound (6-4) with sulfur tetrafluoride.
  • the compound represented by the formula (7-3) is produced, for example, by the method shown below. [Wherein, W 1 , R 1 , R 2 , ring Q 1 , and ring Q 2 are as defined above [1]; R 101 represents C 1-6 alkyl; R c and R d are The same or different and represents a hydrogen atom, a deuterium atom or methyl]
  • Step 7-1 Step of producing compound (7-2)
  • Compound (7-2) is produced from compound (7-1) and compound (1-6) according to the method described in step 1-4.
  • Step 7-2 Production Step of Compound (7-3)
  • Compound (7-3) is produced by reacting compound (7-2) with a hydride reducing agent or an organometallic reagent in an inert solvent.
  • hydride reducing agent examples include, for example, sodium borohydride, lithium borohydride, lithium aluminum hydride, sodium cyanoborohydride, lithium triethylborohydride, diisobutylaluminum hydride, bis (2-methoxy hydride). Ethoxy) aluminum sodium, lithium deuterium borohydride, lithium deuterium aluminum and the like.
  • solvent used examples include methanol, ethanol, dichloromethane, toluene, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of ⁇ 78 ° C. to 25 ° C., preferably 0 ° C. to 25 ° C.
  • the reaction time is usually 5 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • Specific examples of the organometallic reagent include methyl magnesium bromide, methyl magnesium iodide, methyl lithium and the like.
  • Examples of the solvent used for the reaction with the organometallic reagent include THF, diethyl ether, a mixed solvent thereof and the like.
  • the reaction temperature is not particularly limited, but is usually selected from the range of ⁇ 78 ° C. to 50 ° C., preferably 0 ° C. to 25 ° C.
  • the reaction time is usually 5 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • the compound represented by the formula (8-5) is produced, for example, by the method shown below. [Wherein W 1 , R 1 , R 2 , ring Q 1 , and ring Q 2 have the same meanings as the above [1]; R 101 represents C 1-6 alkyl; R c and R d are Are the same or different and each represents a hydrogen atom, a deuterium atom or methyl]
  • Step 8-1 Production Step of Compound (8-2)
  • Compound (8-2) is produced by reacting compound (8-1) with a haloacetic acid ester in the presence of a base in an inert solvent.
  • haloacetic acid ester examples include chloroacetic acid-tert-butyl, bromoacetic acid-tert-butyl, iodoacetic acid-tert-butyl, and the like.
  • the base examples include potassium carbonate, sodium carbonate, cesium carbonate, potassium tert-butoxide, sodium hydride, sodium bis (trimethylsilyl) amide, lithium bis (trimethylsilyl) amide, potassium bis (trimethylsilyl) amide, lithium diisopropylamide and the like.
  • the inert solvent include DMF, THF, acetonitrile, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 25 ° C to 150 ° C, preferably 70 ° C to 100 ° C.
  • the reaction time is usually 10 minutes to 12 hours, preferably 20 minutes to 6 hours.
  • Step 8-2 Production Step of Compound (8-3)
  • Compound (8-3) is produced by deprotecting the tert-butyl ester group of compound (8-2) under acidic conditions.
  • the acid used for deprotection include hydrochloric acid, sulfuric acid, HBr, HI, TFA, and the like.
  • the solvent used include methanol, ethanol, dichloromethane, 1,2-dichloroethane, THF, 1,4-dioxane, ethyl acetate, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 0 ° C to 100 ° C, preferably 25 ° C to 50 ° C.
  • the reaction time is usually 1 to 24 hours, preferably 2 to 12 hours.
  • Step 8-3 Step of producing compound (8-4)
  • Compound (8-4) is produced from compound (8-3) and compound (1-6) according to the method described in step 1-4.
  • Step 8-4 Step of producing compound (8-5) Compound (8-5) is produced from compound (8-4) according to the method described in Step 7-2.
  • Manufacturing method 9 The compound represented by the formula (9-4) is produced, for example, by the method shown below. [Wherein R 4 , p, and ring Q 3 are as defined above [6]; R 101 represents C 1-6 alkyl; R 103 represents Cbz, Boc, benzyl, 4-methoxybenzyl, Or represents Fmoc or the like. ]
  • Step 9-1 Production Step of Compound (9-2)
  • Compound (9-2) is produced by allowing a hydride reducing agent to act on compound (9-1) in an inert solvent.
  • hydride reducing agent examples include sodium borohydride, sodium cyanoborohydride, borane, lithium aluminum hydride and the like.
  • Examples of the solvent used for the reaction with the hydride reducing agent include methanol, ethanol, dichloromethane, toluene, tetrahydrofuran, and mixed solvents thereof.
  • the reaction temperature is not particularly limited, but is usually selected from the range of ⁇ 78 ° C. to 100 ° C., preferably 0 ° C. to 50 ° C.
  • the reaction time is usually 5 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • Step 9-2 Production Step of Compound (9-3)
  • Compound (9-3) is produced by reducing the olefin of compound (9-2) in the presence of a reagent for introducing a protecting group.
  • a metal catalyst such as palladium / carbon, Raney nickel, platinum oxide / carbon, rhodium / carbon, or the like in a hydrogen atmosphere in the presence of Boc 2 O is applied.
  • the amount of the metal catalyst used is usually 0.1% to 1000% by weight, preferably 1% to 100% by weight, based on the compound (9-2).
  • This reaction can be performed, for example, in alcohols such as methanol; ethers such as tetrahydrofuran; esters such as ethyl acetate.
  • the hydrogen pressure is usually 1 to 100 atmospheres, preferably 1 to 5 atmospheres.
  • the reaction temperature is not particularly limited, but is usually selected from the range of 0 ° C to 120 ° C, preferably 20 ° C to 80 ° C.
  • the reaction time is usually 30 minutes to 72 hours, preferably 1 hour to 48 hours.
  • the compound (9-3) can also be produced directly via the pyridinium salt intermediate of the compound (9-1).
  • it is produced by reducing the pyridinium salt of compound (9-1) that can be synthesized by reacting compound (9-1) with benzyl bromide or the like.
  • reduction reaction reduction using a hydride reducing agent, catalytic reduction using a metal catalyst such as palladium / carbon, Raney nickel, platinum oxide / carbon, rhodium / carbon or the like under a hydrogen atmosphere is applied.
  • Step 9-3 Preparation process of Compound (9-4) (9-4), the compound (9-3) a known method (for example, Protective Groups in Organic Synthesis 3 rd Edition (John Wiley & Sons, Inc .), Comprehensive Organic Transformation, RC Laroc et al., VCH publisher Inc., 1989 etc.).
  • Manufacturing method 10 The compound represented by the formula (10-5) is produced, for example, by the method shown below.
  • R 4 , n, m, p, and ring Q 3 are as defined above;
  • R 101 represents C 1-6 alkyl;
  • X a represents O or NR 103 ;
  • R 103 represents Cbz, Boc, benzyl, 4-methoxybenzyl, Fmoc or the like;
  • L represents a leaving group (for example, iodine atom, bromine atom, chlorine atom, substituted sulfonyl (for example, methanesulfonyl, p-toluenesulfonyl, etc.) ) Etc.).
  • R 4 , n, m, p, and ring Q 3 are as defined above;
  • R 101 represents C 1-6 alkyl;
  • X a represents O or NR 103 ;
  • R 103 represents Cbz, Boc, benzyl,
  • the compound (10-1) a commercially available product or a compound produced by a known synthesis method (for example, International Publication No. 2009/056556, International Publication No. 2006/065215, etc.) can be used.
  • Step 10-1 Production Step of Compound (10-3)
  • Compound (10-3) is represented by a palladium catalyst, a phosphorus ligand and a formula (10-2) in an inert solvent under a carbon monoxide atmosphere. It is produced by introducing an ester group into the compound (10-1) in the presence of an alcohol.
  • the pressure of carbon monoxide is appropriately selected depending on conditions such as reaction temperature, raw materials and solvent, but is usually selected from the range of 1 to 100 atmospheres, preferably 1 to 5 atmospheres.
  • the reaction temperature is usually in the range from about ⁇ 20 ° C. to the boiling point of the solvent used, and preferably in the range from room temperature to the boiling point of the solvent used.
  • the reaction time varies depending on the conditions such as the reagent used, reaction temperature, raw materials, and solvent, but is usually 10 minutes to 48 hours.
  • Examples of the palladium catalyst include tetrakis (triphenylphosphine) palladium and di-tert-butylphosphinepalladium.
  • Examples of the inert solvent include N, N-dimethylformamide, N-methyl-2-pyrrolidinone, 1,4-dioxane, and mixed solvents thereof. If necessary, an organic base such as N, N-diisopropylethylamine or triethylamine may be added.
  • Step 10-2 preparation process of Compound (10-5) (2-5), the compound (2-3) a known method (for example, Protective Groups in Organic Synthesis 3 rd Edition (John Wiley & Sons, Inc .), Comprehensive Organic Transformation, RC Laroc et al., VCH publisher Inc., 1989 etc.).
  • Step 10-3 Production Step of Compound (10-4)
  • Compound (10-4) is prepared by cyanating compound (10-1) in the presence of a palladium catalyst, a phosphorus ligand and a cyanating agent in an inert solvent. It is manufactured by doing.
  • the reaction temperature is usually in the range from about ⁇ 20 ° C. to the boiling point of the solvent used, and preferably in the range from room temperature to the boiling point of the solvent used.
  • the reaction can also be carried out using a microwave reactor.
  • the reaction time varies depending on conditions such as reaction temperature, reagents used, raw materials, and solvent, but is usually 10 minutes to 48 hours.
  • Examples of the cyanating agent include sodium cyanide, potassium cyanide, zinc cyanide, copper (I) cyanide, and preferably zinc cyanide.
  • Examples of the palladium catalyst include tetrakis (triphenylphosphine) palladium and di-tert-butylphosphinepalladium.
  • Examples of the inert solvent include N, N-dimethylformamide, N-methyl-2-pyrrolidinone, 1,4-dioxane, and mixed solvents thereof.
  • Step 10-4 Production Step of Compound (10-5)
  • Compound (10-5) can be obtained by hydrolyzing compound (10-4) in a suitable solvent in the presence of a base and a cyano group.
  • the reaction temperature is usually in the range from about ⁇ 20 ° C. to the boiling point of the solvent used, and preferably in the range from room temperature to the boiling point of the solvent used.
  • the reaction time varies depending on conditions such as reaction temperature, raw materials, and solvent, but is usually 10 minutes to 48 hours.
  • Examples of the base include sodium hydroxide and potassium hydroxide.
  • Examples of the solvent used include methanol, ethanol, 2-propanol, acetone, tetrahydrofuran, 1,4-dioxane, water, and mixed solvents thereof.
  • the intermediates and target compounds in each of the above production methods are isolated by purification methods commonly used in organic synthetic chemistry, such as neutralization, filtration, extraction, washing, drying, concentration, recrystallization, various chromatography, etc. Can be purified.
  • each intermediate can be subjected to the next reaction without any particular purification.
  • the optically active form of the compound of the present invention can be produced by using optically active starting materials and intermediates, or by optically resolving the final racemate.
  • Examples of the optical resolution method include a physical separation method using an optically active column and a chemical separation method such as a fractional crystallization method.
  • the diastereomer of the compound of the present invention is produced, for example, by a fractional crystallization method.
  • the salt of the compound represented by the formula (1) is obtained by mixing the compound represented by the formula (1) with an organic acid or an inorganic acid in a solvent such as water, methanol, ethanol, or acetone. Manufactured.
  • the induced pluripotent stem cell (iPS cell) in the present invention is a cell in which pluripotency is induced by initializing somatic cells by a known method or the like (Cell 126, p663-676, 2006, Cell 131). , P861-872, 2007, Science 318, p1917-1920, 2007, Nat Biotechnol 26, p101-106, 2008).
  • differentiated somatic cells such as fibroblasts and peripheral blood mononuclear cells are Oct3 / 4, Klf4, Klf1, Klf2, Klf5, Sox2, Sox1, Sox3, Sox15, Sox17, Sox18, c-Myc, N -Cells that have been initialized by any combination of genes selected from a group of reprogramming genes including Myc, L-Myc, TERT, SV40SVLarge T antigen, Glis1, Nanog, Sall4, lin28, Esrrb, etc. .
  • a combination including at least one, two or three reprogramming factors is preferable, and a combination including four is preferable.
  • Preferred combinations of reprogramming factors include (1) Oct3 / 4, Sox2, Klf4, and Myc (c-Myc or L-Myc), (2) Oct3 / 4, Sox2, Klf4, Lin28, and L-Myc be able to.
  • reprogramming factors can be introduced into cells in the form of proteins, for example, by lipofection, fusion with cell membrane-permeable peptides, microinjection, etc., or in the form of DNA, for example, lipofection, liposome, It can also be introduced into cells by methods such as injection, virus, plasmid vector, artificial chromosome vector and the like.
  • virus vectors include lentivirus vectors, retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, Sendai virus vectors, and the like.
  • plasmid vector generally available plasmids for mammalian cells can be used, and control sequences such as promoters, enhancers, ribosome binding sequences, and terminators are generally incorporated in order to increase the expression efficiency of reprogramming factors. In order to increase the efficiency of plasmid self-replication, factors such as EBNA-1 may be incorporated. In addition to the method of producing by direct reprogramming by gene expression, induced pluripotent stem cells can also be induced from somatic cells by addition of a compound (Scienceci341, p651-654, 2013, WO 2010/068955).
  • iPS cell lines established at the Kyoto University iPS Cell Research Institute are available from Kyoto University and iPS Portal Co., Ltd. It is.
  • a somatic cell that is a starting material for producing an induced pluripotent stem cell may be any cell other than a germ cell, such as fibroblast, epithelial cell, mucosal epithelial cell, exocrine gland epithelial cell, hormone Secretory cells, alveolar cells, nerve cells, pigment cells, blood cells (eg peripheral blood mononuclear cells (PBMC) and T cells), mesenchymal stem cells, liver cells, pancreatic cells, intestinal epithelial cells, smooth muscle Examples thereof include cells and their progenitor cells. There is no limitation on the degree of tissue differentiation and the age of the animal to be collected, and all can be used as the material of somatic cells in the present invention.
  • the induced pluripotent stem cell used in the present invention is an induced pluripotent stem cell of a mammal (eg, human, monkey, pig, rabbit, rat, mouse), preferably a rodent (eg, mouse, rat) or Artificial pluripotent stem cells of primates (eg, humans, monkeys), more preferably human induced pluripotent stem cells (human iPS cells).
  • the induced pluripotent stem cells used in the present invention also include induced pluripotent stem cells genetically modified by a technique such as genome editing.
  • iPS cells to be removed are cells.
  • a substance having a low molecular weight and low molecular weight cannot reach iPS cells inside the cell mass, and the iPS cell removal effect is considered to be extremely poor. From such a situation, a low molecular weight compound having high penetrability into the cell mass and a compound that shows cytotoxicity against iPS cells at a low concentration, the undifferentiated state present in the cell mass A method for removing iPS cells is eagerly desired.
  • a stem cell refers to a cell having self-renewal ability and differentiation ability.
  • Cancer stem cells have the ability to self-replicate as one of their characteristics (Oncogene 2004, 23,. 7274.).
  • An established and reliable method for measuring the self-renewal ability of cells is the measurement of cancer cell sphere-forming ability in the absence of serum in the absence of serum (Cancer Res. 2005, 65, 5506.).
  • iPS cells also have the ability to self-replicate.
  • Sphere-forming ability reflects self-renewal ability and is considered to be one of the important phenotypes of stem cells. Therefore, suppressing sphere-forming ability suppresses self-replication ability, and even cancer stem cells and It is expected to lead to suppression of iPS cell proliferation. Moreover, it is expected to lead to the preparation of useful cells by suppressing the growth of iPS cells.
  • the compound represented by the formula (1) or a salt thereof exhibits a sphere-forming ability inhibitory action, specifically a cancer stem cell sphere-forming ability inhibitory action, and induces iPS cell proliferation inhibition and cell death.
  • IPS cells can be efficiently removed from the cell population.
  • the compound of the present invention is a low-molecular compound, has high penetrability inside the cell mass, and iPS cells in the undifferentiated state existing inside the cell mass produced using iPS cells, which have been technically difficult until now. Cells can be removed efficiently.
  • the cell mass in the present invention two or more monolayer cells are stacked, or a cell laminate produced by forming a new cell layer on a monolayer cell, a cell aggregate produced by aggregating cells
  • Examples include cell aggregates in which cells are three-dimensionally stacked using a device such as a 3D bioprinter.
  • a device such as a 3D bioprinter.
  • a hydrogel is a substance that can contain a large amount of water, and can easily diffuse and transfer substances necessary for survival, such as oxygen, water, and nutrients, and waste products.
  • a biocompatible substance is used, and examples thereof include gelatin hydrogel.
  • the iPS cell-derived cell population to which the present invention is applied is a cell population obtained by inducing differentiation of iPS cells, which is an active ingredient of a cell medicine including a product such as regenerative medicine or a production intermediate thereof. Including planar cultured cells, cell clusters as defined above, and the like.
  • Cells that induce differentiation from induced pluripotent stem cells include hair, eyes (retina, cornea), nerve tissue (brain, spinal cord, peripheral nerve), heart, bone (cartilage), lung, kidney, pancreas, intestinal tract, blood vessels, Examples include, but are not limited to, cells that constitute tissues such as blood, muscle, meniscus, Achilles tendon, liver, fat (breast), skin, and esophagus, or precursor cells of the cells.
  • Any method for inducing differentiation from an induced pluripotent stem cell into each tissue may be used, as long as it is a method capable of inducing differentiation.
  • the differentiation-induced cell aggregate shown in the test example or the retina derived therefrom is constructed.
  • the method described in WO2016 / 063985 can be used as long as it is a cell aggregate containing photoreceptor cells.
  • a method of treating the cell population with the compound of the present invention is as follows.
  • the compound of the present invention may be contacted with a cell or a cell population.
  • a liquid (solution or suspension) containing a compound or a compound base may be added to a culture solution of a cell or a cell population, and generally a method of adding a concentrated solution of a compound to a culture solution. Is used.
  • any solvent can be used as a solvent for the compound concentrate, but dimethyl sulfoxide (DMSO), ethanol, etc., which have relatively high solubility regardless of the physical properties of the compound and low toxicity to cells, are often used. It is done.
  • the concentration of the compound to be added is in the range of 0.001 ⁇ mol / L to 10 ⁇ mol / L, and in a preferred embodiment, the concentration is in the range of 0.01 ⁇ mol / L to 1 ⁇ mol / L.
  • the time for bringing the compound of the present invention into contact with the cell population is not particularly limited as long as the cells can survive, but is usually in the range of 1 hour to 72 hours, and preferably in the range of 24 hours to 48 hours.
  • the temperature at which the compound of the present invention is brought into contact with the cell population is not particularly limited as long as the cells can survive, but is usually in the range of 4 ° C to 40 ° C, preferably in the range of 20 ° C to 37 ° C. .
  • the medium used for bringing the compound of the present invention or a salt thereof into contact with the cell population may be any general medium or buffer used for cell culture, preferably the medium used for inducing cell differentiation. .
  • the evaluation of the compound of the present invention was carried out by immunostaining for Cleaved Caspase-3, which is a marker of apoptosis, and quantifying the positive cells.
  • Cleaved Caspase-3 which is a marker of apoptosis
  • quantifying the positive cells When cell death is induced in undifferentiated cells by exposure to the compound of the present invention, the percentage of CleavedCCasplase-3 positive cells is considered to increase.
  • THF tetrahydrofuran
  • TFA trifluoroacetic acid
  • TBSCl tert-butyldimethylchlorosilane
  • DAST N, N-diethylaminosulfur trifluoride
  • DMAP N, N-dimethylaminopyridine
  • DMF N, N-dimethylformamide
  • WSCI ⁇ HCl 1- ( 3-Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
  • HOBt 1-hydroxybenzotriazole
  • HATU O- (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium
  • TBS tert-butyldimethylsilyl
  • Boc tert-butoxycarbonyl
  • THP tetrahydropyranyl
  • the LC / MS analysis conditions for compound identification are as follows. About the compound as described in a reference example or an Example, it analyzed by LC / MS analysis conditions A, B, or C as described below.
  • Reference example 1 1- (3- (trifluoromethyl) benzyl) -1H-imidazol-4-amine hydrochloride
  • acetonitrile 150 mL
  • potassium carbonate 26.9 g
  • potassium iodide 0.074 g
  • 3-trifluoromethylbenzyl bromide 42.3 g
  • acetonitrile 50 mL
  • the mixture was stirred at 80 ° C. for 4 hours, cooled to room temperature, water was added, and the mixture was extracted with ethyl acetate.
  • Reference Examples 2-6 The corresponding starting materials were used and reacted and treated in the same manner as described in Reference Example 1 to obtain the compounds of Reference Examples 2-6.
  • Reference Example 8 The corresponding starting material was used and reacted and treated in the same manner as described in Reference Example 7 to obtain the compound of Reference Example 8.
  • Reference Examples 10-12 The corresponding starting materials were used and reacted and treated in the same manner as described in Reference Example 9 to obtain the compounds of Reference Examples 10-12.
  • Reference Example 17 In accordance with the method described in Reference Example 9, the compound of Reference Example 17 was obtained using Reference Example 14-2 and the corresponding starting compound.
  • Reference Example 19-2 6-chloro-5-formyl-methyl nicotinate Silver nitrate (6.70 g) was added to a solution of the compound of Reference Example 19-1 (2.71 g) in acetonitrile (40 mL) / water (20 mL), and the mixture was stirred at 100 ° C. for 3 hours. Insoluble matter was removed by filtration, and the solvent was distilled off. A saturated aqueous sodium hydrogen carbonate solution was added to the residue to adjust the pH to 8, followed by extraction with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give the title compound (0.84 g).
  • LC-MS, Condition B [M + H] + / Rt (min): 200.0 / 0.671
  • Reference Example 19-4 5- (Difluoromethyl) -6- (ethenyl) -methyl nicotinate
  • the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted with chloroform.
  • the organic layer was washed with saturated brine, dried over sodium sulfate, filtered and concentrated under reduced pressure.
  • Reference Example 19-5 5- (Difluoromethyl) -6- (formyl) -methyl nicotinate Sodium periodate (488 mg) and osmium tetroxide (2.5 wt% in tert-butanol, 0.716 mL) in a mixture of the compound of Reference Example 19-4 (243 mg) in acetone (5 mL) / water (2.5 mL) And stirred at room temperature for 8 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, filtered and concentrated under reduced pressure.
  • Reference Examples 25 to 26 The compounds of Reference Examples 25 and 26 were obtained according to the method described in Reference Example 24 using the corresponding starting compounds.
  • Reference Example 27-2 2- (tert-Butoxycarbonyl) -8-fluoro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid
  • Water (10 mL) and sodium hydroxide (5 g) were added to a solution of the compound of Reference Example 27-1 (2.13 g) in 2-propanol (40 mL), and the mixture was stirred at 110 ° C. for 11 hours.
  • the reaction mixture was concentrated under reduced pressure, and the residue was extracted with saturated aqueous sodium hydrogen carbonate.
  • the aqueous layer was acidified with sodium hydrogen sulfate and extracted with chloroform.
  • the obtained organic layer was dried over sodium sulfate and concentrated under reduced pressure to obtain the title compound (2.54 g).
  • LC-MS, Condition B [M + H] + / Rt (min)): 296.2 / 0.907
  • Reference Example 29-2 5-[(tert-Butoxycarbonyl) amino] -6- (hydroxymethyl) -methyl nicotinate
  • the title compound was obtained from the compound of Reference Example 29-1 according to the method described in Reference Example 19-4, Reference Example 19-5, and Reference Example 19-6.
  • Reference examples 30-32 According to the methods described in Reference Example 27-1 and Reference Example 27-2, the compounds of Reference Examples 31 to 33 were obtained using the compounds of Reference Example 23, Reference Example 24, and Reference Example 26.
  • Example 1-1 (2E) -3- [4- (Acetylamino) phenyl] -N- (1- [3- (trifluoromethyl) benzyl] -1H-imidazol-4-yl) prop-2-enamide
  • HATU (2.88 g) diisopropylethylamine (2 97 mL) and stirred at room temperature overnight.
  • Example 1-2 (2E) -3- [4- (Acetylamino) phenyl] -N- (1- [3- (trifluoromethyl) benzyl] -1H-imidazol-4-yl) prop-2-enamide hydrochloride
  • Example 1 -1 compound (500 mg) was added with 4 mol / L hydrochloric acid-ethyl acetate (350 ⁇ L) at 60 ° C. and stirred at the same temperature for 5 minutes. After removing the oil bath and adding seed crystals, the mixture was stirred at room temperature for 40 minutes and under ice-cooling for 35 minutes. The precipitated solid was collected by filtration, washed with cold ethanol, and dried under reduced pressure to obtain the title compound (474 mg).
  • Examples 2-4 The corresponding starting materials were used and reacted and treated in the same manner as described in Example 1-1 to give the compounds of Examples 2-4.
  • Example 5 (E) -3- (3- (2-hydroxyethoxy) -4-methoxyphenyl) -N- (1- (3,4,5-trifluorobenzyl) -1H-imidazol-4-yl) acrylamide
  • methanol 10 mL
  • hydrochloric acid-dioxane 88 ⁇ L
  • the reaction mixture was concentrated under reduced pressure, 2 mol / L aqueous sodium hydroxide solution was added, and the mixture was extracted with chloroform.
  • Examples 7-8 The compounds of Examples 7 and 8 were obtained by reacting and treating in the same manner as in Example 6 using the compounds of Reference Example 10 and Reference Example 12.
  • Example 10-1 N- [1- (3-Chlorobenzyl) -1H-imidazol-4-yl] -3,4-dimethoxybenzamide Triethylamine (15.8 mL) and 3,4-dimethoxybenzoyl chloride (9.04 g) were added to a solution of the compound of Reference Example 2 (11.0 g) in methylene chloride (240 mL), and the mixture was stirred at room temperature overnight. The reaction solution was concentrated under reduced pressure, and the resulting solid was washed with ethyl acetate and collected by filtration to obtain the title compound (9.7 g).
  • Example 10-2 N- [1- (3-Chlorobenzyl) -1H-imidazol-4-yl] -3,4-dimethoxybenzamide hydrochloride Hydrochloride of the compound of Example 10-1 (70.0 g) of 1,4-dioxane (1. 5L) 4 mol / L hydrochloric acid-dioxane (94 mL) and seed crystals were added to the solution, and the mixture was subjected to an ultrasonic cleaner. The solvent was distilled off, ethanol (500 mL) was added to the residue, and the mixture was again subjected to an ultrasonic washing machine. The precipitated solid was collected by filtration and dried under reduced pressure to obtain the title compound (72.4 g).
  • Examples 11-12 The compounds of Examples 11 and 12 were obtained by reacting and treating in the same manner as described in Example 10-1 using the corresponding starting compounds.
  • Example 15 5- (hydroxymethyl) -N- ⁇ 1- [3- (trifluoromethyl) benzyl] -1H-imidazol-4-yl ⁇ picolinamide
  • Lithium borohydride (3 mol / L in THF, 0.08 mL) was added to a THF (2 mL) / methanol (1 mL) solution of the compound of Reference Example 13 (100 mg), and the mixture was stirred at room temperature for 3 hours.
  • a saturated aqueous ammonium chloride solution and water were added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • Examples 16-17 The compounds of Examples 16 and 17 were obtained from the compounds of Reference Example 17 and Reference Example 18-3 according to the method described in Example 15.
  • Examples 18-19 In accordance with the method described in Reference Example 9, the compounds of Examples 18 and 19 were obtained from the compound of Reference Example 1, the compound of Reference Example 4, and the corresponding starting material compounds.
  • Example 20 6- (Hydroxymethyl) -N- [1- (3,4,5-trifluorobenzyl) -1H-imidazol-4-yl] nicotinamide To a solution of 6- (hydroxymethyl) -methyl nicotinate (0.924 g) in THF (22 mL) was added 5 mol / L aqueous potassium hydroxide solution (2.2 ml). After stirring overnight at room temperature, the solvent was removed by concentration under reduced pressure and dried under reduced pressure.
  • Examples 21-27 According to the method described in Example 20, the compounds of Examples 21 to 27 were obtained from the corresponding compounds of Reference Examples.
  • Example 28 N- [6- (hydroxymethyl) pyridin-3-yl] -1- (3,4,5-trifluorobenzyl) -1H-imidazole-4-carboxamide
  • a DMF 15 mL
  • WSCI.HCl 124 mg
  • HOBt 87 mg
  • N, N-diisopropylethylamine 0.188 mL
  • Example 29 The compound of Example 29 was obtained from the corresponding compound of Reference Example according to the method described in Example 28.
  • Example 30 N- (7-Fluoro-1,2,3,4-tetrahydroisoquinolin-6-yl) -1- (3,4,5-trifluorobenzyl) -1H-imidazole-4-carboxamide
  • tert-butyl 6-amino-7-fluoro-3,4-dihydroisoquinoline-2 (1H) -carboxylate tert-butyl 7-Fluoro-6-( ⁇ [1- (3,4,5-trifluorobenzyl) -1H-imidazol-4-yl] carbonyl ⁇ amino) -3,4-dihydroisoquinoline-2 (1H) -carboxylate
  • tert-butyl 7-Fluoro-6-( ⁇ [1- (3,4,5-trifluorobenzyl) -1H-imidazol-4-yl] carbonyl ⁇ amino) -3,4-dihydroisoquinoline-2 (1H) -carboxylate Got.
  • Examples 31-32 In accordance with the method described in Example 30, the compounds of Examples 31 and 32 were obtained using Reference Example 14-2, Reference Example 22 and the corresponding starting compounds.
  • Example 33 N- (1,2,3,4-Tetrahydroisoquinolin-6-yl) -1- (3,4,5-trifluorobenzyl) -1H-imidazole-4-carboxamide dihydrochloride
  • tert-butyl 6-amino-3,4-dihydroisoquinoline-2 (1H) -carboxylate tert-butyl 6-( ⁇ [1- (3,4,5-trifluorobenzyl) -1H-imidazol-4-yl] carbonyl ⁇ amino) -3,4-dihydroisoquinoline-2 (1H) -carboxylate was obtained.
  • Examples 34-49 The compounds of Examples 34 to 49 were obtained according to the method described in Example 33 and using the compounds of the corresponding reference examples and raw material compounds.
  • Example 50 N- [1- (3,4,5-trifluorobenzyl) -1H-imidazol-4-yl]-(1,2,3,4-tetrahydroisoquinoline-6-carboxamide ditrifluoroacetate According to the method described in Reference Example 9, using the compound of Reference Example 4 and 2- (tert-butoxycarbonyl) -1,2,3,4-tetrahydroisoquinoline-6-carboxylate, N- (1- ( 3,4,5-trifluorobenzyl) -1H-imidazol-4-yl) -1,2,3,4-tetrahydroisoquinoline-6-carboxamide was obtained.
  • Trifluoroacetic acid was added to the chloroform solution of the compound and stirred at room temperature, and then the reaction mixture was concentrated under reduced pressure. A mixed solvent of hexane / ethyl acetate was added to the residue, and the precipitated solid was collected by filtration and dried under reduced pressure to obtain the title compound.
  • Examples 51-54 According to the method described in Example 50, the compounds of Examples 51 to 54 were obtained using the compounds of the corresponding reference examples and the raw material compounds.
  • Example 55 6- (Hydroxymethyl) -5-methyl-N- [1- (3,4,5-trifluorobenzyl) -1H-imidazol-4-yl] nicotinamide
  • the title compound was obtained from the compound of reference example 28 according to the method described in Example 20.
  • Examples 56-57 In accordance with the method described in Reference Example 9, the compounds of Examples 56 and 57 were obtained from the compounds of Reference Example 1, Reference Example 4, and Reference Example 29-3.
  • Example 58 5-Amino-6- (hydroxymethyl) -N- ⁇ 1- [3- (trifluoromethyl) benzyl] -1H-imidazol-4-yl ⁇ nicotinamide
  • a 2 mol / L aqueous sodium hydroxide solution (0.031 mL) was added to a suspension of the compound of Example 56 (13 mg) in THF (0.5 mL) / methanol (0.5 mL), and the mixture was stirred at 60 ° C. for 3 hours. The mixture was further stirred at ° C for 6.5 hours. After cooling to room temperature, water was added to the reaction mixture and stirred at room temperature for 5 minutes.
  • Example 59 The compound of Example 59 was obtained from the compound of Example 57 according to the method described in Example 58.
  • Test Example 1 Cancer cell sphere formation ability suppression test
  • CSC cancer stem cells
  • HCT-116 cells were treated with 2% B27 supplement (GIBCO), 20 ng / mL epidermal growth factor (EGF) (peprotech), 10 ng / mL basic fibroblast growth factor (bFGF) (peprotech), 5 ⁇ g / Seed 384 Well Black Clear Bottom Ultra-Low Attachment Microplate (Corning Cat. No. 3827) in DMEM / F12 medium containing mL insulin (Sigma), 1% penicillin / streptomycin to 350-800 cells / well did. The test substance was added so that the final DMSO concentration was 0.1%, and the cells were cultured for 4 days.
  • GEBCO epidermal growth factor
  • bFGF basic fibroblast growth factor
  • Test Example 1 For each compound obtained in the example, the test shown in Test Example 1 was performed. The concentration of each test substance that inhibits 50% cell growth (Sphere IC 50 value; ⁇ mol / L) is shown in the table below. The value shown in% indicates (100% ⁇ cell growth inhibition rate) at 1 ⁇ mol / L.
  • Test Example 2 Evaluation of cytotoxic activity against iPS cells Human iPS cells were feeder-free cultured according to the method described in Scientific Reports, 4, 3594 (2014). StemFit medium (AK03N, Ajinomoto Co., Inc.) was used as the feeder-free medium, and Laminin511-E8 (Nippi Co., Ltd.) was used as the feeder-free scaffold. The sub-confined human iPS cells were washed with PBS and then dispersed into single cells using TrypLE Select (manufactured by Life Technologies).
  • the human iPS cells were then seeded in a plastic culture dish coated with Laminin511-E8 and feeder-free at 37 ° C with 5% CO 2 in StemFit medium in the presence of Y27632 (ROCK inhibitor, 10 ⁇ mol / L). Cultured. At this time, a 96-well plate (manufactured by BD, for cell culture, culture area 0.35 cm 2 ) was used as a plastic culture dish, and the number of seeded cells of human iPS cells dispersed into a single cell was 0.03 ⁇ 10 4 . One day after sowing, the stemFit medium without Y27632 was replaced.
  • the medium was changed once a day or two days with a StemFit medium not containing Y27632. Thereafter, the cells were cultured until they became sub-confluent (about 60% of the culture area was covered with cells).
  • Stem Fit medium (AK03; Ajinomoto Co., Inc.) was prepared by thawing the compounds of Examples 1-2, 10-2 and 22 dissolved in DMSO to final concentrations of 10, 1, 0.1 and 0.01 ⁇ mol / L. For 24 hours.
  • human cervical cancer-derived cells HeLa cells which are differentiated cells, were used as negative controls.
  • HeLa cells were cultured for 24 hours at 37 ° C, 5% CO 2 using DMEM medium (Life Technologies) containing unmoved 10% fetal bovine serum (MP Biomedicals).
  • DMEM medium Life Technologies
  • MP Biomedicals unmoved 10% fetal bovine serum
  • the cells were cultured for 24 hours in a medium containing the compounds of Examples 1-2, 10-2 and 22. After 24 hours, the medium was removed, and fixed with 4% paraformaldehyde at 4 ° C for 15 minutes. After adding PBS solution containing DAPI (Sigma), nuclear staining was performed, and an inverted fluorescence microscope (Keyence Corporation) was used. Manufactured by BIOREVO). Furthermore, the DAPI positive area was calculated using the quantitative software of the same microscope.
  • the compound of Example 1-2 showed cytotoxic activity against human iPS cells from 0.1 ⁇ mol / L, and compared with the survival rate when not treated with the compound of Example 1-2. It was 53% at 0.1 ⁇ mol / L, 25% at 1 ⁇ mol / L, and 14% at 10 ⁇ mol / L (FIGS. 1 and 4).
  • the compound of Example 10-2 was 37% at 1 ⁇ mol / L and 17% at 10 ⁇ mol / L (FIGS. 2 and 4).
  • the compound of Example 22 was 51% at 0.1 ⁇ mol / L and 31% at 1 ⁇ mol / L (FIGS. 3 and 4).
  • Test Example 3 Evaluation of the effect of the compound of the present invention on differentiation-induced cell aggregates
  • differentiation-induced cell aggregates were prepared by the following procedure.
  • feeder-free cultured human iPS cells one day prior to subconfluence were obtained in the presence of SB431542 (TGF ⁇ signaling pathway inhibitor (TGF ⁇ R-i), 5 ⁇ mol / L) in Stem Fit medium ( AK03 (manufactured by Ajinomoto Co.) was used for feeder-free culture for 1 day.
  • SB431542 TGF ⁇ signaling pathway inhibitor (TGF ⁇ R-i)
  • AK03 manufactured by Ajinomoto Co.
  • a 6-well plate manufactured by Iwaki, for cell culture, culture area 9.4 cm 2
  • the number of seeded cells of human iPS cells dispersed into a single cell was 1.0 ⁇ 10 4 .
  • the cells were treated with a cell dispersion using TrypLE Select (manufactured by Life Technologies) and further dispersed into single cells by pipetting.
  • the cells are suspended in 100 ⁇ l of serum-free medium at 1.0 ⁇ 10 4 cells per well of a non-cell-adhesive 96-well culture plate (PrimeSurface 96V bottom plate, manufactured by Sumitomo Bakelite Co., Ltd.), 37 ° C., 5% CO
  • the suspension culture was performed at 2 .
  • serum-free medium gfCDM + KSR
  • Chemically defined lipid concentrate were added to a 1: 1 mixture of F-12 medium and IMDM medium. A serum-free medium was used.
  • Y27632 final concentration 20 ⁇ mol / L
  • a Wnt signaling pathway inhibitor IWR-1e, 3 ⁇ mol / L
  • the compound of the present invention was replaced with a serum-free medium containing final concentrations of 0.1 ⁇ mol / L and 1 ⁇ mol / L and an equal amount of DMSO, and further cultured for 24 hours. After 24 hours, these aggregates were fixed with 4% paraformaldehyde, and frozen sections were prepared.
  • Cleaved Caspase-3 (anti-Cleaved Caspase-3 antibody, Cell Signaling, Mouse), which is one of apoptosis markers
  • Oct3 / 4 anti-Oct3 / 4 antibody, which is one of undifferentiated markers
  • nuclear staining was performed using DAPI (manufactured by Sigma), and these immunostained sections were observed using an inverted fluorescence microscope (manufactured by Keyence Corporation, BIOREVO).
  • the positive area of Cleaved Caspase-3 was quantified with NIH Image-J software.
  • the cell aggregates induced to differentiate used in this test example expressed Oct3 / 4, which is an undifferentiated marker, and it was confirmed that iPS cells remained in these aggregates.
  • the proportion of positive area of Cleaved Caspase-3 was 19% when the compound was not treated, whereas the compound of Example 1-2 And 24% at 0.1 ⁇ mol / L and 27% at 1 ⁇ mol / L (FIG. 5, FIG. 7—compound of Example 1-2).
  • the compound of Example 10-2 was 26% when exposed at 1 ⁇ mol / L (FIG. 6, FIG. 7—Compound of Example 10-2).
  • the compound of the present invention increased the proportion of the positive area of Cleaved Caspase-3 in the differentiated cell aggregate, and the increase was also observed in the differentiated cell aggregate.
  • the cell aggregate including a photoreceptor cell can be obtained by culture
  • the compound of the present invention is useful as an agent for removing iPS cells because it exhibits an excellent ability to suppress the formation of cancer cell spheres and induces growth inhibition and cell death of iPS cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Reproductive Health (AREA)
  • Oncology (AREA)
  • Botany (AREA)
  • Gynecology & Obstetrics (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明は、がん細胞スフィア形成能抑制作用を示し、iPS細胞の除去剤として有用な式(1)で表される化合物またはその塩を提供する。 [式中、環Qは、置換されていてもよいC6-10アリール等を表し;RおよびRは、独立して、水素原子等を表し;Wは、C1-4アルキレン(該基は、1~3個のフッ素原子またはC3-7シクロアルキルで置換されていてもよい)を表し;Wは、-NR4aC(O)-等(ここにおいて、R4aは、水素原子またはC1-6アルキルを表す)を表し;環Qは、置換されていてもよいC6-10アリール等を表す]

Description

未分化iPS細胞の除去剤
 本発明は、イミダゾリルアミド誘導体およびその塩を含有する未分化iPS細胞の除去剤に関する。
 人工多能性幹細胞(iPS細胞:induced pluripotent stem cell)は自己複製能と分化能を兼ね備える細胞であり、生体内にそのまま移植した場合、未分化状態のiPS細胞が混入されていると奇形腫(Teratoma)と呼ばれる腫瘍を形成する(非特許文献1)。奇形腫はいわゆる癌(悪性腫瘍)とは異なるものの、iPS細胞を出発材料とした細胞製品を開発する際、もし最終製品にiPS細胞が残存し、その細胞から奇形腫が形成されると、製品の安全性と有効性が損なわれる可能性がある。そこで、iPS細胞由来細胞製品を開発する際には、奇形腫形成能のある未分化状態のiPS細胞が製品中に存在しないことが極めて重要となる。
 現在ではiPS細胞を高感度に検出することが可能となっているものの、検出には技術的な限界があり、特に大量の細胞から構成される細胞製品の場合、微量のiPS細胞の存在を完全には否定できない場合がある。そこで製造面からのアプローチとして、製品の中間体または最終製品についてiPS細胞を除去する処理を行うことで、微量のiPS細胞が存在する可能性を低減し、安全性を高めることを目的として、様々な手法が開発されている。例えば、細胞死を誘導する物質を用いてiPS細胞を除去する方法が挙げられる。
 iPS細胞に対して細胞死を誘導できる物質としては、例えば、iPS細胞を認識する糖蛋白と毒素との融合蛋白(非特許文献2)、iPS細胞を認識して細胞死を誘導する抗体(非特許文献3)、脂肪酸不飽和化を阻害する化合物(特許文献1、非特許文献4)等が知られている。しかしながら、そのような物質として本発明のイミダゾリルアミド誘導体は知られていない。iPS細胞認識糖蛋白と毒素との融合蛋白、iPS細胞の除去抗体は、平面培養している単層のiPS細胞に対しては効率よく作用するものの、分子量の大きい巨大分子であるという性質上、血管系を持たない細胞塊に添加した場合、細胞塊内部に浸透する効率は極めて悪いと考えられている。
 非特許文献5および6には、抗肥満薬として有用な4-アミノイミダゾール誘導体等が開示されている。しかしながら、それらの化合物がiPS細胞に対して細胞死を誘導できることは一切開示されていない。
特表2015-525207号公報
Pros One, 9, 1-11 (2014) Stem Cell Reports, 4, 1-10 (2015) Journal of Biological Chemistry, 290, 20071-20085 (2015) Cell Stem Cell, 12, 167-179 (2013) 第27回メディシナルケミストリーシンポジウム講演要旨集、166-167頁 月刊ファインケミカル 2009年8月号、シーエムシー出版、12-24頁
 本発明が解決しようとする課題は、iPS細胞由来細胞医薬品中に存在する未分化状態のiPS細胞を効率的に除去する方法を提供することにある。
 本発明者らは、鋭意検討した結果、がん細胞スフィア形成能抑制作用を有する下記式(1)で表される化合物またはその塩(以下、「本発明化合物」と称することもある。)が、iPS細胞由来細胞医薬品中に存在する未分化状態のiPS細胞を効率的に除去できることを見出し、本発明を完成させるに至った。
 すなわち本発明は、以下の通りである。
〔1〕 式(1):
Figure JPOXMLDOC01-appb-C000005
[式中、Qは、置換されていてもよいC6-10アリール、置換されていてもよいC6-10アリールオキシ、置換されていてもよいC6-10アリールチオ、置換されていてもよいC3-10シクロアルキル、または置換されていてもよい5員~10員のヘテロアリールを表し;
 RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、またはC1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表し;
 Wは、C1-4アルキレン(該基は、1~3個のフッ素原子またはC3-7シクロアルキルで置換されていてもよい)を表し;
 W-Qは、-NR3aC(O)-Q、-NR3aC(O)O-Q、-NR3aC(O)OCH-Q、-NR3aC(O)NR3b-Q、-NR3aC(O)NR3bCH-Q、-NR3aC(O)CHO-Q、-NR3aC(O)CH-Q、-NR3aC(O)CHCH-Q、-C(O)NR3a-Q、-C(O)NR3aCH-Q、-C(O)NR3aCHCH-Q、または-NR3aC(O)-CR4c=CR4d-Q(ここにおいて、R3aおよびR3bは、それぞれ独立して、水素原子またはC1-6アルキルを表し;R3cおよびR3dは、それぞれ独立して、水素原子、フッ素原子、またはC1-6アルキルを表す)を表し;
 環Qは、置換されていてもよいC6-10アリール、または置換されていてもよい5員~10員のヘテロアリールを表す]で表される化合物またはその塩を含有する、iPS細胞の除去剤。
〔2〕 Qがフェニル(該基は、
(1)ハロゲン原子、
(2)C1-6アルキル(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
(3)C1-6アルコキシ(該基は、ハロゲン原子、ヒドロキシ、C1-6アルコキシおよびフェニルからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
(4)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)、
(5)C6-10アリール(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
(6)C6-10アリールオキシ(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
(7)5員~10員のヘテロアリール(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、および
(8)C1-6アルコキシ-カルボニル
からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)である、〔1〕に記載の除去剤。
〔3〕 Qがフェニル(該基は、ハロゲン原子、およびC1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)である、〔1〕または〔2〕に記載の除去剤。
〔4〕 W-Qが、-NHC(O)-Q、-NHC(O)-CH=CH-Q、-C(O)NH-Q、または-NHC(O)CHO-Qである、〔1〕~〔3〕のいずれか一項に記載の除去剤。
〔5〕 Wがメチレンである、〔1〕~〔4〕のいずれか一項に記載の除去剤。
〔6〕 環Qが、
(1)フェニル(該基は、
 (a)ハロゲン原子、
 (b)C1-6アルキル(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
 (c)C1-6アルコキシ(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
 (d)C3-7シクロアルキル、
 (e)C2-6アルケニル、
 (f)シアノ、
 (g)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)、および
 (h)C1-6アルキル-カルボニルアミノ
からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
(2)5員~10員のヘテロアリール(該基は、本項中の前記(1)の(a)~(h)からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、または
(3)下記式(11)、(12)、(13)、(14)、(15)、または(16):
Figure JPOXMLDOC01-appb-C000006
(式中、環Qは、置換されていてもよいベンゼン環、置換されていてもよいピリジン環、置換されていてもよいピリミジン環、置換されていてもよいピリダジン環、または置換されていてもよいピラジン環を表し;
 環Qは、置換されていてもよい5員のヘテロアリール環を表し;
 nおよびmは、それぞれ独立して、0、1または2を表し;
 ここにおいて、nおよびmが同時に0であることはなく;
 XおよびZは、それぞれ独立して、NR、-NR3eC(O)-、-C(O)NR3e-、またはOを表し(ここにおいて、Rは、水素原子、C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、またはC1-6アルキルカルボニルを表し;R3eは、水素原子またはC1-6アルキルを表す);
 pは、1、2、3、4または5を表し;
 Rは、複数ある場合はそれぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ、オキソ、C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、またはC1-6アルコキシ(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表す)で表される基である、〔1〕~〔5〕のいずれか一項に記載の除去剤。
〔7〕 環Qが、
(1)フェニル(該基は、ヒドロキシで置換されていてもよいC1-6アルコキシおよびC1-6アルキル-カルボニルアミノからなる群から選択される同種または異種の1~2個の基で置換されていてもよい)、
(2)下記式(2):
Figure JPOXMLDOC01-appb-C000007
(式中、
 R11、R12、およびR13は、それぞれ独立して、
(a)水素原子、
(b)ハロゲン原子、
(c)C1-6アルキル(該基は同種または異種の1~3個のフッ素原子で置換されていてもよい)、または
(d)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)を表す)
で表される基、または
(3)下記式(21):
Figure JPOXMLDOC01-appb-C000008
(式中、Xは、NまたはCR14を表し;
 Xは、NまたはCR15を表し;
 Xは、NまたはCR16を表し;
 ここにおいて、X、XおよびXが同時にNであることはなく;
 R14、R15、およびR16は、それぞれ独立して、
(a)水素原子、
(b)ハロゲン原子、
(c)C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、または
(d)C1-6アルコキシ(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表し;
 nおよびmは、それぞれ独立して、0、1または2を表し;
 ここにおいて、nおよびmが同時に0であることはなく;
 pは、1、2、3、4または5を表し;
 R4aは、複数ある場合はそれぞれ独立して、水素原子、ハロゲン原子、またはC1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表す)
で表される基である、〔1〕~〔6〕のいずれか一項に記載の除去剤。
〔8〕 W-Qが、-NHC(O)-Q、または-C(O)NH-Qであり;
 環Qが、式(2)または(21)で表される基である、〔7〕に記載の除去剤。
〔9〕 R11、およびR12がいずれも水素原子であり;
 R13が水素原子、C1-4アルキル(該基は1~3個のフッ素原子で置換されていてもよい)、またはアミノであり;
 R14、R15、およびR16は、それぞれ独立して、水素原子またはフッ素原子であり、
 nが1であり;
 mが0または1であり;
 pが1または2であり;
 R4aが、複数ある場合はそれぞれ独立して、水素原子またはメチルである、〔7〕または〔8〕に記載の除去剤。
〔10〕 W-Qが、-NHC(O)-CH=CH-Qであり;
 環Qが、フェニル(該基は、ヒドロキシで置換されていてもよいC1-6アルコキシおよびC1-6アルキル-カルボニルアミノからなる群から選択される同種または異種の1~2個の基で置換されていてもよい)である、〔1〕~〔7〕のいずれか一項に記載の除去剤。
〔11〕 RおよびRがいずれも水素原子である、〔1〕~〔10〕のいずれか一項に記載の除去剤。
〔12〕 以下の化合物から選択される、〔1〕に記載の式(1)で表される化合物、またはその塩を含有する、iPS細胞の除去剤:
(2E)-3-[4-(アセチルアミノ)フェニル]-N-(1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル)プロプ-2-エナミド(実施例1-1)
N-[1-(3-クロロベンジル)-1H-イミダゾール-4-イル]-3,4-ジメトキシベンズアミド(実施例10-1)、および
6-(ヒドロキシメチル)-N-{1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル}ニコチンアミド(実施例22)。
〔13〕 iPS細胞を含む培養液に、〔1〕~〔12〕のいずれか一項に記載の式(1)で表される化合物またはその塩を添加する工程を含む、iPS細胞の除去方法。
〔14〕 iPS細胞を材料として作製した細胞塊を含む培養液に、〔1〕~〔12〕のいずれか一項に記載の式(1)で表される化合物またはその塩を添加する工程を含む、iPS細胞の除去方法。
〔15〕 iPS細胞を材料として作製した細胞塊の内部に存在するiPS細胞を除去するための、〔1〕~〔12〕のいずれか一項に記載の式(1)で表される化合物またはその塩の使用。
〔16〕 iPS細胞を含まないiPS細胞由来細胞集団を製造するための、〔1〕~〔12〕のいずれか一項に記載の式(1)で表される化合物またはその塩の使用。
〔17〕 〔1〕~〔12〕のいずれか一項に記載の式(1)で表される化合物またはその塩とiPS細胞由来細胞集団とを接触させる工程を含む、iPS細胞を含まないiPS細胞由来細胞集団の製造方法。
〔18〕 以下の工程:
(1)iPS細胞を含む細胞集団を分化誘導する工程;及び
(2)工程(1)で得られる細胞集団を、〔1〕~〔12〕のいずれか一項に記載の式(1)で表される化合物またはその塩と接触させる工程;
を含む、多能性を維持する細胞を含まないiPS細胞由来細胞集団の製造方法。
〔19〕 〔17〕または〔18〕に記載の製造方法により製造される、iPS細胞を含まないiPS細胞由来の細胞集団。
〔20〕 移植用細胞を含む、〔19〕に記載の細胞集団。
〔21〕 〔19〕に記載の細胞集団に含まれる細胞を有効成分として含有する医薬組成物。
 本発明化合物はiPS細胞由来細胞医薬品から未分化状態のiPS細胞を効率的に除去することができる。とりわけ、これまで技術的に困難であったiPS細胞を材料として作製した細胞塊の内部に存在する未分化状態のiPS細胞の除去を効率的に行うことができる。
ヒトiPS細胞(1,2段目)およびHeLa細胞(3,4段目)を、各濃度の実施例1-2の化合物で24時間処理し、明視野観察(1,3段目)およびDAPI核染色(2,4段目)した結果を示す。 ヒトiPS細胞(1,2行段目)およびHeLa細胞(3,4段目)を、各濃度の実施例10-2の化合物で24時間処理し、明視野観察(1,3段目)およびDAPI核染色(2,4段目)した結果を示す。 ヒトiPS細胞(1,2行段目)およびHeLa細胞(3,4段目)を、各濃度の実施例22の化合物で24時間処理し、明視野観察(1,3段目)およびDAPI核染色(2,4段目)した結果を示す。 実施例1-2、10-2、および22の化合物で処理後のiPS細胞(黒棒)およびHeLa細胞(白棒)の残存を、DAPI核染色により定量化した結果を示す。 ヒトiPS細胞から分化誘導した細胞凝集塊を、各濃度の実施例1-2の化合物で24時間処理した。当該細胞凝集塊に対するOct3/4陽性細胞の免疫組織染色(1段目)、DAPI核染色(2段目)、およびCleaved Caspase-3陽性細胞の免疫組織染色(3段目)の結果を示す。 ヒトiPS細胞から分化誘導した細胞凝集塊を、各濃度の実施例10-2の化合物で24時間処理した。当該細胞凝集塊に対するOct3/4陽性細胞の免疫組織染色(1段目)、DAPI核染色(2段目)、およびCleaved Caspase-3陽性細胞の免疫組織染色(3段目)の結果を示す。 上記実施例1-2および10-2の化合物で処理後の細胞凝集塊中に含まれるCleaved Caspase-3陽性細胞の割合を、DAPI核染色での補正により定量化した。陰性対照(DMSO)、実施例1-2の化合物、実施例10-2の化合物につき、各3例の定量結果の平均を示す。
 以下に、本発明を詳細に説明する。本明細書において「置換基」の定義における炭素の数を、例えば、「C1-6」等と表記する場合もある。具体的には、「C1-6アルキル」なる表記は、炭素数1から6のアルキルと同義である。
 「ハロゲン原子」の具体例としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子が挙げられる。好ましくは、フッ素原子、塩素原子である。
 「C1-6アルキル」は、炭素数1~6個を有する直鎖状もしくは分枝状の飽和炭化水素基を意味する。好ましくは、「C1-4アルキル」である。「C1-6アルキル」の具体例としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル、ヘキシル、イソヘキシル、1,1-ジメチルブチル、2,2-ジメチルブチル、3,3-ジメチルブチル、2-エチルブチル等が挙げられる。
 「C2-6アルケニル」は、1~3個の炭素-炭素二重結合を含有する、炭素数2~6個を有する直鎖状もしくは分枝状の不飽和炭化水素基を意味する。好ましくは「C2-4アルケニル」である。「C2-6アルケニル」の具体例としては、例えば、エテニル、プロペニル、ブテニル、ペンテニル、ヘキセニル等が挙げられる。
 「C1-4アルキレン」は、炭素数1~4個を有する直鎖状もしくは分枝状の二価の飽和炭化水素基、または炭素数3~4個を有する環状構造を含む二価の飽和炭化水素基を意味する。
 直鎖状もしくは分枝状「C1-4アルキレン」の具体例としては、例えば、メチレン、エチレン、プロピレン、ブチレン、1-メチルメチレン、1-エチルメチレン、1-プロピルメチレン、1-メチルエチレン、2-メチルエチレン、1-エチルエチレン等が挙げられ、好ましくは、メチレン、エチレンが挙げられる。
 環状構造を含む「C1-4アルキレン」の具体例としては、例えば、下記群で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 「C1-6アルコキシ」の「C1-6アルキル」部分は、前記「C1-6アルキル」と同義である。好ましくは、「C1-4アルコキシ」である。「C1-6アルコキシ」の具体例としては、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ等が挙げられる。
 「C3-10シクロアルキル」は、3員~10員の単環式もしくは多環式環状の飽和または部分不飽和の炭化水素基を意味する。好ましくは、「C3-7シクロアルキル」である。「C3-10シクロアルキル」の具体例としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロペンテニル、シクロヘキセニル、デカリニル、アダマンチル、ノルボルニル等が挙げられる。
 「C6-10アリール」は、炭素数6~10個を有する芳香族炭化水素基を意味する。好ましくは「Cアリール」(フェニル)である。「C6-10アリール」の具体例としては、例えば、フェニル、1-ナフチル、2-ナフチル等が挙げられる。
 前記「C6-10アリール」には、フェニルと5員~7員の窒素原子、硫黄原子または酸素原子から選ばれるヘテロ原子を同じまたは異なって1個以上(例えば1~4個)含有する非芳香環、または5員~7員の飽和もしくは部分不飽和の炭化水素環(シクロペンタン、またはシクロヘキサン)と縮環した基も包含される。但し、芳香族環と非芳香族環とが縮環する多環式「C6-10アリール」の場合には、芳香族環のみが「基」の結合手を有する。
 該基の具体例としては、例えば、下記式で表される基等が挙げられる。下記式において環を横切る結合手は、「基」が該環における置換可能な位置で結合することを意味する。
Figure JPOXMLDOC01-appb-C000010
 「5員~10員のヘテロアリール」としては、例えば、5員~10員の単環式もしくは二環式の芳香族ヘテロ環基等が挙げられ、該基は、窒素原子、硫黄原子および酸素原子から選択される同種または異種のヘテロ原子を1個以上(例えば1~4個)含有する。二環式のヘテロアリールには、前記単環式のへテロアリールと芳香族環(ベンゼン、ピリジン等)または非芳香族環(シクロヘキサン、ピロリジン、ピペリジン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン等)とが縮環したものも含む。「ヘテロアリール」の具体例としては、例えば、下記式で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 前記式において環を横切る結合手は、「基」が該環における置換可能な位置で結合することを意味する。例えば、下記式
Figure JPOXMLDOC01-appb-C000012
のヘテロアリールの場合には、2-ピリジル、3-ピリジルまたは4-ピリジルであることを意味する。
 また、「ヘテロアリール」が二環式の基である場合において、例えば、下記式
Figure JPOXMLDOC01-appb-C000013
で表される場合には、1-ベンゾイミダゾリル、または2-ベンゾイミダゾリルの他に、4-、5-、6-または7-ベンゾイミダゾリルであってもよい。
 但し、芳香族環と非芳香族環(シクロヘキサン、ピペリジン等)とが縮環する多環式へテロアリールの場合には、芳香族環のみが「基」の結合手を有する。例えば、下記式
Figure JPOXMLDOC01-appb-C000014
で表される「多環式のヘテロアリール」の場合には、「基」が2-、3-、または4-位で結合することを意味する。
 前記〔6〕の式(11)~(16)で表される基において、環Qまたは環Qと、それらが縮環する環とが共有している矢印で示した2つの原子は、炭素である。
Figure JPOXMLDOC01-appb-C000015
 「C1-6アルキル-カルボニルアミノ」の「C1-6アルキル」部分は、前記「C1-6アルキル」と同義である。好ましくは「C1-4アルキル-カルボニルアミノ」が挙げられ、より好ましくはメチルカルボニルアミノ(アセチルアミノ)が挙げられる。
 「置換されていてもよいC6-10アリール」、「置換されていてもよいC6-10アリールオキシ」、「置換されていてもよいC6-10アリールチオ」、「置換されていてもよいC3-10シクロアルキル」、「置換されていてもよい5員~10員のヘテロアリール」、「置換されていてもよいベンゼン環」、「置換されていてもよいピリジン環」、置換されていてもよいピリミジン環」、「置換されていてもよいピリダジン環」、「置換されていてもよいピラジン環」等における置換基としては、例えば、
 (a)ハロゲン原子、
 (b)C1-6アルキル(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
 (c)C1-6アルコキシ(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
 (d)シアノ、
 (e)フェニル(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
 (f)5員もしくは6員のヘテロアリール(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
 (g)フェノキシ(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
 (h)ヒドロキシ、
 (i)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)、および
 (j)アミノカルボニル(該アミノは同種または異種の1~2個のC1-6アルキルで置換されていてもよい)等が挙げられる。
 好ましくは、ハロゲン原子、C1-6アルキル(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、C1-6アルコキシ(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、またはシアノが挙げられる。
 より好ましくは、ハロゲン原子、またはC1-6アルキル(該基は1~3個フッ素原子で置換されていてもよい)が挙げられる。
 なお、芳香族環と非芳香族環とが縮環する多環式のアリールまたはヘテロアリールの場合、上記の置換基は、芳香族環と非芳香族環のどちらに置換していてもよい。
 式(1)で表される本発明化合物の中でも、W、W、R、R、環Q、および環Qで、好ましいものは以下のとおりであるが、本発明の技術的範囲は下記に挙げる化合物の範囲に限定されるものではない。
 Wとして好ましくは、メチレンが挙げられる。
 W-Qとして好ましくは、-NHC(O)-Q、-NHC(O)-CH=CH-Q、-C(O)NH-Q、または-NHC(O)CHO-Qである。より好ましくは、-NHC(O)-Q、または-NHC(O)-CH=CH-Qである。
 RおよびRとして好ましくは、水素原子、塩素原子、またはメチルが挙げられる。より好ましくは、水素原子である。
 環Qとして好ましくは、フェニル(該基は、
(1)ハロゲン原子、
(2)C1-6アルキル(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、または
(3)C1-6アルコキシ(該基は、ハロゲン原子、ヒドロキシ、C1-6アルコキシ、およびフェニルからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
(4)アミノ(該基は、同種または異種の1~2個のC1-6アルキルで置換されていてもよい)、
(5)C6-10アリール(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
(6)C6-10アリールオキシ(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
(7)5員~10員のヘテロアリール(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、および
(8)C1-6アルコキシ-カルボニルからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)が挙げられる。
 環Qとしてより好ましくは、フェニル(該基は、ハロゲン原子、およびC1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)が挙げられ;更に好ましくは、同種または異種の1~3個のハロゲン原子で置換されていているフェニル、またはトリフルオロメチルフェニルが挙げられる。
 環Qとして好ましくは、
(1)フェニル(該基は、
 (a)ハロゲン原子、
 (b)C1-6アルキル(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
 (c)C1-6アルコキシ(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
 (d)C3-7シクロアルキル、
 (e)C2-6アルケニル、
 (f)シアノ、
 (g)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)、および
 (h)C1-6アルキル-カルボニルアミノ
からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
(2)5員もしくは6員のヘテロアリール(該基は、本項中の前記(1)の(a)~(h)からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、または
(3)下記式(11)、(12)、(13)、(14)、(15)、または(16):
Figure JPOXMLDOC01-appb-C000016
(式中、環Qは、置換されていてもよいベンゼン環、置換されていてもよいピリジン環、置換されていてもよいピリミジン環、置換されていてもよいピリダジン環、または置換されていてもよいピラジン環を表し;
 環Qは、置換されていてもよい5員のヘテロアリール環を表し;
 nおよびmは、それぞれ独立して、0、1または2を表し;
 ここにおいて、nおよびmが同時に0であることはなく;
 XおよびZは、それぞれ独立して、NR、-NR3eC(O)-、-C(O)NR3e-、またはOを表し(ここにおいて、Rは、水素原子、C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、またはC1-6アルキルカルボニルを表し;R3eは、水素原子またはC1-6アルキルを表す。);
 pは、1、2、3、4または5を表し;
 Rは、複数ある場合はそれぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ、オキソ、C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、またはC1-6アルコキシ(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表す)で表される基が挙げられる。
 環Qとして好ましくは、ベンゼン環またはピリジン環が挙げられる。
 環Qとして好ましくは、イミダゾール環、オキサゾール環、またはチアゾール環が挙げられ;より好ましくはチアゾール環が挙げられる。
 環Qとしてより好ましくは、
(1)フェニル(該基は、ヒドロキシで置換されていてもよいC1-6アルコキシおよびC1-6アルキル-カルボニルアミノからなる群から選択される同種または異種の1~2個の基で置換されていてもよい)、
(2)下記式(2):
Figure JPOXMLDOC01-appb-C000017
(式中、
 R11、R12、およびR13は、それぞれ独立して、
(a)水素原子、
(b)ハロゲン原子、
(c)C1-6アルキル(該基は1~3個のフッ素原子で置換されていてもよい)、または
(d)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)を表す)で表される基、または
(3)下記式(21):
Figure JPOXMLDOC01-appb-C000018
(式中、Xは、NまたはCR14を表し;
 Xは、NまたはCR15を表し;
 Xは、NまたはCR16を表し;
 ここにおいて、X、XおよびXが同時にNであることはなく;
 R14、R15、およびR16は、それぞれ独立して、
(a)水素原子、
(b)ハロゲン原子、
(c)C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、または
(d)C1-6アルコキシ(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表し;
 nおよびmは、それぞれ独立して、0、1または2を表し;
 ここにおいて、nおよびmが同時に0であることはなく;
 pは、1、2、3、4または5を表し;
 R4aは、複数ある場合はそれぞれ独立して、水素原子、ハロゲン原子、またはC1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表す)で表される基が挙げられる。
 環Qとして更に好ましくは、
(1)アセチルアミノフェニル、
(2)6-ヒドロキシメチルピリジン-3-イル(該ピリジンは、1~3個のフッ素原子で置換されていてもよいC1-4アルキル、またはアミノで更に置換されていてもよい)、または
(3)下記式(21):
Figure JPOXMLDOC01-appb-C000019
(式中、Xは、N、CH、またはCFを表し;
 Xは、N、CH、またはCFを表し;
 XはN、CH、またはCFを表し;
 ここにおいて、X、XおよびXが同時にNであることはなく;
 nは1を表し;
 mは0または1を表し;
 pは1または2を表し;
 R4aは、複数ある場合はそれぞれ独立して、水素原子またはメチルを表す)で表される基が挙げられる。
 本発明化合物は、水和物および/または溶媒和物の形で存在することもあるので、これらの水和物またはエタノール溶媒和物等の溶媒和物も本発明化合物に含まれる。さらに、本発明化合物はあらゆる態様の結晶形のものも包含している。
 式(1)で表される化合物の塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩、硝酸塩等の無機酸塩;および酢酸塩、プロピオン酸塩、シュウ酸塩、コハク酸塩、乳酸塩、リンゴ酸塩、酒石酸塩、クエン酸塩、マレイン酸塩、フマル酸塩、メタンスルホン酸塩、p-トルエンスルホン酸塩、ベンゼンスルホン酸塩、アスコルビン酸塩等の有機酸塩等が具体例として挙げられる。
 式(1)で表される化合物は、互変異性体として存在する場合もあり得る。従って、本発明化合物は、式(1)で表される化合物の互変異性体も包含する。
 式(1)で表される化合物は、少なくとも一つの不斉炭素原子を有する場合もあり得る。従って、本発明化合物は、式(1)で表される化合物のラセミ体のみならず、これらの化合物の光学活性体も包含する。式(1)で表される化合物が2個以上の不斉炭素原子を有する場合、立体異性を生じる場合がある。従って、本発明化合物は、これらの化合物の立体異性体およびその混合物や単離されたものも包含する。
 また、式(1)で表される化合物のいずれか1つ又は2つ以上のHをH(D)に変換した重水素変換体も式(1)で表される化合物に包含される。
 以下に、本発明における式(1)で表される化合物の製造法について、例を挙げて説明するが、本発明はもとよりこれに限定されるものではない。
 式(1)で表される化合物は、例えば下記に示す製造法、および公知化合物と公知の合成方法を組み合わせた方法により合成される。
 原料化合物として用いられる化合物は、それぞれ塩として用いられることもある。なお、これらの反応は単なる例示であり、有機合成に習熟している者の知識に基づき、適宜、他の方法で本発明化合物を製造することもできる。
 下記において説明する各製造法において、具体的に保護基の使用を明示していない場合であっても、保護が必要な官能基が存在する場合は、当該官能基を必要に応じて保護し、反応終了後または一連の反応を行った後に脱保護することにより目的物を得ることもある。
 保護基としては、文献(T.W.Greene and P.G.M.Wuts, ”Protective Groups in Organic Synthesis”, 3rd Ed., John Wiley and Sons, inc., New York(1999))等に記載されている通常の保護基を用いることができ、更に具体的には、アミノ基の保護基としては、例えば、ベンジルオキシカルボニル、tert-ブトキシカルボニル、アセチル、ベンジル等を、またヒドロキシ基の保護としては、例えば、トリアルキルシリル、アセチル、ベンジル等をそれぞれ挙げることができる。
 保護基の導入及び脱離は、有機合成化学で常用される方法(例えば、T.W.Greene and P.G.M.Wuts, ”Protective Groups in Organic Synthesis”, 3rd Ed., John Wiley and Sons, inc., New York(1999)に記載されている方法等)またはそれに準じた方法により行うことができる。
製造法1
 式(1)で表される化合物のうち、式(1-7)で表される化合物は、a、bの部分でそれぞれの部分構造を結合させることにより製造される。
Figure JPOXMLDOC01-appb-C000020
[式中、W、R、R、環Q、環Qは、前記〔1〕と同義である。]
 a、bの部分の結合形成方法は、下記のように例示することができるが、結合形成の順番については適宜変更することができる。
Figure JPOXMLDOC01-appb-C000021
[式中、W、R、R、環Q、環Qは、前記〔1〕と同義であり;R101はC1-6アルキルを表し;Lは脱離基(例えば、ヨウ素原子、臭素原子、塩素原子、置換スルホニルオキシ(例えば、メタンスルホニルオキシ、p-トルエンスルホニルオキシ等)等)を表す。]
 化合物(1-1)は、市販品もしくは既知の合成法(例えば、新編ヘテロ環化合物応用編(講談社サイエンティフィク編))により製造したものを用いることができる。
工程1-1:化合物(1-2)の製造工程
 化合物(1-2)は、化合物(1-1)を公知の方法(例えば、Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.)、Comprehensive Organic Transformation, R. C. ラロック著等、VCH publisher Inc., 1989等)と同様の方法で加水分解することにより製造される。
工程1-2:化合物(1-5)の製造工程
 化合物(1-5)は、不活性溶媒中、塩基存在下、化合物(1-3)と化合物(1-4)とを用いたアルキル化反応によって製造される。
 塩基の具体例としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン等の有機塩基;炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸水素カリウム、炭酸水素ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸ナトリウム、水酸化カリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基;ナトリウムメトキシド、カリウム tert-ブトキシド等の金属アルコキシド等が挙げられる。
 不活性溶媒の具体例としては、例えば、クロロホルム、ジクロロメタン等のハロゲン化炭化水素;トルエン等の芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等のエーテル系溶媒;アセトニトリル、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、ジメチルスルホキシド等の非プロトン性極性溶媒;ピリジン等の塩基性溶媒;およびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常0℃から150℃、好ましくは20℃から100℃の範囲から選択される。反応時間は、通常30分から48時間、好ましくは30分から10時間である。
工程1-3:化合物(1-6)の製造工程
 化合物(1-6)は、化合物(1-5)のニトロ基を還元することにより製造される。例えば、亜鉛、鉄、スズなどの金属または塩化スズ(II)などの金属塩を用いた酸性条件下での還元;亜二チオン酸ナトリウム(Na)などの硫化物を用いた還元;水素雰囲気下でのパラジウム/炭素、ラネーニッケル、酸化白金/炭素、ロジウム/炭素などの金属触媒を用いた接触還元などが適用される。
 金属または金属塩を用いた還元反応では、金属または金属塩の使用量は化合物(1-5)1モルに対して、通常約1モル~100モル、好ましくは約10モル~30モルである。また、酸の使用量は、化合物(1-5)1モルに対して、通常約1モル~100モル、好ましくは約10モル~30モルである。還元反応は、通常、反応に悪影響を及ぼさない溶媒(例、エタノール)中で行われる。反応温度は、特に限定されないが、通常0℃から100℃の範囲から選択される。反応時間は、通常30分間から8時間である。
 接触還元反応では、金属触媒の使用量は化合物(1-5)に対して、通常0.1重量%から1000重量%、好ましくは1重量%から100重量%である。本反応は、例えば、メタノールなどのアルコール類;テトラヒドロフランなどのエーテル類;酢酸エチルなどのエステル類中で行うことができる。水素圧は通常1気圧から100気圧、好ましくは1気圧から5気圧である。反応温度は、特に限定されないが、通常0℃から120℃、好ましくは20℃から80℃の範囲から選択される。反応時間は、通常30分から72時間、好ましくは1時間から48時間である。
 また本反応は、必要に応じて酸触媒の存在下で行うことができる。酸触媒としては、例えば、ギ酸、酢酸、トリフルオロ酢酸等の有機酸、硫酸、塩酸、臭化水素酸等の無機酸などが用いられる。酸の使用量は、化合物(1-5)1モルに対し、0.1モル以上である。
工程1-4:化合物(1-7)の製造工程
 化合物(1-7)は、不活性溶媒中、化合物(1-2)と化合物(1-6)とを縮合剤の存在下で反応させることにより製造される。
 当該反応はさらに塩基の存在下で行ってもよい。反応温度は、特に限定されないが、通常約-20℃から用いた溶媒の沸点までの範囲から選択される。反応時間は、反応温度、使用される縮合剤、原料、および溶媒等の条件によって異なるが、通常10分から48時間である。
 縮合剤の具体例としては、例えば、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPC)、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド(WSC)、ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウム・ヘキサフルオロリン酸塩(BOP)、ジフェニルホスホリルアジド(DPPA)、N,N-カルボニルジミイダゾール(CDI)、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HBTU)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HATU)、クロロリン酸ジフェニル等が挙げられる。必要に応じて、例えば、N-ヒドロキシスクシンイミド(HOSu)、1-ヒドロキシベンゾトリアゾール(HOBt)、3-ヒドロキシ-4-オキソ-3,4-ジヒドロ-1,2,3-ベンゾトリアジン(HOOBt)等の添加剤を加えて当該反応を行うことができる。
 塩基の具体例としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン等の有機塩基;炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸水素カリウム、炭酸水素ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸ナトリウム、水酸化カリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基;ナトリウムメトキシド、カリウム tert-ブトキシド等の金属アルコキシド等が挙げられる。
 不活性溶媒の具体例としては、例えば、クロロホルム、ジクロロメタン等のハロゲン化炭化水素;トルエン等の芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等のエーテル系溶媒;アセトニトリル、アセトン、メチルエチルケトン、ジメチルホルムアミド、N-メチル-2-ピロリジノン、ジメチルスルホキシド等の非プロトン性極性溶媒;ピリジン等の塩基性溶媒;およびこれらの混合溶媒等が挙げられる。
 化合物(1-7)は、不活性溶媒中、化合物(1-6)と化合物(1-2)から誘導される酸ハロゲン化物または酸無水物等とを塩基の存在下で反応させることによっても製造される。
製造法2
 式(1)で表される化合物のうち、式(2-4)で表される化合物は、例えば、下記に示される方法によって製造される。
Figure JPOXMLDOC01-appb-C000022
[式中、W、R、R、環Q、環Qは、前記〔1〕と同義であり;R101はC1-6アルキルを表す。]
 化合物(2-1)は、市販品もしくは既知の合成法(例えば、国際公開第2014/125444号等)により製造したものを用いることができる。
工程2-1:化合物(2-2)の製造工程
 化合物(2-2)は、化合物(2-1)を公知の方法(例えば、Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.)、Comprehensive Organic Transformation, R. C. ラロック著等、VCH publisher Inc., 1989等)と同様の方法で加水分解することにより製造される。
工程2-2:化合物(2-4)の製造工程
 化合物(2-4)は、化合物(2-2)と化合物(2-3)より、工程1-4に記載の方法に準じて製造される。
製造法3
 式(1)で表される化合物のうち、式(1-7)で表される化合物は、例えば、下記に示される方法によって製造される。
Figure JPOXMLDOC01-appb-C000023
[式中、W、R、R、環Q、環Qは、前記〔1〕と同義であり;R102は保護基を表し;Lは脱離基(例えば、ヨウ素原子、臭素原子、塩素原子、置換スルホニルオキシ(例えば、メタンスルホニルオキシ、p-トルエンスルホニルオキシ等)等)を表す。]
工程3-1:化合物(3-1)の製造工程
 化合物(3-1)は、不活性溶媒中、化合物(1-3)のイミダゾール窒素原子に保護基を導入することにより製造される。保護基としては、例えば、2-(トリメチルシリル)エトキシメチル、ベンジルオキシカルボニル、tert-ブトキシカルボニル、アセチル、ベンジル等を挙げることができる。
 例えば、2-(トリメチルシリル)エトキシメチル基を導入する反応では、不活性溶媒中、塩基存在下、2-(トリメチルシリル)エトキシメチルクロリドを反応させることにより製造される。
 塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、カリウム-tert-ブトキシド、水素化ナトリウム、ナトリウムビス(トリメチルシリル)アミド、リチウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、リチウムジイソプロピルアミド等が挙げられる。
 不活性溶媒としては、例えば、DMF、THF、アセトニトリルおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常0℃から150℃、好ましくは0℃から100℃の範囲から選択される。反応時間は、通常10分から24時間、好ましくは20分から6時間である。
工程3-2:化合物(3-2)の製造工程
 化合物(3-2)は、化合物(3-1)より、工程1-3に記載の方法に準じて製造される。
工程3-3:化合物(3-3)の製造工程
 化合物(3-3)は、化合物(3-2)と化合物(1-2)より、工程1-4に記載の方法に準じて製造される。
工程3-4:化合物(3-4)の製造工程
 化合物(3-4)は、不活性溶媒中、化合物(3-3)のイミダゾール窒素原子の保護基を脱保護することにより製造される。
 例えば、2-(トリメチルシリル)エトキシメチル基を脱保護する反応では、不活性溶媒中、酸またはフッ素試薬を作用させることにより製造される。
 酸としては、例えば、TFA、ギ酸、塩酸、硫酸、p-トルエンスルホン酸、メタンスルホン酸、(±)10-カンファ―スルホン酸等が挙げられる。
 フッ素試薬としては、例えば、フッ化水素酸、テトラブチルアンモニウムフルオリド等が挙げられる。
 用いられる溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、1,4-ジオキサン、THF、トルエン、酢酸エチル、メタノール、エタノール、2-プロパノールおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常0℃から150℃、好ましくは0℃から50℃の範囲から選択される。反応時間は、通常5分間~24時間、好ましくは1時間~9時間である。
工程3-5:化合物(1-7)の製造工程
 化合物(1-7)は、化合物(3-4)と化合物(1-4)より、工程1-2に記載の方法に準じて製造される。
製造法4
 式(1)で表される化合物のうち、式(4-4)で表される化合物は、例えば、下記に示される方法によって製造される。
Figure JPOXMLDOC01-appb-C000024
[式中、W、R、R、環Q、環Qは、前記〔1〕と同義であり;R101はC1-6アルキルを表し;Xはハロゲン原子を表す。]
工程4-1:化合物(4-2)の製造工程
 化合物(4-2)は、不活性溶媒中、パラジウム触媒および塩基の存在下、化合物(4-1)とアクリル酸エステルとを反応させることにより製造される。
 パラジウム触媒の具体例としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)、ジクロロジ(トリ(o-トリルホスフィン))パラジウム、ビス(ジベンジリデンアセトン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)、[1、1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロライド等が挙げられる。
 塩基の具体例としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、リン酸カリウム、水酸化カリウム、水酸化ナトリウム等の無機塩基やトリエチルアミン、ジイソプロピルエチルアミン等が挙げられる。
 不活性溶媒としては、例えば、THF、アセトニトリル、プロピオニトリル、トルエン、1,2-ジメトキシエタン、1,4-ジオキサン、DMF、水およびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常50℃から150℃、好ましくは80℃から120℃の範囲から選択され、マイクロ波照射下での反応も実施可能である。反応時間は、通常1時間から24時間、好ましくは2時間から12時間である。
工程4-2:化合物(4-3)の製造工程
 化合物(4-3)は、化合物(4-2)を公知の方法(例えば、Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.)、Comprehensive Organic Transformation, R. C. ラロック著等、VCH publisher Inc., 1989等)と同様の方法で加水分解することにより製造される。
工程4-3:化合物(4-4)の製造工程
 化合物(4-4)は、化合物(4-3)と化合物(1-6)より、工程1-4に記載の方法に準じて製造される。
製造法5
 式(1)で表される化合物のうち、式(5-5)で表される化合物は、例えば、下記に示される方法によって製造される。
Figure JPOXMLDOC01-appb-C000025
[式中、環Qは、前記〔1〕と同義であり;Aはボロン酸またはボロン酸エステルを表し;R101は、C1-6アルキルを表し;RおよびRは、同一または異なって、水素原子またはメチルを表し;Xはハロゲン原子を表し、Lは脱離基(例えば、ヨウ素原子、臭素原子、塩素原子、置換スルホニル(例えば、メタンスルホニル、p-トルエンスルホニル等)等)を表す。]
工程5-1:化合物(5-3)の製造工程
 化合物(5-3)は、不活性溶媒中、パラジウム触媒および塩基の存在下、化合物(5-1)と化合物(5-2)とを反応させることにより製造される。
 パラジウム触媒の具体例としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)、ビス(ジベンジリデンアセトン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)、[1、1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロライド等が挙げられる。
 塩基の具体例としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、リン酸カリウム、水酸化カリウム、水酸化ナトリウム等の無機塩基が挙げられる。
 不活性溶媒としては、例えば、THF、トルエン、1,2-ジメトキシエタン、1,4-ジオキサン、DMF、水およびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常50℃から150℃、好ましくは80℃から120℃の範囲から選択され、マイクロ波照射下での反応も実施可能である。反応時間は、通常1時間から24時間、好ましくは2時間から12時間である。
工程5-2:化合物(5-4)の製造工程
 化合物(5-4)は、化合物(5-3)と四酸化オスミウム溶液(固定化触媒、マイクロカプセル化含む)またはカリウム オスメート(IV)二水和物とを、過ヨウ素酸ナトリウム共存下で反応させることにより製造される。
 用いられる溶媒としては、例えば、アセトン、1,4-ジオキサン、THF、tert-ブタノール、水およびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常0℃から100℃、好ましくは25℃から50℃での範囲から選択される。反応時間は、通常1時間から72時間、好ましくは1時間から24時間である。
 また、化合物(5-4)は、ジクロロメタン、酢酸エチル、メタノール等の溶媒中、オゾンを含む酸素気流を通じた後、ジメチルスルフィド等の還元剤を反応させることによっても製造される。反応温度は、特に限定されないが、通常-78℃から室温の範囲から選択される。反応時間は、1時間から72時間、好ましくは6時間から24時間である。
工程5-3:化合物(5-5)の製造工程
 化合物(5-5)は、化合物(5-4)にヒドリド還元剤または有機金属試薬を作用させることによって製造される。
 ヒドリド還元剤の具体例としては、例えば、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム等が挙げられる。
 ヒドリド還元剤との反応に用いられる溶媒としては、メタノール、エタノール、ジクロロメタン、トルエンおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常-78℃から50℃、好ましくは0℃から25℃の範囲から選択される。反応時間は、通常5分から12時間、好ましくは30分から6時間である。
 有機金属試薬の具体例としては、メチルマグネシウムブロミド、メチルマグネシウムヨージド、メチルリチウム等が挙げられる。
 有機金属試薬との反応に用いられる溶媒としては、THF、ジエチルエーテルおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常-78℃から25℃、好ましくは-40℃から0℃の範囲から選択される。反応時間は、通常5分から12時間、好ましくは30分から6時間である。
製造法6
 式(6-5)で表される化合物は、例えば、下記に示される方法によって製造される。
Figure JPOXMLDOC01-appb-C000026
[式中、環Qは、前記〔1〕と同義であり;R101はC1-6アルキルを表し;Xはハロゲン原子を表し;Yは、臭素原子またはヨウ素原子を表す]
工程6-1:化合物(6-2)の製造工程
 化合物(6-2)は、不活性溶媒中、化合物(6-1)にラジカルイニシエーター存在下、ブロモ化剤を反応させることにより製造される。
 ラジカルイニシエーターの具体例としては、例えば、アゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル(BPO)等が挙げられる。
 ブロモ化剤の具体例としては、例えば、N-ブロモスクシンイミド、臭素等が挙げられる。
 不活性溶媒としては、例えば、四塩化炭素、クロロベンゼンおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常50℃から150℃、好ましくは80℃から120℃の範囲から選択される。反応時間は、通常3時間から48時間、好ましくは4時間から12時間である。
工程6-2:化合物(6-4)の製造工程
 化合物(6-4)は、不活性溶媒中、化合物(6-2)に硝酸銀を作用させることにより製造される。
 不活性溶媒の具体例としては、例えば含水条件下、アセトニトリル、THF、1,4-ジオキサンおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常50℃から150℃、好ましくは80℃から120℃の範囲から選択される。反応時間は、通常3時間から48時間、好ましくは4時間から12時間である。
工程6-3:化合物(6-4)の製造工程
 化合物(6-4)は、化合物(6-3)に、有機金属試薬を反応させた後、ホルミル化剤で処理することによっても製造される。
 有機金属試薬としては、例えば、イソプロピルマグネシウムクロリド-塩化リチウム錯体、イソプロピルマグネシウムクロリド、n-ブチルリチウム等が挙げられる。
 用いられる溶媒としては、例えば、THF、ジエチルエーテル、トルエンおよびこれらの混合溶媒等が挙げられる。
 ホルミル化剤としては、例えば、DMF、N-ホルミルモルホリン等が挙げられる。
 反応温度は、通常-78℃から50℃、好ましくは-30℃から25℃の範囲から選択される。反応時間は、通常30分間から24時間、好ましくは1時間から6時間である。
工程6-4:化合物(6-5)の製造工程
 化合物(6-5)は、不活性溶媒中、化合物(6-4)に脱酸素的フッ素化剤を作用させることにより製造される。
 脱酸素的フッ素化剤の具体例としては、例えば、ジエチルアミノサルファートリフルオリド(DAST)、ビス(2-メトキシエチル)アミノサルファートリフルオリド(Deoxo-Fluor(登録商標))、XtalFluor-E(登録商標)、XtalFluor-M(登録商標)、4-tert-ブチル-2,6-ジメチルフェニルサルファートリフルオリド(Fluolead(登録商標))等が挙げられる。必要に応じて、プロモーターとして、ジアザビシクロウンデセン(DBU)、トリエチルアミン三フッ化水素酸塩、トリエチルアミン二フッ化水素酸塩等を用いることが可能である。
 不活性溶媒の具体例としては、例えば、ジクロロメタン、1,2-ジクロロエタン、トルエン、THFおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常-20℃から50℃、好ましくは0℃から25℃の範囲から選択される。反応時間は、通常10分から12時間、好ましくは30分から3時間である。
 また、化合物(6-5)は、化合物(6-4)に四フッ化硫黄を反応させることによっても製造される。
製造法7
 式(1)で表される化合物のうち、式(7-3)で表される化合物は、例えば、下記に示される方法によって製造される。
Figure JPOXMLDOC01-appb-C000027
[式中、W、R、R、環Q、環Qは、前記〔1〕と同義であり;R101は、C1-6アルキルを表し;RおよびRは、同一または異なって、水素原子、重水素原子またはメチルを表す]
工程7-1:化合物(7-2)の製造工程
 化合物(7-2)は、化合物(7-1)と化合物(1-6)より、工程1-4に記載の方法に準じて製造される。
工程7-2:化合物(7-3)の製造工程
 化合物(7-3)は、不活性溶媒中、化合物(7-2)にヒドリド還元剤または有機金属試薬を作用させることによって製造される。
 ヒドリド還元剤の具体例としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化アルミニウムリチウム、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化ジイソブチルアルミニウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、重水素化ホウ素リチウム、重水素化アルミニウムリチウム等が挙げられる。用いられる溶媒としては、例えば、メタノール、エタノール、ジクロロメタン、トルエンおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常-78℃から25℃、好ましくは0℃から25℃の範囲から選択される。反応時間は、通常5分から12時間、好ましくは30分から6時間である。
 有機金属試薬の具体例としては、メチルマグネシウムブロミド、メチルマグネシウムヨージド、メチルリチウム等があげられる。
 有機金属試薬との反応に用いられる溶媒としては、THF、ジエチルエーテルおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常-78℃から50℃、好ましくは0℃から25℃の範囲から選択される。反応時間は、通常5分から12時間、好ましくは30分から6時間である。
製造法8
 式(1)で表される化合物のうち、式(8-5)で表される化合物は、例えば、下記に示される方法によって製造される。
Figure JPOXMLDOC01-appb-C000028
[式中、W、R、R、環Q、および環Qは、前記〔1〕と同義であり;R101は、C1-6アルキルを表し;RおよびRは、同一または異なって、水素原子、重水素原子またはメチルを表す]
工程8-1:化合物(8-2)の製造工程
 化合物(8-2)は、不活性溶媒中、化合物(8-1)に塩基存在下、ハロ酢酸エステルを反応させることにより製造される。
 ハロ酢酸エステルの具体例としては、例えば、クロロ酢酸-tert-ブチル、ブロモ酢酸-tert-ブチル、ヨード酢酸-tert-ブチル等が挙げられる。
 塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、カリウム-tert-ブトキシド、水素化ナトリウム、ナトリウムビス(トリメチルシリル)アミド、リチウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、リチウムジイソプロピルアミド等が挙げられる。
 不活性溶媒としては、例えば、DMF、THF、アセトニトリルおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常25℃から150℃、好ましくは70℃から100℃の範囲から選択される。反応時間は、通常10分から12時間、好ましくは20分から6時間である。
工程8-2:化合物(8-3)の製造工程
 化合物(8-3)は、酸性条件下、化合物(8-2)のtert-ブチルエステル基を脱保護することにより製造される。
 脱保護に用いられる酸としては、例えば、塩酸、硫酸、HBr、HI、TFA等が挙げられる。
 用いられる溶媒としては、例えば、メタノール、エタノール、ジクロロメタン、1,2-ジクロロエタン、THF、1,4-ジオキサン、酢酸エチルおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常0℃から100℃、好ましくは25℃から50℃の範囲から選択される。反応時間は、通常1時間から24時間、好ましくは2時間から12時間である。
工程8-3:化合物(8-4)の製造工程
 化合物(8-4)は、化合物(8-3)と化合物(1-6)より、工程1-4に記載の方法に準じて製造される。
工程8-4:化合物(8-5)の製造工程
 化合物(8-5)は、化合物(8-4)より、工程7-2に記載の方法に準じて製造される。
製造法9
 式(9-4)で表される化合物は、例えば、下記に示される方法によって製造される。
Figure JPOXMLDOC01-appb-C000029
[式中、R、p、および環Qは、前記〔6〕と同義であり;R101はC1-6アルキルを表し;R103は、Cbz、Boc、ベンジル、4-メトキシベンジル、またはFmoc等を表す。]
 化合物(9-1)は、市販品を用いることができる。
工程9-1:化合物(9-2)の製造工程
 化合物(9-2)は、不活性溶媒中、化合物(9-1)にヒドリド還元剤を作用させることにより製造される。
 ヒドリド還元剤の具体例としては、例えば、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、ボラン、水素化アルミニウムリチウム等が挙げられる。
 ヒドリド還元剤との反応に用いられる溶媒としては、メタノール、エタノール、ジクロロメタン、トルエン、テトラヒドロフランおよびこれらの混合溶媒等が挙げられる。
 反応温度は、特に限定されないが、通常-78℃から100℃、好ましくは0℃から50℃の範囲から選択される。反応時間は、通常5分から12時間、好ましくは30分から6時間である。
工程9-2:化合物(9-3)の製造工程
 化合物(9-3)は、保護基を導入する試薬存在下、化合物(9-2)のオレフィンを還元することにより製造される。例えば、BocO存在下、水素雰囲気下で、パラジウム/炭素、ラネーニッケル、酸化白金/炭素、ロジウム/炭素等の金属触媒を用いた接触還元などが適用される。
 接触還元反応では、金属触媒の使用量は化合物(9-2)に対して、通常0.1重量%から1000重量%、好ましくは1重量%から100重量%である。本反応は、例えば、メタノールなどのアルコール類;テトラヒドロフランなどのエーテル類;酢酸エチルなどのエステル類中で行うことができる。水素圧は通常1気圧から100気圧、好ましくは1気圧から5気圧である。反応温度は、特に限定されないが、通常0℃から120℃、好ましくは20℃から80℃の範囲から選択される。反応時間は、通常30分から72時間、好ましくは1時間から48時間である。
 なお、R103が、ベンジル基、4-メトキシベンジル基等である場合は、化合物(9-1)のピリジニウム塩中間体を経て、直接、化合物(9-3)を製造することもできる。例えば、化合物(9-1)とベンジルブロミド等を反応させて合成できる化合物(9-1)のピリジニウム塩を還元することにより製造される。還元反応としては、ヒドリド還元剤を用いた還元、水素雰囲気下でパラジウム/炭素、ラネーニッケル、酸化白金/炭素、ロジウム/炭素等の金属触媒を用いた接触還元などが適用される。
工程9-3:化合物(9-4)の製造工程
 化合物(9-4)は、化合物(9-3)を公知の方法(例えば、Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.)、Comprehensive Organic Transformation, R. C. ラロック著等、VCH publisher Inc., 1989等)と同様の方法で加水分解することにより製造される。
製造法10
 式(10-5)で表される化合物は、例えば下記に示す方法により製造される。
Figure JPOXMLDOC01-appb-C000030
[式中、R、n、m、p、および環Qは、前記〔6〕と同義であり;R101はC1-6アルキルを表し;XはOまたはNR103を表し;R103は、Cbz、Boc、ベンジル、4-メトキシベンジル、またはFmoc等を表し;Lは脱離基(例えば、ヨウ素原子、臭素原子、塩素原子、置換スルホニル(例えば、メタンスルホニル、p-トルエンスルホニル等)等)を表す。]
 化合物(10-1)は、市販品もしくは既知の合成法(例えば、国際公開第2009/056556号、国際公開第2006/065215号等)により製造したものを用いることができる。
工程10-1:化合物(10-3)の製造工程
 化合物(10-3)は、不活性溶媒中、一酸化炭素雰囲気下、パラジウム触媒、リン配位子及び式(10-2)で表されるアルコール存在下、化合物(10-1)にエステル基を導入することにより製造される。
 一酸化炭素の圧力は反応温度、原料及び溶媒などの条件によって適宜選択されるが、通常1気圧から100気圧、好ましくは1気圧から5気圧の範囲から選択される。反応温度は通常約-20℃から用いた溶媒の沸点までの範囲であり、好ましくは室温から用いた溶媒の沸点までの範囲である。反応時間は、使用される試薬、反応温度、原料、および溶媒等の条件によって異なるが、通常10分から48時間である。
 パラジウム触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジ-tert-ブチルホスフィンパラジウム等が挙げられる。
 不活性溶媒としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、1,4-ジオキサンおよびこれらの混合溶媒等が挙げられる。
 また、必要に応じて、N,N-ジイソプロピルエチルアミン、トリエチルアミン等の有機塩基を添加してもよい。
工程10-2:化合物(10-5)の製造工程
 化合物(2-5)は、化合物(2-3)を公知の方法(例えば、Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.)、Comprehensive Organic Transformation, R. C. ラロック著等、VCH publisher Inc., 1989等)と同様の方法で加水分解することにより製造される。
工程10-3:化合物(10-4)の製造工程
 化合物(10-4)は、化合物(10-1)を不活性溶媒中、パラジウム触媒、リン配位子及びシアノ化剤存在下、シアノ化することにより製造される。
 反応温度は通常約-20℃から用いた溶媒の沸点までの範囲であり、好ましくは室温から用いた溶媒の沸点までの範囲である。また、マイクロウエーブ反応装置を用いて、反応を行うこともできる。反応時間は、反応温度、使用される試薬、原料、および溶媒等の条件によって異なるが、通常10分から48時間である。
 シアノ化剤としては、例えば、シアン化ナトリウム、シアン化カリウム、シアン化亜鉛、シアン化銅(I)などが挙げられ、好ましくはシアン化亜鉛が挙げられる。
 パラジウム触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジ-tert-ブチルホスフィンパラジウム等が挙げられる。
 不活性溶媒としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、1,4-ジオキサンおよびこれらの混合溶媒等が挙げられる。
工程10-4:化合物(10-5)の製造工程
 化合物(10-5)は、化合物(10-4)を適切な溶媒中、塩基存在下、シアノ基を加水分解することで得られる。
 反応温度は通常約-20℃から用いた溶媒の沸点までの範囲であり、好ましくは室温から用いた溶媒の沸点までの範囲である。反応時間は、反応温度、原料、および溶媒等の条件によって異なるが、通常10分から48時間である。
 塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等が挙げられる。
 用いられる溶媒としては、例えば、メタノール、エタノール、2-プロパノール、アセトン、テトラヒドロフラン、1,4-ジオキサン、水およびこれらの混合溶媒等が挙げられる。
 上記各製造法における中間体および目的化合物は、有機合成化学で常用される精製法、例えば、中和、ろ過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィー等に付して単離精製することができる。また、各中間体においては、特に精製することなく次の反応に供することも可能である。
 光学活性な出発原料や中間体を用いることにより、あるいは最終品のラセミ体を光学分割することにより、本発明化合物の光学活性体を製造することができる。光学分割の方法としては、光学活性カラムを用いた物理的な分離方法、分別結晶化法等の化学的な分離方法が挙げられる。本発明化合物のジアステレオマーは、例えば、分別結晶化法によって製造される。
 式(1)で表される化合物の塩は、例えば、水、メタノール、エタノール、アセトン等の溶媒中で、式(1)で表される化合物と、有機酸または無機酸とを混合することにより製造される。
 本発明における人工多能性幹細胞(iPS細胞)とは、体細胞を公知の方法等により初期化することにより、多能性を誘導した細胞である(Cell 126, p663-676, 2006、Cell 131, p861-872, 2007、Science 318, p1917-1920, 2007、Nat Biotechnol 26, p101-106, 2008)。具体的には、線維芽細胞や末梢血単核球等の分化した体細胞をOct3/4、Klf4、Klf1、Klf2、Klf5、Sox2、Sox1、Sox3、Sox15、Sox17、Sox18、c-Myc、N-Myc、L-Myc、TERT、SV40 Large T antigen、Glis1、Nanog、Sall4、lin28、Esrrb等を含む初期化遺伝子群から選ばれる複数の遺伝子の組合せのいずれかにより初期化された細胞が挙げられる。初期化因子は少なくとも1つ、2つもしくは3つ含む組合せがよく、好ましくは4つ含む組合せである。好ましい初期化因子の組み合わせとしては、(1)Oct3/4、Sox2、Klf4、及びMyc(c-Myc又はL-Myc)、(2)Oct3/4、Sox2、Klf4、Lin28及びL-Mycを挙げることができる。
 これらの初期化因子は、タンパク質の形態で、例えばリポフェクション、細胞膜透過ペプチドとの融合、マイクロインジェクション等の方法で細胞に導入することも可能であるし、DNAの形態で、例えばリポフェクション、リポソーム、マイクロインジェクション、ウイルス、プラスミドベクター、人工染色体ベクター等の方法で細胞に導入することも可能である。ウイルスベクターとしてはレンチウイルスベクター、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクター等が例示される。プラスミドベクターとしては、一般的に利用可能な哺乳動物細胞用プラスミドを用いることができ、初期化因子の発現効率を高めるためにプロモーター、エンハンサー、リボゾーム結合配列、ターミネーター等の制御配列が一般的に組み込まれ、プラスミド自己複製効率を上げるためにEBNA-1等の因子が組み込まれることもある。また、遺伝子発現による直接初期化で製造する方法以外に、化合物の添加などにより体細胞から人工多能性幹細胞を誘導することもできる(Science 341, p651-654, 2013、WO 2010/068955)。
 また、株化された人工多能性幹細胞を入手する事も可能であり、例えば、京都大学iPS細胞研究所(CiRA)で樹立されたiPS細胞株が、京都大学及びiPSポータル株式会社より入手可能である。
 人工多能性幹細胞を製造する際の出発材料となる体細胞としては、生殖細胞以外のいかなる細胞であってもよく、例えば、線維芽細胞、上皮細胞、粘膜上皮細胞、外分泌腺上皮細胞、ホルモン分泌細胞、肺胞細胞、神経細胞、色素細胞、血球系細胞(例えば、末梢血単核球(PBMC)やT細胞など)、間葉系幹細胞、肝臓細胞、膵臓細胞、腸上皮細胞、平滑筋細胞、およびこれらの前駆細胞等が挙げられる。組織の分化の程度や採取する動物の齢に制限はなく、全て本発明における体細胞の材料として使用することができる。
 本発明に用いる人工多能性幹細胞は、哺乳動物(例、ヒト、サル、ブタ、ウサギ、ラット、マウス)の人工多能性幹細胞であり、好ましくはげっ歯類(例、マウス、ラット)又は霊長類(例、ヒト、サル)の人工多能性幹細胞であり、より好ましくはヒト人工多能性幹細胞(ヒトiPS細胞)である。また、本発明に用いられる人工多能性幹細胞は、ゲノム編集などの手法により遺伝子改変された人工多能性幹細胞も含む。
 再生医療製品は多くの場合細胞塊、具体的には、多数の細胞層が重なった厚みのある細胞積層体、あるいは多数の細胞から成る細胞凝集塊であることから、除去すべきiPS細胞が細胞塊内部に存在した場合、細胞塊内部への浸透性が低い分子量の大きい物質では、細胞塊内部のiPS細胞に到達できず、iPS細胞除去効果が極めて悪くなると考えられる。
 このような状況から、細胞塊内部への浸透性の高い低分子化合物であり、かつ低濃度でiPS細胞に対して細胞傷害性を示す化合物を用いて、細胞塊中に存在する未分化状態のiPS細胞を除去する方法が切望されている。
 一般に、幹細胞とは自己複製能と分化能を有する細胞を指す。がん幹細胞は、その特性の一つとして自己複製能がある(Oncogene 2004, 23, 7274.)。細胞の自己複製能の測定法として確立され信頼できる手法として、血清非存在下、非接着状態でのがん細胞スフィア形成能測定が挙げられる(Cancer Res. 2005, 65, 5506.)。また、iPS細胞にも自己複製能があることは広く知られている。スフィア形成能は、自己複製能を反映するものであり、幹細胞の重要な表現型の一つと考えられることから、スフィア形成能を抑制することは、自己複製能の抑制、さらにはがん幹細胞やiPS細胞の増殖抑制につながるものと期待される。また、iPS細胞の増殖抑制により、有用な細胞の調製にもつながるものと期待される。
 式(1)で表される化合物またはその塩は、スフィア形成能抑制作用、詳しくはがん幹細胞スフィア形成能抑制作用を示し、iPS細胞の増殖抑制および細胞死を誘導することから、iPS細胞由来細胞集団からiPS細胞を効率的に除去することができる。さらに、本発明化合物は低分子化合物であり、細胞塊内部への浸透性が高く、これまで技術的に困難であったiPS細胞を材料として作製した細胞塊の内部に存在する未分化状態のiPS細胞の除去を効率的に行うことができる。
 本発明における細胞塊としては、単層の細胞を2層以上積み重ねる、あるいは単層細胞の上に新たに細胞層を形成させて作製する細胞積層体、細胞を凝集させて作製する細胞凝集体、3Dバイオプリンターなどのデバイスを用いて細胞を立体的に積層させた細胞集合体が挙げられる。これらの細胞塊においては、細胞同士が互いに接着することで培養足場を提供し、構造を保持しているが、細胞塊中にハイドロゲルなどの足場器材が含有された状態であってもよい。ハイドロゲルとは水を大量に含むことができる物質であり、酸素や水・栄養素などの生存に必要な物質と老廃物を容易に拡散移動させることができる。通常は生体適合性の物質が用いられ、例えばゼラチンハイドロゲルなどが挙げられる。
 本発明の適用対象となるiPS細胞由来細胞集団は、再生医療等製品を含む細胞医薬品の有効成分又はその製造中間体となる、iPS細胞を分化誘導してできる細胞集団であり、例えば、コロニーを含む平面培養細胞、および上記で定義した細胞塊などが挙げられる。
 人工多能性幹細胞から分化誘導する細胞としては、髪、眼(網膜、角膜)、神経組織(脳、脊髄、末梢神経)、心臓、骨(軟骨)、肺、腎臓、膵臓、腸管、血管、血液、筋肉、半月板、アキレス腱、肝臓、脂肪(乳房)、皮膚、食道などの組織を構成する細胞、又は当該細胞の前駆細胞が挙げられるが、これに限定されるものではない。
 人工多能性幹細胞から各組織への分化誘導方法については、分化誘導が可能な方法であれば何でもよく、例えば試験例にて示した分化誘導した細胞凝集塊、又はこれから誘導される網膜を構成する視細胞を含む細胞凝集塊であれば、WO2016/063985に記載の方法等を用いることができる。
 iPS細胞を分化誘導してできる細胞集団において、多能性を維持する未分化の細胞、具体的には残存するiPS細胞を除去するために、本発明化合物で当該細胞集団を処理する方法としては、細胞もしくは細胞集団に本発明の化合物を接触させればよい。具体的には、化合物を含有する液体(溶液もしくは懸濁液)、または化合物原体を細胞もしくは細胞集団の培養液に加えればよく、一般的には化合物の濃縮液を培養液に添加する方法が用いられる。化合物の濃縮液の溶媒としては、化合物を溶解できるものなら何でもよいが、化合物の物性にかかわらず溶解性が比較的高く、かつ細胞への毒性が低いジメチルスルホキシド(DMSO)やエタノールなどがよく用いられる。添加する化合物の濃度は、0.001μmol/Lから10μmol/Lの範囲であり、好ましい様態において、0.01μmol/Lから1μmol/Lの範囲である。
 本発明化合物と細胞集団を接触させる時間は、細胞が生存可能であれば特に限定はないが通常1時間から72時間の範囲であり、好ましくは24時間から48時間の範囲である。
 本発明化合物と細胞集団を接触させる温度は、細胞が生存可能な温度であれば特に限定はないが、通常4℃から40℃までの範囲であり、好ましくは20℃から37℃の範囲である。
 本発明化合物もしくはその塩と細胞集団を接触させる時に使用する培地は、細胞培養に用いられる一般的な培地あるいは緩衝液であれば何でもよく、好ましくは、細胞の分化誘導に用いた培地が用いられる。
 本発明化合物の評価は、アポトーシスのマーカーであるCleaved Caspase-3の免疫染色を実施し、その陽性細胞の定量により実施した。本発明化合物の暴露により、未分化細胞に細胞死が誘導された場合、Cleaved Casplase-3の陽性細胞の割合は増加すると考えられる。
 以下に本発明を、参考例、実施例および試験例により、さらに具体的に説明するが、本発明はもとよりこれに限定されるものではない。尚、以下の参考例及び実施例において示された化合物名は、必ずしもIUPAC命名法に従うものではない。
 本明細書において、以下の略語を使用することがある。
THF:テトラヒドロフラン
TFA:トリフルオロ酢酸
TBSCl:tert-ブチルジメチルクロロシラン
DAST:三フッ化N,N-ジエチルアミノ硫黄
DMAP:N,N-ジメチルアミノピリジン
DMF:N,N-ジメチルホルムアミド
WSCI・HCl:1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩
HOBt:1-ヒドロキシベンゾトリアゾール
HATU:O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩
Me:メチル
Et:エチル
Ac:アセチル
TBS:tert-ブチルジメチルシリル
Boc:tert-ブトキシカルボニル
THP:テトラヒドロピラニル
 化合物同定のLC/MS分析条件は以下の通りである。参考例または実施例に記載の化合物については、下記に記載のLC/MS分析条件A、B、またはCによって分析を行った。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
参考例1
1-(3-(トリフルオロメチル)ベンジル)-1H-イミダゾール-4-アミン塩酸塩
Figure JPOXMLDOC01-appb-C000034
 4-ニトロイミダゾール(20g)のアセトニトリル(150mL)溶液に炭酸カリウム(26.9g)、ヨウ化カリウム(0.074g)を加えた後、室温にて臭化3-トリフルオロメチルベンジル(42.3g)のアセトニトリル(50mL)溶液を滴下した。80℃にて4時間撹拌した後、室温に冷却し、水を加え、酢酸エチルにて抽出した。有機層を無水硫酸ナトリウムにて乾燥させた後、ろ過、減圧濃縮した。得られた粗生成物(46.1g)の酢酸エチル(500mL)溶液に、ロジウム-炭素(23.1g)を加え、水素雰囲気下室温で撹拌した。20時間後、セライトろ過をした。得られた濾液に4mol/L塩酸-ジオキサン(55.3mL)を加え、室温で撹拌した。析出した固体を濾取して酢酸エチルで洗浄し、表題化合物(22.8g)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 242.1/0.529 
参考例2~6
 対応する原料化合物を用い、参考例1に記載の方法と同様に反応・処理して参考例2~6の化合物を得た。
Figure JPOXMLDOC01-appb-T000035
参考例7-1
2-(2-(5-ブロモ-2-メトキシフェノキシ)エトキシ)テトラヒドロ-2H-ピラン
Figure JPOXMLDOC01-appb-C000036
 5-ブロモ-2-メトキシフェノール(10.0g)のDMF(50mL)溶液に、2-(2-ブロモエトキシ)テトラヒドロ-2H-ピラン(10.8g)、炭酸カリウム(8.86g)を加え、80℃で2.5時間撹拌した。反応混合物に水を加え、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、硫酸マグネシウムで乾燥、ろ過後、減圧濃縮し、表題化合物(15.1g)を得た。
1H-NMR (400 MHz, CDCl3)δ7.12 (1H, d, J = 2.0 Hz), 7.05 (1H, dd, J = 8.4, 2.0 Hz), 6.75 (1H, d, J = 8.4 Hz), 4.72 (1H, t, J = 3.6 Hz), 4.26-4.19 (2H, m), 4.14-4.03 (1H, m), 3.92-3.82 (2H, m), 3.85 (3H, s), 3.57-3.50 (1H, m), 1.90-1.78 (1H, m), 1.78-1.70 (1H, m), 1.68-1.53 (4H, m).
参考例7-2
エチル (E)-3-(4-メトキシ-3-(2-((テトラヒドロ-2H-ピラン-2-イル)オキシ)エトキシ)フェニル)アクリレート
Figure JPOXMLDOC01-appb-C000037
 参考例7-1の化合物(14.0g)のプロピオニトリル(120mL)溶液に、アクリル酸エチル(6.9mL)、N,N-ジイソプロピルエチルアミン(14.7mL)、酢酸パラジウム(0.48g)、トリス(o-トリル)ホスフィン(1.29g)を加え100℃で13時間撹拌した。反応混合物に水を加え、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、硫酸マグネシウムで乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、表題化合物(8.0g)を得た。
1H-NMR (400 MHz, CDCl3)δ7.62 (1H, d, J = 16.0 Hz), 7.19 (1H, d, J = 2.0 Hz), 7.12 (1H, dd, J = 8.4, 2.0 Hz), 6.87 (1H, d, J = 8.4 Hz), 6.31 (1H, d, J = 16.0 Hz), 4.73 (1H, t, J = 3.6 Hz), 4.31-4.22 (4H, m), 4.15-4.08 (1H, m), 3.93-3.86 (5H, m), 3.57-3.51 (1H, m), 1.88-1.81 (1H, m), 1.78-1.71 (1H, m), 1.68-1.53 (4H, m), 1.35 (3H, t, J = 6.8 Hz).
参考例7-3
(E)-3-(4-メトキシ-3-(2-((テトラヒドロ-2H-ピラン-2-イル)オキシ)エトキシ)フェニル)アクリル酸
Figure JPOXMLDOC01-appb-C000038
 参考例7-2の化合物(3.6g)のTHF/メタノール(20mL/20mL)溶液に、2mol/L水酸化ナトリウム水溶液(15mL)を加え60℃で7時間撹拌した。反応混合物に塩酸水溶液を加えpHを5.0にし、酢酸エチルにて抽出した。有機層を、飽和食塩水にて洗浄し、硫酸マグネシウムで乾燥、ろ過後、減圧濃縮し、表題化合物(3.1g)を得た。
1H-NMR (400 MHz, CDCl3)δ7.72 (1H, d, J = 15.6 Hz), 7.23 (1H, d, J = 1.6 Hz), 7.15 (1H, dd, J = 8.4, 2.0 Hz), 6.89 (1H, d, J = 8.4 Hz), 6.33 (1H, d, J = 15.6 Hz), 4.74 (1H, t, J = 3.6 Hz), 4.33-4.25 (2H, m), 4.15-4.07 (1H, m), 3.95-3.86 (5H, m), 3.58-3.53 (1H, m), 1.88-1.81 (1H, m), 1.79-1.71 (1H, m), 1.69-1.51 (4H, m).
参考例8
 対応する原料化合物を用い、参考例7に記載の方法と同様に反応・処理して参考例8の化合物を得た。 
Figure JPOXMLDOC01-appb-T000039
参考例9
(E)-N-(1-(3-クロロベンジル)-1H-イミダゾール-4-イル)-3-(4-メトキシ-3-(2-((テトラヒドロ-2H-ピラン-2-イル)オキシ)エトキシ)フェニル)アクリルアミド
Figure JPOXMLDOC01-appb-C000040
 参考例2の化合物(1.20g)のDMF(30mL)溶液に、参考例7-3の化合物(1.90g)、WSCI・HCl(1.13g)、HOBt(0.80g)、トリエチルアミン(2.2mL)を加え室温で2時間撹拌した。反応混合物に水を加え、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、硫酸マグネシウムで乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)にて精製して表題化合物(1.25g)を得た。
1H-NMR (400 MHz, CDCl3)δ8.84 (1H, s), 7.64 (1H, d, J = 16.0 Hz), 7.48-7.43 (2H, m), 7.35-7.29 (2H, m), 7.23-7.17 (2H, m), 7.14-7.10 (2H, m), 6.87 (1H, d, J = 8.0 Hz), 6.43 (1H, d, J = 16.0 Hz), 5.10 (2H, s), 4.72-4.69 (1H, m), 4.29-4.24 (2H, m), 4.16-4.07 (1H, m), 3.94-3.85 (5H, m), 3.56-3.51 (1H, m), 1.88-1.80 (1H, m), 1.78-1.71 (1H, m), 1.64-1.52 (4H, m).
参考例10~12
 対応する原料化合物を用い、参考例9に記載の方法と同様に反応・処理して参考例10~12の化合物を得た。
Figure JPOXMLDOC01-appb-T000041
参考例13
6-({1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル}カルバモイル)ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000042
 参考例1の化合物および対応する原料化合物を用い、参考例9に記載の方法と同様に反応・処理し表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 404.9/0.901
参考例14-1
メチル 1-(3,4,5-トリフルオロベンジル-1H-イミダゾール-4-カルボキシレート
Figure JPOXMLDOC01-appb-C000043
 メチル 1H-イミダゾール-4-カルボキシレート(14.0g)のアセトニトリル(200mL)溶液に炭酸カリウム(19.9g)、ヨウ化カリウム(0.092g)を加えた後、室温にて3,4,5-トリフルオロベンジルブロミド(14.6mL)を滴下し、70℃にて6時間撹拌した。室温に冷却した後、反応混合物に水を加え、酢酸エチルにて抽出した。有機層を無水硫酸マグネシウムにて乾燥、ろ過後、減圧濃縮した。得られた粗生成物をヘキサン/酢酸エチル(1/2、60mL)で洗浄し、表題化合物(14.0g)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 271.4/0.725
参考例14-2
1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-カルボン酸
Figure JPOXMLDOC01-appb-C000044
 参考例14-1の化合物(4.75g)のメタノール/THF(50mL/50mL)溶液に2mol/L水酸化ナトリウム水溶液(13.2mL)を加え、50℃にて5時間撹拌した。反応混合物を減圧濃縮し、残渣を水に溶解後、塩酸水溶液によってpHを5に調整した。沈殿した固体を濾取し、水、ヘキサンで洗浄後、50℃で減圧乾燥して表題化合物(4.52g)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 257.1/0.513
参考例15
6-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)ピリジン-3-アミン
Figure JPOXMLDOC01-appb-C000045
 (5-アミノピリジン-2-イル)メタノール(135mg)のTHF(15mL)溶液に、トリエチルアミン(0.30mL)、TBSCl(328mg)を加え室温にて6時間撹拌した。減圧下溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)にて精製して表題化合物(99mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 239.2/0.726
参考例16
2-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)キノリン-6-アミン
Figure JPOXMLDOC01-appb-C000046
 参考例15に記載の方法に準じ、(6-アミノキノリン-2-イル)メタノールより表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 289.9/0.836
参考例17
 参考例9に記載の方法に準じ、参考例14-2および対応する原料化合物を用い、参考例17の化合物を得た。
Figure JPOXMLDOC01-appb-T000047
参考例18-1
5-(2-tert-ブトキシ-2-オキソエトキシ)-ピコリン酸メチル
Figure JPOXMLDOC01-appb-C000048
 5-ヒドロキシ-ピコリン酸メチル(200mg)のDMF(5mL)溶液に炭酸カリウム(361mg)、ブロモ酢酸-tert-ブチルを加え、70℃で20分間撹拌した。室温に冷却後、反応混合物に水を加えて酢酸エチルで抽出した。有機層を飽和食塩水にて2回洗浄し、無水硫酸ナトリウムにて乾燥、ろ過後、減圧濃縮して表題化合物(320mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 268.2/0.777
参考例18-2
{[6-(メトキシカルボニル)ピリジン-3-イル]オキシ}酢酸
Figure JPOXMLDOC01-appb-C000049
 参考例18-1の化合物(320mg)のジクロロメタン(4mL)溶液にTFA(2mL)を加え、室温で2時間撹拌した。溶媒を留去して表題化合物(253mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 212.1/0.394
参考例18-3
5-(2-オキソ-2-{[1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-イル]アミノ}エトキシ)-ピコリン酸メチル
Figure JPOXMLDOC01-appb-C000050
 参考例9に記載の方法に準じ、参考例4と参考例18-2の化合物を用い、表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 421.2/0.731
参考例19-1
6-クロロ-5-(ジブロモメチル)-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000051
 6-クロロ-5-メチル-ニコチン酸メチル(467mg)の四塩化炭素(25mL)懸濁液にN-ブロモスクシンイミド(1.34g)、過酸化ベンゾイル(218mg)を加え、100℃にて7.5時間撹拌した。室温に冷却後、反応混合物に飽和チオ硫酸ナトリウム水溶液と水を加え、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、表題化合物(833mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 341.9/1.011
参考例19-2
6-クロロ-5-ホルミル-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000052
 参考例19-1の化合物(2.71g)のアセトニトリル(40mL)/水(20mL)溶液に硝酸銀(6.70g)を加え、100℃にて3時間撹拌した。不溶物をろ過により除去し、溶媒を留去した。残渣に飽和炭酸水素ナトリウム水溶液を加え、pHを8に調整した後、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥、ろ過後、減圧濃縮し、表題化合物(0.84g)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 200.0/0.671
参考例19-3
6-クロロ-5-(ジフルオロメチル)-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000053
 参考例19-2の化合物(0.84g)のジクロロメタン(20mL)溶液に氷冷下、DAST(1.11mL)を加え、氷冷下にて30分間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加えてpHを8に調整し、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、表題化合物(0.45g)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 222.0/0.828
参考例19-4
5-(ジフルオロメチル)-6-(エテニル)-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000054
 参考例19-3の化合物(450mg)の1,2-ジメトキシエタン(15mL)/水(1.5mL)混合液に、ビニルボロン酸ピナコールエステル(0.521mL)、テトラキス(トリフェニルホスフィン)パラジウム(235mg)、炭酸カリウム(702mg)を加え、100℃で3.5時間撹拌した。反応混合物を室温に冷却後、水を加え、クロロホルムで抽出した。有機層を飽和食塩水にて洗浄し、硫酸ナトリウムで乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、表題化合物(240mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 214.1/0.842
参考例19-5
5-(ジフルオロメチル)-6-(ホルミル)-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000055
 参考例19-4の化合物(243mg)のアセトン(5mL)/水(2.5mL)混合液に過ヨウ素酸ナトリウム(488mg)、四酸化オスミウム(2.5wt% in tert-ブタノール,0.716mL)を加え、室温で8時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水にて洗浄し、硫酸ナトリウムで乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製して表題化合物(120mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 216.1/0.736
参考例19-6
5-(ジフルオロメチル)-6-(ヒドロキシメチル)-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000056
 参考例19-5の化合物(120mg)のメタノール(3mL)溶液に水素化ホウ素ナトリウム(21mg)を加え、室温で1時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水にて洗浄し、硫酸ナトリウムで乾燥、ろ過後、減圧濃縮して表題化合物(116mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 218.1/0.564
参考例20
6-(ヒドロキシメチル)-5-(トリフルオロメチル)-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000057
 参考例19-4、参考例19-5、参考例19-6に記載の方法に準じ、6-クロロ-5-(トリフルオロメチル)-ニコチン酸メチルより表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 236.1/0.649
参考例21
メチル 5-(ヒドロキシメチル)ピラジン-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000058
 参考例19-4、参考例19-5、および参考例19-6に記載の方法に準じ、メチル 5-クロロピラジン-2-カルボキシレートより表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 169.0/0.334
参考例22
1-(3,4-ジフルオロベンジル)-1H-イミダゾール-4-カルボン酸
Figure JPOXMLDOC01-appb-C000059
 参考例14-1および参考例14-2に記載の方法に準じ、3,4-ジフルオロベンジルブロミドから表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 239.1/0.460
参考例23
tert-ブチル 6-{[(トリフルオロメチル)スルホニル]オキシ}-3,4-ジヒドロ-2,7-ナフチリジン-2(1H)-カルボキシレート
Figure JPOXMLDOC01-appb-C000060
 tert-ブチル 6-ヒドロキシ-1,2,3,4-テトラヒドロ-2,7-ナフチリジン-2-カルボキシレート(1.73g)のピリジン(20mL)溶液に、氷冷下、トリフルオロメタンスルホン酸無水物(1.28mL)を加え、室温にて2時間撹拌した。反応混合物を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、表題化合物(1.72g)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 383.2/1.112
参考例24
tert-ブチル 6-ブロモ-5-フルオロ-3,4-ジヒドロイソキノリン-2(1H)-カルボキシレート
Figure JPOXMLDOC01-appb-C000061
 酢酸(15mL)に水素化ホウ素ナトリウム(340mg)を室温にて加えた。反応液に6-ブロモ-5-フルオロイソキノリン(1.0g)を加え、室温にて15時間撹拌した。反応液に水素化ホウ素ナトリウム(345mg)を加え、室温にて1時間撹拌した。反応混合物を減圧濃縮し、残渣をTHF(20mL)に溶解した。そこに二炭酸ジ-tert-ブチル(2.04g)、トリエチルアミン(3.1mL)を加え、室温にて2時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、表題化合物(1.17g)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 330.2/1.213
参考例25~26
 参考例24に記載の方法に準じ、対応する原料化合物を用い、参考例25および26の化合物を得た。
Figure JPOXMLDOC01-appb-T000062
参考例27-1
tert-ブチル 6-シアノ-8-フルオロ-3,4-ジヒドロイソキノリン-2(1H)-カルボキシレート
Figure JPOXMLDOC01-appb-C000063
 参考例25の化合物(124mg)のDMF(1mL)溶液に、テトラキス(トリフェニルホスフィン)パラジウム(45mg)、シアン化亜鉛(57mg)を加え、120℃にて8時間撹拌した。反応混合物を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、表題化合物(48mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 277.2/1.048
参考例27-2
2-(tert-ブトキシカルボニル)-8-フルオロ-1,2,3,4-テトラヒドロイソキノリン-6-カルボン酸
Figure JPOXMLDOC01-appb-C000064
 参考例27-1の化合物(2.13g)の2-プロパノール(40mL)溶液に、水(10mL)、水酸化ナトリウム(5g)を加えて110℃にて11時間撹拌した。反応混合物を減圧濃縮し、残渣を飽和重曹水で抽出した。水層を硫酸水素ナトリウムで酸性に調整し、クロロホルムにて抽出した。得られた有機層を硫酸ナトリウムにて乾燥し、減圧濃縮し、表題化合物(2.54g)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 296.2/0.907
参考例28
6-(ヒドロキシメチル)-5-メチル-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000065
 参考例19-4、参考例19-5、および参考例19-6に記載の方法に準じ、6-クロロ-5-メチル-ニコチン酸メチルから表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 182.0/0.354
参考例29-1
5-[(tert-ブトキシカルボニル)アミノ]-6-クロロ-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000066
 5-アミノ-6-クロロ-ニコチン酸メチル(325mg)のTHF(10mL)溶液に二炭酸ジ-tert-ブチル(760mg)、DMAP(11mg)を加え、室温にて15.5時間撹拌した。さらに二炭酸ジ-tert-ブチル(38mg)を加え、60℃にて45分間撹拌した。室温に冷却後、溶媒を留去した。残渣にメタノール(5mL)、炭酸カリウム(481mg)を加え、室温にて2.5時間撹拌した。飽和塩化アンモニウム水溶液を加え、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、表題化合物(321mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 287.1/0.985
参考例29-2
5-[(tert-ブトキシカルボニル)アミノ]-6-(ヒドロキシメチル)-ニコチン酸メチル
Figure JPOXMLDOC01-appb-C000067
 参考例19-4、参考例19-5、および参考例19-6に記載の方法に準じ、参考例29-1の化合物から表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 282.8/0.761
参考例29-3
2-オキソ-1,4-ジヒドロ-2H-ピリド[3,2-d][1,3]オキサジン-7-カルボン酸
Figure JPOXMLDOC01-appb-C000068
 参考例29-2の化合物(111mg)のTHF(2mL)/メタノール(4mL)溶液に2mol/L水酸化ナトリウム水溶液(0.39mL)を加え、室温で16時間撹拌した。反応液に2mol/L塩酸(0.25mL)を加え、pHを7に調整した。反応混合物を減圧濃縮し、表題化合物(76mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 195.1/0.325
参考例30~32
 参考例27-1および参考例27-2に記載の方法に準じ、参考例23、参考例24、および参考例26の化合物を用い、参考例31~33の化合物を得た。
Figure JPOXMLDOC01-appb-T000069
実施例1-1
(2E)-3-[4-(アセチルアミノ)フェニル]-N-(1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル)プロプ-2-エナミド
Figure JPOXMLDOC01-appb-C000070
 参考例1の化合物(2.0g)のジメチルホルムアミド(20mL)溶液に(E)-3-(4-アセチルアミノフェニル)アクリル酸(1.41g)、HATU(2.88g)、ジイソプロピルエチルアミン(2.97mL)を加え、室温にて終夜撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液と水を加え、析出した固体をろ過し、水とアセトニトリルにて洗浄した。得られた固体をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)にて精製し、表題化合物(0.706g)を得た。
1H-NMR (400 MHz, DMSO-d6)δ10.51 (1H, s), 10.09 (1H, s), 7.71-7.66 (3H, m), 7.63-7.59 (4H, m), 7.47 (2H, d, J = 8.5 Hz), 7.40 (1H, d, J = 15.9 Hz), 7.36 (1H, d, J = 1.8 Hz), 6.74 (1H, d, J = 15.9 Hz), 5.28 (2H, s), 2.05 (3H, s).
LC-MS, 条件B ([M+H]/Rt (min)): 429.5/0.88
実施例1-2
(2E)-3-[4-(アセチルアミノ)フェニル]-N-(1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル)プロプ-2-エナミド 塩酸塩
 実施例1-1の化合物(500mg)のエタノール懸濁液に4mol/L塩酸-酢酸エチル(350μL)を60℃で加え、同温で5分間撹拌した。オイルバスを除去し、種晶を加えた後、室温で40分間、氷冷下35分間撹拌した。析出した固体をろ取し、冷エタノールで洗浄後、減圧乾燥して表題化合物(474mg)を得た。
1H-NMR (400 MHz, DMSO-d6)δ11.13 (1H, brs), 10.20 (1H, s), 8.62 (1H, brs), 7.85 (1H, s), 7.74-7.62 (5H, m), 7.57-7.49 (4H, m), 6.74 (1H, d, J = 15.8 Hz), 5.42 (2H, s), 2.05 (3H, s).
実施例2~4
 対応する原料化合物を用い、実施例1-1に記載の方法と同様に反応・処理して実施例2~4の化合物を得た。
Figure JPOXMLDOC01-appb-T000071
実施例5
(E)-3-(3-(2-ヒドロキシエトキシ)-4-メトキシフェニル)-N-(1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-イル)アクリルアミド
Figure JPOXMLDOC01-appb-C000072
 参考例11の化合物(125mg)のメタノール(10mL)溶液に4mol/L塩酸-ジオキサン(88μL)を加え、80℃で40分間撹拌した。反応混合物を減圧濃縮した後、2mol/L水酸化ナトリウム水溶液を加え、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、硫酸マグネシウムで乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)にて精製して表題化合物(72mg)を得た。
1H-NMR (400 MHz, DMSO-d6)δ10.39 (1H, s), 7.63 (1H, d, J = 1.2 Hz), 7.42-7.30 (4H, m), 7.15-7.11 (2H, m), 6.99 (1H, d, J = 8.8 Hz), 6.74 (1H, d, J = 16.0 Hz), 5.15 (2H, s), 4.85 (1H, t, J = 5.6 Hz), 4.02-3.98 (2H, m), 3.78 (3H, s), 3.74-3.70 (2H, m).
LC-MS, 条件B ([M+H]/Rt (min)): 448.3/0.758
実施例6
(2E)-N-[1-(3-クロロベンジル)-1H-イミダゾール-4-イル]-3-[3-(2-ヒドロキシエトキシ)-4-メトキシフェニル]プロプ-2-エナミド
Figure JPOXMLDOC01-appb-C000073
 参考例9の化合物(1.25g)のメタノール(10mL)溶液にトシル酸一水和物(0.46g)を加え、40℃で2.5時間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液、クロロホルムを加え、析出した固体を水洗し乾燥した。ろ液をクロロホルムにて抽出し飽和食塩水にて洗浄後、硫酸マグネシウムで乾燥した。ろ過後、反応混合物を減圧濃縮して得られた固体をメタノール、酢酸エチルで洗浄し、上記の固体とあわせて表題化合物(0.84g)を得た。
1H-NMR (400 MHz, DMSO-d6)δ10.40 (1H, s), 7.64 (1H, d, J = 1.2 Hz), 7.43-7.36 (4H, m), 7.33 (1H, d, J = 1.2 Hz), 7.27-7.24 (1H, m), 7.16-7.10 (2H, m), 7.00 (1H, d, J = 8.8 Hz), 6.75 (1H, d, J = 16.0 Hz), 5.18 (2H, s), 4.87 (1H, t, J = 5.6 Hz), 4.02-3.98 (2H, m), 3.78 (3H, s), 3.75-3.70 (2H, m).
LC-MS, 条件B ([M+H]/Rt (min)): 428.2/0.772
実施例7~8
 参考例10および参考例12の化合物を用い、実施例6に記載の方法と同様に反応・処理して実施例7および8の化合物を得た。
Figure JPOXMLDOC01-appb-T000074
実施例9
(2E)-N-(1-(3-クロロベンジル)-1H-イミダゾール-4-イル)-3-(ピリジン-3-イル)プロプ-2-エナミド
Figure JPOXMLDOC01-appb-C000075
 参考例2の化合物および対応する原料化合物を用い、参考例9に記載の方法と同様に反応・処理して表題化合物を得た。
1H-NMR (400 MHz, DMSO-d6)δ10.7 (1H, s), 8.75 (1H, s), 8.56-8.55 (1H, m), 7.95 (1H, d, J = 9.0 Hz), 7.67 (1H, s), 7.55-7.38 (6H, m), 7.27-7.25 (1H, m), 6.96 (1H, d, J = 15.0 Hz), 5.19 (2H, s).
実施例10-1
N-[1-(3-クロロベンジル)-1H-イミダゾール-4-イル]-3,4-ジメトキシベンズアミド
Figure JPOXMLDOC01-appb-C000076
 参考例2の化合物(11.0g)の塩化メチレン(240mL)溶液にトリエチルアミン(15.8mL)、3,4-ジメトキシベンゾイルクロリド(9.04g)を加え、室温にて終夜撹拌した。反応液を減圧下濃縮し、得られた固体を酢酸エチルにて洗浄して濾取することで表題化合物(9.7g)を得た。
LC-MS, 条件C ([M+H]/Rt (min)): 372.0/2.69
1H-NMR (400 MHz, DMSO-d6)δ10.64 (1H, s), 7.63 (1H, d, J = 1.2 Hz), 7.60-7.56 (2H, m), 7.39-7.31 (4H, m), 7.25-7.21 (1H, m), 6.97 (1H, d, J = 8.4 Hz), 5.16 (2H, s), 3.78 (3H, s), 3.76 (3H, s).
実施例10-2
N-[1-(3-クロロベンジル)-1H-イミダゾール-4-イル]-3,4-ジメトキシベンズアミド 塩酸塩
 実施例10-1の化合物(70.0g)の1,4-ジオキサン(1.5L)溶液に4mol/L塩酸-ジオキサン(94mL)、種晶を加えて超音波洗浄機にかけた。溶媒を留去し、残渣にエタノール(500mL)を加え、再度超音波洗浄機にかけ、析出した固体をろ取、減圧乾燥して表題化合物(72.4g)を得た。
1H-NMR (400 MHz, DMSO-d6)δ11.53 (1H, s), 8.87 (1H, s), 7.68-7.64 (3H, m), 7.58 (1H, s), 7.46-7.40 (3H, m), 7.09 (1H, d, J = 8.8 Hz), 5.40 (2H, s), 3.83 (3H, s), 3.82 (3H, s).
実施例11~12
 対応する原料化合物を用い、実施例10-1に記載の方法と同様に反応・処理して実施例11および12の化合物を得た。
Figure JPOXMLDOC01-appb-T000077
実施例13~14
 対応する原料化合物を用い、参考例9に記載の方法と同様に反応・処理して実施例13および14の化合物を得た。
Figure JPOXMLDOC01-appb-T000078
実施例15
5-(ヒドロキシメチル)-N-{1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル}ピコリンアミド
Figure JPOXMLDOC01-appb-C000079
 参考例13の化合物(100mg)のTHF(2mL)/メタノール(1mL)溶液に水素化ホウ素リチウム(3mol/L in THF,0.08mL)を加え、室温で3時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムで乾燥、ろ過後、減圧濃縮した。得られた固体に酢酸エチル(2mL)、ヘキサン(2mL)を加えて超音波洗浄機にかけ、固体をろ取し、ヘキサン/酢酸エチル(1/1,1mL×2)で洗浄後、40℃で減圧乾燥し、表題化合物(70mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 377.2/0.733
実施例16~17
 実施例15に記載の方法に準じ、参考例17および参考例18-3の化合物より実施例16および17の化合物を得た。
Figure JPOXMLDOC01-appb-T000080
実施例18~19
 参考例9に記載の方法に準じ、参考例1の化合物、参考例4の化合物および対応する原料化合物より実施例18および19の化合物を得た。
Figure JPOXMLDOC01-appb-T000081
実施例20
6-(ヒドロキシメチル)-N-[1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-イル]ニコチンアミド
Figure JPOXMLDOC01-appb-C000082
 6-(ヒドロキシメチル)-ニコチン酸メチル(0.924g)のTHF(22mL)溶液に5mol/L水酸化カリウム水溶液(2.2ml)を加えた。室温にて終夜撹拌した後、溶媒を減圧濃縮により留去し、減圧乾燥した。得られた固体のDMF(25mL)溶液に参考例4で得た化合物(1.61g)、HATU(2.52g)、ジイソプロピルエチルアミン(2.38mL)を加え、室温にて1時間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液と水を加え、析出した固体をろ過した。水とアセトニトリル、酢酸エチルにて洗浄した後、減圧乾燥し、表題化合物(1.375g)を得た。
1H-NMR (400 MHz, DMSO-d6)δ11.00 (1H, s), 9.01 (1H, d, J = 1.8 Hz), 8.30 (1H, dd, J = 7.9, 1.8 Hz), 7.69 (1H, d, J = 1.2 Hz), 7.54 (1H, d, J = 7.9 Hz), 7.48 (1H, d, J = 1.2 Hz), 7.38-7.30 (2H, m), 5.52 (1H, t, J = 6.1 Hz), 5.18 (2H, s), 4.60 (2H, d, J = 6.1 Hz). 
LC-MS, 条件B ([M+H]/Rt (min)): 363.1/0.66
実施例21~27
 実施例20に記載の方法に準じ、対応する参考例の化合物より実施例21~27の化合物を得た。
Figure JPOXMLDOC01-appb-T000083
実施例28
N-[6-(ヒドロキシメチル)ピリジン-3-イル]-1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-カルボキサミド 
Figure JPOXMLDOC01-appb-C000084
 参考例14-2の化合物(138mg)と参考例15の化合物(141mg)のDMF(15mL)溶液に、WSCI・HCl(124mg)、HOBt(87mg)、N,N-ジイソプロピルエチルアミン(0.188mL)を加え80℃にて6時間撹拌した。反応混合物に水、水酸化ナトリウム水溶液を加え、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、硫酸マグネシウムで乾燥、ろ過後、減圧濃縮した。得られた残渣をメタノール(5mL)に溶かし、2mol/L塩酸-メタノール(0.81mL)を加え40℃にて5時間撹拌した。反応混合物に水、水酸化ナトリウム水溶液を順に加え、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、硫酸マグネシウムで乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)にて精製し、表題化合物(86.4mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)) 363.2/0.640
1H-NMR  (400 MHz, DMSO-d6)δ10.06 (1H, s), 8.84 (1H, s), 8.19-8.14 (1H, m), 7.97-7.95 (2H, m), 7.42-7.34 (3H, m), 5.31-5.26 (1H, m), 5.24 (2H, s), 4.48 (2H, d, J = 4.8 Hz).
実施例29
 実施例28に記載の方法に準じ、対応する参考例の化合物より実施例29の化合物を得た。
Figure JPOXMLDOC01-appb-T000085
実施例30
N-(7-フルオロ-1,2,3,4-テトラヒドロイソキノリン-6-イル)-1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-カルボキサミド
Figure JPOXMLDOC01-appb-C000086
 参考例9に記載の方法に準じ、参考例14-2の化合物およびtert-ブチル 6-アミノ-7-フルオロ-3,4-ジヒドロイソキノリン-2(1H)-カルボキシレートを用いて、tert-ブチル 7-フルオロ-6-({[1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-イル]カルボニル}アミノ)-3,4-ジヒドロイソキノリン-2(1H)-カルボキシレートを得た。前記化合物のメタノール溶液に、4mol/L塩酸-ジオキサンを加え室温で終夜撹拌した。反応混合物を減圧濃縮した後、水と2mol/L水酸化ナトリウム水溶液を加えた。沈殿した固体をろ取し、水、ヘキサン/酢酸エチル(2/1)で洗浄後、減圧乾燥し、表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 405.2/0.665
1H-NMR (400 MHz, DMSO-d6)δ9.27 (1H, s), 7.96-7.93 (2H, m), 7.69 (1H, d, J = 8.0 Hz), 7.43-7.34 (2H, m), 6.91 (1H, d, J = 11.6 Hz), 5.23 (2H, s), 3.75 (2H, s), 2.90-2.86 (2H, m), 2.62-2.57 (2H, m).
実施例31~32
 実施例30に記載の方法に準じ、参考例14-2、参考例22および対応する原料化合物を用い、実施例31および32の化合物を得た。
Figure JPOXMLDOC01-appb-T000087
実施例33
N-(1,2,3,4-テトラヒドロイソキノリン-6-イル)-1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-カルボキサミド 二塩酸塩
Figure JPOXMLDOC01-appb-C000088
 参考例9に記載の方法に準じ、参考例14-2の化合物およびtert-ブチル 6-アミノ-3,4-ジヒドロイソキノリン-2(1H)-カルボキシレートを用いて、tert-ブチル 6-({[1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-イル]カルボニル}アミノ)-3,4-ジヒドロイソキノリン-2(1H)-カルボキシレートを得た。前記化合物のメタノール溶液に、4mol/L塩酸-ジオキサンを加え80℃にて撹拌した。沈殿した固体をろ取し、ジイソプロピルエーテルで洗浄後、減圧乾燥し、表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 387.2/0.615
実施例34~49
 実施例33に記載の方法に準じ、対応する参考例の化合物および原料化合物を用い、実施例34~49の化合物を得た。
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
実施例50
N-[1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-イル]-(1,2,3,4-テトラヒドロイソキノリン-6-カルボキサミド 二トリフルオロ酢酸塩
Figure JPOXMLDOC01-appb-C000093
 参考例9に記載の方法に準じ、参考例4の化合物および2-(tert-ブトキシカルボニル)-1,2,3,4-テトラヒドロイソキノリン-6-カルボキシレートを用いて、N-(1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-イル)-1,2,3,4-テトラヒドロイソキノリン-6-カルボキサミドを得た。前記化合物のクロロホルム溶液にトリフルオロ酢酸を加え室温で撹拌後、反応混合物を減圧濃縮した。残渣にヘキサン・酢酸エチル混合溶媒を加え、析出した固体をろ取し、減圧乾燥することで表題化合物を得た。
LC-MS, 条件B ([M+2H]2+/Rt (min)): 194.1/0.580
1H-NMR (400 MHz, CDCl3) δ 7.94 (1H, d, J = 1.6 Hz), 7.85-7.83 (2H, m), 7.47 (1H, d, J = 2.0 Hz), 7.38 (1H, d, J = 8.4 Hz), 7.14 (2H, dd, J = 8.4, 6.8 Hz), 5.26 (2H, s), 4.44 (2H, s), 3.55 (2H, t, J = 6.4 Hz), 3.20 (2H, t, J = 6.4 Hz).
実施例51~54
 実施例50に記載の方法に準じ、対応する参考例の化合物および原料化合物を用い、実施例51~54の化合物を得た。
Figure JPOXMLDOC01-appb-T000094
実施例55
6-(ヒドロキシメチル)-5-メチル-N-[1-(3,4,5-トリフルオロベンジル)-1H-イミダゾール-4-イル]ニコチンアミド
Figure JPOXMLDOC01-appb-C000095
 実施例20に記載の方法に準じ、参考例28の化合物から表題化合物を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 377.2/0.631
1H-NMR (400 MHz, DMSO-d6)δ 10.97 (1H, s), 8.87 (1H, d, J = 1.8 Hz), 8.10 (1H, d, J = 1.8 Hz), 7.69 (1H, d, J = 1.2 Hz), 7.48 (1H, d, J = 1.2 Hz), 7.38-7.31 (2H, m), 5.18 (2H, s), 5.11 (1H, t, J = 5.5 Hz), 4.60 (2H, d, J = 5.5 Hz), 2.35 (3H, s).
実施例56~57
 参考例9に記載の方法に準じ、参考例1、参考例4、および参考例29-3の化合物より実施例56および57の化合物を得た。
Figure JPOXMLDOC01-appb-T000096
実施例58
5-アミノ-6-(ヒドロキシメチル)-N-{1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル}ニコチンアミド
Figure JPOXMLDOC01-appb-C000097
 実施例56の化合物(13mg)のTHF(0.5mL)/メタノール(0.5mL)懸濁液に2mol/L水酸化ナトリウム水溶液(0.031mL)を加え、60℃で3時間撹拌し、90℃でさらに6.5時間撹拌した。室温に冷却後、反応混合物に水を加え、室温で5分間撹拌した。析出した固体をろ取し、水で洗浄後、50℃で減圧乾燥して表題化合物(7mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 392.2/0.647
1H-NMR (400 MHz, DMSO-d6)δ10.79 (1H, s), 8.29 (1H, d, J = 1.8 Hz), 7.72-7.68 (3H, m), 7.64-7.581 (2H, m), 7.43 (1H, d, J = 1.2 Hz), 7.42 (1H, d, J = 1.8 Hz), 5.36 (2H, s), 5.30 (2H, s), 5.18 (1H, t, J = 5.5 Hz), 4.52 (2H, d, J = 5.5 Hz)
実施例59
 実施例58に記載の方法に準じ、実施例57の化合物から実施例59の化合物を得た。
Figure JPOXMLDOC01-appb-T000098
実施例60
(E)-2-メトキシ-5-(3-オキソ-3-((1-(3-(トリフルオロメチル)ベンジル)-1H-イミダゾール-4-イル)アミノ)プロプ-1-エン-1-イル)フェノールアセテート
Figure JPOXMLDOC01-appb-C000099
 (E)-3-(3-アセトキシ-4-メトキシフェニル)アクリル酸(71.0mg)のジクロロエタン(2mL)溶液にオキサリルクロリド(39μL)、DMF(2μL)を加え、室温で1時間撹拌した。反応混合物を減圧濃縮して乾燥して酸クロリドを得た。参考例1の化合物(70.0mg)のジクロロメタン(5mL)溶液に、トリエチルアミン(105μL)を加えた、上記の酸クロリドを滴下した。終夜撹拌し、水を加え、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、硫酸マグネシウムで乾燥、ろ過後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)にて精製し、表題化合物(30mg)を得た。
LC-MS, 条件B ([M+H]/Rt (min)): 460.2/1.01
試験例1:がん細胞スフィア形成能抑制試験
 がん幹細胞(CSC)の特性の一つである、細胞の自己複製能の測定法として確立され信頼できる手法として、血清非存在下、非接着状態でのがん細胞スフィア形成能測定が挙げられる(Cancer Res 65, 5506-5511 (2005))。HCT-116細胞はアメリカ培養細胞系統保存機関(ATCC)より入手した。HCT-116細胞は10% ウシ胎児血清(FBS)、100U/mlペニシリン、100μg/mlストレプトマイシンMcCoy’s 5a培地を用い、37℃、5% CO2存在下にて培養した。HCT-116細胞を、2% B27 supplement(GIBCO)、20 ng/mL 上皮細胞成長因子(EGF) (peprotech)、10 ng/mL 塩基性線維芽細胞増殖因子(bFGF) (peprotech)、5 μg/mL インスリン(Sigma)、1% ペニシリン/ストレプトマイシンを含むDMEM/F12培地にて、350-800 cells/well となるように384 Well Black Clear Bottom Ultra-Low Attachment Microplate (Corning Cat. No.3827)に播種した。DMSO終濃度が0.1%となるように被験物質を添加し4日間培養した。その後、CellTiter-Glo(登録商標) Luminescent Cell Viability Assay(Promega)を用いて生細胞数を計測し、各被験物質の50%細胞増殖を抑制する濃度(Sphere IC50値;μmol/L)を算出した。
 実施例で得られた各化合物について、試験例1に示す試験を行った。各被験物質の50%細胞増殖を抑制する濃度(Sphere IC50値;μmol/L)について下表に示す。%で示した値は、1 μmol/Lでの(100%-細胞増殖抑制率)を示す。
Figure JPOXMLDOC01-appb-T000100
試験例2:iPS細胞に対する細胞傷害活性の評価
 ヒトiPS細胞を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStemFit培地(AK03N、味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
 サブコンフレントになったヒトiPS細胞を、PBSにて洗浄後、TrypLE Select(Life Technologies社製)を用いて単一細胞へ分散した。その後、このヒトiPS細胞を、Laminin511-E8にてコートしたプラスチック培養ディッシュに播種し、Y27632(ROCK阻害物質、10 μmol/L)存在下、StemFit培地にて37℃、5% CO2でフィーダーフリー培養した。この時、プラスチック培養ディッシュとして、96ウェルプレート(BD社製、細胞培養用、培養面積0.35 cm2)を用い、単一細胞へ分散されたヒトiPS細胞の播種細胞数は0.03 x 104とした。播種した1日後に、Y27632を含まないStemFit培地に交換した。以降、1日~2日に一回Y27632を含まないStemFit培地にて培地交換した。その後、サブコンフレント(培養面積の6割が細胞に覆われる程度)になるまで培養した。
 このヒトiPS細胞に、DMSOにて融解した実施例1-2、10-2および22の化合物を終濃度10、1、0.1および0.01 μmol/Lとなるように、Stem Fit培地(AK03;味の素社製)に加えて24時間培養した。
 また、本試験例では、陰性対照として、分化細胞であるヒト子宮頸癌由来細胞HeLa細胞を用いた。HeLa細胞の培養は、非動済10% ウシ胎児血清(MP Biomedicals社製)を含むDMEM培地(ライフテクノロジーズ社製)を用いて、37℃、5% CO2で24時間培養し、前述のヒトiPS細胞の場合と同様に、実施例1-2、10-2および22の化合物を含む培地で、24時間培養した。
 24時間後、培地を除去し、4% パラホルムアルデヒドにて4oC、15分固定した後、DAPI(シグマ社製)を含むPBS溶液を加えて核染色を行い、倒立型蛍光顕微鏡(キーエンス社製、BIOREVO)にて観察した。さらに、DAPI陽性面積を、同顕微鏡の定量ソフトを用いて算出した。
 その結果、実施例1-2の化合物では、0.1 μmol/LからヒトiPS細胞に対して細胞傷害活性が認められ、実施例1-2の化合物で処理していない時の生存率と比較すると、0.1 μmol/Lで53%、1 μmol/Lで25%、10 μmol/Lで14%であった(図1、図4)。また、実施例10-2の化合物は、1 μmol/Lで37%、10 μmol/Lで17%であった(図2、図4)。また、実施例22の化合物は、0.1 μmol/Lで51%、1 μmol/Lで31%であった(図3、図4)。
試験例3:本発明化合物の分化誘導した細胞凝集塊に対する効果の評価
 まず、分化誘導した細胞凝集塊を以下の手順で作製した。
 試験例2と同様に、フィーダーフリー培養したサブコンフレント1日前のヒトiPS細胞を、SB431542 (TGFβシグナル伝達経路阻害物質(TGFβR-i)、5 μmol/L)の存在下で、Stem Fit培地(AK03;味の素社製)を用いて、1日間フィーダーフリー培養した。この時、プラスチック培養ディッシュとして、6ウェルプレート(イワキ社製、細胞培養用、培養面積9.4 cm2)を用い、単一細胞へ分散させたヒトiPS細胞の播種細胞数は1.0 x 104とした。この細胞を、TrypLE Select(Life Technologies社製)を用いて細胞分散液で処理し、さらにピペッティング操作により単一細胞に分散した。その後、非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベークライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5% CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μmol/L 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。遊培養開始時(浮遊培養開始後0日目)に、前記無血清培地にY27632(終濃度20 μmol/L)を加え、さらにWntシグナル伝達経路阻害物質(IWR-1e, 3μmol/L)を含む培地で培養した。
 37℃、5% CO2で24時間培養した後、本発明化合物を終濃度0.1 μmol/Lおよび1 μmol/L、また等量のDMSOを含む無血清培地に交換し、さらに24時間培養した。24時間後、これらの凝集塊を4% パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、アポトーシスマーカーの1つであるCleaved Caspase-3(抗Cleaved Caspase-3抗体、Cell Signaling社、Mouse)、および未分化マーカーの1つであるOct3/4(抗Oct3/4抗体、Santa Cruz社製, Rabbit)について免疫染色を行った。さらにDAPI(シグマ社製)を用いて核染色を行い、これらの免疫染色された切片を、倒立型蛍光顕微鏡(キーエンス社製、BIOREVO)を用いて観察した。さらにCleaved Caspase-3の陽性面積をNIH Image-Jソフトにて定量した。
 その結果、本試験例で用いた分化誘導した細胞凝集塊は、未分化マーカーであるOct3/4を発現しており、これらの凝集塊中にiPS細胞が残存していることが確認できた。さらに、実施例1-2および10-2の化合物で処理した凝集塊では、化合物未処理ではCleaved Caspase-3の陽性面積の割合が19%であったのに対し、実施例1-2の化合物で処理した際には0.1 μmol/Lで24%、1 μmol/Lで27%であった(図5、図7-実施例1-2の化合物)。また、実施例10-2の化合物では、1 μmol/Lで暴露した際に26%であった(図6、図7-実施例10-2の化合物)。
 以上のように、本発明化合物は分化誘導した細胞凝集塊中のCleaved Caspase-3の陽性面積の割合を増加させ、その増加は分化誘導した細胞凝集塊内部においても認められた。尚、本試験例の分化誘導した細胞凝集塊をWO2016/063985に記載の方法で培養することにより、視細胞を含む細胞凝集塊を得ることができる。
 本発明化合物は、優れたがん細胞スフィア形成能抑制作用を示し、iPS細胞の増殖抑制および細胞死を誘導することから、iPS細胞の除去剤として有用である。

Claims (21)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Qは、置換されていてもよいC6-10アリール、置換されていてもよいC6-10アリールオキシ、置換されていてもよいC6-10アリールチオ、置換されていてもよいC3-10シクロアルキル、または置換されていてもよい5員~10員のヘテロアリールを表し;
     RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、またはC1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表し;
     Wは、C1-4アルキレン(該基は、1~3個のフッ素原子またはC3-7シクロアルキルで置換されていてもよい)を表し;
     W-Qは、-NR3aC(O)-Q、-NR3aC(O)O-Q、-NR3aC(O)OCH-Q、-NR3aC(O)NR3b-Q、-NR3aC(O)NR3bCH-Q、-NR3aC(O)CHO-Q、-NR3aC(O)CH-Q、-NR3aC(O)CHCH-Q、-C(O)NR3a-Q、-C(O)NR3aCH-Q、-C(O)NR3aCHCH-Q、または-NR3aC(O)-CR4c=CR4d-Q(ここにおいて、R3aおよびR3bは、それぞれ独立して、水素原子またはC1-6アルキルを表し;R3cおよびR3dは、それぞれ独立して、水素原子、フッ素原子、またはC1-6アルキルを表す)を表し;
     環Qは、置換されていてもよいC6-10アリール、または置換されていてもよい5員~10員のヘテロアリールを表す]で表される化合物またはその塩を含有する、iPS細胞の除去剤。
  2.  Qがフェニル(該基は、
    (1)ハロゲン原子、
    (2)C1-6アルキル(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
    (3)C1-6アルコキシ(該基は、ハロゲン原子、ヒドロキシ、C1-6アルコキシおよびフェニルからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
    (4)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)、
    (5)C6-10アリール(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
    (6)C6-10アリールオキシ(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
    (7)5員~10員のヘテロアリール(該基は、ハロゲン原子、C1-6アルキル、およびC1-6アルコキシからなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、および
    (8)C1-6アルコキシ-カルボニル
    からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)である、請求項1に記載の除去剤。
  3.  Qがフェニル(該基は、ハロゲン原子、およびC1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)である、請求項1または2に記載の除去剤。
  4.  W-Qが、-NHC(O)-Q、-NHC(O)-CH=CH-Q、-C(O)NH-Q、または-NHC(O)CHO-Qである、請求項1~3のいずれか一項に記載の除去剤。
  5.  Wがメチレンである、請求項1~4のいずれか一項に記載の除去剤。
  6.  環Qが、
    (1)フェニル(該基は、
     (a)ハロゲン原子、
     (b)C1-6アルキル(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
     (c)C1-6アルコキシ(該基は、ハロゲン原子、ヒドロキシ、およびC1-6アルコキシからなる群から選択される同種または異種の1~3個の基で置換されていてもよい)、
     (d)C3-7シクロアルキル、
     (e)C2-6アルケニル、
     (f)シアノ、
     (g)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)、および
     (h)C1-6アルキル-カルボニルアミノ
    からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、
    (2)5員~10員のヘテロアリール(該基は、本項中の前記(1)の(a)~(h)からなる群から選択される同種または異種の1~4個の基で置換されていてもよい)、または
    (3)下記式(11)、(12)、(13)、(14)、(15)、または(16):
    Figure JPOXMLDOC01-appb-C000002
    (式中、環Qは、置換されていてもよいベンゼン環、置換されていてもよいピリジン環、置換されていてもよいピリミジン環、置換されていてもよいピリダジン環、または置換されていてもよいピラジン環を表し;
     環Qは、置換されていてもよい5員のヘテロアリール環を表し;
     nおよびmは、それぞれ独立して、0、1または2を表し;
     ここにおいて、nおよびmが同時に0であることはなく;
     XおよびZは、それぞれ独立して、NR、-NR3eC(O)-、-C(O)NR3e-、またはOを表し(ここにおいて、Rは、水素原子、C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、またはC1-6アルキルカルボニルを表し;R3eは、水素原子またはC1-6アルキルを表す);
     pは、1、2、3、4または5を表し;
     Rは、複数ある場合はそれぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ、オキソ、C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、またはC1-6アルコキシ(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表す)で表される基である、請求項1~5のいずれか一項に記載の除去剤。
  7.  環Qが、
    (1)フェニル(該基は、ヒドロキシで置換されていてもよいC1-6アルコキシおよびC1-6アルキル-カルボニルアミノからなる群から選択される同種または異種の1~2個の基で置換されていてもよい)、
    (2)下記式(2):
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     R11、R12、およびR13は、それぞれ独立して、
    (a)水素原子、
    (b)ハロゲン原子、
    (c)C1-6アルキル(該基は同種または異種の1~3個のフッ素原子で置換されていてもよい)、または
    (d)アミノ(該基は同種または異種の1~2個のC1-6アルキルで置換されていてもよい)を表す)
    で表される基、または
    (3)下記式(21):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Xは、NまたはCR14を表し;
     Xは、NまたはCR15を表し;
     Xは、NまたはCR16を表し;
     ここにおいて、X、XおよびXが同時にNであることはなく;
     R14、R15、およびR16は、それぞれ独立して、
    (a)水素原子、
    (b)ハロゲン原子、
    (c)C1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)、または
    (d)C1-6アルコキシ(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表し;
     nおよびmは、それぞれ独立して、0、1または2を表し;
     ここにおいて、nおよびmが同時に0であることはなく;
     pは、1、2、3、4または5を表し;
     R4aは、複数ある場合はそれぞれ独立して、水素原子、ハロゲン原子、またはC1-6アルキル(該基は同種または異種の1~3個のハロゲン原子で置換されていてもよい)を表す)
    で表される基である、請求項1~6のいずれか一項に記載の除去剤。
  8.  W-Qが、-NHC(O)-Q、または-C(O)NH-Qであり;
     環Qが、式(2)または(21)で表される基である、請求項7に記載の除去剤。
  9.  R11、およびR12がいずれも水素原子であり;
     R13が水素原子、C1-4アルキル(該基は1~3個のフッ素原子で置換されていてもよい)、またはアミノであり;
     R14、R15、およびR16は、それぞれ独立して、水素原子またはフッ素原子であり、
     nが1であり;
     mが0または1であり;
     pが1または2であり;
     R4aが、複数ある場合はそれぞれ独立して、水素原子またはメチルである、請求項7または8に記載の除去剤。
  10.  W-Qが、-NHC(O)-CH=CH-Qであり;
     環Qが、フェニル(該基は、ヒドロキシで置換されていてもよいC1-6アルコキシおよびC1-6アルキル-カルボニルアミノからなる群から選択される同種または異種の1~2個の基で置換されていてもよい)である、請求項1~7のいずれか一項に記載の除去剤。
  11.  RおよびRがいずれも水素原子である、請求項1~10のいずれか一項に記載の除去剤。
  12.  以下の化合物から選択される、請求項1に記載の式(1)で表される化合物、またはその塩を含有する、iPS細胞の除去剤:
    (2E)-3-[4-(アセチルアミノ)フェニル]-N-(1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル)プロプ-2-エナミド、
    N-[1-(3-クロロベンジル)-1H-イミダゾール-4-イル]-3,4-ジメトキシベンズアミド、および
    6-(ヒドロキシメチル)-N-{1-[3-(トリフルオロメチル)ベンジル]-1H-イミダゾール-4-イル}ニコチンアミド。
  13.  iPS細胞を含む培養液に、請求項1~12のいずれか一項に記載の式(1)で表される化合物またはその塩を添加する工程を含む、iPS細胞の除去方法。
  14.  iPS細胞を材料として作製した細胞塊を含む培養液に、請求項1~12のいずれか一項に記載の式(1)で表される化合物またはその塩を添加する工程を含む、iPS細胞の除去方法。
  15.  iPS細胞を材料として作製した細胞塊の内部に存在するiPS細胞を除去するための、請求項1~12のいずれか一項に記載の式(1)で表される化合物またはその塩の使用。
  16.  iPS細胞を含まないiPS由来細胞集団を製造するための、請求項1~12のいずれか一項に記載の式(1)で表される化合物またはその塩の使用。
  17.  請求項1~12のいずれか一項に記載の式(1)で表される化合物またはその塩とiPS細胞由来細胞集団とを接触させる工程を含む、iPS細胞を含まないiPS細胞由来細胞集団の製造方法。
  18.  以下の工程:
    (1)iPS細胞を含む細胞集団を分化誘導する工程;及び
    (2)工程(1)で得られる細胞集団を、請求項1~12のいずれか一項に記載の式(1)で表される化合物またはその塩と接触させる工程;
    を含む、多能性を維持する細胞を含まないiPS細胞由来細胞集団の製造方法。
  19.  請求項17または18に記載の製造方法により製造される、iPS細胞を含まないiPS細胞由来の細胞集団。
  20.  移植用細胞を含む、請求項19に記載の細胞集団。
  21.  請求項19に記載の細胞集団に含まれる細胞を有効成分として含有する医薬組成物。
PCT/JP2017/045612 2016-12-20 2017-12-19 未分化iPS細胞の除去剤 WO2018117127A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018558015A JP7123809B2 (ja) 2016-12-20 2017-12-19 未分化iPS細胞の除去剤
US16/471,474 US11434472B2 (en) 2016-12-20 2017-12-19 Agent for removing undifferentiated iPS cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016247139 2016-12-20
JP2016-247139 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018117127A1 true WO2018117127A1 (ja) 2018-06-28

Family

ID=62626544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045612 WO2018117127A1 (ja) 2016-12-20 2017-12-19 未分化iPS細胞の除去剤

Country Status (3)

Country Link
US (1) US11434472B2 (ja)
JP (1) JP7123809B2 (ja)
WO (1) WO2018117127A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027253A1 (en) * 2014-08-21 2016-02-25 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as rip1 kinase inhibitors as medicaments
JP2016093178A (ja) * 2014-11-11 2016-05-26 協和発酵キリン株式会社 幹細胞由来の分化細胞用培地、幹細胞からの分化細胞の製造及び該分化細胞を含む細胞医薬組成物の製造のための方法
WO2016208591A1 (ja) * 2015-06-22 2016-12-29 大日本住友製薬株式会社 1,4-ジ置換イミダゾール誘導体
WO2016208592A1 (ja) * 2015-06-22 2016-12-29 大日本住友製薬株式会社 二環性複素環アミド誘導体
WO2017146128A1 (ja) * 2016-02-26 2017-08-31 大日本住友製薬株式会社 イミダゾリルアミド誘導体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073461A2 (en) * 2006-12-11 2008-06-19 Wyeth Ion channel modulators
US9290485B2 (en) * 2010-08-04 2016-03-22 Novartis Ag N-((6-amino-pyridin-3-yl)methyl)-heteroaryl-carboxamides
MX2014014174A (es) 2012-05-22 2015-07-06 Hoffmann La Roche Inhibidores selectivos de celulas no diferenciadas.
JP6938154B2 (ja) * 2014-11-07 2021-09-22 国立大学法人大阪大学 未分化細胞が除去された分化誘導細胞集団、その利用及びその製造方法
US20200268728A1 (en) * 2016-12-20 2020-08-27 Sumitomo Dainippon Pharma Co., Ltd. Drug targeting cancer stem cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027253A1 (en) * 2014-08-21 2016-02-25 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as rip1 kinase inhibitors as medicaments
JP2016093178A (ja) * 2014-11-11 2016-05-26 協和発酵キリン株式会社 幹細胞由来の分化細胞用培地、幹細胞からの分化細胞の製造及び該分化細胞を含む細胞医薬組成物の製造のための方法
WO2016208591A1 (ja) * 2015-06-22 2016-12-29 大日本住友製薬株式会社 1,4-ジ置換イミダゾール誘導体
WO2016208592A1 (ja) * 2015-06-22 2016-12-29 大日本住友製薬株式会社 二環性複素環アミド誘導体
WO2017146128A1 (ja) * 2016-02-26 2017-08-31 大日本住友製薬株式会社 イミダゾリルアミド誘導体

Also Published As

Publication number Publication date
JP7123809B2 (ja) 2022-08-23
US20190390172A1 (en) 2019-12-26
JPWO2018117127A1 (ja) 2019-10-24
US11434472B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
US11925629B2 (en) Heterocyclic inhibitors of ERK1 and ERK2 and their use in the treatment of cancer
CN104936954B (zh) 化合物及其使用方法
CA2971872C (en) Mutant idh1 inhibitors useful for treating cancer
JP2011506591A (ja) ピリド[2,3−b]ピラジン−8−置換化合物及びその使用
RU2741000C2 (ru) Производное 1,4-дизамещенного имидазола
JPWO2016208592A1 (ja) 二環性複素環アミド誘導体
JP6896701B2 (ja) イミダゾリルアミド誘導体
US20120165339A1 (en) Cyclopropane derivatives
TW200404060A (en) Fused heterocyclic compounds
US8247573B2 (en) Substituted N-(2-mercaptopyridin-3-yl)amides as KCNQ2/3 modulators
JP6629884B2 (ja) 哺乳動物のチロシンキナーゼror1活性の阻害剤として有用な2−フェニル−3h−イミダゾ[4,5−b]ピリジン誘導体
JP2023527242A (ja) Axl阻害剤であるピリミジン系化合物
CN113387840B (zh) PD-1/PD-L1和HDACs双靶点抑制剂、制备方法和用途
WO2018117196A1 (ja) がん幹細胞を標的とする医薬
WO2024188107A1 (zh) 含噻唑结构的吲哚啉类化合物及其制备方法和应用
CN108299420B (zh) 作为选择性雌激素受体下调剂的五环类化合物及其应用
CN116178281B (zh) 一种双功能免疫抑制剂及其制备方法和应用
US20220402867A1 (en) Sulfo-substituted biaryl compound or salt thereof, preparation method therefor, and use thereof
WO2018117127A1 (ja) 未分化iPS細胞の除去剤
KR20240014050A (ko) Pd1/pd-l1 억제제로서의 화합물 및 이의 방법
US20230056497A1 (en) CD206 Modulators Their Use and Methods for Preparation
WO2016003169A2 (ko) 세포 리프로그래밍 유도용 조성물
WO2024159081A1 (en) Compounds and methods for yap/tead modulation and indications therefor
WO2024159067A1 (en) Compounds and methods for yap/tead modulation and indications therefor
CN104211687B (zh) 杂环取代的吲哚并萘酮衍生物、其制备方法、药物组合物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882681

Country of ref document: EP

Kind code of ref document: A1