WO2022000335A1 - 音频处理方法、装置和电子设备 - Google Patents

音频处理方法、装置和电子设备 Download PDF

Info

Publication number
WO2022000335A1
WO2022000335A1 PCT/CN2020/099564 CN2020099564W WO2022000335A1 WO 2022000335 A1 WO2022000335 A1 WO 2022000335A1 CN 2020099564 W CN2020099564 W CN 2020099564W WO 2022000335 A1 WO2022000335 A1 WO 2022000335A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
audio
audio component
frequency band
ratio
Prior art date
Application number
PCT/CN2020/099564
Other languages
English (en)
French (fr)
Inventor
薛政
莫品西
边云锋
刘洋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/099564 priority Critical patent/WO2022000335A1/zh
Publication of WO2022000335A1 publication Critical patent/WO2022000335A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the embodiments of the present application relate to the field of audio technology, and in particular, to an audio processing method, apparatus, and electronic device.
  • Electronic devices with sound-reproducing function usually use miniature speakers as sound-emitting devices.
  • the diaphragm of the speaker is generally not exposed to the air, and there is usually a protective structure in front to block it, but the existence of the protective structure limits the speaker's performance.
  • the vibrating range of the diaphragm If the vibration amplitude of the speaker diaphragm exceeds the limited vibrating range, the playback sound may be distorted, and the diaphragm may be seriously damaged.
  • Embodiments of the present application provide an audio processing method, device, and electronic device, which are used to output more low-frequency signals and give full play to the low-frequency performance of the loudspeaker when the vibrating range of the diaphragm of the loudspeaker is limited.
  • an embodiment of the present application provides an audio processing method, the method comprising:
  • the to-be-processed audio signal includes multiple audio components in different frequency bands;
  • a target audio signal is generated based on the adjusted audio components.
  • an embodiment of the present application provides an audio processing apparatus, including: a processor;
  • the processor configured to acquire a to-be-processed audio signal, the to-be-processed audio signal including a plurality of audio components in different frequency bands;
  • a target audio signal is generated based on the adjusted audio components.
  • an embodiment of the present application provides a movable platform, including: a speaker and a processor;
  • the processor configured to acquire a to-be-processed audio signal, the to-be-processed audio signal including a plurality of audio components in different frequency bands;
  • the speaker is used to play the target audio signal.
  • an embodiment of the present application provides a readable storage medium, where a computer program is stored on the readable storage medium; when the computer program is executed, the audio frequency according to the embodiment of the present application in the first aspect is implemented. Approach.
  • an embodiment of the present application provides a program product, where the program product includes a computer program, where the computer program is stored in a readable storage medium, and at least one processor of the audio processing apparatus can download the program from the readable storage medium The computer program is read, and the at least one processor executes the computer program so that the audio processing apparatus implements the audio processing method according to the embodiment of the present application in the first aspect.
  • the audio processing method, device, and electronic device include acquiring an audio signal to be processed, where the audio signal to be processed includes multiple audio components in different frequency bands, and each of the multiple audio components is The amplitude of the audio component is compared with an amplitude threshold, and the audio component is adjusted in amplitude according to the comparison result, and a target audio signal is generated based on the adjusted audio component. Therefore, in this embodiment, each audio component of the audio signal to be processed can be adjusted separately according to the amplitude threshold, so that the amplitude of each audio component does not exceed the amplitude threshold, which ensures that the amplitude of the diaphragm of the speaker can vibrate to a certain extent. range, reducing the distortion of audio playback.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of an audio processing method provided by an embodiment of the present application.
  • FIG. 3 is a structural cross-sectional view of a speaker provided by another embodiment of the present application.
  • FIG. 4 is an analogous diagram of an electro-mechanical-acoustic circuit of a speaker provided by another embodiment of the present application.
  • FIG. 5 is a frequency-amplitude mapping curve provided by another embodiment of the present application.
  • FIG. 6 is a frequency-amplitude threshold curve provided by another embodiment of the present application.
  • FIG. 7 is a flowchart of an audio processing method provided by another embodiment of the present application.
  • FIG. 8 is a schematic diagram of an original frequency spectrum of an audio signal to be processed provided by another embodiment of the present application.
  • FIG. 9 is a schematic spectrum diagram of an audio signal to be processed after adjustment provided by another embodiment of the present application.
  • FIG. 10 is a flowchart of an audio processing method provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an audio processing apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • a component when referred to as being "fixed to" another component, it can be directly on the other component or there may also be a centered component.
  • a component When a component is considered to be “connected” to another component, it may be directly connected to the other component or there may be a co-existence of an intervening component.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 according to an embodiment of the present application.
  • Electronic device 100 may include sound playback system 110 .
  • the playback system 120 is used to decode and play the received audio files.
  • the sound playback system 120 may include a sound playback processor and speakers.
  • the electronic device 100 may further include a recording system 120, wherein the recording system 110 is used to convert the sound signal into an electrical signal, and perform analog-to-digital conversion and encoding processing on the electrical signal. get the audio file.
  • the recording system 110 may include a microphone and a recording processor.
  • the electronic device 100 in this embodiment may be any device that needs to perform audio playback, including a remote control, a mobile phone, and a motion camera.
  • Other exemplary electronic devices may be, for example, voice toys, music greeting cards, story machines, voice Alarms, alarm clocks, clocks, handheld game consoles, tablets, sports watches or voice recorders, etc.
  • the remote control when the electronic device includes a remote control, the remote control may be a remote control terminal of a movable platform, and the movable platform may include but not limited to an aircraft, a vehicle, a ship, and the like.
  • FIG. 2 is a flowchart of an audio processing method provided by an embodiment of the present application. As shown in FIG. 2 , the method of this embodiment may include:
  • the execution body of this embodiment may be the sound playback processor of the electronic device shown in FIG. 1 .
  • the audio signal to be processed may be a time domain signal or a frequency domain signal. If the audio signal to be processed is an audio signal in the time domain, the audio signal to be processed is converted into an audio signal in the frequency domain, and then the audio components of the audio signal to be processed in different frequency bands in the frequency domain are obtained. If the audio signal to be processed is an audio signal in the frequency domain, the audio components of the audio signal to be processed in different frequency bands are directly obtained.
  • the audio components included in the audio signal to be processed are in different frequency bands.
  • the frequency band can include a single sampling frequency point. For example, assuming that the frequency range of the audio signal to be processed is 10-200 Hz, within this frequency range, any single frequency point can be used as a frequency band, for example, 15 Hz can be used as the first frequency. frequency band, 25Hz is the second frequency band, 35Hz is the third frequency band, 45Hz is the fourth frequency band, 75Hz is the fifth frequency band, etc.
  • the frequency band may also include multiple sampling frequency points. Taking the above hypothetical situation as an example, the frequency range of the audio signal to be processed may be 10-200 Hz.
  • the frequency range can be divided into multiple frequency bands, 10-20Hz is the first frequency band, 20Hz-30Hz is the second frequency band, 30Hz-40Hz is the third frequency band, 40Hz-50Hz is the fourth frequency band, and 50Hz-100Hz is the fifth frequency band , 100Hz ⁇ 200Hz is the sixth frequency band.
  • the audio signal to be processed may include a first audio component in a first frequency band, a second audio component in a second frequency band, and a third audio component in a third frequency band.
  • the amplitude value of the audio component may be an energy value or a power value of the audio component.
  • the corresponding relationship between the amplitude threshold used for comparing the amplitude of each audio component in the plurality of audio components and each audio component may be various, and in one implementation, it may be: One-to-one correspondence, that is, each audio component corresponds to an amplitude threshold.
  • the audio component of the first frequency band (10-20Hz) corresponds to the first amplitude threshold
  • the audio component of the second frequency band (20Hz-30Hz) corresponds to the second amplitude threshold
  • the corresponding relationship between the amplitude threshold used to compare the amplitude of each audio component in the plurality of audio components and each audio component may be a one-to-many correspondence, that is, a plurality of audio components correspond to one Amplitude threshold.
  • the audio components of the first frequency band (10 to 20 Hz) and the audio components of the second frequency band (20 Hz to 30 Hz) both correspond to the first amplitude threshold
  • the audio components of the third frequency band (30 Hz to 40 Hz) and the fourth frequency band ( 40Hz ⁇ 50Hz) audio components all correspond to the second amplitude threshold. This embodiment does not limit this.
  • the source of the amplitude threshold may be set according to the vibrating range of the diaphragm of the speaker for playing the target audio signal generated based on the adjusted audio component.
  • the adjusted amplitude of the audio component is lower than or equal to the amplitude threshold, so that when the speaker plays the target audio generated based on the adjusted audio component, the amplitude of the diaphragm of the speaker does not change. Exceed the vibration range to ensure the safety of the speaker.
  • the amplitude threshold may be determined according to the vibrating range of the diaphragm of the speaker used to play the target audio signal and a first correspondence; the first correspondence is the amplitude of the diaphragm of the speaker and the corresponding relationship between the multiple audio components and the frequency bands in which the multiple audio components are respectively located.
  • the audio component is proportional to the amplitude
  • the frequency band is inversely proportional to the amplitude.
  • the method may include: receiving a plurality of standard signals; Measure the amplitudes of the diaphragms of the loudspeakers corresponding to the standard signals respectively; according to the frequencies and frequency components of the plurality of standard signals, and the amplitudes of the diaphragms of the loudspeakers corresponding to the plurality of standard signals, fit and determine the first correspondence.
  • the method may include: acquiring structural parameters of the loudspeaker; establishing a vibration model of the loudspeaker according to the structural parameters; according to the vibration model, The first correspondence is determined.
  • FIG. 3 is a structural cross-sectional view of a speaker provided by another embodiment of the application
  • FIG. 5 is a frequency-amplitude mapping curve provided by another embodiment of the application
  • FIG. 6 is a frequency-amplitude threshold curve provided by another embodiment of the application.
  • a speaker vibration model for playing the target audio signal is established;
  • the vibration model includes that the amplitude of the diaphragm of the speaker is related to the difference between the multiple audio components and the multiple audio components respectively.
  • the first correspondence between the frequency bands at the location is shown in formula (1);
  • x D is the amplitude of the speaker
  • E is the amplitude or energy of the audio signal to be processed
  • f is the frequency of the audio signal to be processed
  • ⁇ , ⁇ and ⁇ are constant coefficients, which are determined by the parameters of each zero device of the speaker.
  • the speaker includes a magnet 301, a voice coil 302, an iron cover 303, a sound film 304, an iron sheet 305, an iron frame 306, a tuning cloth 307 and a terminal 308 and other structural components.
  • a structural zero device can be analogized to an electronic device with certain parameters. As shown in Figure 4, based on the analogy of each structural component of the speaker, it can be obtained by power supply (U), multiple inductors (L1-L6), multiple capacitors (C1 and C2) and multiple resistors (R1-R3) ) to form a circuit.
  • the vibration model of the loudspeaker can be constructed based on the circuit of Fig.
  • the curve in the figure is the frequency-amplitude curve drawn according to formula (1) when the amplitude of the audio signal to be processed is constant.
  • the abscissa of the curve is the frequency of the audio signal to be processed, and the ordinate is the amplitude of the diaphragm of the speaker corresponding to each frequency.
  • the amplitude of the diaphragm of the speaker is mainly determined by the amplitude and frequency of the input audio signal to be processed, and the amplitude of the diaphragm of the speaker decreases with the increase of the frequency of the audio signal to be processed, that is, In the lower frequency bands of the audio signal to be processed, the loudspeaker's diaphragm has a larger amplitude.
  • x D is the amplitude of the speaker
  • E is the amplitude or energy of the audio signal to be processed
  • f is the frequency of the audio signal to be processed
  • ⁇ , ⁇ and ⁇ are constant coefficients, which are determined by the parameters of each zero device of the speaker.
  • the vibrating range d of the diaphragm of the speaker of different electronic devices will be different, then different frequency-amplitude curves can be obtained for different d, and the frequency can be substituted into the curve to obtain different sampling frequency points or different sampling frequencies.
  • the amplitude threshold corresponding to the frequency band.
  • the amplitude of the audio component can be directly compared with the amplitude threshold, or the amplitude of the audio component can be compared Make a difference with the threshold value, and compare the difference value with the preset value, or divide the amplitude value of the audio component by the amplitude threshold value, and compare the obtained ratio with the preset value to determine the amplitude value of the audio component according to the comparison result. adjust. This is not limited in this embodiment.
  • the comparison result between the amplitude value of each audio component and the amplitude value threshold value there can be various ways to adjust the amplitude value of the audio component, and the amplitude value of the audio component exceeding the amplitude value threshold value can be reduced according to the comparison result, It is also possible to amplify the audio components whose amplitudes are smaller than the preset amplitude according to the comparison results, and directly use them for frequency synthesis to generate target audio signals without adjusting the audio components whose amplitudes are smaller than or equal to the amplitude threshold.
  • the amplitude when the speaker plays a low-frequency signal, the amplitude is relatively large, which is more likely to exceed the vibrating range. Therefore, in a specific embodiment, only the audio components below the preset frequency can be adjusted to ensure that the diaphragm of the speaker does not exceed the vibrating range.
  • the comparing the amplitude of each audio component in the plurality of audio components with an amplitude threshold, and adjusting the amplitude of the audio components according to the comparison result includes: comparing the audio components of the plurality of audio components The amplitude of each audio component whose frequency band is lower than the preset frequency is compared with the amplitude threshold, and the amplitude of the audio component is adjusted according to the comparison result.
  • the adjusted audio components can be audio synthesized to obtain a target audio signal, and the target audio signal can be sent to a speaker for audio playback.
  • the processor samples the audio file received from the external device or stored locally to obtain the audio signal to be processed in the time domain, and converts the audio signal to be processed into the frequency domain. obtains multiple audio components in different frequency bands of the audio signal to be processed, adjusts the audio components based on the amplitude threshold for the audio components of each frequency band, and synthesizes the adjusted audio components, Get the target audio signal.
  • an audio signal to be processed is acquired, the audio signal to be processed includes multiple audio components in different frequency bands, the amplitude of each audio component in the multiple audio components is compared with an amplitude threshold, and according to Amplitude adjustment is performed on the audio component according to the comparison result, and a target audio signal is generated based on the adjusted audio component. Therefore, in this embodiment, each audio component of the audio signal to be processed can be adjusted separately according to the amplitude threshold, so that the amplitude of each audio component does not exceed the amplitude threshold, and the amplitude of the diaphragm of the speaker is guaranteed to be within the vibrating range. , so as to realize the normal playback of each audio component of the audio signal to be processed by the speaker.
  • the low frequency truncation processing of the input audio signal can be adopted to ensure that all input signals will not cause the amplitude of the diaphragm of the speaker to exceed the limit of the vibrating range. Excessive absence of low-frequency signals seriously affects audio quality.
  • this embodiment can retain more low-frequency components, realize the playback of each audio component of the audio signal to be processed by the speaker, give full play to the low-frequency performance of the speaker, and improve the sound quality.
  • the audio processing method provided in this embodiment has lower algorithm complexity and lower hardware than the prior art method of adjusting the input audio signal to be processed according to the voltage or current feedback signal of the speaker. Requirements, can be easily applied to various electronic devices for audio playback, and can reduce hardware costs at the same time.
  • FIG. 7 is a flowchart of an audio processing method provided by another embodiment of the present application.
  • the adjustment method of each audio component is performed.
  • the method of this embodiment may include:
  • step S701 in this embodiment is similar to that of step S201 in the foregoing embodiment, and details are not described herein again.
  • each frequency band of the audio signal to be processed corresponds to its own amplitude threshold.
  • the first frequency band corresponds to the first amplitude threshold
  • the second frequency band corresponds to the second amplitude threshold.
  • the audio component of the frequency band is adjusted according to the obtained comparison result of each frequency band, so as to synthesize the adjusted audio components of each frequency band to obtain the target audio frequency Signal.
  • the audio component of the first frequency band is adjusted according to the first amplitude threshold
  • the audio component of the second frequency band is adjusted according to the second amplitude threshold
  • the adjusted audio component of the first frequency band and the adjusted second frequency band The audio components are used to participate in the synthesis of the target audio.
  • the magnitude comparison may be performed directly. Specifically, the amplitude of each audio component is compared with the corresponding amplitude threshold The amplitude thresholds are compared, and the amplitude adjustment is performed on the audio component according to the comparison result, including: for each audio component, judging whether the amplitude of the audio component is greater than the amplitude threshold; Amplitude adjustment of the audio components.
  • the amplitude adjustment of the component may include: if the amplitude of the audio component is greater than the amplitude threshold, reducing the amplitude of the audio component; it may also include: if the amplitude of the audio component is smaller than the amplitude threshold, the original audio components are used to synthesize the target audio.
  • the amplitude of the audio component whose amplitude is less than a certain value may be amplified.
  • the amplitude adjustment of the audio component may include: if the amplitude of the audio component is greater than the amplitude threshold, reducing the amplitude of the audio component; it may also include: if the amplitude of the audio component is smaller than the amplitude threshold If the value threshold is set, the amplitude of the audio component is amplified.
  • the ratio of the amplitude of each audio component to the corresponding amplitude threshold can also be obtained first, and the ratio is compared with a preset value based on the ratio. Then, the amplitude of the audio component is adjusted according to the comparison result.
  • comparing the amplitude of each audio component with the corresponding amplitude threshold, and performing amplitude adjustment on the audio component according to the comparison result includes: calculating the amplitude of each audio component. The ratio between the amplitude value and the corresponding amplitude threshold value respectively; the amplitude adjustment is performed on the audio component according to the ratio.
  • the amplitude adjustment of the audio component by the ratio may include: if the ratio is greater than 1, performing amplitude compression on the audio component according to the ratio, for example, dividing the audio component by the ratio, so that the The amplitude of the adjusted audio component is less than the amplitude threshold; the performing amplitude adjustment on the audio component according to the ratio may further include: if the ratio is less than or equal to 1, converting the original Audio components are used to synthesize the target audio.
  • the amplitude of the audio component whose amplitude is less than a certain value may be amplified.
  • the amplitude adjustment of the audio component may include: if the ratio is less than a preset ratio, amplifying the audio component of the frequency band according to the ratio; the preset ratio is less than or equal to 1, for example, the audio The component is divided by the ratio, so that the adjusted audio component is amplified, and it is ensured that the amplitude of the amplified audio component is less than or equal to the corresponding amplitude threshold.
  • the adjusting the amplitude of the audio component according to the ratio may further include: if the ratio is greater than 1, performing amplitude compression on the audio component according to the ratio.
  • the corresponding amplitude thresholds respectively set for each frequency band are set according to the vibrating range of the diaphragm of the speaker for playing the target audio signal in the frequency band.
  • the amplitude of each audio component can be determined according to a certain characteristic value of the frequency band in which it is located.
  • the feature value There are various options for the feature value.
  • the amplitude of each audio component in the plurality of audio components is the amplitude corresponding to each sampling frequency point in the frequency band where each audio component is located. the average of the values.
  • the amplitude of each audio component in the plurality of audio components is the amplitude corresponding to the center sampling frequency point in the frequency band where each audio component is located.
  • the amplitude of each audio component in the plurality of audio components is the maximum value among the amplitudes corresponding to the respective sampling frequency points in the frequency band where each audio component is located.
  • FIG. 8 is a schematic diagram of the original spectrum of the audio signal to be processed provided by another embodiment of the application.
  • 9 is a schematic diagram of a frequency spectrum of an audio signal to be processed after adjustment provided by another embodiment of the present application.
  • the audio components that exceed the amplitude threshold curve pass through the speaker.
  • the adjustment methods in the audio processing methods provided in the above-mentioned embodiments can be used to adjust each audio component.
  • the adjusted audio component can be as low as possible on the premise of ensuring that it is lower than the amplitude threshold. As much as possible to retain the audio components in the low frequency range, so as to give full play to the low frequency performance of the speaker.
  • step S703 in this embodiment is similar to that of step S203 in the foregoing embodiment, and details are not described herein again.
  • an audio signal to be processed is obtained, the audio signal to be processed includes multiple audio components in different frequency bands, a corresponding amplitude threshold is set for each frequency band, and each audio component is The amplitudes of , respectively, are compared with the corresponding amplitude thresholds, and the audio components are adjusted in amplitude according to the comparison results, and a target audio signal is generated based on the adjusted audio components.
  • each audio component of the audio signal to be processed can be adjusted separately according to the amplitude thresholds corresponding to the respective frequency bands, so that the amplitude of each audio component does not exceed the corresponding amplitude threshold, ensuring that the diaphragm of the speaker is Compared with the simple truncation of low-frequency signals, it can retain more low-frequency components, give full play to the low-frequency performance of the speaker, and improve the sound quality. .
  • FIG. 10 is a flowchart of an audio processing method provided by another embodiment of the present application.
  • the method in this embodiment may include:
  • the adjusting the amplitude of the audio component according to the maximum ratio may include: if the maximum ratio is greater than 1, performing amplitude compression on the audio component of the frequency band according to the maximum ratio, For example, the audio component is divided by the maximum ratio, so that the frequency component of each frequency point in the frequency band where the adjusted audio component is located is smaller than the corresponding amplitude threshold.
  • the adjusting the amplitude of the audio component according to the maximum ratio may further include: if the maximum ratio is less than or equal to 1, using the original audio component of the frequency band to synthesize the target audio.
  • the amplitude of the audio component whose amplitude is less than a certain value may be amplified.
  • Adjusting the amplitude of the audio component may include: if the maximum ratio is smaller than a preset ratio, amplifying the audio component of the frequency band according to the maximum ratio; the preset ratio is less than or equal to 1.
  • the audio component is divided by the maximum ratio, so that the frequency components of each frequency point in the frequency band where the adjusted audio component is located are amplified as much as possible while ensuring that they are all smaller than the corresponding amplitude threshold, so as to improve the audio playback effect.
  • the adjusting the amplitude of the audio component according to the maximum ratio may further include: if the maximum ratio is greater than 1, performing amplitude compression on the audio component of the frequency band according to the maximum ratio, for example, The audio component is divided by the maximum ratio, so that the frequency component of each frequency point in the frequency band where the adjusted audio component is located is smaller than the corresponding amplitude threshold.
  • the audio processing method provided by this embodiment is described below by taking the adjustment of each audio component in the low frequency range of 10-100 Hz of the input audio signal to be processed as an example.
  • the amplitude of each sampling frequency point in the first frequency band in the audio signal to be processed is recorded as h1(f), 10Hz ⁇ f ⁇ 20Hz, in this frequency band, the corresponding sampling frequency points
  • the amplitude threshold is recorded as h2(f)
  • the suppression coefficient of this frequency band can be set to the maximum ratio of the ratio between the amplitude of each sampling frequency point and the amplitude threshold, and the larger value of 1, that is, as The following formula (3) is shown as:
  • the remaining 8 frequency bands are processed according to the above method, so that the energy of these 9 frequency bands just reaches their corresponding amplitude thresholds without overflowing, so that the performance of the speaker can be maximized and the safety of the speaker can be guaranteed.
  • the corresponding amplitude thresholds respectively set for each sampling frequency point in each frequency band are based on the vibrating range of each frequency point in the frequency band of the diaphragm of the speaker used to play the target audio signal. set.
  • a to-be-processed audio signal is acquired, the to-be-processed audio signal includes a plurality of audio components in different frequency bands, a corresponding amplitude threshold is set for each sampling frequency point in each frequency band, and a corresponding amplitude threshold is set for each sampling frequency point in each frequency band.
  • the frequency band calculate the ratio between the amplitude of each sampling frequency point in the frequency band and the corresponding amplitude threshold value, and use the maximum ratio in each ratio as the comparison result between the amplitude value of the audio component and the amplitude threshold value, and performing amplitude adjustment on the audio component according to the maximum ratio, and generating a target audio signal based on the adjusted audio component.
  • each audio component of the audio signal to be processed can be adjusted separately according to the amplitude threshold, so that the amplitude of each audio component does not exceed the amplitude threshold, and the amplitude of the diaphragm of the speaker is guaranteed to be within the vibrating range. , and then realize the normal playback of each audio component of the audio signal to be processed by the speaker. Compared with the simple truncation of the low-frequency signal, more low-frequency components can be retained, giving full play to the low-frequency performance of the speaker and improving the sound quality.
  • Embodiments of the present application further provide a computer storage medium, where program instructions are stored in the computer storage medium, and when the program is executed, the program may include the audio processing methods in FIG. 2 , FIG. 7 , and FIG. 10 and their corresponding embodiments. some or all of the steps.
  • FIG. 11 is a schematic structural diagram of an audio processing apparatus provided by an embodiment of the present application. As shown in FIG. 11 , the audio processing apparatus 1100 of this embodiment may include: a processor 1101 .
  • the processor 1101 is configured to acquire a to-be-processed audio signal, where the to-be-processed audio signal includes multiple audio components in different frequency bands.
  • the amplitude of each audio component in the plurality of audio components is compared with an amplitude threshold, and the audio component is adjusted in amplitude according to the comparison result.
  • a target audio signal is generated based on the adjusted audio components.
  • the audio processing apparatus 1100 in this embodiment may further include: a memory 1102 .
  • the memory 1102 is used to store program codes.
  • the processor 1101 calls the program code, and when the program code is executed, is used to execute the above solutions.
  • the audio processing apparatus of this embodiment can be used to execute the technical solutions of the above method embodiments of the present application, and the implementation principles and technical effects thereof are similar, and are not repeated here.
  • the adjusted amplitude of the audio component is lower than or equal to the amplitude threshold.
  • the amplitude threshold is set according to the vibrating range of the diaphragm of the speaker for playing the target audio signal.
  • a corresponding amplitude threshold is respectively set for each frequency band
  • the processor is specifically used for:
  • the audio components are amplitude-adjusted according to the comparison result.
  • the processor is specifically used for:
  • the audio components are amplitude adjusted according to the ratio.
  • the processor is specifically used for:
  • amplitude compression is performed on the audio component according to the ratio.
  • the processor is also specifically used for:
  • the original audio components are used to synthesize the target audio.
  • the processor is also specifically used for:
  • the ratio is less than a preset ratio, the amplitude of the audio component of the frequency band is amplified according to the ratio; the preset ratio is less than or equal to 1.
  • the corresponding amplitude thresholds respectively set for each frequency band are set according to the vibrating range of the diaphragm of the speaker for playing the target audio signal in the frequency band.
  • the amplitude of each audio component in the plurality of audio components is an average value of amplitudes corresponding to respective sampling frequency points in the frequency band where each audio component is located.
  • the amplitude of each audio component in the plurality of audio components is the amplitude corresponding to the center sampling frequency point in the frequency band where each audio component is located.
  • the amplitude of each audio component in the plurality of audio components is the maximum value among the amplitudes corresponding to the respective sampling frequency points in the frequency band where each audio component is located.
  • the processor is specifically used for:
  • each audio component For the frequency band in which each audio component is located, calculate the ratio between the amplitude of each sampling frequency point in the frequency band and the corresponding amplitude threshold, and use the maximum ratio among the ratios as the amplitude of the audio component and the corresponding amplitude threshold. Amplitude threshold comparison result;
  • the audio components are amplitude adjusted according to the maximum ratio.
  • the processor is specifically used for:
  • the processor is also specifically used for:
  • the maximum ratio is less than or equal to 1, the original audio components of the frequency band are used to synthesize the target audio.
  • the processor is also specifically used for:
  • the amplitude of the audio component of the frequency band is amplified according to the maximum ratio; the preset ratio is less than or equal to 1.
  • the corresponding amplitude thresholds set respectively for each sampling frequency point in each frequency band are set according to the vibrating range of each frequency point in the frequency band of the diaphragm of the speaker used to play the target audio signal. of.
  • the processor is specifically used for:
  • the amplitude of each audio component whose frequency band is lower than the preset frequency among the plurality of audio components is compared with an amplitude threshold, and the amplitude of the audio component is adjusted according to the comparison result.
  • the audio processing apparatus of this embodiment can be used to implement the technical solutions of FIG. 2 , FIG. 7 , FIG. 10 and the corresponding method embodiments of the present application, and the implementation principles and technical effects thereof are similar, and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 1200 of this embodiment may include: a speaker 1201 and a processor 1202; wherein the speaker 1201 and the processor 1202 may pass through a bus connect.
  • the processor 1201 is configured to acquire a to-be-processed audio signal, the to-be-processed audio signal includes multiple audio components in different frequency bands; compare the amplitude of each audio component in the multiple audio components with an amplitude threshold. comparing, and performing amplitude adjustment on the audio component according to the comparison result; generating a target audio signal based on the adjusted audio component.
  • the speaker 1202 is used to play the target audio signal.
  • the electronic device in this embodiment can be used to implement the technical solutions of the above method embodiments of the present application, and the implementation principles and technical effects thereof are similar, and are not repeated here.
  • the adjusted amplitude of the audio component is lower than or equal to the amplitude threshold.
  • the amplitude threshold is set according to the vibrating range of the diaphragm of the speaker for playing the target audio signal.
  • a corresponding amplitude threshold is respectively set for each frequency band
  • the processor is specifically used for:
  • the audio components are amplitude-adjusted according to the comparison result.
  • the processor is specifically used for:
  • the audio components are amplitude adjusted according to the ratio.
  • the processor is specifically used for:
  • amplitude compression is performed on the audio component according to the ratio.
  • the processor is also specifically used for:
  • the original audio components are used to synthesize the target audio.
  • the processor is also specifically used for:
  • the ratio is less than a preset ratio, the amplitude of the audio component of the frequency band is amplified according to the ratio; the preset ratio is less than or equal to 1.
  • the corresponding amplitude thresholds respectively set for each frequency band are set according to the vibrating range of the diaphragm of the speaker for playing the target audio signal in the frequency band.
  • the amplitude of each audio component in the plurality of audio components is an average value of amplitudes corresponding to respective sampling frequency points in the frequency band where each audio component is located.
  • the amplitude of each audio component in the plurality of audio components is the amplitude corresponding to the center sampling frequency point in the frequency band where each audio component is located.
  • the amplitude of each audio component in the plurality of audio components is the maximum value among the amplitudes corresponding to the respective sampling frequency points in the frequency band where each audio component is located.
  • the processor is specifically used for:
  • each audio component For the frequency band where each audio component is located, calculate the ratio between the amplitude of each sampling frequency point in the frequency band and the corresponding amplitude threshold, and use the maximum ratio among the ratios as the amplitude of the audio component and the corresponding amplitude threshold. Amplitude threshold comparison result;
  • the audio components are amplitude adjusted according to the maximum ratio.
  • the processor is specifically used for:
  • the processor is also specifically used for:
  • the maximum ratio is less than or equal to 1, the original audio components of the frequency band are used to synthesize the target audio.
  • the processor is also specifically used for:
  • the amplitude of the audio component of the frequency band is amplified according to the maximum ratio; the preset ratio is less than or equal to 1.
  • the corresponding amplitude thresholds set respectively for each sampling frequency point in each frequency band are set according to the vibrating range of each frequency point in the frequency band of the diaphragm of the speaker used to play the target audio signal. of.
  • the processor is specifically used for:
  • the amplitude of each audio component whose frequency band is lower than the preset frequency among the plurality of audio components is compared with an amplitude threshold, and the amplitude of the audio component is adjusted according to the comparison result.
  • the electronic device in this embodiment can be used to implement the technical solutions of FIG. 7 , FIG. 10 and the corresponding method embodiments of the present application, and the implementation principles and technical effects thereof are similar, and are not repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种音频处理方法、装置和电子设备,此方法包括:获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量;将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节;基于调节后的音频分量生成目标音频信号。根据幅值阈值实现对待处理音频信号的各音频分量分别进行调节,能够使得各音频分量的幅值不超过幅值阈值,保证了扬声器的振膜的振幅在可振动范围内,进而实现扬声器对待处理音频信号的各音频分量的正常播放,相对于对低频信号进行简单的截断,能够保留更多的低频成分,充分发挥扬声器的低频性能,提高音质。

Description

音频处理方法、装置和电子设备 技术领域
本申请实施例涉及音频技术领域,尤其涉及一种音频处理方法、装置和电子设备。
背景技术
具有放音功能的电子设备,通常会采用微型扬声器作为发声器件,其中,扬声器的振膜一般不会裸露在空气中,前方通常会设有保护结构进行遮挡,但是保护结构的存在限制了扬声器的振膜的可振动范围。若扬声器的振膜在振动时振动的幅度超过限制的可振动范围,可能会导致播放声音失真,严重可能导致振膜受损。
发明内容
本申请实施例提供一种音频处理方法、装置和电子设备,用于在扬声器的振膜的可振动范围受到限制的情况下,输出更多的低频信号,充分发挥扬声器的低频性能。
第一方面,本申请实施例提供一种音频处理方法,所述方法包括:
获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量;
将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节;
基于调节后的音频分量生成目标音频信号。
第二方面,本申请实施例提供一种音频处理装置,包括:处理器;
所述处理器,用于获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量;
将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节;
基于调节后的音频分量生成目标音频信号。
第三方面,本申请实施例提供一种可移动平台,包括:扬声器和处理器;
所述处理器,用于获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量;
将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节;
基于调节后的音频分量生成目标音频信号;
所述扬声器,用于播放所述目标音频信号。
第四方面,本申请实施例提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现如第一方面本申请实施例所述的音频处理方法。
第五方面,本申请实施例提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,音频处理装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得音频处理装置实施如第一方面本申请实施例所述的音频处理方法。
本申请实施例提供的音频处理方法、装置和电子设备,该方法包括获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量,将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节,基于调节后的音频分量生成目标音频信号。因此,本实施例可以根据幅值阈值实现对待处理音频信号的各音频分量分别进行调节,能够使得各音频分量的幅值不超过幅值阈值,一定程度保证了扬声器的振膜的振幅在可振动范围内,减少音频播放的失真。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的实施例提供的电子设备100的示意性架构图;
图2为本申请一实施例提供的音频处理方法的流程图;
图3为本申请另一实施例提供的扬声器的结构剖视图;
图4为本申请另一实施例提供的扬声器的电-力-声电路类比图;
图5为本申请另一实施例提供的频率-振幅映射曲线;
图6为本申请另一实施例提供的频率-幅值阈值曲线;
图7为本申请另一实施例提供的音频处理方法的流程图;
图8为本申请另一实施例提供的待处理音频信号的原始频谱示意图;
图9为本申请另一实施例提供的调节后的待处理音频信号的频谱示意图;
图10为本申请另一实施例提供的音频处理方法的流程图;
图11为本申请一实施例提供的音频处理装置的结构示意图;
图12为本申请一实施例提供的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请的实施例提供了音频处理方法、装置和电子设备。图1为本申请的实施例提供的电子设备100的示意性架构图。
电子设备100可以包括放音系统110。其中,放音系统120用于将接收 的音频文件进行解码并播放。放音系统120可以包括放音处理器和扬声器。可选地,为了同时具备录音和放音的功能,电子设备100还可以包括录音系统120,其中,录音系统110用于将声音信号转换为电信号,并将电信号进行模数转换和编码处理得到音频文件。录音系统110可以包括麦克风和录音处理器。
本实施例的电子设备100可以是包括遥控器、手机和运动相机在内的任意一种需要进行音频播放的设备,其他示例性的电子设备,例如可以是语音玩具、音乐贺卡、故事机、语音报警器、闹钟、时钟、掌上游戏机、平板电脑、运动手表或录音笔等。其中,当电子设备包括遥控器时,该遥控器可以为可移动平台的遥控终端,可移动平台可以包括但不限于飞行器、车、船等。
应理解,上述对于电子设备各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
图2为本申请一实施例提供的音频处理方法的流程图,如图2所示,本实施例的方法可以包括:
S201、获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量。
本实施例的执行主体可以是图1所示的电子设备的放音处理器。
本实施例中,待处理音频信号可以为时域信号,还可以为频域信号。若待处理音频信号为时域上的音频信号,则将待处理音频信号转化为频域上的音频信号,再获取待处理音频信号在频域上的不同频段上的音频分量。若待处理音频信号为频域上的音频信号,则直接获取待处理音频信号在不同频段上的音频分量。
待处理音频信号包括的各音频分量分别处于不同的频段。该频段可以包括单个采样频点,举例来说,假设待处理音频信号的频率范围为10~200Hz,在该频率范围内,可以以任意单个频点为一个频段,例如可以分别以15Hz为第一频段,25Hz为第二频段,35Hz为第三频段,45Hz为第四频段,75Hz为第五频段等;该频段还可以包括多个采样频点。以上述假设情况为例,待处理音频信号的频率范围可以为10~200Hz。该频率范围可以被划分为多个频段,10~20Hz为第一频段,20Hz~30Hz为第二频段,30Hz~40Hz为第三频段,40Hz~50Hz为第四频段,50Hz~100Hz为第五频段,100Hz~200Hz为第六频 段。待处理音频信号可以包括处于第一频段上的第一音频分量,处于第二频段上的第二音频分量,处于第三频段上的第三音频分量。
S202、将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节。
本实施例中,音频分量的幅值可以为音频分量的能量值或功率值。
本实施例中,用于与所述多个音频分量中每一音频分量的幅值进行比较的幅值阈值与各音频分量之间的对应关系可以有多种,在一种实现方式中可以为一一对应关系,即每个音频分量对应一个幅值阈值。例如,第一频段(10~20Hz)的音频分量对应于第一幅值阈值,第二频段(20Hz~30Hz)的音频分量对应于第二幅值阈值;为了简化运算,在另一种实现方式中,用于与所述多个音频分量中每一音频分量的幅值进行比较的幅值阈值与各音频分量之间的对应关系可以为一对多的对应关系,即多个音频分量对应一个幅值阈值。例如,第一频段(10~20Hz)的音频分量和第二频段(20Hz~30Hz)的音频分量均对应于第一幅值阈值,第三频段(30Hz~40Hz)的音频分量和第四频段(40Hz~50Hz)的音频分量均对应于第二幅值阈值。本实施例对此不作限定。
可选地,所述幅值阈值的来源可以是根据用于播放基于调节后的音频分量生成的目标音频信号的扬声器的振膜的可振动范围设置的。本实施例中的调节后的所述音频分量的幅值低于或者等于所述幅值阈值,从而使得扬声器在播放基于调节后的音频分量生成的目标音频时,扬声器的振膜的振幅不会超过可振动范围,保证扬声器的工作安全。
具体的,可以根据用于播放所述目标音频信号的扬声器的振膜的可振动范围和第一对应关系,确定所述幅值阈值;所述第一对应关系为所述扬声器的振膜的振幅与所述多个音频分量和所述多个音频分量分别所处频段之间的对应关系。在该第一对应关系中,所述音频分量与所述振幅呈正比,所述频段与所述振幅呈反比。该第一对应关系的确定方式有多种,一种可实现方式是通过扫频实测的方式进行,具体的,该方式可以包括:接收多个标准信号;通过设置在扬声器周围的测试设备对多个所述标准信号分别对应的扬声器的振膜的振幅进行测量;根据多个所述标准信号的频率和频率分量,以及多个所述标准信号分别对应的扬声器的振膜的振幅,拟合确定所述第一对应关系。 在另一种可实现的方式中可以通过模型构建的方式来实现,具体的,该方式可以包括:获取扬声器的结构参数;根据所述结构参数,建立扬声器的振动模型;根据所述振动模型,确定所述第一对应关系。
以模型构建的方式为例,以下结合图3至图6进行示例说明,图3为本申请另一实施例提供的扬声器的结构剖视图,图4为本申请另一实施例提供的扬声器的电-力-声电路类比图,图5为本申请另一实施例提供的频率-振幅映射曲线,图6为本申请另一实施例提供的频率-幅值阈值曲线。
在一种可能的实现方式中,首先,建立用于播放目标音频信号的扬声器振动模型;振动模型包括所述扬声器的振膜的振幅与所述多个音频分量和所述多个音频分量分别所处频段之间的第一对应关系,如公式(1)所示;
Figure PCTCN2020099564-appb-000001
其中,x D为扬声器的振幅,E为待处理音频信号的幅值或能量,f为待处理音频信号的频率,α、β和γ为常系数,由扬声器各零器件的参数决定。
具体的,如图3所示,扬声器包括磁铁301、音圈302、铁盖303、音膜304、铁片305、铁框306、调音布307和端子308等多个结构零器件,该多个结构零器件可以类比为具有一定参量的电子器件。如图4所示,基于对扬声器的各结构零器件进行类比,可以得到由电源(U)、多个电感(L1~L6)、多个电容(C1和C2)和多个电阻(R1~R3)构成的电路。基于图4的电路可以构建扬声器的振动模型,进而得到如公式(1)所示的待处理音频信号与扬声器振膜振幅之间的对应关系。如图5所示,图中曲线即为在待处理音频信号的幅值一定时,根据公式(1)绘制的频率-振幅曲线。该曲线的横坐标为待处理音频信号的频率,纵坐标为各频率对应的扬声器的振膜的振幅。由该曲线可以得出,扬声器的振膜的振幅主要由输入的待处理音频信号的幅值和频率决定,并且扬声器的振膜的振幅随待处理音频信号的频率的增高而减小,也即在待处理音频信号的较低的频段,扬声器的振膜的振幅较大。
其次,根据扬声器的振膜的可振动范围,也即振幅上限d与振动模型,确定待处理音频信号的幅值的上限阈值;具体的,可以获得公式(1)的反函数公式(2),将x D=d代入公式(2)得到待处理音频信号的幅值的上限阈值E。
Figure PCTCN2020099564-appb-000002
其中,x D为扬声器的振幅,E为待处理音频信号的幅值或能量,f为待处理音频信号的频率,α、β和γ为常系数,由扬声器各零器件的参数决定。
如图6所示,图中曲线为将x D=d代入公式(2)并根据公式(2)得到的频率-幅值曲线,该曲线的横坐标为待处理音频信号的频率,纵坐标为各频率对应的幅值阈值。不同的电子设备的扬声器的振膜的可振动范围d会有所不同,那么针对不同的d可以得到不同的频率-幅值曲线,将频率代入曲线,即可得到不同的采样频点或者不同的频段对应的幅值阈值。
本实施例中,每一音频分量的幅值与幅值阈值进行比较的方式有多种,可以直接将音频分量的幅值与幅值阈值进行大小的比较,或者将音频分量的幅值与幅值阈值做差,并将差值与预设值比较,或者将音频分量的幅值与幅值阈值相除,并将得到的比值与预设值比较,以根据比较结果进行音频分量的幅值调节。本实施例中对此不作限定。
另外,根据每一音频分量的幅值与幅值阈值的比较结果对所述音频分量进行幅值调节的方式可以有多种,可以根据比较结果对超出幅值阈值的音频分量进行幅值缩小,还可以根据比较结果对幅值小于预设幅值的音频分量进行幅值放大,还可以对小于或等于幅值阈值的音频分量不进行调节,直接用于频率合成,生成目标音频信号。
在一些实施例中,扬声器在播放低频信号时,振幅较大,较易超出可振动范围。因此,在具体的实施例中,可以仅对低于预设频率的音频分量进行调节即可保证扬声器的振膜不会超出可振动范围。
具体的,所述将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节,包括:将所述多个音频分量中所处频段低于预设频率的各音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节。
S203、基于调节后的音频分量生成目标音频信号。
本实施例中,在根据幅值阈值对各音频分量进行调节后,可以将调节后的音频分量进行音频合成,从而得到目标音频信号,可以将目标音频信号发送给扬声器,进行音频播放。
实际应用中,电子设备在需要进行音频播放时,处理器对从外部设备接收的或者本地存储的音频文件进行采样得到时域上的待处理音频信号,并将待处理音频信号转化为频域上的音频信号,获取待处理音频信号分别在不同频段上的多个音频分量,针对每个频段的音频分量,基于幅值阈值对该音频分量进行调节,并将调节后的各音频分量进行合成,得到目标音频信号。
本实施例,获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量,将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节,基于调节后的音频分量生成目标音频信号。因此,本实施例可以根据幅值阈值实现对待处理音频信号的各音频分量分别进行调节,能够使得各音频分量的幅值不超过幅值阈值,保证了扬声器的振膜的振幅在可振动范围内,进而实现扬声器对待处理音频信号的各音频分量的正常播放。
在发明人已知的技术中,可以采用将输入的音频信号进行低频截断处理,来保证所有输入信号都不会造成扬声器的振膜的振幅超过可振动范围的限制,然而这会导致输入信号的低频信号过度缺失,严重影响音频质量。相对于对低频信号进行简单的截断,本实施例能够保留更多的低频成分,实现扬声器对待处理音频信号的各音频分量的播放,充分发挥扬声器的低频性能,提高音质。
另外,本实施例提供的音频处理方法,相对于现有技术中根据扬声器的电压或电流反馈信号,对输入的待处理音频信号进行调整的方式,具有较低的算法复杂度,并且降低了硬件要求,可以方便的应用在各类音频播放的电子设备中,同时可以降低硬件成本。
图7为本申请另一实施例提供的音频处理方法的流程图,在上述实施例的基础上,例如在图2提供的实施例的基础上,本实施例中对各音频分量的调节方式进行了详细说明,如图7所示,本实施例的方法可以包括:
S701、获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量。
本实施例中步骤S701的实现过程与上述实施例中步骤S201相类似,此处不再赘述。
S702、针对每一频段分别设置对应的幅值阈值,将所述每一音频分量的 幅值分别与对应的所述幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节。
本实施例中,待处理音频信号的各频段均分别对应各自的幅值阈值。例如,第一频段对应第一幅值阈值,第二频段对应第二幅值阈值。在实际应用中,每个频段与对应的幅值阈值进行比较后,根据得到的每频段的比较结果对该频段的音频分量进行调节,以将调节后的各频段的音频分量进行合成得到目标音频信号。例如,根据第一幅值阈值对第一频段的音频分量进行调节,根据第二幅值阈值对第二频段的音频分量进行调节,调节后的第一频段的音频分量和调节后的第二频段的音频分量均用于参与目标音频的合成。
本实施例中,在每一音频分量的幅值与对应幅值阈值进行比较的过程中,可以直接进行大小的比较,具体地,所述将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较,根据比较结果对所述音频分量进行幅值调节,包括:针对每一音频分量,判断所述音频分量的幅值是否大于所述幅值阈值;根据判断结果对所述音频分量进行幅值调节。
根据判断结果进行幅值调节的方式有多种,在一种可实现方式中,为了简化运算,可以仅对超出幅值阈值的音频分量进行调节,具体的,所述根据判断结果对所述音频分量进行幅值调节,可以包括:若所述音频分量的幅值大于所述幅值阈值,则对音频分量进行幅值缩小;还可以包括:若所述音频分量的幅值小于所述幅值阈值,则将原始的所述音频分量用于合成所述目标音频。在另一种可实现方式中,为了避免音频分量的幅值过小,影响播放效果,可以对幅值小于一定值的音频分量进行幅值放大,具体的,所述根据所述比值对所述音频分量进行幅值调节,可以包括:若所述音频分量的幅值大于所述幅值阈值,则对音频分量进行幅值缩小;还可以包括:若所述音频分量的幅值小于所述幅值阈值,则对音频分量进行幅值放大。
在每一音频分量的幅值与对应幅值阈值进行比较的过程中,还可以先求取每一音频分量的幅值与对应幅值阈值的比值,并基于该比值与预设值进行比较,进而根据比较结果对所述音频分量进行幅值调节。具体地,所述将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较,根据比较结果对所述音频分量进行幅值调节,包括:计算所述每一音频分量的幅值分别与对应的所述幅值阈值之间的比值;根据所述比值对所述音频分量进行幅值调 节。
根据所述比值对音频分量进行幅值调节的方式有多种,为了简化运算,可以仅对超出幅值阈值的音频分量进行调节,具体的,在一种可实现方式中,所述根据所述比值对所述音频分量进行幅值调节,可以包括:若所述比值大于1,则根据所述比值,对所述音频分量进行幅值压缩,例如,将音频分量除以所述比值,从而使调节后的音频分量的幅值小于所述幅值阈值;所述根据所述比值对所述音频分量进行幅值调节,还可以包括:若所述比值小于或等于1,则将原始的所述音频分量用于合成所述目标音频。在另一种可实现方式中,为了避免音频分量的幅值过小,影响播放效果,可以对幅值小于一定值的音频分量进行幅值放大,具体的,所述根据所述比值对所述音频分量进行幅值调节,可以包括:若所述比值小于预设比值,则根据所述比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1,例如将音频分量除以所述比值,从而使调节后的音频分量被放大,而且保证放大后的音频分量的幅值小于或等于对应的幅值阈值。所述根据所述比值对所述音频分量进行幅值调节,还可以包括:若所述比值大于1,则根据所述比值,对所述音频分量进行幅值压缩。
本实施例中,针对每一频段分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的可振动范围设置的。
为了简化运算,每一音频分量的幅值可以根据所处频段的某一特征值来确定。该特征值的选择有多种,在一种可实现方式中,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值的平均值。在另一种可实现方式中,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内的中心采样频点对应的幅值。在另一种可实现方式中,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值中的最大值。
以对幅值超过幅值阈值的音频分量进行幅值压缩为例,以下结合图8和图9进行示例说明,图8为本申请另一实施例提供的待处理音频信号的原始频谱示意图,图9为本申请另一实施例提供的调节后的待处理音频信号的频谱示意图。如图8所示,输入的待处理音频信号的原始频谱中10~100Hz的频率范围内,存在超出幅值阈值曲线的音频分量,在此情况下,超出幅值阈值 曲线的音频分量在通过扬声器进行播放时,会导致扬声器的振膜的振幅超出可振动范围d,因此以造成扬声器的损坏,出现工作安全问题,且影响音频播放效果。为了保证扬声器的正常工作,以及保证尽可能多的播放低频范围的音频分量。本申请中可以采用上述各实施例提供的音频处理方法中的调节方式针对每个音频分量进行调节,如图9所示,调节后的音频分量能够在保证低于幅值阈值的前提下,尽可能多的保留低频范围的音频分量,从而充分发挥扬声器的低频性能。
S703、基于调节后的音频分量生成目标音频信号。
本实施例中步骤S703的实现过程与上述实施例中步骤S203相类似,此处不再赘述。
本实施例提供的音频处理方法,获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量,针对每一频段分别设置对应的幅值阈值,将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节,基于调节后的音频分量生成目标音频信号。因此,本实施例可以根据各频段分别对应的幅值阈值实现对待处理音频信号的各音频分量的分别调节,能够使得各音频分量的幅值不超过对应的幅值阈值,保证了扬声器的振膜的振幅在可振动范围内,进而实现扬声器对待处理音频信号的各音频分量的正常播放,相对于对低频信号进行简单的截断,能够保留更多的低频成分,充分发挥扬声器的低频性能,提高音质。
图10为本申请另一实施例提供的音频处理方法的流程图,在图2提供的实施例的基础上,本实施例中对如图10所示,本实施例的方法可以包括:
S1001、获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量。
本实施例中,S1001的具体实现过程可以参见上述图2所示实施例中的相关描述,此处不再赘述。
S1002、针对每一频段中各采样频点分别设置对应的幅值阈值,针对每一音频分量所处的频段,计算所述频段中各采样频点的幅值分别与对应的幅值阈值之间的比值,将各比值中的最大比值作为所述音频分量的幅值与幅值阈值的比较结果,并根据所述最大比值对所述音频分量进行幅值调节。
本实施例中,根据所述最大比值对所述音频分量进行幅值调节的方式有多种,在一种可实现方式中,为了简化运算,可以仅对超出幅值阈值的音频分量进行调节,具体的,所述根据所述最大比值对所述音频分量进行幅值调节,可以包括:若所述最大比值大于1,则根据所述最大比值,对所述频段的音频分量进行幅值压缩,例如,将音频分量除以所述最大比值,从而使调节后的音频分量所处频段的各频点的频率分量均小于对应幅值阈值。所述根据所述最大比值对所述音频分量进行幅值调节,还可以包括:若所述最大比值小于或等于1,则将所述频段的原始音频分量用于合成所述目标音频。
在另一种可实现方式中,为了避免音频分量的幅值过小,影响播放效果,可以对幅值小于一定值的音频分量进行幅值放大,具体的,所述根据所述最大比值对所述音频分量进行幅值调节,可以包括:若所述最大比值小于预设比值,则根据所述最大比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。例如,将音频分量除以所述最大比值,从而使调节后的音频分量所处频段的各频点的频率分量在保证均小于对应幅值阈值的同时尽可能被放大,以提升音频播放效果。所述根据所述最大比值对所述音频分量进行幅值调节,还可以包括:若所述最大比值大于1,则根据所述最大比值,对所述频段的音频分量进行幅值压缩,例如,将音频分量除以所述最大比值,从而使调节后的音频分量所处频段的各频点的频率分量均小于对应幅值阈值。
以下以对输入的待处理音频信号的低频范围10~100Hz的各音频分量的调节为例,对本实施例提供的音频处理方法进行示例说明。
首先,以10Hz为步长将10~100Hz进行频段划分,10~20Hz为第一频段,20Hz~30Hz为第二频段,30Hz~40Hz为第三频段,40Hz~50Hz为第四频段,50Hz~60Hz为第五频段,以此类推得到9个频段。以第一频段10~20Hz为例,待处理音频信号中处于第一频段的各采样频点的幅值记为h1(f),10Hz<f<20Hz,该频段中,各采样频点对应的幅值阈值记为h2(f),则该频段的抑制系数可设置为各采样频点的幅值与幅值阈值之间的比值中的最大比值,与1中的较大值,也即如以下公式(3)所示:
Figure PCTCN2020099564-appb-000003
在计算得到ratio值后,将第一频段的音频分量乘以ratio,若
Figure PCTCN2020099564-appb-000004
表明该频段的音频分量的幅值超出幅值阈值,对子带能量进行缩小;若
Figure PCTCN2020099564-appb-000005
表明该频段的音频分量的幅值未超出幅值阈值,则不对该频段的音频分量进行处理;
以此类推,依据上述方式对剩余8个频段进行处理,从而使得这9个频段的能量刚好达到各自对应幅值阈值而不溢出,从而可以最大化利用扬声器的性能,并且保证扬声器工作的安全性。
本实施例中,针对每一频段中各采样频点分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的各频点的可振动范围设置的。
S1003、基于调节后的音频分量生成目标音频信号。
本实施例中,S1003的具体实现过程可以参见上述图2所示实施例中的相关描述,此处不再赘述。
本实施例,获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量,针对每一频段中各采样频点分别设置对应的幅值阈值,针对每一音频分量所处的频段,计算所述频段中各采样频点的幅值分别与对应的幅值阈值之间的比值,将各比值中的最大比值作为所述音频分量的幅值与幅值阈值的比较结果,并根据所述最大比值对所述音频分量进行幅值调节,基于调节后的音频分量生成目标音频信号。因此,本实施例可以根据幅值阈值实现对待处理音频信号的各音频分量分别进行调节,能够使得各音频分量的幅值不超过幅值阈值,保证了扬声器的振膜的振幅在可振动范围内,进而实现扬声器对待处理音频信号的各音频分量的正常播放,相对于对低频信号进行简单的截断,能够保留更多的低频成分,充分发挥扬声器的低频性能,提高音质。
本申请实施例中还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图2、图7和图10及其对应实施例中的音频处理方法的部分或全部步骤。
图11为本申请一实施例提供的音频处理装置的结构示意图,如图11所示,本实施例的音频处理装置1100可以包括:处理器1101。
所述处理器1101,用于获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量。
将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根 据比较结果对所述音频分量进行幅值调节。
基于调节后的音频分量生成目标音频信号。
可选地,本实施例的音频处理装置1100还可以包括:存储器1102。所述存储器1102用于存储程序代码。所述处理器1101,调用所述程序代码,当程序代码被执行时,用于执行上述各方案。
本实施例的音频处理装置,可以用于执行本申请上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
可选地,所述调节后的所述音频分量的幅值低于或者等于所述幅值阈值。
可选地,所述幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的可振动范围设置的。
可选地,针对每一频段分别设置对应的幅值阈值;
所述处理器,具体用于:
将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较;
根据比较结果对所述音频分量进行幅值调节。
可选地,所述处理器,具体用于:
计算所述每一音频分量的幅值分别与对应的所述幅值阈值之间的比值;
根据所述比值对所述音频分量进行幅值调节。
可选地,所述处理器,具体用于:
若所述比值大于1,则根据所述比值,对所述音频分量进行幅值压缩。
可选地,所述处理器,还具体用于:
若所述比值小于或等于1,则将原始的所述音频分量用于合成所述目标音频。
可选地,所述处理器,还具体用于:
若所述比值小于预设比值,则根据所述比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
可选地,针对每一频段分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的可振动范围设置的。
可选地,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值的平均值。
可选地,所述多个音频分量中每一音频分量的幅值为所述每一音频分量 所处频段内的中心采样频点对应的幅值。
可选地,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值中的最大值。
可选地,针对每一频段中各采样频点分别设置对应的幅值阈值;
所述处理器,具体用于:
针对每一音频分量所处的频段,计算所述频段中各采样频点的幅值分别与对应的幅值阈值之间的比值,将各比值中的最大比值作为所述音频分量的幅值与幅值阈值的比较结果;
根据所述最大比值对所述音频分量进行幅值调节。
可选地,所述处理器,具体用于:
若所述最大比值大于1,则根据所述最大比值,对所述频段的音频分量进行幅值压缩。
可选地,所述处理器,还具体用于:
若所述最大比值小于或等于1,则将所述频段的原始音频分量用于合成所述目标音频。
可选地,所述处理器,还具体用于:
若所述最大比值小于预设比值,则根据所述最大比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
可选地,针对每一频段中各采样频点分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的各频点的可振动范围设置的。
可选地,所述处理器,具体用于:
将所述多个音频分量中所处频段低于预设频率的各音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节。
本实施例的音频处理装置,可以用于执行本申请图2、图7、图10及其对应方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图12为本申请一实施例提供的电子设备的结构示意图,如图12所示,本实施例的电子设备1200可以包括:扬声器1201和处理器1202;其中,扬声器1201和处理器1202可以通过总线连接。
所述处理器1201,用于获取待处理音频信号,所述待处理音频信号包括 处于不同频段的多个音频分量;将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节;基于调节后的音频分量生成目标音频信号。
所述扬声器1202,用于播放所述目标音频信号。
本实施例的电子设备,可以用于执行本申请上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
可选地,所述调节后的所述音频分量的幅值低于或者等于所述幅值阈值。
可选地,所述幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的可振动范围设置的。
可选地,针对每一频段分别设置对应的幅值阈值;
所述处理器,具体用于:
将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较;
根据比较结果对所述音频分量进行幅值调节。
可选地,所述处理器,具体用于:
计算所述每一音频分量的幅值分别与对应的所述幅值阈值之间的比值;
根据所述比值对所述音频分量进行幅值调节。
可选地,所述处理器,具体用于:
若所述比值大于1,则根据所述比值,对所述音频分量进行幅值压缩。
可选地,所述处理器,还具体用于:
若所述比值小于或等于1,则将原始的所述音频分量用于合成所述目标音频。
可选地,所述处理器,还具体用于:
若所述比值小于预设比值,则根据所述比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
可选地,针对每一频段分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的可振动范围设置的。
可选地,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值的平均值。
可选地,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内的中心采样频点对应的幅值。
可选地,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值中的最大值。
可选地,针对每一频段中各采样频点分别设置对应的幅值阈值;
所述处理器,具体用于:
针对每一音频分量所处的频段,计算所述频段中各采样频点的幅值分别与对应的幅值阈值之间的比值,将各比值中的最大比值作为所述音频分量的幅值与幅值阈值的比较结果;
根据所述最大比值对所述音频分量进行幅值调节。
可选地,所述处理器,具体用于:
若所述最大比值大于1,则根据所述最大比值,对所述频段的音频分量进行幅值压缩。
可选地,所述处理器,还具体用于:
若所述最大比值小于或等于1,则将所述频段的原始音频分量用于合成所述目标音频。
可选地,所述处理器,还具体用于:
若所述最大比值小于预设比值,则根据所述最大比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
可选地,针对每一频段中各采样频点分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的各频点的可振动范围设置的。
可选地,所述处理器,具体用于:
将所述多个音频分量中所处频段低于预设频率的各音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节。
本实施例的电子设备,可以用于执行本申请图7、图10及其对应方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码 的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (55)

  1. 一种音频处理方法,其特征在于,所述方法包括:
    获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量;
    将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节;
    基于调节后的音频分量生成目标音频信号。
  2. 根据权利要求1所述的方法,其特征在于,所述调节后的所述音频分量的幅值低于或者等于所述幅值阈值。
  3. 根据权利要求1所述的方法,其特征在于,所述幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的可振动范围设置的。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,针对每一频段分别设置对应的幅值阈值;
    将所述多个所述音频分量中每一音频分量的幅值分别与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节,包括:
    将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较;
    根据比较结果对所述音频分量进行幅值调节。
  5. 根据权利要求4所述的方法,其特征在于,所述将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较,根据比较结果对所述音频分量进行幅值调节,包括:
    计算所述每一音频分量的幅值分别与对应的所述幅值阈值之间的比值;
    根据所述比值对所述音频分量进行幅值调节。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述比值对所述音频分量进行幅值调节,包括:
    若所述比值大于1,则根据所述比值,对所述音频分量进行幅值压缩。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述比值对所述音频分量进行幅值调节,还包括:
    若所述比值小于或等于1,则将原始的所述音频分量用于合成所述目标音频。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述比值对所述 音频分量进行幅值调节,还包括:
    若所述比值小于预设比值,则根据所述比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
  9. 根据权利要求4-8任一项所述的方法,其特征在于,针对每一频段分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的可振动范围设置的。
  10. 根据权利要求4-8任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值的平均值。
  11. 根据权利要求4-8任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内的中心采样频点对应的幅值。
  12. 根据权利要求4-8任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值中的最大值。
  13. 根据权利要求1-3任一项所述的方法,其特征在于,针对每一频段中各采样频点分别设置对应的幅值阈值;
    将所述多个所述音频分量中每一音频分量的幅值分别与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节,包括:
    针对每一音频分量所处的频段,计算所述频段中各采样频点的幅值分别与对应的幅值阈值之间的比值,将各比值中的最大比值作为所述音频分量的幅值与幅值阈值的比较结果;
    根据所述最大比值对所述音频分量进行幅值调节。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述最大比值对所述音频分量进行幅值调节,包括:
    若所述最大比值大于1,则根据所述最大比值,对所述频段的音频分量进行幅值压缩。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述最大比值对所述音频分量进行幅值调节,还包括:
    若所述最大比值小于或等于1,则将所述频段的原始音频分量用于合成 所述目标音频。
  16. 根据权利要求14所述的方法,其特征在于,所述根据所述最大比值对所述音频分量进行幅值调节,还包括:
    若所述最大比值小于预设比值,则根据所述最大比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,针对每一频段中各采样频点分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的各频点的可振动范围设置的。
  18. 根据权利要求1-17任一项所述的方法,其特征在于,所述将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节,包括:
    将所述多个音频分量中所处频段低于预设频率的各音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节。
  19. 一种音频处理装置,其特征在于,包括:处理器;
    所述处理器,用于获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量;
    将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节;
    基于调节后的音频分量生成目标音频信号。
  20. 根据权利要求19所述的方法,其特征在于,所述调节后的所述音频分量的幅值低于或者等于所述幅值阈值。
  21. 根据权利要求19所述的方法,其特征在于,所述幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的可振动范围设置的。
  22. 根据权利要求19-21任一项所述的方法,其特征在于,针对每一频段分别设置对应的幅值阈值;
    所述处理器,具体用于:
    将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较;
    根据比较结果对所述音频分量进行幅值调节。
  23. 根据权利要求22所述的方法,其特征在于,所述处理器,具体用于:
    计算所述每一音频分量的幅值分别与对应的所述幅值阈值之间的比值;
    根据所述比值对所述音频分量进行幅值调节。
  24. 根据权利要求23所述的方法,其特征在于,所述处理器,具体用于:
    若所述比值大于1,则根据所述比值,对所述音频分量进行幅值压缩。
  25. 根据权利要求24所述的方法,其特征在于,所述处理器,还具体用于:
    若所述比值小于或等于1,则将原始的所述音频分量用于合成所述目标音频。
  26. 根据权利要求24所述的方法,其特征在于,所述处理器,还具体用于:
    若所述比值小于预设比值,则根据所述比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
  27. 根据权利要求22-26任一项所述的方法,其特征在于,针对每一频段分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的可振动范围设置的。
  28. 根据权利要求22-26任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值的平均值。
  29. 根据权利要求22-26任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内的中心采样频点对应的幅值。
  30. 根据权利要求22-26任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值中的最大值。
  31. 根据权利要求19-21任一项所述的方法,其特征在于,针对每一频段中各采样频点分别设置对应的幅值阈值;
    所述处理器,具体用于:
    针对每一音频分量所处的频段,计算所述频段中各采样频点的幅值分别与对应的幅值阈值之间的比值,将各比值中的最大比值作为所述音频分量的幅值与幅值阈值的比较结果;
    根据所述最大比值对所述音频分量进行幅值调节。
  32. 根据权利要求31所述的方法,其特征在于,所述处理器,具体用于:
    若所述最大比值大于1,则根据所述最大比值,对所述频段的音频分量进行幅值压缩。
  33. 根据权利要求32所述的方法,其特征在于,所述处理器,还具体用于:
    若所述最大比值小于或等于1,则将所述频段的原始音频分量用于合成所述目标音频。
  34. 根据权利要求32所述的方法,其特征在于,所述处理器,还具体用于:
    若所述最大比值小于预设比值,则根据所述最大比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
  35. 根据权利要求31-34任一项所述的方法,其特征在于,针对每一频段中各采样频点分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的各频点的可振动范围设置的。
  36. 根据权利要求19-35任一项所述的方法,其特征在于,所述处理器,具体用于:
    将所述多个音频分量中所处频段低于预设频率的各音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节。
  37. 一种电子设备,其特征在于包括:扬声器和处理器;
    所述处理器,用于获取待处理音频信号,所述待处理音频信号包括处于不同频段的多个音频分量;
    将所述多个音频分量中每一音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节;
    基于调节后的音频分量生成目标音频信号;
    所述扬声器,用于播放所述目标音频信号。
  38. 根据权利要求37所述的方法,其特征在于,所述调节后的所述音频分量的幅值低于或者等于所述幅值阈值。
  39. 根据权利要求37所述的方法,其特征在于,所述幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的可振动范围设置的。
  40. 根据权利要求37-39任一项所述的方法,其特征在于,针对每一频 段分别设置对应的幅值阈值;
    所述处理器,具体用于:
    将所述每一音频分量的幅值分别与对应的所述幅值阈值进行比较;
    根据比较结果对所述音频分量进行幅值调节。
  41. 根据权利要求40所述的方法,其特征在于,所述处理器,具体用于:
    计算所述每一音频分量的幅值分别与对应的所述幅值阈值之间的比值;
    根据所述比值对所述音频分量进行幅值调节。
  42. 根据权利要求41所述的方法,其特征在于,所述处理器,具体用于:
    若所述比值大于1,则根据所述比值,对所述音频分量进行幅值压缩。
  43. 根据权利要求42所述的方法,其特征在于,所述处理器,还具体用于:
    若所述比值小于或等于1,则将原始的所述音频分量用于合成所述目标音频。
  44. 根据权利要求42所述的方法,其特征在于,所述处理器,还具体用于:
    若所述比值小于预设比值,则根据所述比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
  45. 根据权利要求40-44任一项所述的方法,其特征在于,针对每一频段分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的可振动范围设置的。
  46. 根据权利要求40-44任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值的平均值。
  47. 根据权利要求40-44任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内的中心采样频点对应的幅值。
  48. 根据权利要求40-44任一项所述的方法,其特征在于,所述多个音频分量中每一音频分量的幅值为所述每一音频分量所处频段内各采样频点分别对应的幅值中的最大值。
  49. 根据权利要求37-39任一项所述的方法,其特征在于,针对每一频 段中各采样频点分别设置对应的幅值阈值;
    所述处理器,具体用于:
    针对每一音频分量所处的频段,计算所述频段中各采样频点的幅值分别与对应的幅值阈值之间的比值,将各比值中的最大比值作为所述音频分量的幅值与幅值阈值的比较结果;
    根据所述最大比值对所述音频分量进行幅值调节。
  50. 根据权利要求49所述的方法,其特征在于,所述处理器,具体用于:
    若所述最大比值大于1,则根据所述最大比值,对所述频段的音频分量进行幅值压缩。
  51. 根据权利要求50所述的方法,其特征在于,所述处理器,还具体用于:
    若所述最大比值小于或等于1,则将所述频段的原始音频分量用于合成所述目标音频。
  52. 根据权利要求50所述的方法,其特征在于,所述处理器,还具体用于:
    若所述最大比值小于预设比值,则根据所述最大比值,对所述频段的音频分量进行幅值放大;所述预设比值小于或等于1。
  53. 根据权利要求49-52任一项所述的方法,其特征在于,针对每一频段中各采样频点分别设置的对应的幅值阈值是根据用于播放所述目标音频信号的扬声器的振膜的在所述频段的各频点的可振动范围设置的。
  54. 根据权利要求37-53任一项所述的方法,其特征在于,所述处理器,具体用于:
    将所述多个音频分量中所处频段低于预设频率的各音频分量的幅值与幅值阈值进行比较,并根据比较结果对所述音频分量进行幅值调节。
  55. 一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现如权利要求1-18任一项所述的音频处理方法。
PCT/CN2020/099564 2020-06-30 2020-06-30 音频处理方法、装置和电子设备 WO2022000335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099564 WO2022000335A1 (zh) 2020-06-30 2020-06-30 音频处理方法、装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099564 WO2022000335A1 (zh) 2020-06-30 2020-06-30 音频处理方法、装置和电子设备

Publications (1)

Publication Number Publication Date
WO2022000335A1 true WO2022000335A1 (zh) 2022-01-06

Family

ID=79317718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099564 WO2022000335A1 (zh) 2020-06-30 2020-06-30 音频处理方法、装置和电子设备

Country Status (1)

Country Link
WO (1) WO2022000335A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686556A (zh) * 2013-11-19 2014-03-26 歌尔声学股份有限公司 微型扬声器模组和增强其频率响应的方法以及电子设备
US20190058947A1 (en) * 2016-04-12 2019-02-21 Trigence Semiconductor, Inc. Speaker driving device, speaker device and computer-readable storage medium
CN109997372A (zh) * 2016-12-14 2019-07-09 华为技术有限公司 一种调整振膜振动平衡位置的方法和扬声器
US20190305741A1 (en) * 2016-12-22 2019-10-03 Sony Corporation Sound processing device, method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686556A (zh) * 2013-11-19 2014-03-26 歌尔声学股份有限公司 微型扬声器模组和增强其频率响应的方法以及电子设备
US20190058947A1 (en) * 2016-04-12 2019-02-21 Trigence Semiconductor, Inc. Speaker driving device, speaker device and computer-readable storage medium
CN109997372A (zh) * 2016-12-14 2019-07-09 华为技术有限公司 一种调整振膜振动平衡位置的方法和扬声器
US20190305741A1 (en) * 2016-12-22 2019-10-03 Sony Corporation Sound processing device, method, and program

Similar Documents

Publication Publication Date Title
US9729969B2 (en) System and method for bass enhancement
US9813812B2 (en) Method of controlling diaphragm excursion of electrodynamic loudspeakers
CN106664473B (zh) 信息处理装置、信息处理方法和程序
CN108174320B (zh) 一种自适应耳道主动降噪耳机及自适应耳道主动降噪方法
US8582784B2 (en) Method and device for extension of low frequency output from a loudspeaker
CN106572419B (zh) 一种立体声音效增强系统
US9319789B1 (en) Bass enhancement
CN115442709B (zh) 音频处理方法、虚拟低音增强系统、设备和存储介质
JP5074115B2 (ja) 音響信号処理装置及び音響信号処理方法
WO2020134466A1 (zh) 一种音质调整方法及装置
CN110506425A (zh) 低音增强
CN108401204A (zh) 一种新型主动降噪耳机
CN111971975A (zh) 主动降噪的方法、系统、电子设备和芯片
CN108632708A (zh) 扬声器输出控制方法及系统
WO2009081184A1 (en) Noise cancellation system and method with adjustment of high pass filter cut-off frequency
WO2022000335A1 (zh) 音频处理方法、装置和电子设备
TWI501657B (zh) 電子音訊裝置
EP3603106B1 (en) Dynamically extending loudspeaker capabilities
CN114286253B (zh) 音频处理方法、装置及音频播放设备
CN107404625A (zh) 终端的音效处理方法及装置
CN114067817A (zh) 低音增强方法、装置、电子设备及存储介质
JP3147662B2 (ja) 音響再生装置
US20140376726A1 (en) Stereo headphone audio process
CN108024185B (zh) 电子装置及特定频段补偿增益方法
CN108810734B (zh) 扬声器系统的控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942628

Country of ref document: EP

Kind code of ref document: A1