WO2018116861A1 - 音響処理装置および方法、並びにプログラム - Google Patents

音響処理装置および方法、並びにプログラム Download PDF

Info

Publication number
WO2018116861A1
WO2018116861A1 PCT/JP2017/044110 JP2017044110W WO2018116861A1 WO 2018116861 A1 WO2018116861 A1 WO 2018116861A1 JP 2017044110 W JP2017044110 W JP 2017044110W WO 2018116861 A1 WO2018116861 A1 WO 2018116861A1
Authority
WO
WIPO (PCT)
Prior art keywords
speaker
value
displacement
input signal
unit
Prior art date
Application number
PCT/JP2017/044110
Other languages
English (en)
French (fr)
Inventor
米田 道昭
善之 黒田
正輝 鎌田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/463,146 priority Critical patent/US10734959B2/en
Priority to JP2018557670A priority patent/JP7188082B2/ja
Publication of WO2018116861A1 publication Critical patent/WO2018116861A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/70Gain control characterized by the gain control parameter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/70Gain control characterized by the gain control parameter
    • H03G2201/708Gain control characterized by the gain control parameter being temperature
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2873Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/007Protection circuits for transducers

Definitions

  • the present technology relates to an acoustic processing apparatus, method, and program, and more particularly, to an acoustic processing apparatus, method, and program that can suppress overamplitude and obtain a higher quality sound.
  • IM Inter Modulation
  • intermodulation distortion intermodulation distortion
  • the present technology has been made in view of such a situation, and is capable of suppressing over-amplitude and obtaining a higher quality sound.
  • An acoustic processing apparatus includes a predicted value calculation unit that calculates a predicted value of displacement of the speaker according to an input signal supplied to the speaker based on an equivalent model of the speaker, and the predicted value is An amplitude control unit that performs amplitude control on the input signal when the input signal is larger than a predetermined threshold value;
  • the predicted value calculation unit can correct the parameter of the equivalent model according to the actual value of the current flowing through the speaker.
  • the predicted value calculation unit can correct mechanical compliance as the parameter.
  • the predicted value calculation unit can correct the DC resistance of the voice coil of the speaker as the parameter.
  • a temperature calculation unit that calculates the temperature of the voice coil based on the DC resistance, and a temperature increase of the voice coil with respect to the input signal is suppressed according to the temperature of the voice coil.
  • a temperature control unit for performing temperature control for this purpose.
  • the acoustic processing apparatus further includes a displacement calculation unit that calculates the displacement of the speaker based on an actual measurement value of the current flowing through the speaker, and the amplitude control unit includes a displacement calculated by the displacement calculation unit, When the larger one of the predicted values is larger than the threshold value, amplitude control can be performed on the input signal.
  • the acoustic processing apparatus may further include a delay unit that delays the input signal by a predetermined time and supplies the input signal to the amplitude control unit.
  • the predicted value calculation unit can calculate the predicted value based on the equivalent model determined by a plurality of parameters including a force coefficient that varies nonlinearly with respect to the displacement of the speaker and mechanical system compliance.
  • the amplitude control unit can perform amplitude control on the input signal based on a gain value determined from the predicted value and the threshold value.
  • An acoustic processing method or program calculates a predicted value of displacement of the speaker according to an input signal supplied to the speaker based on an equivalent model of the speaker, and the predicted value is a predetermined threshold value. If greater than, the method includes performing amplitude control on the input signal.
  • a predicted value of the displacement of the speaker according to an input signal supplied to the speaker is calculated based on an equivalent model of the speaker, and the predicted value is greater than a predetermined threshold value. Amplitude control is performed on the input signal.
  • the present technology can be applied to, for example, a sound reproducing device connected to a speaker that reproduces a high resolution (high resolution) music.
  • IM distortion when a loudspeaker over-amplifies and the voice coil comes out of the magnetic circuit, the force coefficient approaches 0, the current signal flowing through the voice coil is not transmitted to the diaphragm, and the high-frequency signal is lost.
  • a phenomenon is known, and such a phenomenon is called IM distortion.
  • IM distortion occurs, for example, if there is a sound in a frequency band in which an overamplitude such as a bass drum is generated, when the sound is reproduced by the speaker, the reproduced voice or the like is shaken. That is, the sound quality is degraded.
  • a method of cutting a frequency band over-amplified by HPF High Pass Filter
  • HPF High Pass Filter
  • a detection resistor is inserted in series with the speaker, a signal proportional to the current is obtained from the voltage across the detection resistor, and the overamplitude is obtained using the obtained signal.
  • a suppression method (hereinafter also referred to as an actual measurement suppression method) is conceivable.
  • the impedance is calculated from the signal proportional to the acquired current and the voltage applied to the speaker, the speed of the speaker is calculated from the impedance, and the displacement value of the speaker is calculated by integrating the speed. Is done. Based on the obtained displacement value of the speaker, control for suppressing the overamplitude of the speaker is performed.
  • suppression control is started when the displacement value of the speaker exceeds the over-amplitude threshold.
  • the control cannot keep up with the movement of the speaker.
  • the actual measurement suppression method can be realized by, for example, the configuration shown in FIG.
  • the source signal of the sound to be reproduced that is, the sound signal is supplied to the gain adjustment unit 11 as an input signal, and gain adjustment is performed.
  • the gain-adjusted input signal is supplied to the speaker 13 via the amplifier 12, and sound based on the input signal is output from the speaker 13.
  • a detection resistor 14 is connected in series with the speaker 13 in order to detect an overamplitude of the speaker 13.
  • the current flowing through the detection resistor 14 is measured by the differential amplifier 15, and the measurement result is converted into a digital value by the AD (Analog Digital) converter 16 and supplied to the impedance calculator 17.
  • AD Analog Digital
  • the voltage value of the output of the amplifier 12, that is, the value of the voltage applied to the speaker 13 is converted into a digital value by the AD conversion unit 18 connected to the output terminal of the amplifier 12 and supplied to the impedance calculation unit 17. .
  • the impedance calculation unit 17 the impedance is calculated from the actual measurement value of the current supplied from the AD conversion unit 16 and the actual measurement value of the voltage supplied from the AD conversion unit 18, and is supplied to the speed calculation unit 19. Further, the speed calculation unit 19 calculates the speed from the impedance, the integration unit 20 integrates the speed to calculate the displacement value of the speaker 13, and the absolute value calculation unit 21 calculates the absolute value of the displacement value of the speaker 13.
  • a time constant is added to the absolute value of the displacement value in the time constant adding unit 22 and supplied to the gain calculating unit 23.
  • the gain value is determined so that the over-amplitude frequency component of the signal applied to the speaker 13 is suppressed. It is supplied to the adjustment unit 11.
  • the gain adjustment unit 11 uses the filter coefficient determined by the gain value supplied from the gain calculation unit 23 to perform gain adjustment on the supplied input signal.
  • the merit of such an actual measurement suppression method is that the current flowing through the actual speaker 13 is measured, so that the characteristics of the speaker 13 at that time can be grasped, and individual variations and secular changes of the speaker 13 can be followed. It is.
  • a curve L11 indicates an input signal supplied from the amplifier 12 to the speaker 13, that is, an analog voltage signal
  • a curve L12 indicates an actual displacement of the speaker 13.
  • the actual displacement of the speaker 13 becomes the displacement corresponding to the level at the time t1 of the input signal indicated by the curve L11 at the time t2, and a delay occurs only during the period between these times. .
  • a predicted value of a speaker displacement value is calculated by feedforward using a speaker equivalent model, and the predicted value becomes an overamplitude.
  • control is performed to suppress overamplitude.
  • control is performed by delaying the source signal by a delay time during speaker operation.
  • FIG. 3 shows a cross section of a general dynamic type speaker unit.
  • the voice coil 51 is fixed to the frame 53 via the damper 52.
  • the diaphragm 54 is fixed to the frame 53 via an edge 55 which is a flexible film stretched around the outer periphery of the diaphragm 54.
  • a magnet 57 is fixed to the pole piece 56 fixed to the frame 53 so as to surround the outer periphery of the voice coil 51.
  • a portion indicated by an arrow Q1 in the speaker unit is referred to as a center portion, and a position of the center portion in a state where the speaker unit is not driven is set as a reference position.
  • This central portion vibrates in the vertical direction in the figure together with the diaphragm 54 when the speaker unit is driven.
  • the vertical movement distance from the reference position of the center position when the speaker unit is driven is the absolute value of the displacement of the speaker unit, that is, the absolute value of the displacement of the diaphragm 54.
  • the upper direction that is, the forward direction viewed from the speaker unit
  • the lower direction that is, the rear direction, viewed from the speaker unit
  • the voice coil 51 comes out of the magnetic circuit (yoke).
  • the displacement characteristics of a sealed speaker using a general dynamic speaker unit are as shown in FIG.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the displacement, speed, or acceleration of the diaphragm.
  • a curve L21 indicates the displacement of the diaphragm of the speaker unit at each frequency
  • a curve L22 indicates the speed of the diaphragm of the speaker unit at each frequency
  • a curve L23 indicates the vibration of the speaker unit at each frequency. It shows the acceleration of the plate.
  • the frequency on the horizontal axis is also the frequency of the input signal input to the speaker unit, and is also the frequency when the diaphragm vibrates, that is, the frequency of the output sound.
  • the displacement characteristic of a sealed speaker using a general dynamic speaker unit is a frequency characteristic as indicated by a left curve L21 in the figure.
  • Differentiating the displacement value indicated by such a curve L21 is the speed indicated by the center curve L22 in the figure.
  • Characteristics of speed shown by the curve L22 the speed has a peak at the resonance frequency f 0. Also, at a frequency lower than the resonance frequency f 0 , the speed decreases with a slope of ⁇ 6 dB / Oct as the frequency decreases, and at a frequency higher than the resonance frequency f 0 , the speed increases with a slope of ⁇ 6 dB / Oct. Will decay.
  • the derivative of the velocity indicated by the curve L22 is the acceleration indicated by the right curve L23 in the drawing, that is, the sound pressure of the sound output from the speaker unit.
  • the resonance frequency f has a flat characteristic at a frequency higher than 0, the sound pressure (acceleration slope of -12 dB / Oct as the frequency becomes low at a frequency lower than the resonance frequency f 0 ) Decays.
  • FIG. 5 shows respective waveforms when a source signal composed of two sine wave tone burst signals of 50 Hz and 2 kHz is input and inputted to a speaker whose frequency with the largest overamplitude is 50 Hz.
  • the horizontal axis indicates time
  • the vertical axis indicates signal level, speaker displacement, or sound pressure.
  • the waveform indicated by the arrow Q11 indicates the waveform of the input signal output from the amplifier, that is, the waveform of the input signal input to the speaker
  • the waveform indicated by the arrow Q12 indicates the input signal indicated by the arrow Q11.
  • the displacement of the speaker when supplied to the speaker is shown.
  • the waveform indicated by the arrow Q13 indicates the sound pressure waveform of the sound output from the speaker
  • the waveform indicated by the arrow Q14 indicates the high-frequency component of the sound output from the speaker, that is, the sound pressure of the 2 kHz component.
  • the waveform is shown.
  • the waveforms indicated by the arrows Q11 to Q14 are waveforms in a state where over-amplitude suppression control is not performed on the input signal.
  • the waveforms shown by arrows Q21 to Q24 are waveforms corresponding to the waveforms shown by arrows Q11 to Q14, respectively, when over-amplitude suppression control is performed on the input signal. ing.
  • the waveform indicated by the arrow Q21 indicates the waveform of the input signal output from the amplifier with the suppression of overamplitude controlled
  • the waveform indicated by the arrow Q22 supplies the input signal indicated by the arrow Q21 to the speaker. It shows the displacement of the loudspeaker.
  • the waveform indicated by the arrow Q23 indicates the sound pressure waveform of the sound output from the speaker based on the input signal indicated by the arrow Q21, and the waveform indicated by the arrow Q24 is based on the input signal indicated by the arrow Q21.
  • the waveform of the sound pressure of the high frequency component of the sound output from the speaker is shown.
  • the time waveform of the displacement of the speaker is supposed to be a sine wave, but a 50 Hz triangular wave is indicated by an arrow Q12. And harmonic distortion increases.
  • the speaker diaphragm overamplifies at 50 Hz and the voice coil comes out of the magnetic circuit, and when the force coefficient, that is, the BL value approaches 0, the diaphragm moves with inertia at 50 Hz. The signal is not transmitted to the diaphragm, and the 2kHz component is missing.
  • the harmonic distortion of the 50 Hz component itself is reduced, and as shown by the arrow Q23 and the arrow Q24, the signal is accurately transmitted to the diaphragm as well. It can be seen that no omission has occurred.
  • FIG. 6 shows an equivalent circuit of a sealed speaker using a dynamic speaker unit.
  • the circuit on the left side in the figure shows an electric equivalent circuit
  • the right side in the figure shows a mechanical equivalent circuit.
  • Each character in FIG. 6 indicates each parameter called a TS parameter.
  • Re indicates the DC resistance [ ⁇ ] of the voice coil
  • Le indicates the inductance [mH] of the voice coil
  • BL indicates the force coefficient, that is, the BL value [N / A].
  • the force coefficient BL is obtained by the product of the magnetic flux density in the voice coil and magnetic circuit portion and the coil length of the voice coil.
  • Rms indicates mechanical resistance [Nxs / m]
  • Cms indicates mechanical system compliance [m / N] that is an index indicating the softness of the suspension of the unit
  • Mms indicates vibration system equivalent mass. [G] is shown.
  • This vibration system equivalent mass Mms is the sum of the weight of the diaphragm and the voice coil and the weight of air before and after the diaphragm.
  • Cb indicates the compliance [m / N] of the air spring in the sealed box of the sealed speaker.
  • the force coefficient BL and the mechanical system compliance Cms depend on the displacement of the diaphragm as shown in FIG. 7, for example.
  • the horizontal axis indicates the displacement x of the diaphragm
  • the vertical axis indicates the value of the force coefficient BL or the value of the mechanical system compliance Cms.
  • the position x is a positive position
  • the diaphragm is moved in the forward direction, that is, in the sound radiation direction.
  • the displacement x is a position smaller than 0, the position of the diaphragm is in the negative direction, and the diaphragm is in the backward direction, that is, the direction opposite to the sound radiation direction. And moved.
  • the curve indicated by the arrow Q31 indicates the force coefficient BL at each displacement x
  • the curve indicated by the arrow Q32 indicates the mechanical system compliance Cms at each displacement x.
  • the force coefficient BL and the mechanical system compliance Cms depend on the diaphragm displacement x, and the force coefficient BL increases as the absolute value of the displacement x increases regardless of whether the displacement x is at the front position or the rear position. And the value of mechanical system compliance Cms is attenuated.
  • the value of the force coefficient BL starts to attenuate when the voice coil comes out of the magnetic circuit, and the value of the mechanical system compliance Cms becomes difficult to move because the edge and the damper are stretched as the displacement x increases.
  • the movement of the diaphragm, that is, the speaker becomes non-linear due to such a change in the force coefficient BL and the mechanical system compliance Cms due to the displacement x.
  • the nonlinear TS parameters such as the force coefficient BL and the mechanical system compliance Cms are changed according to the displacement x, it is possible to predict characteristics equivalent to those of an actual speaker by the speaker simulator.
  • a speaker equivalent model determined from TS parameters is used to predict speaker characteristics.
  • the displacement x When a simulation of the frequency characteristics of the amplitude of the speaker, that is, the displacement x, is performed using TS parameters including the nonlinearly changing force coefficient BL and mechanical system compliance Cms, for example, the result shown in FIG. 8 is obtained.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the displacement x of the diaphragm.
  • the displacement x in the front and rear directions of the diaphragm at each frequency when a plurality of input signals having different effective voltage values is supplied to the speaker is shown. Further, in FIG. 8, an overamplitude of the speaker is generated at a displacement x on the upper side in the drawing from the position of the straight line L51 and a displacement x on the lower side in the drawing from the position of the straight line L52.
  • a predicted value of the displacement of the speaker that is, the diaphragm is calculated by feedforward using such a speaker simulator, and control is performed to suppress the overamplitude when the predicted value exceeds a threshold value that causes the overamplitude. I did it.
  • FIG. 9 is a diagram illustrating a configuration example of an embodiment of a sound reproduction system to which the present technology is applied.
  • the sound reproduction system shown in FIG. 9 has a sound reproduction device 81 and a speaker 82.
  • the sound reproduction device 81 is supplied with a time-domain sound signal for reproducing sound by the speaker 82, that is, a source signal, as an input signal.
  • the sound reproducing device 81 appropriately performs processing for suppressing overamplitude on the supplied input signal and supplies the processed signal to the speaker 82.
  • the speaker 82 is composed of a sealed speaker using, for example, a dynamic speaker unit capable of reproducing high resolution music, and reproduces sound based on an input signal supplied from the sound reproducing device 81. To do.
  • the speaker 82 may be any speaker other than a dynamic speaker as long as it generates an overamplitude.
  • the sound reproducing device 81 includes a delay unit 91, a gain adjustment unit 92, an amplifier 93, a detection resistor 94, a differential amplifier 95, an AD conversion unit 96, a parameter correction value 97, an amplification unit 98, a speaker simulator 99, and an absolute value calculation unit. 100, a time constant adding unit 101, and a gain calculating unit 102.
  • a detection resistor 94 for measuring current is connected in series to the speaker 82, and the differential resistor 95 detects the detection resistor 94, that is, the speaker 82 from the voltage across the detection resistor 94.
  • the current flowing through the voice coil is actually measured.
  • the parameter correction unit 97 calculates a parameter correction value used to correct the TS parameter based on the actual measured value of the current.
  • the sound reproducing device 81 will be described more specifically.
  • the delay unit 91 delays the input signal supplied from the outside by a predetermined time, and then supplies it to the gain adjustment unit 92.
  • the time for delaying the input signal is, for example, a time corresponding to the delay time (transient response time) of the actual operation of the speaker 82 with respect to the input signal.
  • the gain adjustment unit 92 includes an IIR (InfiniteInImpulse Response) type filter such as a dynamic bus shelving filter and dynamic EQ (Equalizer), for example. Function.
  • IIR InfiniteInImpulse Response
  • EQ Equalizer
  • the gain adjustment unit 92 updates the filter coefficient used for the filter processing based on the gain value supplied from the gain calculation unit 102, and uses the obtained filter coefficient for the input signal supplied from the delay unit 91. Filter processing is performed and the result is supplied to the amplifier 93.
  • the gain adjustment unit 92 performs filter processing on the input signal, thereby performing gain adjustment for each frequency component of the input signal.
  • Such a process for performing gain adjustment for each frequency component is a process for suppressing overamplitude of the speaker 82, that is, a process for controlling suppression of overamplitude.
  • the amplifier 93 multiplies the input signal supplied from the gain adjustment unit 92 by a gain value and amplifies the input signal so that the input signal is amplified by a predetermined gain or a volume adjustment operation by a user or the like. Then, the amplified input signal is supplied to the speaker 82.
  • the input signal supplied from the amplifier 93 to the speaker 82 is an analog voltage signal.
  • the differential amplifier 95 receives the voltage across the detection resistor 94 as an input, measures (actually measures) the current flowing through the detection resistor 94, and supplies the analog measurement value obtained as a result to the AD conversion unit 96 as an actual current measurement value. To do.
  • the AD conversion unit 96 AD converts the actual measured current value supplied from the differential amplifier 95 from an analog value to a digital value, and supplies the converted value to the parameter correction unit 97.
  • the detection resistor 94 and the differential amplifier 95 are provided to measure the current flowing through the speaker 82.
  • a current sensor is connected to the speaker 82 and the current flowing through the speaker 82 is detected by the current sensor. You may make it measure and obtain an electric current actual value.
  • the parameter correction unit 97 calculates a parameter correction value used for correcting the TS parameter based on the current measurement value supplied from the AD conversion unit 96, and supplies the parameter correction value to the speaker simulator 99.
  • the parameter correction value obtained by the parameter correction unit 97 may be, for example, the correction value of the TS parameter itself, or Q or the resonance frequency indicating the sharpness of the impedance characteristic of the speaker 82 used to correct the TS parameter. it may be a value such as f 0.
  • f 0 of the speaker 82 is used as a parameter correction value
  • the amplifier 93, the detection resistor 94, the differential amplifier 95, and the AD conversion unit 96 may be provided outside the sound reproducing device 81.
  • the amplifying unit 98 amplifies the input signal supplied from the outside by the amount amplified by the amplifier 93 and supplies the amplified signal to the speaker simulator 99.
  • an input signal having the same signal level as the input signal actually supplied (applied) to the speaker 82 can be input to the speaker simulator 99, and the displacement x of the speaker 82 can be predicted with higher accuracy.
  • the speaker simulator 99 Based on the input signal supplied from the amplification unit 98 and the parameter correction value supplied from the parameter correction unit 97, the speaker simulator 99 obtains the displacement x of the diaphragm of the speaker 82 due to the input signal by prediction. It supplies to the absolute value calculation part 100. That is, the speaker simulator 99 functions as a predicted value calculation unit that calculates a predicted value of the displacement of the speaker 82 according to the input signal supplied to the speaker 82 based on the speaker equivalent model.
  • a speaker simulator 99 corrects the mechanical compliance Cms as TS parameters based on the resonance frequency f 0 as the parameter correction value. That is, the mechanical compliance Cms, which is the TS parameter of the speaker equivalent model, is corrected in accordance with the actual measured value that is the actual measured value of the current flowing through the speaker 82.
  • the speaker simulator 99 calculates the speaker 82 (mechanical system) from the speaker equivalent model of the speaker 82 determined from the TS parameters including the corrected mechanical system compliance Cms, that is, the equivalent circuit described with reference to FIG. 6 and the input signal. , And further integrating the speed, the displacement x, more specifically, the predicted value of the displacement x is obtained.
  • the predicted value of the displacement x obtained by the speaker simulator 99 is particularly referred to as a predicted displacement value.
  • the speaker simulator 99 can predict the displacement x with high accuracy by using such a speaker equivalent model.
  • a force coefficient BL and mechanical system compliance Cms that are TS parameters of the speaker equivalent model that change nonlinearly with respect to the displacement x, the movement of the speaker 82 that operates nonlinearly can be simulated.
  • the absolute value calculation unit 100 calculates the absolute value of the predicted displacement value supplied from the speaker simulator 99 and supplies it to the time constant adding unit 101.
  • the time constant adding unit 101 adds a time constant to the absolute value of the displacement predicted value supplied from the absolute value calculating unit 100 and supplies the time constant to the gain calculating unit 102. Specifically, for example, when a time constant is added, the attack time is 0 second and the release time is 1 second.
  • the gain calculation unit 102 compares the absolute value of the displacement prediction value to which the time constant is supplied, supplied from the time constant addition unit 101, with the over-amplitude limit value of the displacement of the speaker 82, which is a predetermined threshold value. The gain value is calculated according to the comparison result and supplied to the gain adjustment unit 92.
  • the over-amplitude limit value is the maximum value allowable as the displacement value of the speaker 82, and is, for example, the maximum displacement size that does not become over-amplitude.
  • the gain calculation unit 102 calculates and outputs the gain value only when the absolute value of the predicted displacement value is larger than the over-amplitude limit value.
  • the gain value is a ratio between the over-amplitude limit value and the absolute value of the predicted displacement value, that is, a value obtained by dividing the over-amplitude limit value by the absolute value of the estimated displacement value.
  • the gain value is not output and the gain value is substantially set to 1.
  • the gain adjustment unit 92 for example, a filter coefficient that realizes a filter having a reverse characteristic of the frequency characteristic of the displacement of the speaker 82 is prepared.
  • the gain adjustment unit 92 is based on the gain value supplied from the gain calculation unit 102. Update (change). At this time, the gain adjustment unit 92 obtains a new filter coefficient so that the characteristics of the filter in the frequency band in which the overamplitude is generated by the gain value from the gain calculation unit 102 are corrected. That is, the filter coefficient is updated.
  • the gain adjustment unit 92 performs gain adjustment (amplitude control) for realizing the suppression control of the overamplitude on the input signal only when the absolute value of the predicted displacement value is larger than the overamplitude limit value. It can be said.
  • the sound reproducing device 81 only when the absolute value of the displacement prediction value is larger than the over-amplitude limit value, that is, only when the over-amplitude occurs, the gain between the absolute value of the displacement prediction value and the over-amplitude limit value is changed. The difference is calculated. Then, the component of the frequency band in which the input signal over-amplifies dynamically is suppressed by the gain adjustment by the amount exceeding the gain of the over-amplitude limit value.
  • the delay unit 91 delays the input signal by the delay time and supplies it to the gain adjustment unit 92. As a result, it is possible to perform control to suppress the overamplitude from the part where the overamplification starts only when the overamplitude occurs.
  • the frequency characteristics of the displacement of the speaker 82 when the dynamic overamplitude suppression control is turned on and off are as shown in FIG. 10, for example.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the displacement of the speaker 82.
  • an overamplitude of the speaker 82 is generated at a displacement on the upper side in the drawing from the position of the straight line L71 and a displacement on the lower side in the drawing from the position of the straight line L72. That is, the displacement indicated by the straight line L71 and the straight line L72 indicates the over-amplitude limit value.
  • the displacement of the diaphragm of the speaker 82 at each frequency is shown as frequency characteristics for a plurality of input signals having different voltage effective values.
  • the portion indicated by the arrow Q51 shows the frequency characteristics of the displacement when the dynamic overamplitude suppression control is turned off, that is, when the filter coefficient is not updated by the gain value output from the gain calculation unit 102. ing.
  • the frequency characteristic of the displacement when the dynamic overamplitude suppression control is turned on that is, when the filter coefficient is updated by the gain value output from the gain calculation unit 102. It is shown.
  • an overamplitude occurs when the gain adjustment unit 92 does not update the filter coefficient.
  • the overamplitude suppression control is performed only in the case of an overamplitude. It can be seen that the displacement is suppressed to the over-amplitude limit value.
  • This playback process is started when an input signal is supplied to the sound playback device 81.
  • step S11 the delay unit 91 delays the supplied input signal by a predetermined time and supplies it to the gain adjustment unit 92. In this way, by delaying the supply of the input signal to the gain adjusting unit 92, it is possible to predict the displacement of the speaker 82 in feed forward.
  • the input signal is also supplied to the amplifying unit 98.
  • the amplifying unit 98 amplifies the supplied input signal by the same amount as that amplified by the amplifier 93 and supplies the amplified signal to the speaker simulator 99.
  • step S ⁇ b> 12 the speaker simulator 99 calculates a predicted displacement value based on the input signal supplied from the amplification unit 98 and the parameter correction value supplied from the parameter correction unit 97, and supplies it to the absolute value calculation unit 100. . That is, the speaker equivalent model is used to predict the displacement of the speaker 82.
  • the speaker simulator 99 corrects the mechanical compliance Cms as the TS parameter based on the resonance frequency f 0 supplied as the parameter correction value, and calculates a displacement prediction value from the TS parameter and the input signal.
  • the absolute value calculation unit 100 calculates the absolute value of the displacement prediction value supplied from the speaker simulator 99 and supplies the obtained absolute value to the time constant adding unit 101.
  • the time constant adding unit 101 adds a time constant to the absolute value of the predicted displacement value supplied from the absolute value calculating unit 100 and supplies the obtained absolute value of the predicted displacement value to the gain calculating unit 102.
  • step S13 the gain calculation unit 102 compares the absolute value of the displacement prediction value supplied from the time constant adding unit 101 with an over-amplitude limit value that is a predetermined threshold value.
  • step S14 the gain calculation unit 102 calculates a gain value based on the comparison result in the process of step S13, and supplies the gain value to the gain adjustment unit 92.
  • the gain calculation unit 102 calculates the ratio between the absolute value of the displacement prediction value and the over-amplitude limit value as the gain value.
  • the gain value is not particularly calculated.
  • step S15 the gain adjustment unit 92 updates the filter coefficient held in advance based on the gain value supplied from the gain calculation unit 102.
  • the filter coefficient is not updated. In this case, it is assumed that the gain value is substantially 1, and the filter coefficient is updated.
  • step S ⁇ b> 16 the gain adjustment unit 92 performs filter processing on the input signal that is delayed in step S ⁇ b> 11 and supplied from the delay unit 91 using the filter coefficient obtained in step S ⁇ b> 15. Adjust the gain. In the filter process, a convolution process between the filter coefficient and the input signal is performed.
  • the gain adjusting unit 92 supplies the input signal thus obtained to the amplifier 93.
  • the amplifier 93 amplifies the input signal supplied from the gain adjustment unit 92 and supplies the amplified signal to the speaker 82.
  • step S17 the speaker 82 reproduces sound based on the input signal supplied from the amplifier 93. As a result, driving with the overamplitude suppressed is performed as appropriate, and reproduced sound is output from the speaker 82.
  • step S 18 the differential amplifier 95 measures the current flowing through the speaker 82, that is, the detection resistor 94 from the voltage across the detection resistor 94, and supplies the measurement result to the AD conversion unit 96.
  • the AD conversion unit 96 converts the measured current value, which is the measurement result supplied from the differential amplifier 95, from an analog value to a digital value, and supplies the converted value to the parameter correction unit 97.
  • step S19 the parameter correction unit 97 calculates a parameter correction value based on the current measurement value supplied from the AD conversion unit 96 and supplies the parameter correction value to the speaker simulator 99, and the reproduction process ends.
  • the parameter correction unit 97 calculates the resonance frequency f 0 as a correction parameter based on the measured current value.
  • the correction parameter calculated in this way is used in the process of step S12 of the next reproduction process.
  • the sound reproduction system calculates the predicted displacement value of the speaker by feedforward using the speaker equivalent model, and filters the gain value if the absolute value of the predicted displacement value exceeds the over-amplitude limit value. Control is performed to update the coefficient and suppress overamplitude.
  • overamplitude suppression control can be performed for a portion where overamplitude starts to occur. As a result, more accurate overamplitude suppression control is possible, and a higher quality sound can be obtained.
  • the current flowing through the speaker 82 is measured, and the TS parameter, that is, the speaker equivalent model, is corrected in accordance with the actual measurement result. . Therefore, more accurate overamplitude suppression control can be performed.
  • some high-resolution playback speakers can play outside the audible band of 20 kHz or more in the full range.
  • the frequency characteristics of these speakers cross over at several kHz, and the slope of the filter is -12 dB / Oct.
  • the sound reproduction system is configured as shown in FIG. In FIG. 12, portions corresponding to those in FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the sound reproduction device 81 includes a delay unit 91 or a gain calculation unit 102.
  • the input signal output from the gain adjustment unit 92 is also supplied to the parameter correction unit 97, and the parameter correction value output from the parameter correction unit 97 is input to the absolute value calculation unit 100. It differs from the sound reproducing device 81 of FIG. 9 in that it is supplied, and has the same configuration as the sound reproducing device 81 of FIG. 9 in other points.
  • the parameter correction unit 97 calculates a measured displacement value as a parameter correction value based on the input signal supplied from the gain adjustment unit 92 and the current measured value supplied from the AD conversion unit 96, and the absolute value calculation unit 100 To supply. That is, here, the parameter correction unit 97 functions as a displacement calculation unit that calculates the displacement of the speaker 82 based on the actual measured current value that is the actual measured value of the current flowing through the speaker 82.
  • the parameter correction unit 97 multiplies the input signal by the gain value amplified by the amplifier 93 to generate an input signal to be supplied from the amplifier 93 to the speaker 82, and the obtained input
  • the impedance of the speaker 82 is calculated from the voltage value indicated by the signal and the measured current value.
  • the parameter correction unit 97 calculates the moving speed of the diaphragm of the speaker 82 from the obtained impedance, and further calculates the measured displacement value by integrating the speed.
  • the parameter correction unit 97 or the like measures the voltage value at the output end of the amplifier 93, and the impedance is calculated from the measured voltage value and the measured current value. You may be made to do.
  • the absolute value calculation unit 100 calculates the absolute value of the predicted displacement value supplied from the speaker simulator 99 and the measured displacement value as the parameter correction value supplied from the parameter correction unit 97. Then, the absolute value calculation unit 100 supplies the larger one of the absolute value of the obtained displacement predicted value and the absolute value of the measured displacement value to the time constant adding unit 101.
  • the larger one of the absolute value of the predicted displacement value and the absolute value of the measured displacement value is output as a prediction result of the absolute value of the final displacement value of the speaker 82 as necessary. It can also be said that the displacement prediction value is corrected by the parameter correction value.
  • the gain adjusting unit 92 applies an excess signal to the input signal only when the larger one of the absolute value of the predicted displacement value and the absolute value of the measured displacement value is larger than the over-amplitude limit value.
  • Gain adjustment amplitude control for realizing amplitude suppression control is performed.
  • step S42 the displacement of the speaker 82 is predicted using the speaker equivalent model without correcting the TS parameter by the parameter correction value.
  • the predicted displacement value obtained by the prediction is supplied from the speaker simulator 99 to the absolute value calculation unit 100.
  • step S43 the absolute value calculation unit 100 compares the absolute value of the predicted displacement value with the absolute value of the measured displacement value.
  • the absolute value calculation unit 100 calculates the absolute value of the predicted displacement value supplied from the speaker simulator 99 and calculates the absolute value of the measured displacement value as the parameter correction value supplied from the parameter correction unit 97. Then, the absolute value calculation unit 100 compares the absolute value of the predicted displacement value with the absolute value of the measured displacement value, and uses the larger value as the final predicted result of the absolute value of the displacement value of the speaker 82. This is supplied to the constant adding unit 101.
  • the time constant adding unit 101 adds a time constant to the absolute value of the displacement value of the speaker 82 supplied from the absolute value calculating unit 100, more specifically, the prediction result of the absolute value of the displacement value, and adds the time constant.
  • the absolute value of the displacement value thus supplied is supplied to the gain calculation unit 102.
  • step S44 to step S49 is performed thereafter, and these processing are the same as the processing from step S13 to step S18 in FIG. Therefore, the description is omitted.
  • step S44 the absolute value of the displacement value output from the time constant adding unit 101 is compared with the over-amplitude limit value.
  • step S 47 the input signal output from the gain adjustment unit 92 is supplied not only to the amplifier 93 but also to the parameter correction unit 97.
  • step S50 the parameter correction unit 97 calculates a measurement displacement value as a parameter correction value based on the actual measured current value supplied from the AD conversion unit 96 and the input signal supplied from the gain adjustment unit 92, and is absolute.
  • the value calculation unit 100 is supplied and the reproduction process ends.
  • correction parameters calculated in this way are used in the process of step S43 of the next reproduction process.
  • the sound reproduction system calculates the measured displacement value of the speaker 82 using the actually measured current value, and uses the larger one of the measured displacement value and the predicted displacement value to filter the measured value. A gain value for updating (correcting) the coefficient is calculated. As a result, it is possible to more accurately control overamplitude in consideration of the actual movement of the speaker 82.
  • the heat when power is applied to the voice coil, the heat changes around the voice coil and the yoke and other voice coils at each time constant.
  • the value of the DC resistance of the voice coil depends on the temperature of the voice coil. That is, when the voice coil temperature is Tvc, the voice coil DC resistance when the voice coil temperature Tvc is 20 degrees is Re, and the coefficient depending on the voice coil material is ⁇ , the voice coil DC resistance Re ′ Is obtained by the following equation (1).
  • the coefficient ⁇ is 0.00393.
  • the DC resistance Re ′ of the voice coil is expressed by the following equation (2).
  • the DC resistance Re is 4 ⁇ when the voice coil is 20 degrees, and the voice coil temperature Tvc reaches 300 degrees
  • the DC resistance Re ′ of the voice coil is expressed by the following equation (3).
  • the DC resistance Re ′ of the voice coil is approximately double the DC resistance Re when it is 20 degrees.
  • the DC resistance Re when the voice coil is 20 degrees is used as the DC resistance of the voice coil which is one of the TS parameters.
  • the direct current resistance of the voice coil is increased, the current flowing through the speaker 82 is reduced, so that the displacement value of the speaker 82 is also reduced. Therefore, if the DC resistance Re as a TS parameter used in the speaker simulator 99 is a value as it is at room temperature, the difference cannot be ignored when the actual voice coil temperature is close to 200 degrees.
  • the sound reproduction device 81 may measure the current value and voltage value of the speaker 82 to calculate the impedance, and correct the DC resistance of the voice coil as a TS parameter based on the impedance.
  • the sound reproduction system is configured as shown in FIG. 14, for example.
  • parts corresponding to those in FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the sound reproduction device 81 includes a delay unit 91 through a gain calculation unit 102, and an impedance calculation unit 131.
  • the configuration of the sound reproduction device 81 shown in FIG. 14 is different from the sound reproduction device 81 of FIG. 9 in that an impedance calculation unit 131 is newly provided, and the other configuration is the same as that of the sound reproduction device 81 of FIG. It has become.
  • the input signal output from the gain adjustment unit 92 and the actual measured current value output from the AD conversion unit 96 are also supplied to the impedance calculation unit 131.
  • the current flowing through the speaker 82 may be measured by a current sensor.
  • the impedance calculation unit 131 calculates the impedance of the speaker 82 based on the input signal supplied from the gain adjustment unit 92 and the measured current value supplied from the AD conversion unit 96, and further, the DC of the voice coil is calculated from the impedance. Calculate the resistance.
  • the impedance calculation unit 131 multiplies the input signal by the gain value amplified by the amplifier 93 to generate an input signal supplied from the amplifier 93 to the speaker 82, and indicates the input signal by the obtained input signal.
  • the impedance of the speaker 82 is calculated from the measured voltage value and the measured current value.
  • the impedance calculator 131 calculates the direct current resistance of the voice coil of the speaker 82 from the obtained impedance.
  • the direct current resistance of the voice coil calculated by the impedance calculation unit 131 is particularly referred to as direct current resistance Re ′.
  • the parameter correction unit 97 described with reference to FIG. 12 when the amount of amplification of the input signal in the amplifier 93 is not known, the voltage value at the output end of the amplifier 93 is measured, The impedance may be calculated from the measured voltage value and the measured current value.
  • the impedance calculator 131 supplies the DC resistance Re ′ of the voice coil thus obtained to the speaker simulator 99.
  • the speaker simulator 99 calculates a displacement predicted value using the DC resistance Re ′ supplied from the impedance calculation unit 131 as the DC resistance Re of the voice coil as the TS parameter. That is, the speaker simulator 99 corrects the DC resistance Re of the voice coil of the speaker 82 as the TS parameter based on the DC resistance Re ′, and calculates the displacement prediction value.
  • the impedance calculation unit 131 is further provided for the sound reproduction device 81 illustrated in FIG. 9 for the sound reproduction device 81 illustrated in FIG. 9 .
  • the impedance calculation unit 131 is further provided for the sound reproduction device 81 illustrated in FIG. You may do it.
  • or step S89 is the same as the process of step S11 thru
  • step S82 the speaker simulator 99 corrects the TS parameter by using the parameter correction value supplied from the parameter correction unit 97 and the DC resistance Re ′ supplied from the impedance calculation unit 131.
  • the DC resistance Re ′ is used to correct the DC resistance Re of the voice coil as a TS parameter.
  • step S90 the impedance calculation unit 131 calculates the impedance of the speaker 82 based on the input signal supplied from the gain adjustment unit 92 and the current measured value supplied from the AD conversion unit 96, and further from the impedance.
  • the DC resistance Re ′ of the voice coil is calculated.
  • the impedance calculation unit 131 supplies the obtained DC resistance Re ′ to the speaker simulator 99, and the reproduction process ends.
  • the DC resistance Re 'obtained in this way is used in the process of step S82 of the next reproduction process.
  • the sound reproduction system calculates the direct current resistance value of the voice coil of the speaker 82 using the actually measured current value, and the TS when calculating the predicted displacement value based on the obtained direct current resistance value. Correct the parameters. Accordingly, it is possible to more accurately control overamplitude in consideration of the actual temperature of the voice coil.
  • the temperature of the voice coil may be obtained from the calculated DC resistance value of the voice coil of the speaker 82, and the gain of the input signal may be adjusted based on the obtained temperature.
  • the sound reproduction system is configured as shown in FIG. 16, for example.
  • FIG. 16 portions corresponding to those in FIG. 14 are denoted with the same reference numerals, and description thereof will be omitted as appropriate.
  • the acoustic reproduction system shown in FIG. 16 includes an acoustic reproduction device 81 and a speaker 82.
  • the acoustic reproduction device 81 includes a delay unit 91 to a gain calculation unit 102, an impedance calculation unit 131, a gain adjustment unit 161, a temperature calculation unit 162, and a state.
  • a transition unit 163 is included.
  • the configuration of the sound reproduction device 81 shown in FIG. 16 is different from the sound reproduction device 81 in FIG. 14 in that gain adjustment units 161 to state transition units 163 are newly provided. In other respects, the sound reproduction device 81 in FIG. The configuration is the same as 81.
  • the DC resistance Re ′ output from the impedance calculation unit 131 is also supplied to the temperature calculation unit 162.
  • the temperature calculation unit 162 calculates the voice coil temperature Tvc using, for example, the above-described equation (1) based on the DC resistance Re ′ supplied from the impedance calculation unit 131 and supplies the calculated voice coil temperature Tvc to the state transition unit 163.
  • the state transition unit 163 transitions a state related to the temperature of the voice coil based on the voice coil temperature supplied from the temperature calculation unit 162, and determines a gain value.
  • the temperature range that the voice coil can take is divided into several ranges, and a gain value is predetermined for these temperature ranges.
  • the state transition unit 163 identifies a temperature range in which the supplied voice coil temperature Tvc is included, and selects a gain value that is predetermined for the identified temperature range.
  • the state transition unit 163 supplies the gain value selected in this way to the gain adjustment unit 161.
  • the gain adjustment unit 161 Based on the gain value supplied from the state transition unit 163, the gain adjustment unit 161 performs gain adjustment for suppressing an increase in the temperature of the voice coil with respect to the input signal supplied from the outside.
  • the input signal is supplied to the amplifying unit 98 and the delay unit 91.
  • the gain adjustment unit 161 controls the voice coil temperature by adjusting the gain.
  • the gain adjustment in the gain adjustment unit 161 for example, a process in which the signal level of the input signal is suppressed by DRC (Dynamic Range Compression), dynamic EQ, or the like so that the temperature of the voice coil is suppressed to within 200 degrees. Is done.
  • DRC Dynamic Range Compression
  • dynamic EQ Dynamic Range Compression
  • the gain adjustment unit 161 performs temperature adjustment for performing gain adjustment, that is, amplitude control (temperature control) for suppressing an increase in the temperature of the voice coil with respect to the input signal in accordance with the temperature of the voice coil of the speaker 82. It functions as a part.
  • the temperature change of the voice coil is a gradual change compared to the change of the input signal itself. For this reason, in gain adjustment for temperature control of the voice coil, the update of the gain value used for gain adjustment is switched not frequently but gently. Therefore, in the state transition unit 163, one gain value is determined for each temperature range having a certain width.
  • step S131 the gain adjustment unit 161 performs gain adjustment for suppressing temperature rise of the voice coil on the input signal supplied from the outside based on the gain value supplied from the state transition unit 163, The input signal obtained as a result is supplied to the amplification unit 98 and the delay unit 91.
  • step S132 to step S141 are performed thereafter. These processing are the same as the processing from step S81 to step S90 in FIG. Since there is, explanation is omitted.
  • step S 141 the calculated DC resistance Re ′ of the voice coil is supplied from the impedance calculation unit 131 to the speaker simulator 99 and the temperature calculation unit 162.
  • step S142 the temperature calculation unit 162 calculates the above-described formula (1) based on the DC resistance Re ′ supplied from the impedance calculation unit 131 and the predetermined temperature, that is, the DC resistance of the voice coil at 20 degrees. From the above, the temperature of the voice coil is calculated and supplied to the state transition unit 163.
  • step S143 the state transition unit 163 determines a gain value for suppressing the temperature increase of the voice coil based on the temperature of the voice coil supplied from the temperature calculation unit 162, and the gain adjustment unit 161 determines the gain value thus determined. To supply.
  • step S143 the gain value determined in step S143 is used in step S131 of the next reproduction process.
  • the sound reproduction system calculates the temperature of the voice coil of the speaker 82 using the actually measured current value, and suppresses the temperature rise with respect to the input signal using the gain value corresponding to the obtained temperature. To adjust the gain. Thereby, the temperature rise of a voice coil can be suppressed.
  • the above-described series of processing can be executed by hardware or can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer includes, for example, a general-purpose computer capable of executing various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 18 is a block diagram illustrating a configuration example of hardware of a computer that executes the above-described series of processes by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 505 is further connected to the bus 504.
  • An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
  • the input unit 506 includes a keyboard, a mouse, a microphone, an image sensor, and the like.
  • the output unit 507 includes a display, a speaker, and the like.
  • the recording unit 508 includes a hard disk, a nonvolatile memory, and the like.
  • the communication unit 509 includes a network interface or the like.
  • the drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 501 loads the program recorded in the recording unit 508 to the RAM 503 via the input / output interface 505 and the bus 504 and executes the program, for example. Is performed.
  • the program executed by the computer (CPU 501) can be provided by being recorded in a removable recording medium 511 as a package medium or the like, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the recording unit 508 via the input / output interface 505 by attaching the removable recording medium 511 to the drive 510. Further, the program can be received by the communication unit 509 via a wired or wireless transmission medium and installed in the recording unit 508. In addition, the program can be installed in advance in the ROM 502 or the recording unit 508.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • the present technology can be configured as follows.
  • a predicted value calculation unit that calculates a predicted value of displacement of the speaker according to an input signal supplied to the speaker, based on an equivalent model of the speaker;
  • An acoustic processing apparatus comprising: an amplitude control unit that performs amplitude control on the input signal when the predicted value is larger than a predetermined threshold value.
  • a temperature calculator that calculates the temperature of the voice coil based on the DC resistance;
  • the acoustic processing device further comprising: a temperature control unit that performs temperature control on the input signal to suppress a temperature rise of the voice coil according to the temperature of the voice coil.
  • a displacement calculator for calculating the displacement of the speaker based on an actual measurement value of the current flowing through the speaker;
  • the amplitude control unit performs amplitude control on the input signal when a larger value of the displacement calculated by the displacement calculation unit and the predicted value is larger than the threshold value (1)
  • the sound processing apparatus as described in any one of thru
  • the acoustic processing device according to any one of (1) to (6), further including a delay unit that delays the input signal by a predetermined time and supplies the input signal to the amplitude control unit.
  • the predicted value calculation unit calculates the predicted value based on the equivalent model determined by a plurality of parameters including a force coefficient that varies nonlinearly with respect to the displacement of the speaker and mechanical system compliance.
  • the sound processing apparatus according to any one of 7).
  • (9) The acoustic processing device according to any one of (1) to (8), wherein the amplitude control unit performs amplitude control on the input signal based on a gain value determined from the predicted value and the threshold value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本技術は、過振幅を抑制し、より高品質な音を得ることができるようにする音響処理装置および方法、並びにプログラムに関する。 音響処理装置は、スピーカの等価モデルに基づいて、スピーカに供給される入力信号に応じたスピーカの変位の予測値を算出する予測値算出部と、予測値が所定の閾値よりも大きい場合、入力信号に対して振幅制御を行う振幅制御部とを備える。本技術は音響再生システムに適用することができる。

Description

音響処理装置および方法、並びにプログラム
 本技術は音響処理装置および方法、並びにプログラムに関し、特に、過振幅を抑制し、より高品質な音を得ることができるようにした音響処理装置および方法、並びにプログラムに関する。
 従来、スピーカから出力される音の品質を向上させるための技術が多く提案されている。例えば、そのような技術として、スピーカのインピーダンスを検出し、その検出結果に対応する周波数特性の音声情報を形成してスピーカに供給することで、安定した周波数特性の音響出力が得られるようにした技術が提案されている(例えば、特許文献1参照)。
特開2015-126444号公報
 ところで、スピーカで過振幅が起こると、高域の信号が欠落してしまうIM(Inter Modulation)歪(混変調歪)が発生する。そのため、過振幅が起こる周波数帯域の音があると再生される声等が震えてしまい、音の品質が低下してしまう。
 本技術は、このような状況に鑑みてなされたものであり、過振幅を抑制し、より高品質な音を得ることができるようにするものである。
 本技術の一側面の音響処理装置は、スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値を算出する予測値算出部と、前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御を行う振幅制御部とを備える。
 前記予測値算出部には、前記スピーカを流れる電流の実測値に応じて前記等価モデルのパラメータを補正させることができる。
 前記予測値算出部には、前記パラメータとして機械系コンプライアンスを補正させることができる。
 前記予測値算出部には、前記パラメータとして前記スピーカのボイスコイルの直流抵抗を補正させることができる。
 音響処理装置には、前記直流抵抗に基づいて、前記ボイスコイルの温度を算出する温度算出部と、前記ボイスコイルの温度に応じて、前記入力信号に対して前記ボイスコイルの温度上昇を抑制するための温度制御を行う温度制御部とをさらに設けることができる。
 音響処理装置には、前記スピーカを流れる電流の実測値に基づいて、前記スピーカの変位を算出する変位算出部をさらに設け、前記振幅制御部には、前記変位算出部により算出された変位と、前記予測値とのうちのより大きい方の値が前記閾値よりも大きい場合、前記入力信号に対して振幅制御を行わせることができる。
 音響処理装置には、前記入力信号を所定時間だけ遅延させて前記振幅制御部に供給する遅延部をさらに設けることができる。
 前記予測値算出部には、前記スピーカの変位に対して非線形に変化する力係数および機械系コンプライアンスを含む、複数のパラメータにより定まる前記等価モデルに基づいて、前記予測値を算出させることができる。
 前記振幅制御部には、前記予測値および前記閾値から定まるゲイン値に基づいて、前記入力信号に対する振幅制御を行わせることができる。
 本技術の一側面の音響処理方法またはプログラムは、スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値を算出し、前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御を行うステップを含む。
 本技術の一側面においては、スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値が算出され、前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御が行われる。
 本技術の一側面によれば、過振幅を抑制し、より高品質な音を得ることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。
音響再生システムについて説明する図である。 過振幅抑制制御時の遅延について説明する図である。 一般的なダイナミック型のスピーカユニットの断面を示す図である。 振動板の変位、速度、および加速度の関係について説明する図である。 IM歪について説明する図である。 スピーカの等価回路を示す図である。 力係数と機械系コンプライアンスについて説明する図である。 スピーカシミュレータによるシミュレーション結果を示す図である。 本技術を適用した音響再生システムの構成例を示す図である。 過振幅の抑制制御のオン、オフについて説明する図である。 再生処理を説明するフローチャートである。 音響再生システムの他の構成例を示す図である。 再生処理を説明するフローチャートである。 音響再生システムの他の構成例を示す図である。 再生処理を説明するフローチャートである。 音響再生システムの他の構成例を示す図である。 再生処理を説明するフローチャートである。 コンピュータの構成例を示す図である。
 以下、図面を参照して、本技術を適用した実施の形態について説明する。
〈第1の実施の形態〉
〈本技術について〉
 本技術は、例えばハイレゾリューション(高解像度)の楽曲などを再生するスピーカを接続する音響再生装置などに適用することが可能である。
 例えば、スピーカが過振幅を起こしてボイスコイルが磁気回路から抜け出た場合に、力係数が0に近づき、ボイスコイルに流している電流の信号が振動板に伝わらず、高域の信号が欠落する現象が知られており、このような現象はIM歪と呼ばれている。
 IM歪が発生すると、例えばバスドラムなどの過振幅が生じる周波数帯域の音があると、スピーカで音を再生するときに、再生される声等が震えてしまう。すなわち、音の品質が低下してしまう。
 また、ハイレゾリューションの楽曲などにおいても、せっかくの広帯域、広レンジであるにも関わらずスピーカの過振幅によって高域の信号が欠落してしまうことがあった。
 そこで、一般的な音響再生装置では、声等が震えないようにする方法として、HPF(High Pass Filter)により過振幅する周波数帯域をカットする方法が用いられている。しかし、この方法では、音圧レベルに関係なく低域の音圧が削減されてしまう。
 その他、声等が震えないようにする方法として、スピーカに直列に検出抵抗を挿入して検出抵抗の両端の電圧から電流に比例した信号を取得し、その取得した信号を利用して過振幅を抑制する方法(以下、実測抑制方法とも称する)が考えられる。
 実測抑制方法では、取得された電流に比例した信号と、スピーカに印加した電圧とからインピーダンスが算出され、そのインピーダンスからスピーカの速度が算出され、さらに速度を積分することでスピーカの変位値が算出される。そして、得られたスピーカの変位値に基づいて、スピーカの過振幅を抑制する制御が行われる。
 しかし、この方法では、スピーカに信号を印加し、スピーカが共振周波数近傍の周波数で動き出すまでの過渡応答時間があるため、スピーカの変位値が過振幅の閾値を越えたところから抑制制御を開始してもスピーカの動きだしのところで制御が追いつかない。
 ここで、実測抑制方法について、より具体的に説明する。実測抑制方法は、例えば図1に示す構成により実現することができる。
 図1に示す音響再生システムでは、再生される音のソース信号、つまり音響信号が入力信号としてゲイン調整部11に供給され、ゲイン調整が行われる。そして、ゲイン調整された入力信号は増幅器12を介してスピーカ13に供給され、入力信号に基づく音がスピーカ13から出力される。
 また、音響再生システムでは、スピーカ13の過振幅を検出するために、スピーカ13に対して検出抵抗14が直列に接続されている。
 そして、差動増幅器15により検出抵抗14を流れる電流が測定され、その測定結果がAD(Analog Digital)変換部16によりデジタルの値に変換されてインピーダンス算出部17に供給される。
 さらに、増幅器12の出力端に接続されたAD変換部18によって、増幅器12の出力の電圧値、つまりスピーカ13に印加した電圧の値がデジタルの値に変換されてインピーダンス算出部17に供給される。
 インピーダンス算出部17では、AD変換部16から供給された電流の実測値と、AD変換部18から供給された電圧の実測値とからインピーダンスが算出され、速度算出部19へと供給される。さらに速度算出部19においてインピーダンスから速度が算出され、積分部20においてその速度が積分されてスピーカ13の変位値が算出され、絶対値算出部21で、スピーカ13の変位値の絶対値が算出される。
 その後、時定数付加部22において変位値の絶対値に対して時定数が付加され、ゲイン算出部23に供給される。ゲイン算出部23では、スピーカ13の変位値の絶対値が過振幅の閾値を超えている場合、スピーカ13に印加する信号の過振幅する周波数成分が抑制されるようにゲイン値が定められ、ゲイン調整部11へと供給される。
 そして、ゲイン調整部11では、ゲイン算出部23から供給されたゲイン値により定まるフィルタ係数が用いられて、供給された入力信号に対するゲイン調整が行われる。
 このような実測抑制方法のメリットは、実際のスピーカ13に流れる電流を測定しているので、そのときのスピーカ13の特性を把握することができ、スピーカ13の個体ばらつきや経年変化に追従できる点である。
 一方、実測抑制方法には、例えば図2に示すようにスピーカ13の動き始めの遅延があるため、過振幅が生じたときに、その過振幅の最初の部分、つまり過振幅の起こり始めの部分で抑制制御を行うことができないというデメリットがある。
 なお、図2において横軸は時間を示しており、縦軸はレベルを示している。図2では、曲線L11は増幅器12からスピーカ13へと供給される入力信号、すなわちアナログの電圧信号を示しており、曲線L12はスピーカ13の実際の変位を示している。
 これらの曲線L11と曲線L12とから、入力信号がスピーカ13に供給されてから、実際にスピーカ13が動き出すまでに遅延があることが分かる。
 例えば曲線L12において、実際のスピーカ13の変位が曲線L11により示される入力信号の時刻t1におけるレベルに対応する変位となるのは時刻t2であり、それらの時刻の間の期間だけ遅延が生じてしまう。
 図1に示した音響再生システムでは、スピーカ13に直列接続される検出抵抗14を流れる電流を実測しているため、ゲイン算出部23で過振幅となる変位値が検出されるタイミングは、曲線L12に示すスピーカ13の実際の変位における場合とほぼ同じである。
 そのため、例えば時刻t2で過振幅が検出されても入力信号における時刻t1から時刻t2までの間の区間に対しては過振幅を抑制する処理を施すことができない。したがって、スピーカ13で過振幅が発生するときには、その発生から過振幅抑制の処理の開始までに必ず遅延が生じ、過振幅の発生直後の部分では過振幅を抑制することができなかった。そうすると、上述したようにIM歪により高域の信号が欠落してしまうことになる。
 以上のように実測抑制方法によって過振幅を抑制する制御を行っても、十分に過振幅を抑制することが困難であった。
 そこで本技術では、例えば音を再生するための音響信号であるソース信号に基づいて、スピーカ等価モデルを用いてフィードフォワードでスピーカの変位値の予測値を算出し、その予測値が過振幅となる閾値を超えた場合に過振幅を抑制する制御を行うようにした。特に、本技術ではスピーカ動作時の遅延時間分だけソース信号を遅延させて制御を行うようにした。
 これにより、スピーカに対するより正確な過振幅の抑制制御が可能となり、過振幅が発生する場合に過振幅する分だけ、過振幅が生じる周波数帯域の成分のみ抑制を行うことができる。したがって、スピーカの過振幅によって生じる、過振幅する周波数の高調波歪を抑制し、さらに低音の過振幅によって高域の信号が欠落するIM歪を削減することができる。その結果、スピーカで出力される音の品質を向上させることができる。また、スピーカの物理的な破損を防止するとともに、ハイレゾリューションの楽曲等を再生する音響再生システムの品質向上を図ることができる。
 それでは、以下、本技術について、より具体的に説明する。
 まず、一般的なダイナミック型のスピーカユニットについて説明する。
 図3は、一般的なダイナミック型のスピーカユニットの断面を示している。
 ダイナミック型のスピーカユニットでは、ボイスコイル51はダンパ52を介してフレーム53に固定されている。また、振動板54は、その振動板54の外周を取り巻くように張られた柔軟な膜であるエッジ55を介してフレーム53に固定されている。また、フレーム53に固定されたポールピース56には、ボイスコイル51の外周を囲むように磁石57が固定されている。
 スピーカユニットの駆動時には、入力信号が供給されるとボイスコイル51に電流が流れ、ローレンツ力により振動板54がフレーム53に対して図中、上下方向に振動する。このとき、振動板54とともにボイスコイル51も上下に振動する。
 例えばスピーカユニットにおける矢印Q1に示す部分を中心部と呼ぶこととし、またスピーカユニットを駆動させていない状態における中心部の位置を基準位置とする。この中心部は、スピーカユニットの駆動時には振動板54とともに図中、上下方向に振動する。
 この場合、スピーカユニット駆動時における中心部の位置の基準位置からの図中、上下方向の移動距離が、スピーカユニットの変位の絶対値、つまり振動板54の変位の絶対値となる。また、図中、上方向、つまりスピーカユニットから見た前方向がスピーカユニットの変位の正の方向となり、図中、下方向、つまりスピーカユニットから見た後方向がスピーカユニットの変位の負の方向となる。
 例えばスピーカユニットの駆動時に振動板54の変位が大きくなり過ぎて過振幅が発生すると、ボイスコイル51が磁気回路(ヨーク)から抜け出てしまう。
 また、過振幅が発生するとエッジ55やダンパ52が突っ張って、その影響により振動板54が非線形な動きをし、振動板54の変位が物理的な限界を超えるとスピーカユニットが破損してしまうこともある。
 例えば、一般的なダイナミック型スピーカーユニットを用いた密閉型スピーカの変位特性は図4に示すようになる。なお、図4において横軸は周波数を示しており、縦軸は振動板の変位、速度、または加速度を示している。
 図4において、曲線L21は各周波数におけるスピーカユニットの振動板の変位を示しており、曲線L22は各周波数におけるスピーカユニットの振動板の速度を示しており、曲線L23は各周波数におけるスピーカユニットの振動板の加速度を示している。ここで、横軸となる周波数は、スピーカユニットに入力される入力信号の周波数でもあり、振動板が振動するときの周波数、つまり出力される音の周波数でもある。
 一般的なダイナミック型スピーカーユニットを用いた密閉型スピーカの変位特性は、図中、左側の曲線L21に示すような周波数特性となる。
 曲線L21に示される例では、共振周波数f0より低い周波数ではフラットな特性となっており、共振周波数f0より高い周波数では、周波数が高くなるにつれて-12dB/Octの傾きで変位が減衰している。これは、ちょうど2次のLPF(Low Pass Filter)の特性に近い周波数特性となっている。
 このような曲線L21に示される変位値を微分したものが、図中、中央の曲線L22に示す速度となる。曲線L22に示す速度の特性は、共振周波数f0で速度がピークとなる。また、共振周波数f0より低い周波数では周波数が低くなるにつれて-6dB/Octの傾きで速度が減衰していき、共振周波数f0より高い周波数では周波数が高くなるにつれて-6dB/Octの傾きで速度が減衰していく。
 さらに、曲線L22に示される速度を微分したものが、図中、右側の曲線L23に示す加速度、すなわちスピーカユニットから出力される音の音圧となる。
 曲線L23に示す音圧の特性は、共振周波数f0より高い周波数ではフラットな特性となっており、共振周波数f0より低い周波数では周波数が低くなるにつれて-12dB/Octの傾きで音圧(加速度)が減衰していく。
 したがって、共振周波数f0より低い周波数では音圧は小さい一方でスピーカの変位が大きく、共振周波数f0より高い周波数では音圧は大きい一方でスピーカの変位は小さい。このことから、スピーカの過振幅は共振周波数近傍より低い周波数で生じることが分かる。
 次に、過振幅時のIM歪(混変調歪)について説明する。
 例えば、最も過振幅する周波数が50Hzであるスピーカに対して、50Hzと2kHzの2つの正弦波のトーンバースト信号からなるソース信号を入力信号して入力したときの各波形を図5に示す。なお、図5において横軸は時間を示しており、縦軸は信号レベル、スピーカの変位、または音圧を示している。
 図5では、矢印Q11に示す波形は増幅器から出力された入力信号の波形、つまりスピーカに入力される入力信号の波形を示しており、矢印Q12に示す波形は、矢印Q11に示した入力信号をスピーカに供給したときのスピーカの変位を示している。
 また、矢印Q13に示す波形はスピーカから出力された音の音圧の波形を示しており、矢印Q14に示す波形はスピーカから出力された音のうちの高域成分、つまり2kHzの成分の音圧の波形を示している。
 これらの矢印Q11乃至矢印Q14に示す波形は、入力信号に対して過振幅の抑制の制御を行っていない状態での波形を示している。
 これに対して、矢印Q21乃至矢印Q24のそれぞれに示す波形は、矢印Q11乃至矢印Q14のそれぞれに示す波形に対応する、入力信号に対して過振幅の抑制の制御を行ったときの波形を示している。
 すなわち、矢印Q21に示す波形は過振幅の抑制の制御が行われて増幅器から出力された入力信号の波形を示しており、矢印Q22に示す波形は、矢印Q21に示した入力信号をスピーカに供給したときのスピーカの変位を示している。
 また、矢印Q23に示す波形は矢印Q21に示した入力信号に基づいてスピーカから出力された音の音圧の波形を示しており、矢印Q24に示す波形は矢印Q21に示した入力信号に基づいてスピーカから出力された音のうちの高域成分の音圧の波形を示している。
 例えば矢印Q11に示す入力信号をスピーカに入力して過振幅が発生すると、スピーカの変位の時間波形は本来であれば正弦波となるはずのものが、矢印Q12に示すように50Hzの三角波のようになり、高調波歪が増大する。
 また、音圧においては、スピーカの振動板が50Hzで過振幅してボイスコイルが磁気回路から抜け出し、力係数、つまりBL値が0に近づくと50Hzについては振動板は慣性で動くが、2kHzについては振動板に信号が伝わらず、2kHzの成分が欠落する。
 矢印Q13に示す例では、例えば矢印A11に示す部分などにおいて、2kHzの成分が欠落していることが分かる。
 さらに、この場合、2kHz成分の音圧に注目すると矢印Q14に示すように音圧の波形が周期的に変化しており、50Hzで振幅変調がかかっているのが分かる。
 これにより、例えば50Hzのバスドラムと2kHzのボーカルとからなる音の入力信号に基づいてスピーカで音を再生すると、バスドラムが鳴るときに過振幅が発生し、そのとき同時に歌っているボーカルの声が震えたように再生されてしまうという現象が発生してしまう。すなわち、IM歪が生じてしまう。
 これに対して、過振幅の発生を検知し、過振幅を抑制する制御を行うことでボイスコイルが磁気回路から抜け出すことを防ぐことができる。これにより、図中、右側の矢印Q21乃至矢印Q24に示すように音の品質の低下を抑制することができる。
 この例では、例えば矢印Q22に示すように50Hz成分自体も高調波歪が低減し、また矢印Q23や矢印Q24に示すように2kHz成分についても正確に振動板に信号が伝わっており、2kHz成分の欠落が発生していないことが分かる。
 続いて、スピーカの等価回路について説明する。
 図6はダイナミック型スピーカーユニットを用いた密閉型スピーカの等価回路を示している。特に、図中、左側の回路が電気系の等価回路を示しており、図中、右側が機械系の等価回路を示している。
 また、図6における各文字はTSパラメータと呼ばれている各パラメータを示している。
 すなわち、Reはボイスコイルの直流抵抗[Ω]を示しており、Leはボイスコイルのインダクタンス[mH]を示しており、BLは力係数、つまりBL値[N/A]を示している。力係数BLは、ボイスコイルおよび磁気回路の部分における磁束密度と、ボイスコイルのコイル長の積により求まる。
 また、Rmsは、機械抵抗[Nxs/m]を示しており、Cmsは、ユニットのサスペンションの柔らかさを示す指標である機械系コンプライアンス[m/N]を示しており、Mmsは振動系等価質量[g]を示している。この振動系等価質量Mmsは、振動板およびボイスコイルの重量と、振動板前後の空気の重さとの和である。
 さらにCbは、密閉型スピーカの密閉箱内の空気バネのコンプライアンス[m/N]を示している。
 ここで、これらのTSパラメータのうち、力係数BLと機械系コンプライアンスCmsは、例えば図7に示すように振動板の変位に依存する。
 なお、図7において横軸は振動板の変位xを示しており、縦軸は力係数BLの値または機械系コンプライアンスCmsの値を示している。特に、変位xについては、振動板が停止している状態が変位x=0であり、変位xが0より大きい位置、つまりx=0の位置より図中、右側の位置は振動板の正の方向の位置となっている。ここで、位置xが正の位置である場合には、振動板は前方向、つまり音の放射方向へと移動した状態となっている。これに対して、変位xが0より小さい位置である場合には、振動板の位置は負の方向の位置となっており、振動板は後ろ方向、つまり音の放射方向とは反対の方向へと移動した状態となっている。
 図7では、矢印Q31に示す曲線は各変位xにおける力係数BLを示しており、矢印Q32に示す曲線は各変位xにおける機械系コンプライアンスCmsを示している。これらの曲線から分かるように、力係数BLおよび機械系コンプライアンスCmsは振動板の変位xに依存し、変位xが前方の位置でも後方の位置でも、変位xの絶対値が大きくなるにつれて力係数BLおよび機械系コンプライアンスCmsの値は減衰していく。
 例えば力係数BLの値は、ボイスコイルが磁気回路から抜け出してくると減衰し始め、機械系コンプライアンスCmsの値は変位xが大きくなるとエッジやダンパが突っ張ってきて動きにくくなる。そして、このような変位xによる力係数BLおよび機械系コンプライアンスCmsの変化によって振動板、つまりスピーカの動きが非線形となる。
 このような力係数BLおよび機械系コンプライアンスCmsという非線形なTSパラメータを、変位xに応じて変化させるようにすれば、スピーカシミュレータによって、実際のスピーカと同等の特性を予測することが可能となる。スピーカシミュレータでは、TSパラメータから定まるスピーカ等価モデルが用いられて、スピーカの特性が予測される。
 非線形に変化する力係数BLおよび機械系コンプライアンスCmsを含むTSパラメータを用いてスピーカの振幅、つまり変位xの周波数特性のシミュレーションを行うと、例えば図8に示す結果が得られる。なお、図8において横軸は周波数を示しており、縦軸は振動板の変位xを示している。
 この例では、スピーカに対して、互いに電圧の実効値が異なる複数の入力信号のそれぞれが供給されたときの各周波数における振動板の前方向および後方向の変位xが示されている。また、図8では直線L51の位置よりも図中、上側となる変位x、および直線L52の位置よりも図中、下側となる変位xにおいてスピーカの過振幅が発生した状態となる。
 図8に示す例では、振動板の変位xについて前方向と後方向とでそれぞれ変位xのピークがあり、入力信号の電圧の実効値が小さい間は、電圧レベルの変化に対して変位xがほぼ線形に変化していくことが分かる。しかし、入力信号の電圧の実効値が大きくなると、電圧レベルの変化に対して変位xが非線形に変化している。
 本技術では、このようなスピーカシミュレータを用いてフィードフォワードでスピーカ、つまり振動板の変位の予測値を算出し、その予測値が過振幅となる閾値を超えた場合に過振幅を抑制する制御を行うようにした。
〈音響再生システムの構成例〉
 図9は、本技術を適用した音響再生システムの一実施の形態の構成例を示す図である。
 図9に示す音響再生システムは、音響再生装置81およびスピーカ82を有している。
 音響再生装置81には、スピーカ82で音を再生するための時間領域の音響信号、つまりソース信号が入力信号として供給される。音響再生装置81は、供給された入力信号に対して、適宜、過振幅を抑制する処理を施してスピーカ82に供給する。
 スピーカ82は、ハイレゾリューション(高解像度)の楽曲などを再生可能な、例えばダイナミック型スピーカーユニットを用いた密閉型のスピーカからなり、音響再生装置81から供給された入力信号に基づいて音を再生する。なお、スピーカ82はダイナミック型のスピーカの他、過振幅が発生するスピーカであればどのようなものであってもよい。
 また、音響再生装置81は遅延部91、ゲイン調整部92、増幅器93、検出抵抗94、差動増幅器95、AD変換部96、パラメータ補正値97、増幅部98、スピーカシミュレータ99、絶対値算出部100、時定数付加部101、およびゲイン算出部102を有している。
 この音響再生装置81では、電流を測定するための検出抵抗94がスピーカ82に対して直列に接続されており、差動増幅器95によって検出抵抗94の両端の電圧から、検出抵抗94、つまりスピーカ82のボイスコイルに流れる電流が実測される。そして、パラメータ補正部97において、電流の実測値に基づいてTSパラメータを補正するために用いられるパラメータ補正値が算出されるようになされている。
 音響再生装置81について、より具体的に説明する。
 遅延部91は、外部から供給された入力信号を所定時間だけ遅延させた後、ゲイン調整部92に供給する。ここで、入力信号を遅延させる時間は、例えば入力信号に対する実際のスピーカ82の動作の遅延時間(過渡応答時間)分の時間とされる。
 ゲイン調整部92は、例えばダイナミックバスシェルビングフィルタやダイナミックEQ(Equalizer)など、IIR(Infinite Impulse Response)型のフィルタ等からなり、入力信号に対してゲイン調整、すなわち振幅制御を行う振幅制御部として機能する。
 ゲイン調整部92は、ゲイン算出部102から供給されたゲイン値に基づいてフィルタ処理に用いるフィルタ係数を更新するとともに、得られたフィルタ係数を用いて遅延部91から供給された入力信号に対してフィルタ処理を施し、増幅器93へと供給する。
 ゲイン調整部92において入力信号に対してフィルタ処理を行うことで、入力信号の周波数成分ごとにゲイン調整が行われる。このような周波数成分ごとのゲイン調整を行う処理が、スピーカ82の過振幅を抑制する処理、つまり過振幅の抑制を制御する処理となる。
 増幅器93は、予め定められたゲイン分や、ユーザ等によるボリューム調整操作分だけ入力信号が増幅されるように、ゲイン調整部92から供給された入力信号に対してゲイン値を乗算して増幅させ、増幅された入力信号をスピーカ82に供給する。増幅器93からスピーカ82に供給される入力信号は、アナログの電圧信号である。
 増幅器93によりスピーカ82に入力信号が供給されると、スピーカ28のボイスコイルだけでなく検出抵抗94にも電流が流れる。
 差動増幅器95は、検出抵抗94の両端の電圧を入力として、検出抵抗94を流れる電流を測定(実測)し、その結果得られたアナログの測定値を電流実測値としてAD変換部96に供給する。AD変換部96は、差動増幅器95から供給された電流実測値をアナログ値からデジタル値へとAD変換し、パラメータ補正部97に供給する。
 なお、ここでは検出抵抗94と差動増幅器95を設けてスピーカ82を流れる電流を測定する例について説明するが、その他、例えばスピーカ82に電流センサを接続し、電流センサによりスピーカ82を流れる電流を測定して電流実測値を得るようにしてもよい。
 パラメータ補正部97は、AD変換部96から供給された電流実測値に基づいて、TSパラメータを補正するために用いられるパラメータ補正値を算出し、スピーカシミュレータ99に供給する。
 パラメータ補正部97で得られるパラメータ補正値は、例えばTSパラメータそのものの補正値であってもよいし、TSパラメータを補正するために用いられる、スピーカ82のインピーダンス特性の尖鋭度を示すQや共振周波数f0などの値であってもよい。以下では、具体的な例としてスピーカ82の共振周波数f0がパラメータ補正値として用いられる場合について説明する。
 また、増幅器93、検出抵抗94、差動増幅器95、およびAD変換部96のうちの一部または全部が音響再生装置81の外部に設けられるようにしてもよい。
 増幅部98は、外部から供給された入力信号を、増幅器93における増幅分だけ増幅させ、スピーカシミュレータ99に供給する。これにより、実際にスピーカ82に供給(印加)される入力信号と同じ信号レベルの入力信号をスピーカシミュレータ99に入力することができ、より高精度にスピーカ82の変位xを予測できるようになる。
 スピーカシミュレータ99は、増幅部98から供給された入力信号と、パラメータ補正部97から供給されたパラメータ補正値とに基づいて、入力信号の供給によるスピーカ82の振動板の変位xを予測により求めて絶対値算出部100に供給する。すなわち、スピーカシミュレータ99は、スピーカ等価モデルに基づいて、スピーカ82に供給される入力信号に応じたスピーカ82の変位の予測値を算出する予測値算出部として機能する。
 具体的には、例えばスピーカシミュレータ99は、パラメータ補正値としての共振周波数f0に基づいてTSパラメータとしての機械系コンプライアンスCmsを補正する。すなわち、スピーカ82を流れる電流の実測値である電流実測値に応じて、スピーカ等価モデルのTSパラメータである機械系コンプライアンスCmsが補正される。
 そして、スピーカシミュレータ99は、補正された機械系コンプライアンスCmsを含むTSパラメータから定まるスピーカ82のスピーカ等価モデル、つまり図6を参照して説明した等価回路と、入力信号とからスピーカ82(機械系)の速度を求め、さらにその速度を積分することで変位x、より詳細には変位xの予測値を求める。以下では、スピーカシミュレータ99で求められた変位xの予測値を、特に変位予測値とも称することとする。
 スピーカシミュレータ99では、このようなスピーカ等価モデルを用いることで、高精度に変位xを予測することができる。特に、スピーカ等価モデルのTSパラメータである力係数BLと機械系コンプライアンスCmsとして、変位xに対して非線形に変化するものを用いることで、非線形に動作するスピーカ82の動きを模すことができる。
 絶対値算出部100は、スピーカシミュレータ99から供給された変位予測値の絶対値を算出し、時定数付加部101に供給する。
 時定数付加部101は、絶対値算出部100から供給された変位予測値の絶対値に対して時定数を付加し、ゲイン算出部102に供給する。具体的には、例えば時定数の付加時にはアタックタイムが0秒でリリースタイムが1秒などとなるようになされる。
 ゲイン算出部102は、時定数付加部101から供給された、時定数が付加された変位予測値の絶対値と、予め定められた閾値であるスピーカ82の変位の過振幅限界値とを比較し、その比較結果に応じてゲイン値を算出してゲイン調整部92に供給する。
 ここで、過振幅限界値は、スピーカ82の変位の値として許容できる最大の値であり、例えば過振幅とならない最大の変位の大きさなどとされる。
 例えばゲイン算出部102では、変位予測値の絶対値が過振幅限界値よりも大きい場合のみ、ゲイン値が算出されて出力される。このとき、ゲイン値は過振幅限界値と変位予測値の絶対値との比、すなわち過振幅限界値を変位予測値の絶対値で除算して得られる値などとされる。これに対して、変位予測値の絶対値が過振幅限界値以下であるときにはゲイン値は出力されず、実質的にゲイン値が1とされる。
 ゲイン調整部92では、例えばスピーカ82の変位の周波数特性の逆特性のフィルタを実現するフィルタ係数が用意されており、ゲイン調整部92はゲイン算出部102から供給されたゲイン値に基づいてフィルタ係数を更新(変更)する。このとき、ゲイン調整部92では、ゲイン算出部102からのゲイン値の分だけ過振幅が生じる周波数帯域のフィルタの特性が補正されるように、新たなフィルタ係数が求められる。すなわちフィルタ係数が更新される。
 したがって、ゲイン調整部92では、変位予測値の絶対値が過振幅限界値よりも大きい場合のみ、入力信号に対して、過振幅の抑制制御を実現するためのゲイン調整(振幅制御)が行われるということができる。
 このように音響再生装置81では、変位予測値の絶対値が過振幅限界値よりも大きい場合のみ、つまり過振幅が発生する場合のみ、変位予測値の絶対値と過振幅限界値とのゲインの差分が計算される。そして、過振幅限界値のゲインを超えた分だけ、ダイナミックに入力信号の過振幅する周波数帯域の成分がゲイン調整により抑制される。
 また、スピーカシミュレータ99ではスピーカ82の動きを模擬するため、スピーカシミュレータ99の出力も立ち上がりが遅く、過振幅する入力信号が入力されて実際に過振幅する変位予測値となるまでに遅延が生じる。そこで、遅延部91では、その遅延時間分だけ入力信号が遅延されてゲイン調整部92に供給されるようになされている。これにより、過振幅が発生するときだけ、過振幅の起こり始めの部分から、過振幅を抑制する制御を行うことが可能となる。
 以上のような音響再生システムにおいて、ダイナミックな過振幅の抑制制御をオンしたときとオフしたときのスピーカ82の変位の周波数特性は、例えば図10に示すようになる。なお、図10において横軸は周波数を示しており、縦軸はスピーカ82の変位を示している。また、図10では直線L71の位置よりも図中、上側となる変位、および直線L72の位置よりも図中、下側となる変位においてスピーカ82の過振幅が発生した状態となる。すなわち、直線L71および直線L72により示される変位は過振幅限界値を示している。
 図10では、互いに電圧の実効値が異なる複数の入力信号について各周波数におけるスピーカ82の振動板の変位が周波数特性として示されている。
 特に矢印Q51に示される部分ではダイナミックな過振幅の抑制制御がオフされているとき、すなわちゲイン算出部102から出力されるゲイン値によるフィルタ係数の更新を行わないときの変位の周波数特性が示されている。
 これに対して、矢印Q52に示される部分ではダイナミックな過振幅の抑制制御がオンされているとき、すなわちゲイン算出部102から出力されるゲイン値によるフィルタ係数の更新を行うときの変位の周波数特性が示されている。
 これらの周波数特性から、ゲイン調整部92においてフィルタ係数の更新を行わないときには過振幅が生じるが、ゲイン値によりフィルタ係数の更新を行うようにすれば、過振幅する場合のみ、過振幅の抑制制御が行われ、変位が過振幅限界値まで抑制されていることが分かる。
〈再生処理の説明〉
 次に、図9に示した音響再生システムの動作について説明する。
 すなわち、以下、図11のフローチャートを参照して、音響再生システムによる再生処理について説明する。なお、この再生処理は、音響再生装置81に入力信号が供給されると開始される。
 ステップS11において、遅延部91は、供給された入力信号を予め定められた所定時間だけ遅延させてゲイン調整部92に供給する。このように入力信号のゲイン調整部92への供給を遅延させることで、フィードフォワードでのスピーカ82の変位予測が可能となる。
 また、入力信号は増幅部98にも供給される。増幅部98は、供給された入力信号を増幅器93における増幅分と同じだけ増幅させてスピーカシミュレータ99に供給する。
 ステップS12において、スピーカシミュレータ99は、増幅部98から供給された入力信号と、パラメータ補正部97から供給されたパラメータ補正値とに基づいて変位予測値を算出し、絶対値算出部100に供給する。すなわち、スピーカ等価モデルが用いられてスピーカ82の変位が予測される。
 例えばスピーカシミュレータ99は、パラメータ補正値として供給された共振周波数f0に基づいてTSパラメータとしての機械系コンプライアンスCmsを補正し、TSパラメータと入力信号とから変位予測値を算出する。
 また、絶対値算出部100は、スピーカシミュレータ99から供給された変位予測値の絶対値を算出して、得られた絶対値を時定数付加部101に供給する。時定数付加部101は、絶対値算出部100から供給された変位予測値の絶対値に対して時定数を付加し、得られた変位予測値の絶対値をゲイン算出部102に供給する。
 ステップS13において、ゲイン算出部102は、時定数付加部101から供給された変位予測値の絶対値と、予め定められた閾値である過振幅限界値とを比較する。
 ステップS14において、ゲイン算出部102はステップS13の処理における比較の結果に基づいてゲイン値を算出し、ゲイン調整部92に供給する。
 すなわち、ゲイン算出部102は、変位予測値の絶対値が過振幅限界値よりも大きい場合、それらの変位予測値の絶対値と過振幅限界値の比をゲイン値として算出する。なお、変位予測値の絶対値が過振幅限界値以下である場合には、ゲイン値は特に算出されない。
 ステップS15において、ゲイン調整部92は、ゲイン算出部102から供給されたゲイン値に基づいて、予め保持しているフィルタ係数を更新する。なお、ゲイン算出部102からゲイン値が供給されなかった場合には、フィルタ係数の更新は行われない。この場合、実質的にはゲイン値が1であるとされてフィルタ係数が更新される。
 ステップS16において、ゲイン調整部92は、ステップS15で得られたフィルタ係数を用いて、ステップS11で遅延されて遅延部91から供給された入力信号に対してフィルタ処理を行うことで、入力信号のゲイン調整を行う。フィルタ処理では、フィルタ係数と入力信号との畳み込み処理が行われる。
 ゲイン調整部92は、このようにして得られた入力信号を増幅器93へと供給する。増幅器93は、ゲイン調整部92から供給された入力信号を増幅させてスピーカ82へと供給する。
 ステップS17において、スピーカ82は増幅器93から供給された入力信号に基づいて音を再生する。これにより、適宜、過振幅が抑制された駆動が行われ、スピーカ82から再生音が出力される。
 ステップS18において、差動増幅器95は検出抵抗94の両端の電圧から、スピーカ82、すなわち検出抵抗94を流れる電流を測定し、その測定結果をAD変換部96に供給する。AD変換部96は、差動増幅器95から供給された測定結果である電流実測値をアナログ値からデジタル値に変換し、パラメータ補正部97に供給する。
 ステップS19において、パラメータ補正部97は、AD変換部96から供給された電流実測値に基づいてパラメータ補正値を算出してスピーカシミュレータ99に供給し、再生処理は終了する。
 例えばパラメータ補正部97は、電流実測値に基づいて共振周波数f0を補正パラメータとして算出する。このようにして算出された補正パラメータは、次に行われる再生処理のステップS12の処理で用いられる。
 以上のようにして音響再生システムは、スピーカ等価モデルを用いてフィードフォワードでスピーカの変位予測値を算出し、その変位予測値の絶対値が過振幅限界値を超えた場合に、ゲイン値によりフィルタ係数を更新し、過振幅を抑制する制御を行う。特に音響再生システムでは、遅延部91により入力信号を遅延させることで、過振幅の起こり始めの部分についても過振幅の抑制制御を行うことができる。これにより、より正確な過振幅の抑制制御が可能となり、より高品質な音を得ることができる。
 また、音響再生システムでは、スピーカ82を流れる電流を実測し、その実測結果に応じてTSパラメータ、つまりスピーカ等価モデルを補正することで、スピーカ82の個体ばらつきや経年変化にも対応することができる。したがって、より正確な過振幅の抑制制御を行うことができる。
 さらに、より正確な過振幅の抑制制御を実現できることから、過振幅が発生する場合に過振幅する分だけ、過振幅が生じる周波数帯域の成分のみ抑制することができる。したがって、スピーカ82の過振幅によって生じる、過振幅する周波数の高調波歪を抑制し、低音の過振幅によって高域の信号が欠落するIM歪を削減することができる。その結果、スピーカ82で出力される音の品質を向上させることができる。また、スピーカ82の物理的な破損を防止するとともに、ハイレゾリューションの楽曲等を再生する音響再生システムの品質向上を図ることができる。
 特に、ハイレゾリューション対応の再生スピーカには、フルレンジで20kHz以上の可聴帯域外も再生可能なものもある。また、別途ツィータがあるウーファにおいても、それらのスピーカの周波数特性は数kHzでクロスオーバーしており、そのフィルタの傾きも-12dB/Octなどとなっている。
 そのため、そのようなスピーカをスピーカ82として用いた場合、高域まで再生している状況でフルレンジのスピーカやウーファが過振幅を起こしてIM歪が生じると、その影響は高域まで及ぶことになる。したがって、本技術により過振幅によるIM歪を削減することで、可聴帯域外にまで及ぶ音響再生システムの性能改善が可能となる。
〈第2の実施の形態〉
〈音響再生システムの構成例〉
 なお、以上においては、パラメータ補正値に基づいてTSパラメータが補正される例について説明したが、スピーカ82の電流実測値からスピーカ82の変位(以下、測定変位値とも称する)を算出し、適宜、変位予測値を補正するようにしてもよい。
 そのような場合、音響再生システムは、例えば図12に示すように構成される。なお、図12において図9における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図12に示す音響再生システムは、音響再生装置81およびスピーカ82からなり、音響再生装置81は遅延部91乃至ゲイン算出部102を有している。
 図12に示す音響再生装置81の構成は、ゲイン調整部92から出力された入力信号がパラメータ補正部97にも供給され、パラメータ補正部97から出力されるパラメータ補正値が絶対値算出部100に供給される点で図9の音響再生装置81と異なり、その他の点では図9の音響再生装置81と同じ構成となっている。
 パラメータ補正部97は、ゲイン調整部92から供給された入力信号と、AD変換部96から供給された電流実測値とに基づいて、パラメータ補正値として測定変位値を算出し、絶対値算出部100に供給する。すなわち、ここでは、パラメータ補正部97はスピーカ82を流れる電流の実測値である電流実測値に基づいて、スピーカ82の変位を算出する変位算出部として機能する。
 具体的には、パラメータ補正部97は、入力信号に対して増幅器93での増幅分のゲイン値を乗算して、増幅器93からスピーカ82に供給される入力信号を生成するとともに、得られた入力信号により示される電圧値と、電流実測値とからスピーカ82のインピーダンスを算出する。そして、パラメータ補正部97は、得られたインピーダンスからスピーカ82の振動板の移動の速度を算出し、さらにその速度を積分することで測定変位値を算出する。
 なお、ここでは増幅器93における入力信号の増幅量が既知であるとする。増幅器93における入力信号の増幅量が既知でない場合等には、パラメータ補正部97等が増幅器93の出力端の部分の電圧値を測定し、測定された電圧値と電流実測値とからインピーダンスが算出されるようにしてもよい。
 絶対値算出部100は、スピーカシミュレータ99から供給された変位予測値、およびパラメータ補正部97から供給されたパラメータ補正値としての測定変位値について、それらの値の絶対値を算出する。そして、絶対値算出部100は、得られた変位予測値の絶対値と測定変位値の絶対値のうちのより大きい方を時定数付加部101に供給する。
 このように変位予測値の絶対値と、測定変位値の絶対値とのうちのより大きい方を、最終的なスピーカ82の変位値の絶対値の予測結果として出力することは、必要に応じてパラメータ補正値により変位予測値を補正することであるともいうことができる。
 この場合、ゲイン調整部92では、変位予測値の絶対値と、測定変位値の絶対値とのうちのより大きい方の値が過振幅限界値よりも大きいときのみ、入力信号に対して、過振幅の抑制制御を実現するためのゲイン調整(振幅制御)が行われることになる。
〈再生処理の説明〉
 次に、図13のフローチャートを参照して、図12に示した音響再生システムによる再生処理について説明する。
 なお、ステップS41およびステップS42の処理は、図11のステップS11およびステップS12の処理と同様であるので、その説明は省略する。但し、ステップS42では、パラメータ補正値によるTSパラメータの補正は行われずに、スピーカ等価モデルが用いられてスピーカ82の変位が予測される。そして、予測により得られた変位予測値がスピーカシミュレータ99から絶対値算出部100に供給される。
 ステップS43において、絶対値算出部100は、変位予測値の絶対値と、測定変位値の絶対値とを比較する。
 すなわち、絶対値算出部100は、スピーカシミュレータ99から供給された変位予測値の絶対値を算出するとともに、パラメータ補正部97から供給されたパラメータ補正値としての測定変位値の絶対値を算出する。そして、絶対値算出部100は、変位予測値の絶対値と、測定変位値の絶対値とを比較し、より大きい方の値を最終的なスピーカ82の変位値の絶対値の予測結果として時定数付加部101に供給する。
 時定数付加部101は、絶対値算出部100から供給されたスピーカ82の変位値の絶対値、より詳細には変位値の絶対値の予測結果に対して時定数を付加し、時定数が付加された変位値の絶対値をゲイン算出部102に供給する。
 このようにして変位値の絶対値に時定数が付加されると、その後、ステップS44乃至ステップS49の処理が行われるが、これらの処理は図11のステップS13乃至ステップS18の処理と同様であるので、その説明は省略する。
 但し、ステップS44では、時定数付加部101から出力された変位値の絶対値と、過振幅限界値とが比較される。また、ステップS47では、ゲイン調整部92から出力された入力信号は、増幅器93だけでなくパラメータ補正部97にも供給される。
 ステップS50において、パラメータ補正部97は、AD変換部96から供給された電流実測値と、ゲイン調整部92から供給された入力信号とに基づいて、パラメータ補正値として測定変位値を算出して絶対値算出部100に供給し、再生処理は終了する。
 このようにして算出された補正パラメータは、次に行われる再生処理のステップS43の処理で用いられる。
 以上のようにして音響再生システムは、実測した電流値を用いてスピーカ82の測定変位値を算出し、その測定変位値と変位予測値とのうちのより絶対値が大きい方を用いて、フィルタ係数を更新(補正)するためのゲイン値を算出する。これにより、実際のスピーカ82の動きも考慮して、より正確に過振幅の抑制制御を行うことができる。
〈第3の実施の形態〉
〈音響再生システムの構成例〉
 ところで、スピーカの過振幅による物理的破損を回避して、より大きいパワーをスピーカに投入できるようになると、すなわちより大きい電圧を印加できるようになると、ボイスコイルの熱上昇に伴って、ボイスコイルの断線などが発生することもある。
 例えばボイスコイルにパワーを投入すると、ボイスコイルとヨークなどのボイスコイル周辺において、各々の時定数で熱が変化していく。
 また、ボイスコイルの直流抵抗の値はボイスコイルの温度に依存する。すなわち、ボイスコイルの温度をTvcとし、ボイスコイル温度Tvcが20度であるときのボイスコイルの直流抵抗をReとし、ボイスコイルの材料に依存する係数をαとすると、ボイスコイルの直流抵抗Re’は次式(1)により求められる。
 Re’=(1+α(Tvc-20))×Re ・・・(1)
 ここで、例えばボイスコイルが銅導体の場合には、係数αは0.00393となるから、そのような場合には、ボイスコイルの直流抵抗Re’は次式(2)に示すようになる。
 Re’=(1+0.00393(Tvc-20))×Re ・・・(2)
 また、例えばボイスコイルが20度であるときの直流抵抗Reが4Ωであり、ボイスコイル温度Tvcが300度に達すると、ボイスコイルの直流抵抗Re’は次式(3)に示すようになる。
 Re’=(1+0.00393(300-20))×4.0=8.4016Ω ・・・(3)
 式(3)では、ボイスコイルの直流抵抗Re’は、20度であるときの直流抵抗Reの略倍となっている。
 上述したスピーカシミュレータ99では、TSパラメータの1つであるボイスコイルの直流抵抗として、ボイスコイルが20度であるときの直流抵抗Reが用いられている。
 しかし、ボイスコイルの直流抵抗が大きくなると、スピーカ82に流れる電流は小さくなるので、スピーカ82の変位値も小さくなる。そのため、スピーカシミュレータ99で用いられるTSパラメータとしての直流抵抗Reが常温時のままの値であると、実際のボイスコイルの温度が200度近くになると、その差分は無視できなくなる。
 そこで、音響再生装置81においてスピーカ82の電流値と電圧値とを測定してインピーダンスを算出し、そのインピーダンスに基づいてTSパラメータとしてのボイスコイルの直流抵抗を補正するようにしてもよい。
 そのような場合、音響再生システムは、例えば図14に示すように構成される。なお、図14において図9における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図14に示す音響再生システムは、音響再生装置81およびスピーカ82からなり、音響再生装置81は遅延部91乃至ゲイン算出部102、およびインピーダンス算出部131を有している。
 図14に示す音響再生装置81の構成は、新たにインピーダンス算出部131が設けられている点で図9の音響再生装置81と異なり、その他の点では図9の音響再生装置81と同じ構成となっている。
 図14に示す例では、ゲイン調整部92から出力された入力信号、およびAD変換部96から出力された電流実測値はインピーダンス算出部131にも供給される。なお、上述したように、スピーカ82を流れる電流の測定は、電流センサにより行われるようにしてもよい。
 インピーダンス算出部131は、ゲイン調整部92から供給された入力信号と、AD変換部96から供給された電流実測値とに基づいて、スピーカ82のインピーダンスを算出し、さらにそのインピーダンスからボイスコイルの直流抵抗を算出する。
 すなわち、インピーダンス算出部131は、入力信号に対して増幅器93での増幅分のゲイン値を乗算して、増幅器93からスピーカ82に供給される入力信号を生成するとともに、得られた入力信号により示される電圧値と、電流実測値とからスピーカ82のインピーダンスを算出する。そして、インピーダンス算出部131は、得られたインピーダンスからスピーカ82のボイスコイルの直流抵抗を算出する。
 以下では、インピーダンス算出部131により算出されるボイスコイルの直流抵抗を、特に直流抵抗Re’とも記すこととする。なお、図12を参照して説明したパラメータ補正部97における場合と同様に、増幅器93における入力信号の増幅量が既知でない場合等には、増幅器93の出力端の部分の電圧値を測定し、測定された電圧値と電流実測値とからインピーダンスが算出されるようにしてもよい。
 インピーダンス算出部131は、このようにして得られたボイスコイルの直流抵抗Re’をスピーカシミュレータ99に供給する。スピーカシミュレータ99では、TSパラメータとしてのボイスコイルの直流抵抗Reとして、インピーダンス算出部131から供給された直流抵抗Re’を用いて変位予測値を算出する。すなわち、スピーカシミュレータ99では、直流抵抗Re’に基づいて、TSパラメータとしてのスピーカ82のボイスコイルの直流抵抗Reが補正されて変位予測値が算出される。
 また、ここでは図9に示した音響再生装置81に対して、さらにインピーダンス算出部131を設ける例について説明したが、図12に示した音響再生装置81に対して、さらにインピーダンス算出部131を設けるようにしてもよい。
〈再生処理の説明〉
 次に、図15のフローチャートを参照して、図14に示した音響再生システムによる再生処理について説明する。
 なお、ステップS81乃至ステップS89の処理は、図11のステップS11乃至ステップS19の処理と同様であるので、その説明は省略する。
 但し、ステップS82では、スピーカシミュレータ99は、パラメータ補正部97から供給されたパラメータ補正値とともに、インピーダンス算出部131から供給された直流抵抗Re’も用いてTSパラメータを補正する。特に、直流抵抗Re’が用いられて、TSパラメータとしてのボイスコイルの直流抵抗Reが補正される。
 ステップS90において、インピーダンス算出部131は、ゲイン調整部92から供給された入力信号と、AD変換部96から供給された電流実測値とに基づいて、スピーカ82のインピーダンスを算出し、さらにそのインピーダンスからボイスコイルの直流抵抗Re’を算出する。そして、インピーダンス算出部131は、得られた直流抵抗Re’をスピーカシミュレータ99に供給し、再生処理は終了する。
 このようにして得られた直流抵抗Re’は、次に行われる再生処理のステップS82の処理で用いられる。
 以上のようにして音響再生システムは、実測した電流値を用いてスピーカ82のボイスコイルの直流抵抗の値を算出し、得られた直流抵抗の値に基づいて変位予測値を算出する際のTSパラメータを補正する。これにより、実際のボイスコイルの温度を考慮して、より正確に過振幅の抑制制御を行うことができる。
〈第4の実施の形態〉
〈音響再生システムの構成例〉
 さらに、算出されたスピーカ82のボイスコイルの直流抵抗の値から、ボイスコイルの温度を求め、求められた温度に基づいて、入力信号のゲイン調整を行うようにしてもよい。
 そのような場合、音響再生システムは、例えば図16に示すように構成される。なお、図16において図14における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図16に示す音響再生システムは、音響再生装置81およびスピーカ82からなり、音響再生装置81は遅延部91乃至ゲイン算出部102、インピーダンス算出部131、ゲイン調整部161、温度算出部162、および状態遷移部163を有している。
 図16に示す音響再生装置81の構成は、新たにゲイン調整部161乃至状態遷移部163が設けられている点で図14の音響再生装置81と異なり、その他の点では図14の音響再生装置81と同じ構成となっている。
 図16に示す例では、インピーダンス算出部131から出力された直流抵抗Re’は、温度算出部162にも供給される。
 温度算出部162は、インピーダンス算出部131から供給された直流抵抗Re’に基づいて、例えば上述した式(1)を用いてボイスコイル温度Tvcを算出し、状態遷移部163に供給する。
 状態遷移部163は、温度算出部162から供給されたボイスコイル温度に基づいて、ボイスコイルの温度に関する状態を遷移させ、ゲイン値を決定する。
 すなわち、状態遷移部163では、ボイスコイルのとり得る温度の範囲がいくつかの範囲に分割されており、それらの温度の範囲に対してゲイン値が予め定められている。状態遷移部163は、供給されたボイスコイル温度Tvcが含まれる温度範囲を特定し、特定された温度範囲に対して予め定められたゲイン値を選択する。状態遷移部163は、このようにして選択したゲイン値をゲイン調整部161に供給する。
 ゲイン調整部161は、状態遷移部163から供給されたゲイン値に基づいて、外部から供給された入力信号に対して、ボイスコイルの温度上昇を抑制するためのゲイン調整を行い、その結果得られた入力信号を増幅部98および遅延部91に供給する。換言すれば、ゲイン調整部161はゲイン調整を行うことで、ボイスコイルの温度制御を行う。
 ここで、ゲイン調整部161でのゲイン調整においては、例えばボイスコイルの温度が200度以内に抑えられるようにDRC(Dynamic Range Compression)やダイナミックEQなどにより、入力信号の信号レベルが抑制される処理が行われる。
 このように、ゲイン調整部161は、スピーカ82のボイスコイルの温度に応じて、入力信号に対してボイスコイルの温度上昇を抑制するためのゲイン調整、すなわち振幅制御(温度制御)を行う温度制御部として機能する。
 ボイスコイルの温度変化は、入力信号自体の変化に比べると緩やかな変化である。そのため、ボイスコイルの温度制御のためのゲイン調整では、ゲイン調整に用いられるゲイン値の更新も頻繁ではなく緩やかに切り替わっていくようになされる。そこで、状態遷移部163では、ある程度の幅を有する温度範囲ごとに1つのゲイン値が定められている。
〈再生処理の説明〉
 次に、図17のフローチャートを参照して、図16に示した音響再生システムによる再生処理について説明する。
 ステップS131において、ゲイン調整部161は、状態遷移部163から供給されたゲイン値に基づいて、外部から供給された入力信号に対して、ボイスコイルの温度上昇抑制のためのゲイン調整を行い、その結果得られた入力信号を増幅部98および遅延部91に供給する。
 入力信号に対して温度上昇の抑制のためのゲイン調整が行われると、その後、ステップS132乃至ステップS141の処理が行われるが、これらの処理は図15のステップS81乃至ステップS90の処理と同様であるので、その説明は省略する。
 但し、ステップS141では、算出されたボイスコイルの直流抵抗Re’がインピーダンス算出部131からスピーカシミュレータ99および温度算出部162へと供給される。
 ステップS142において、温度算出部162は、インピーダンス算出部131から供給された直流抵抗Re’と、予め定められた温度、すなわち20度におけるボイスコイルの直流抵抗とに基づいて、上述した式(1)からボイスコイルの温度を算出し、状態遷移部163に供給する。
 ステップS143において、状態遷移部163は、温度算出部162から供給されたボイスコイルの温度に基づいて、ボイスコイルの温度上昇抑制のためのゲイン値を決定し、決定したゲイン値をゲイン調整部161に供給する。
 このようにしてボイスコイルの温度に対応するゲイン値が出力されると、再生処理は終了する。ここで、ステップS143の処理で決定されたゲイン値は、次に行われる再生処理のステップS131の処理で用いられる。
 以上のようにして音響再生システムは、実測した電流値を用いてスピーカ82のボイスコイルの温度を算出し、得られた温度に対応するゲイン値を用いて、入力信号に対して温度上昇抑制のためのゲイン調整を行う。これにより、ボイスコイルの温度上昇を抑制することができる。
 なお、本技術では、以上において説明した各実施の形態を適宜組み合わせることも勿論可能である。
〈コンピュータの構成例〉
 ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のコンピュータなどが含まれる。
 図18は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。
 バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。
 入力部506は、キーボード、マウス、マイクロホン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体511を駆動する。
 以上のように構成されるコンピュータでは、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブル記録媒体511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 また、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 さらに、本技術は、以下の構成とすることも可能である。
(1)
 スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値を算出する予測値算出部と、
 前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御を行う振幅制御部と
 を備える音響処理装置。
(2)
 前記予測値算出部は、前記スピーカを流れる電流の実測値に応じて前記等価モデルのパラメータを補正する
 (1)に記載の音響処理装置。
(3)
 前記予測値算出部は、前記パラメータとして機械系コンプライアンスを補正する
 (2)に記載の音響処理装置。
(4)
 前記予測値算出部は、前記パラメータとして前記スピーカのボイスコイルの直流抵抗を補正する
 (2)または(3)に記載の音響処理装置。
(5)
 前記直流抵抗に基づいて、前記ボイスコイルの温度を算出する温度算出部と、
 前記ボイスコイルの温度に応じて、前記入力信号に対して前記ボイスコイルの温度上昇を抑制するための温度制御を行う温度制御部と
 をさらに備える(4)に記載の音響処理装置。
(6)
 前記スピーカを流れる電流の実測値に基づいて、前記スピーカの変位を算出する変位算出部をさらに備え、
 前記振幅制御部は、前記変位算出部により算出された変位と、前記予測値とのうちのより大きい方の値が前記閾値よりも大きい場合、前記入力信号に対して振幅制御を行う
 (1)乃至(5)の何れか一項に記載の音響処理装置。
(7)
 前記入力信号を所定時間だけ遅延させて前記振幅制御部に供給する遅延部をさらに備える
 (1)乃至(6)の何れか一項に記載の音響処理装置。
(8)
 前記予測値算出部は、前記スピーカの変位に対して非線形に変化する力係数および機械系コンプライアンスを含む、複数のパラメータにより定まる前記等価モデルに基づいて、前記予測値を算出する
 (1)乃至(7)の何れか一項に記載の音響処理装置。
(9)
 前記振幅制御部は、前記予測値および前記閾値から定まるゲイン値に基づいて、前記入力信号に対する振幅制御を行う
 (1)乃至(8)の何れか一項に記載の音響処理装置。
(10)
 スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値を算出し、
 前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御を行う
 ステップを含む音響処理方法。
(11)
 スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値を算出し、
 前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御を行う
 ステップを含む処理をコンピュータに実行させるプログラム。
 81 音響再生装置, 82 スピーカ, 91 遅延部, 92 ゲイン調整部, 95 差動増幅器, 97 パラメータ補正部, 99 スピーカシミュレータ, 102 ゲイン算出部, 131 インピーダンス算出部, 161 ゲイン調整部, 162 温度算出部, 163 状態遷移部

Claims (11)

  1.  スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値を算出する予測値算出部と、
     前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御を行う振幅制御部と
     を備える音響処理装置。
  2.  前記予測値算出部は、前記スピーカを流れる電流の実測値に応じて前記等価モデルのパラメータを補正する
     請求項1に記載の音響処理装置。
  3.  前記予測値算出部は、前記パラメータとして機械系コンプライアンスを補正する
     請求項2に記載の音響処理装置。
  4.  前記予測値算出部は、前記パラメータとして前記スピーカのボイスコイルの直流抵抗を補正する
     請求項2に記載の音響処理装置。
  5.  前記直流抵抗に基づいて、前記ボイスコイルの温度を算出する温度算出部と、
     前記ボイスコイルの温度に応じて、前記入力信号に対して前記ボイスコイルの温度上昇を抑制するための温度制御を行う温度制御部と
     をさらに備える請求項4に記載の音響処理装置。
  6.  前記スピーカを流れる電流の実測値に基づいて、前記スピーカの変位を算出する変位算出部をさらに備え、
     前記振幅制御部は、前記変位算出部により算出された変位と、前記予測値とのうちのより大きい方の値が前記閾値よりも大きい場合、前記入力信号に対して振幅制御を行う
     請求項1に記載の音響処理装置。
  7.  前記入力信号を所定時間だけ遅延させて前記振幅制御部に供給する遅延部をさらに備える
     請求項1に記載の音響処理装置。
  8.  前記予測値算出部は、前記スピーカの変位に対して非線形に変化する力係数および機械系コンプライアンスを含む、複数のパラメータにより定まる前記等価モデルに基づいて、前記予測値を算出する
     請求項1に記載の音響処理装置。
  9.  前記振幅制御部は、前記予測値および前記閾値から定まるゲイン値に基づいて、前記入力信号に対する振幅制御を行う
     請求項1に記載の音響処理装置。
  10.  スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値を算出し、
     前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御を行う
     ステップを含む音響処理方法。
  11.  スピーカの等価モデルに基づいて、前記スピーカに供給される入力信号に応じた前記スピーカの変位の予測値を算出し、
     前記予測値が所定の閾値よりも大きい場合、前記入力信号に対して振幅制御を行う
     ステップを含む処理をコンピュータに実行させるプログラム。
PCT/JP2017/044110 2016-12-22 2017-12-08 音響処理装置および方法、並びにプログラム WO2018116861A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/463,146 US10734959B2 (en) 2016-12-22 2017-12-08 Sound processing device and method to suppress an excessive amplitude
JP2018557670A JP7188082B2 (ja) 2016-12-22 2017-12-08 音響処理装置および方法、並びにプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-248798 2016-12-22
JP2016248798 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018116861A1 true WO2018116861A1 (ja) 2018-06-28

Family

ID=62626344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044110 WO2018116861A1 (ja) 2016-12-22 2017-12-08 音響処理装置および方法、並びにプログラム

Country Status (3)

Country Link
US (1) US10734959B2 (ja)
JP (1) JP7188082B2 (ja)
WO (1) WO2018116861A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025238A (ja) * 2018-08-07 2020-02-13 角元 純一 スピーカーシステムの限界能力を引き出す制御方法と装置
JP2020107988A (ja) * 2018-12-27 2020-07-09 ヤマハ株式会社 オーディオ信号制御回路、音響システム、および、オーディオ信号制御方法
WO2020158433A1 (ja) * 2019-02-01 2020-08-06 日本電信電話株式会社 音像定位装置、音像定位方法、およびプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476306B1 (ko) * 2018-03-06 2022-12-13 삼성전자주식회사 스피커의 온도를 감지하기 위한 전자 장치 및 그의 동작 방법
WO2021177883A1 (en) * 2020-03-04 2021-09-10 Dirac Research Ab Audio signal processing for adaptively adjusting a gain
CN113453118B (zh) * 2020-03-27 2023-03-10 华为技术有限公司 配置扬声器的方法、扬声器、扬声器模组、移动终端
CN111541975B (zh) * 2020-04-27 2021-05-07 维沃移动通信有限公司 音频信号的调节方法及电子设备
CN111741406B (zh) * 2020-06-12 2022-03-01 瑞声科技(新加坡)有限公司 音频信号调整方法、装置、计算机设备及存储介质
CN111698633B (zh) * 2020-06-29 2021-06-08 时东阳 一种扬声器ts参数测量方法
WO2022000335A1 (zh) * 2020-06-30 2022-01-06 深圳市大疆创新科技有限公司 音频处理方法、装置和电子设备
CN113132850B (zh) * 2021-04-28 2023-05-26 Oppo广东移动通信有限公司 扬声器参数配置方法及相关装置
KR20230023372A (ko) * 2021-08-10 2023-02-17 삼성전자주식회사 표면 발열을 제어하기 위한 전자 장치 및 그 전자 장치에서의 동작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055676A (ja) * 2010-03-17 2013-03-21 Harman Internatl Industries Inc 音響パワー管理システム
US20130259245A1 (en) * 2012-03-27 2013-10-03 Htc Corporation Control method of sound producing, sound producing apparatus, and portable apparatus
US20160014507A1 (en) * 2013-03-08 2016-01-14 Cirrus Logic, Inc. Systems and methods for protecting a speaker

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8712065B2 (en) * 2008-04-29 2014-04-29 Bang & Olufsen Icepower A/S Transducer displacement protection
US9614489B2 (en) 2012-03-27 2017-04-04 Htc Corporation Sound producing system and audio amplifying method thereof
US10200000B2 (en) 2012-03-27 2019-02-05 Htc Corporation Handheld electronic apparatus, sound producing system and control method of sound producing thereof
US9781529B2 (en) 2012-03-27 2017-10-03 Htc Corporation Electronic apparatus and method for activating specified function thereof
JP2015126444A (ja) 2013-12-26 2015-07-06 株式会社Jvcケンウッド 音響装置、および周波数特性調整方法
TWI543638B (zh) 2014-01-28 2016-07-21 宏達國際電子股份有限公司 聲音產生系統和其音頻放大的方法
FR3018025B1 (fr) * 2014-02-26 2016-03-18 Devialet Dispositif de commande d'un haut-parleur
TWI590671B (zh) 2014-07-09 2017-07-01 宏達國際電子股份有限公司 啟動特定功能的電子裝置及方法
JP2016072754A (ja) * 2014-09-29 2016-05-09 株式会社東芝 音声信号処理装置
TWI651971B (zh) 2016-04-26 2019-02-21 宏達國際電子股份有限公司 手持式電子裝置、聲音產生系統及其聲音產生的控制方法
US10123143B2 (en) * 2016-09-26 2018-11-06 Cirrus Logic, Inc. Correction for speaker monitoring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055676A (ja) * 2010-03-17 2013-03-21 Harman Internatl Industries Inc 音響パワー管理システム
US20130259245A1 (en) * 2012-03-27 2013-10-03 Htc Corporation Control method of sound producing, sound producing apparatus, and portable apparatus
US20160014507A1 (en) * 2013-03-08 2016-01-14 Cirrus Logic, Inc. Systems and methods for protecting a speaker

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025238A (ja) * 2018-08-07 2020-02-13 角元 純一 スピーカーシステムの限界能力を引き出す制御方法と装置
WO2020031394A1 (ja) * 2018-08-07 2020-02-13 角元 純一 スピーカーシステムの限界能力を引き出す制御方法と装置
JP2020107988A (ja) * 2018-12-27 2020-07-09 ヤマハ株式会社 オーディオ信号制御回路、音響システム、および、オーディオ信号制御方法
JP7151472B2 (ja) 2018-12-27 2022-10-12 ヤマハ株式会社 オーディオ信号制御回路、音響システム、および、オーディオ信号制御方法
WO2020158433A1 (ja) * 2019-02-01 2020-08-06 日本電信電話株式会社 音像定位装置、音像定位方法、およびプログラム
JP2020127074A (ja) * 2019-02-01 2020-08-20 日本電信電話株式会社 音像定位装置、音像定位方法、およびプログラム
JP7071647B2 (ja) 2019-02-01 2022-05-19 日本電信電話株式会社 音像定位装置、音像定位方法、およびプログラム

Also Published As

Publication number Publication date
JP7188082B2 (ja) 2022-12-13
JPWO2018116861A1 (ja) 2019-10-24
US10734959B2 (en) 2020-08-04
US20190305741A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
WO2018116861A1 (ja) 音響処理装置および方法、並びにプログラム
US10547942B2 (en) Control of electrodynamic speaker driver using a low-order non-linear model
US20130077795A1 (en) Over-Excursion Protection for Loudspeakers
JP6182869B2 (ja) 音声再生装置
JP6038135B2 (ja) 信号処理装置
WO2015085924A1 (zh) 一种扬声器自动均衡方法
US20120051558A1 (en) Method and apparatus for reproducing audio signal by adaptively controlling filter coefficient
EP3448059A1 (en) Audio processor with temperature adjustment
JP2014050106A (ja) ダイナミックスピーカーの全体応答のモデル化を用いて音声信号を処理するための方法
CN101233783A (zh) 扬声器装置
CN111970628B (zh) 音频信号的增强方法、装置、存储介质和处理器
CN110012395B (zh) 扬声器热行为建模的系统和方法
WO2013183103A1 (ja) 周波数特性変形装置
CN109951787B (zh) 扩音器参数预测系统
US10904663B2 (en) Reluctance force compensation for loudspeaker control
US20030118193A1 (en) Method and system for digitally controlling a speaker
US20090028350A1 (en) Method and apparatus for reducing resonance of loudspeaker
US20190132676A1 (en) Phase Inversion Filter for Correcting Low Frequency Phase Distortion in a Loudspeaker System
WO2006093256A1 (ja) 音声再生装置及び方法、並びに、コンピュータプログラム
JP6102268B2 (ja) 音声再生装置
CN111010651B (zh) 扬声器控制装置和相关联的声音放送设备
Luo et al. A model based excursion protection algorithm for loudspeakers
CN111741409A (zh) 扬声器的非线性补偿方法、扬声器设备、装置和存储介质
JP6213701B1 (ja) 音響信号処理装置
JP2017195462A (ja) 音響処理装置および音響処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884009

Country of ref document: EP

Kind code of ref document: A1