WO2018116725A1 - 蓄電モジュール及び蓄電モジュールの製造方法 - Google Patents

蓄電モジュール及び蓄電モジュールの製造方法 Download PDF

Info

Publication number
WO2018116725A1
WO2018116725A1 PCT/JP2017/041715 JP2017041715W WO2018116725A1 WO 2018116725 A1 WO2018116725 A1 WO 2018116725A1 JP 2017041715 W JP2017041715 W JP 2017041715W WO 2018116725 A1 WO2018116725 A1 WO 2018116725A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
electrode
injection port
stacking direction
liquid injection
Prior art date
Application number
PCT/JP2017/041715
Other languages
English (en)
French (fr)
Inventor
神谷友規
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2018116725A1 publication Critical patent/WO2018116725A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to a power storage module and a method for manufacturing the power storage module.
  • a bipolar battery having a laminate in which a bipolar electrode including an electrode plate, a positive electrode provided on one surface of the electrode plate, and a negative electrode provided on the other surface of the electrode plate is laminated is known (for example, Patent Documents). 1).
  • the laminate is surrounded by a resin sealing material (frame).
  • the sealing material has an opening for injecting an electrolytic solution. The electrolyte is injected from the opening using a tube or nozzle.
  • the electrolytic solution for example, the electrolytic solution in a state in which a seal (airtight) is ensured between the electrolytic solution supply pipe such as a tube or a nozzle and the peripheral region of the liquid injection port provided on the side surface of the frame body Can be injected into the frame.
  • the liquid injection port extends in the lamination direction of the bipolar electrodes on the side surface of the frame.
  • An object of one aspect of the present invention is to provide a power storage module and a method for manufacturing the power storage module that can ensure a sufficiently wide sealing surface outside the liquid injection port in the lamination direction of the bipolar electrode.
  • An electricity storage module is a laminate in which a bipolar electrode including an electrode plate, a positive electrode provided on one surface of the electrode plate, and a negative electrode provided on the other surface of the electrode plate is laminated. And a frame body that holds the edge of the electrode plate on the side surface of the multilayer body that extends in the stacking direction of the bipolar electrode, and the frame body has a side surface that extends in the stacking direction.
  • the side surface of the frame body has a main body region and a protruding region, and the main body region is provided with a liquid injection port for injecting an electrolyte into the frame body. Has an edge extending in a direction crossing the stacking direction, and the protruding region protrudes from the edge so as to be separated from the liquid injection port in the stacking direction.
  • the protruding region is located outside the liquid injection port in the bipolar electrode stacking direction.
  • This protruding area functions as a sealing surface. Therefore, a sufficiently wide sealing surface can be secured outside the liquid injection port in the bipolar electrode stacking direction.
  • the side surface of the frame body may have a rectangular shape when viewed from the stacking direction, and the liquid injection port may be provided at the center of one side of the rectangular shape.
  • the electrolyte solution supply pipe when the electrolyte solution supply pipe is pressed against the side surface of the frame body, the supply pipe is pressed to the center of one side of the rectangular shape. Therefore, the pressure distribution by the supply pipe on one side of the rectangular shape is substantially symmetric with respect to the center of the one side.
  • the frame includes a first resin portion that holds the edge portion of the electrode plate, and a second resin portion that is provided around the first resin portion as viewed from the stacking direction and has the side surface of the frame.
  • the liquid injection port has a first opening provided in the first resin portion and a second opening provided in the second resin portion, and the first opening is You may connect with the space between the said adjacent bipolar electrodes, and the said 2nd opening.
  • the electrolytic solution is injected from the second opening into the frame through the first opening.
  • a method for manufacturing a power storage module includes a bipolar electrode including an electrode plate, a positive electrode provided on one surface of the electrode plate, and a negative electrode provided on the other surface of the electrode plate.
  • a method for manufacturing a module comprising: a step of stacking the bipolar electrodes to obtain a stacked body; and a frame body that holds an edge portion of the electrode plate on a side surface of the stacked body extending in the stacking direction of the bipolar electrodes.
  • a step of injecting an electrolytic solution into the frame from a liquid injection port provided in the frame, and the side surface of the frame extending in the stacking direction includes a main body region and a protruding region.
  • the liquid injection port is provided in the main body region, the main body region has an edge extending in a direction intersecting the stacking direction, and the protruding region is Away from the liquid inlet in the stacking direction Uni protrudes from said edge, in the step of injecting the electrolyte solution, injecting the electrolyte solution while pressing the supply pipe of the electrolyte to the projected area.
  • a part of the frame body may be formed before the stacking step, and the existing portion of the frame body may be formed in the frame body forming step.
  • the protruding region in the step of injecting the electrolytic solution, is located outside the liquid injection port in the lamination direction of the bipolar electrode.
  • This protruding area functions as a sealing surface. Therefore, a sufficiently wide sealing surface can be secured outside the liquid injection port in the bipolar electrode stacking direction.
  • the frame includes a first resin portion that holds the edge portion of the electrode plate, and a second resin portion that is provided around the first resin portion as viewed from the stacking direction and has the side surface of the frame.
  • the second resin part may be formed by injection molding, and the resin material of the second resin part may flow in a direction crossing the laminating direction.
  • the side surface of the frame is formed by solidifying the resin material of the second resin portion.
  • the protruding region is formed by the resin material of the second resin portion flowing outside the liquid injection port in the stacking direction. If the side surface of the frame has a protruding region, the resin material of the second resin portion can flow more easily by the width of the protruding region in the stacking direction than when there is no protruding region.
  • a power storage module and a method for manufacturing the power storage module that can ensure a sufficiently wide sealing surface outside the liquid injection port in the stacking direction of the bipolar electrodes.
  • FIG. 1 is a schematic cross-sectional view illustrating an embodiment of a power storage device including a power storage module.
  • the power storage device 10 shown in the figure is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles.
  • the power storage device 10 includes a plurality (three in the present embodiment) of power storage modules 12, but may include a single power storage module 12.
  • the power storage module 12 is, for example, a bipolar battery.
  • the power storage module 12 is a secondary battery such as a nickel hydride secondary battery or a lithium ion secondary battery, but may be an electric double layer capacitor. In the following description, a nickel metal hydride secondary battery is illustrated.
  • the plurality of power storage modules 12 can be stacked via a conductive plate 14 such as a metal plate, for example.
  • a conductive plate 14 such as a metal plate, for example.
  • the conductive plates 14 are also arranged outside the power storage modules 12 positioned at both ends in the stacking direction (Z direction) of the power storage modules 12.
  • the conductive plate 14 is electrically connected to the adjacent power storage module 12. Thereby, the some electrical storage module 12 is connected in series in the lamination direction.
  • a positive electrode terminal 24 is connected to the conductive plate 14 located at one end
  • a negative electrode terminal 26 is connected to the conductive plate 14 located at the other end.
  • the positive terminal 24 may be integrated with the conductive plate 14 to be connected.
  • the negative electrode terminal 26 may be integrated with the conductive plate 14 to be connected.
  • the positive electrode terminal 24 and the negative electrode terminal 26 extend in a direction (X direction) intersecting the stacking direction.
  • the positive and negative terminals 24 and 26 can charge and discharge the power storage device 10.
  • the conductive plate 14 can also function as a heat radiating plate for releasing heat generated in the power storage module 12.
  • a refrigerant such as air passes through the plurality of gaps 14a provided inside the conductive plate 14, heat from the power storage module 12 can be efficiently released to the outside.
  • Each gap 14a extends, for example, in a direction (Y direction) intersecting the stacking direction.
  • the conductive plate 14 is smaller than the power storage module 12, but may be the same as or larger than the power storage module 12.
  • the power storage device 10 may include a restraining member 16 that restrains the alternately stacked power storage modules 12 and conductive plates 14 in the stacking direction.
  • the restraining member 16 includes a pair of restraining plates 16A and 16B and a connecting member (bolt 18 and nut 20) for joining the restraining plates 16A and 16B to each other.
  • An insulating film 22 such as a resin film is disposed between the restraining plates 16A and 16B and the conductive plate.
  • Each restraint plate 16A, 16B is comprised, for example with metals, such as iron.
  • each of the restraining plates 16A and 16B and the insulating film 22 has, for example, a rectangular shape.
  • the insulating film 22 is larger than the conductive plate 14, and the restraining plates 16 ⁇ / b> A and 16 ⁇ / b> B are larger than the power storage module 12.
  • an insertion hole 16A1 through which the shaft portion of the bolt 18 is inserted is provided at a position on the outer side of the power storage module 12 at the edge portion of the restraint plate 16A.
  • an insertion hole 16 ⁇ / b> B ⁇ b> 1 through which the shaft part of the bolt 18 is inserted is provided at a position on the outer side of the power storage module 12 at the edge of the restraint plate 16 ⁇ / b> B when viewed from the stacking direction.
  • the insertion hole 16A1 and the insertion hole 16B1 are located at the corners of the restraint plates 16A, 16B.
  • One constraining plate 16A is abutted against the conductive plate 14 connected to the negative terminal 26 via the insulating film 22, and the other constraining plate 16B has the insulating film 22 applied to the conductive plate 14 connected to the positive terminal 24.
  • the bolt 18 is passed through the insertion hole 16A1 from one restraint plate 16A side toward the other restraint plate 16B side, and a nut 20 is screwed onto the tip of the bolt 18 protruding from the other restraint plate 16B. Yes.
  • the insulating film 22, the conductive plate 14, and the power storage module 12 are sandwiched and unitized, and a restraining load is applied in the stacking direction.
  • FIG. 2 is a schematic cross-sectional view showing a power storage module constituting the power storage device of FIG.
  • the power storage module 12 shown in the figure includes a stacked body 30 in which a plurality of bipolar electrodes 32 are stacked.
  • the laminated body 30 has, for example, a rectangular shape when viewed from the lamination direction of the bipolar electrode 32.
  • a separator 40 may be disposed between the adjacent bipolar electrodes 32.
  • the bipolar electrode 32 includes an electrode plate 34, a positive electrode 36 provided on one surface of the electrode plate 34, and a negative electrode 38 provided on the other surface of the electrode plate 34.
  • the positive electrode 36 of one bipolar electrode 32 faces the negative electrode 38 of one bipolar electrode 32 adjacent in the stacking direction across the separator 40, and the negative electrode 38 of one bipolar electrode 32 connects the separator 40. It faces the positive electrode 36 of the other bipolar electrode 32 that is adjacent in the stacking direction.
  • an electrode plate 34 negative electrode termination electrode
  • a positive electrode 36 is disposed on the inner surface at the other end.
  • 34 positive terminal electrode
  • the negative electrode 38 of the negative electrode-side termination electrode faces the positive electrode 36 of the uppermost bipolar electrode 32 with the separator 40 interposed therebetween.
  • the positive electrode 36 of the positive terminal electrode is opposed to the negative electrode 38 of the lowermost bipolar electrode 32 with the separator 40 interposed therebetween.
  • the electrode plates 34 of these termination electrodes are connected to the adjacent conductive plates 14 (see FIG. 1).
  • the power storage module 12 includes a frame body 50 that holds the edge portion 34a of the electrode plate 34 on the side surface 30a of the stacked body 30 that extends in the stacking direction of the bipolar electrodes 32.
  • the frame body 50 is configured to surround the side surface 30 a of the stacked body 30.
  • the side surface 50 s has, for example, a rectangular shape when viewed from the lamination direction of the bipolar electrode 32. In this case, the side surface 50s is composed of four rectangular surfaces.
  • the frame 50 can include a first resin portion 52 that holds the edge portion 34a of the electrode plate 34 and a second resin portion 54 that is provided around the first resin portion 52 when viewed from the stacking direction.
  • the first resin portion 52 constituting the inner wall of the frame 50 is provided from one surface (surface on which the positive electrode 36 is formed) of the electrode plate 34 of each bipolar electrode 32 to the end surface of the electrode plate 34 at the edge portion 34a. .
  • each first resin portion 52 is provided over the entire circumference of the edge portion 34 a of the electrode plate 34 of each bipolar electrode 32.
  • Adjacent first resin portions 52 are welded to each other on the surface extending outside the other surface (surface on which the negative electrode 38 is formed) of the electrode plate 34 of each bipolar electrode 32. As a result, the edge portion 34 a of the electrode plate 34 of each bipolar electrode 32 is buried and held in the first resin portion 52.
  • an internal space V that is airtightly partitioned by the electrode plates 34 and 34 and the first resin portion 52 is formed between the electrode plates 34 and 34 adjacent in the stacking direction.
  • an electrolytic solution made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated.
  • the second resin portion 54 constituting the outer wall of the frame body 50 is a cylindrical portion that extends over the entire length of the multilayer body 30 in the lamination direction of the bipolar electrode 32.
  • the second resin portion 54 covers the outer surface of the first resin portion 52 extending in the stacking direction of the bipolar electrode 32.
  • the second resin portion 54 is welded to the outer surface of the first resin portion 52 on the inner surface that extends in the stacking direction of the bipolar electrode 32.
  • the electrode plate 34 is a rectangular metal foil made of nickel, for example.
  • the edge 34 a of the electrode plate 34 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated, and the uncoated region is buried in the first resin portion 52 constituting the inner wall of the frame body 50. It is an area to be held.
  • An example of the positive electrode active material constituting the positive electrode 36 is nickel hydroxide.
  • Examples of the negative electrode active material constituting the negative electrode 38 include a hydrogen storage alloy.
  • the formation region of the negative electrode 38 on the other surface of the electrode plate 34 is slightly larger than the formation region of the positive electrode 36 on one surface of the electrode plate 34.
  • the separator 40 is formed in a sheet shape, for example.
  • the material forming the separator 40 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like.
  • the separator 40 may be reinforced with a vinylidene fluoride resin compound.
  • the separator 40 is not limited to a sheet shape, and may be a bag shape.
  • the frame 50 (the first resin portion 52 and the second resin portion 54) is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin.
  • the resin material constituting the frame 50 include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE).
  • FIG. 3 is a schematic perspective view showing the power storage module of FIG. 4 is an enlarged plan view of a part of the power storage module of FIG.
  • the frame 50 of the power storage module 12 has side surfaces 50 s extending in the stacking direction of the bipolar electrodes 32.
  • the side surface 50 s is a surface located on the outer side when viewed from the lamination direction of the bipolar electrode 32. Therefore, the second resin portion 54 has the side surface 50 s of the frame body 50.
  • the side surface 50s of the frame 50 has a main body region 50s1 and a protruding region 50s2.
  • Each of the main body region 50s1 and the protruding region 50s2 has a rectangular shape, for example.
  • a liquid injection port 50 a for injecting an electrolytic solution into the frame body 50 is provided in the main body region 50 s 1.
  • the liquid injection port 50a is sealed with a sealing material (not shown) after the electrolyte solution is injected.
  • the shape of the liquid injection port 50a is, for example, a rectangle, but may be another shape such as a circle.
  • the liquid injection port 50a extends so that the lamination direction of the bipolar electrodes 32 is the longitudinal direction.
  • the liquid injection port 50 a can have a first opening 52 a provided in the first resin part 52 and a second opening 54 a provided in the second resin part 54.
  • the first opening 52a communicates with the internal space V (see FIG. 2) between the adjacent bipolar electrodes 32 and the second opening 54a.
  • the first resin part 52 is provided with a plurality of first openings 52a
  • the second resin part 54 is provided with a single second opening 54a that extends so as to cover the plurality of first openings 52a.
  • the first opening 52 a may be provided in each first resin portion 52, or may be provided between adjacent first resin portions 52.
  • the shape of each first opening 52a is, for example, a circle
  • the shape of the second opening 54a is, for example, a rectangle.
  • the power storage module 12 of this embodiment includes the electrode plate 34, the positive electrode 36 provided on one surface of the electrode plate 34, and the negative electrode 38 provided on the other surface of the electrode plate 34.
  • a laminated body 30 in which the electrodes 32 are laminated, and a frame body 50 that holds the edge portion 34a of the electrode plate 34 on a side surface 30a of the laminated body 30 extending in the lamination direction of the bipolar electrode 32 are provided.
  • the frame 50 has side surfaces 50 s extending in the stacking direction of the bipolar electrodes 32.
  • the side surface 50s has a main body region 50s1 and a protruding region 50s2. In the main body region 50 s 1, a liquid injection port 50 a for injecting an electrolytic solution into the frame body 50 is provided.
  • the main body region 50 s 1 has an edge E extending in a direction intersecting with the stacking direction of the bipolar electrodes 32.
  • the protruding region 50 s 2 protrudes from the edge E so as to be separated from the liquid injection port 50 a in the lamination direction of the bipolar electrode 32.
  • the protruding region 50 s 2 is located outside the liquid injection port 50 a in the stacking direction of the bipolar electrode 32.
  • the protruding region 50 s 2 is a region surrounding the electrolyte solution supply pipe 110 (see FIG. 7), which will be described later, and the liquid inlet 50 a provided on the side surface 50 s of the frame body 50 ( It functions as a seal surface between the portion adjacent to the liquid injection port 50a in the main body region 50s1 and the protruding region 50s2). Therefore, a sufficiently wide sealing surface can be secured on the outside of the liquid injection port 50a in the lamination direction of the bipolar electrode 32. This eliminates the need to insert the electrolyte supply pipe 110 into the liquid injection port 50a, and eliminates the need to adjust the position between the supply pipe 110 and the liquid injection port 50a.
  • the side surface 50s of the frame 50 has a rectangular shape when viewed from the stacking direction of the bipolar electrode 32, and the liquid injection port 50a may be provided at the center of one side of the rectangular shape.
  • the electrolytic solution supply pipe 110 is pressed against the side surface 50s of the frame 50, the supply pipe 110 is pressed against the center of one side of the rectangular shape (see FIG. 7). Therefore, the pressure distribution by the supply pipe 110 on one side of the rectangular shape is substantially symmetric with respect to the center of the one side.
  • a jig that can apply a pressure equivalent to that of the supply pipe 110 to a position symmetrical to the position of the liquid injection port 50a with respect to the center ( (Not shown) may be arranged.
  • the pressure distribution by the supply pipe 110 and the jig on one side of the rectangular shape becomes substantially symmetric.
  • the frame 50 is provided with a first resin portion 52 that holds the edge portion 34a of the electrode plate 34 and a first side portion 50s of the frame body 50 that is provided around the first resin portion 52 when viewed from the lamination direction of the bipolar electrode 32. 2 resin portions 54 may be provided.
  • the liquid injection port 50a has a first opening 52a provided in the first resin portion 52 and a second opening 54a provided in the second resin portion 54, and the first opening 52a is adjacent to the bipolar. It communicates with the internal space V between the electrodes 32 and the second opening 54a. In this case, the electrolytic solution is injected into the frame body 50 from the second opening 54a via the first opening 52a.
  • FIG. 5 to 7 are schematic cross-sectional views showing an example of each step in the method for manufacturing the power storage module according to this embodiment.
  • an example of a method for manufacturing the power storage module 12 illustrated in FIG. 2 will be described.
  • the bipolar electrode 32 is stacked via the separator 40 to obtain the stacked body 30.
  • the first resin portion 52 is formed on the edge portion 34a of the electrode plate 34 of each bipolar electrode 32 by, for example, injection molding before the lamination step.
  • the second resin portion 54 is formed by, for example, injection molding (see FIG. 2).
  • the second resin portion 54 is formed by pouring the resin material 54 ⁇ / b> P of the second resin portion 54 having fluidity into the mold M.
  • the frame body 50 having the first resin portion 52 and the second resin portion 54 is formed.
  • the mold M is a nest for forming a first portion M1 that forms the outer edge of the main body region 50s1 and the protruding region 50s2 (see FIG. 4) on the side surface 50s of the frame body 50, and a second opening 54a of the liquid injection port 50a.
  • the resin material 54 ⁇ / b> P of the second resin portion 54 flows in a direction crossing the lamination direction of the bipolar electrode 32.
  • the resin material 54P of the second resin portion 54 flows between the pair of first portions M1 that are arranged to face each other, the resin material 54P collides with the second portion M2, and the two resin materials 54P along the periphery of the second portion M2.
  • the first resin portion 52 that is a part of the frame body 50 is formed before the lamination step, and the second resin portion 54 that is the remaining portion of the frame body 50 is formed after the lamination step.
  • an electrolytic solution is injected into the frame 50 from a liquid injection port 50 a provided in the frame 50.
  • the electrolytic solution is injected while pressing the electrolytic solution supply pipe 110 against a region around the liquid injection port 50 a on the side surface 50 s of the frame 50.
  • This peripheral region includes a portion adjacent to the liquid injection port 50a in the main body region 50s1 shown in FIG. 4 and a protruding region 50s2.
  • the injection of the electrolytic solution is performed using the injection device 100.
  • the injection device 100 includes a supply pipe 110 and a jig 120 that holds the supply pipe 110 and the frame body 50.
  • the supply pipe 110 includes a supply pipe main body 112, an attachment 114 that surrounds the distal end of the supply pipe main body 112, and a packing 116 that is disposed between the attachment 114 and the side surface 50 s of the frame body 50.
  • the jig 120 connects the plate-like member 122 that supports the side surface of the frame 50 opposite to the side surface 50 s, the plate-like member 124 disposed opposite to the plate-like member 122, and the plate-like members 122, 124. And a pair of columnar members 126.
  • a supply pipe 110 is fixed to the plate member 124.
  • Each columnar member 126 is fixed to the plate-like member 122 and connected to the plate-like member 124 by a bolt 108 that penetrates the plate-like member 124 in the plate thickness direction.
  • the tip of the bolt 108 is inserted into an insertion hole provided in the upper surface of the columnar member 126 and screwed.
  • the packing 116 of the supply pipe 110 fixed to the plate member 124 can be pressed against the side surface 50 s of the frame body 50.
  • the supply pipe body 112 is a cylindrical member that penetrates the plate member 124 in the plate thickness direction.
  • the attachment 114 is a cylindrical member that is fixed to the plate-like member 124 and is disposed between the plate-like member 124 and the side surface 50 s of the frame body 50.
  • One end of the supply pipe 110 is located in the liquid injection port 50a, and the other end is located on the outer surface of the plate-like member 124 (the surface on which the attachment 114 is not disposed).
  • the other end of the supply pipe 110 is connected to the valve V1 by a pipe.
  • the valve V1 is connected to the dispenser D by piping through a tank T that stores an electrolytic solution.
  • the tank T is disposed between the dispenser D and the valve V1.
  • the pipe between the other end of the supply pipe 110 and the valve V1 is branched in the middle and is also connected to the valve V2.
  • the valve V2 is connected to the vacuum pump P via the vacuum gauge G.
  • the other end of the supply pipe 110 may be connectable to a pressure tester of the power storage module 12.
  • the injection of the electrolytic solution is performed using the injection device 100 as follows, for example.
  • the vacuum pump P is operated with the valve V2 opened and the valve V1 closed. Thereby, air is discharged
  • FIG. Thereafter, when the valve V2 is closed and the valve V1 is opened, the electrolytic solution supplied from the dispenser D and stored in the tank T is injected into the internal space V in the frame 50.
  • the liquid storage module 12 shown in FIG. 2 is manufactured by sealing the liquid injection port 50a with a sealing material. Thereafter, as shown in FIG. 1, a plurality of power storage modules 12 are stacked via the conductive plate 14. A positive electrode terminal 24 and a negative electrode terminal 26 are connected in advance to the conductive plates 14 located at both ends in the stacking direction. Thereafter, a pair of restraining plates 16A and 16B are disposed at both ends in the stacking direction via the insulating film 22, respectively. Thereafter, the shaft portion of the bolt 18 is inserted into the insertion hole 16A1 of the restraining plate 16A, and is inserted into the insertion hole 16B1 of the restraining plate 16B. Thereafter, the nut 20 is screwed onto the tip of the bolt 18 protruding from the restraining plate 16B. In this way, the power storage device 10 shown in FIG. 1 is manufactured.
  • the method for manufacturing the power storage module of the present embodiment includes a stacking process, a frame forming process, and an electrolyte injection process.
  • the protruding region 50s2 in the electrolytic solution injection step, is located outside the liquid injection port 50a in the lamination direction of the bipolar electrode 32.
  • the protruding region 50s2 functions as a seal surface. Therefore, a sufficiently wide sealing surface can be secured on the outside of the liquid injection port 50a in the lamination direction of the bipolar electrode 32.
  • a seal between the supply pipe 110 and the area around the liquid injection port 50a can be secured.
  • the second resin portion 54 may be formed by injection molding, and the resin material 54P of the second resin portion 54 may flow in a direction crossing the lamination direction of the bipolar electrode 32.
  • the side surface 50s of the frame 50 is formed by the solidification of the resin material 54P of the second resin portion 54.
  • the resin material 54P of the second resin portion 54 flows outside the liquid injection port 50a in the stacking direction of the bipolar electrode 32, whereby the protruding region 50s2 is formed.
  • the resin material of the second resin portion 54 is equal to the width of the protruding region 50 s 2 in the stacking direction of the bipolar electrode 32 compared to the case where the protruding region 50 s 2 is not provided. 54P becomes easy to flow.

Abstract

蓄電モジュールは、電極板と正極と負極とを含むバイポーラ電極が積層された積層体と、バイポーラ電極の積層方向に延在する積層体の側面において電極板の縁部を保持する枠体とを備える。枠体は、積層方向に延在する側面を有している。枠体の側面は、本体領域と突出領域とを有している。本体領域には、枠体内に電解液を注入するための注液口が設けられる。本体領域は、積層方向に交差する方向に延在する縁を有している。突出領域は、積層方向において注液口から離れるように縁から突出している。

Description

蓄電モジュール及び蓄電モジュールの製造方法
本発明の一側面は、蓄電モジュール及び蓄電モジュールの製造方法に関する。
 電極板と、電極板の一方面に設けられた正極と、電極板の他方面に設けられた負極とを含むバイポーラ電極が積層された積層体を有するバイポーラ電池が知られている(例えば特許文献1)。このバイポーラ電池では、積層体が樹脂製のシール材(枠体)によって囲まれている。シール材は、電解液を注入するための開口部を有している。電解液は、チューブ又はノズルを用いて開口部から注入される。
特開2012-234823号公報
 電解液を注入する際、例えばチューブ又はノズル等といった電解液の供給管と、枠体の側面に設けられた注液口の周囲領域との間のシール(気密)が確保された状態で電解液を枠体内に注入することが考えられる。隣り合うバイポーラ電極間の各空間に電解液を注入するために、枠体の側面において、注液口はバイポーラ電極の積層方向に延在することになる。その結果、積層方向における枠体の側面の縁近くまで注液口が位置するため、積層方向における注液口の外側領域(枠体の側面の縁と注液口との間の領域)が狭くなる。よって、積層方向における注液口の外側に十分に広いシール面を確保することができない。そのため、例えば注液口の内部に供給管を挿入することによって、供給管と注液口の内壁との間のシールが確保されている。このような場合、供給管を注液口の内部に挿入するために、供給管と注液口との間の位置を調整する必要がある。
 本発明の一側面は、バイポーラ電極の積層方向における注液口の外側に十分に広いシール面を確保することができる蓄電モジュール及び蓄電モジュールの製造方法を提供することを目的とする。
 本発明の一側面に係る蓄電モジュールは、電極板と、前記電極板の一方面に設けられた正極と、前記電極板の他方面に設けられた負極とを含むバイポーラ電極が積層された積層体と、前記バイポーラ電極の積層方向に延在する前記積層体の側面において前記電極板の縁部を保持する枠体と、を備え、前記枠体は、前記積層方向に延在する側面を有しており、前記枠体の前記側面は、本体領域と突出領域とを有しており、前記本体領域には、前記枠体内に電解液を注入するための注液口が設けられ、前記本体領域は、前記積層方向に交差する方向に延在する縁を有しており、前記突出領域は、前記積層方向において前記注液口から離れるように前記縁から突出している。
 この蓄電モジュールでは、バイポーラ電極の積層方向における注液口の外側に突出領域が位置している。この突出領域はシール面として機能する。そのため、バイポーラ電極の積層方向において注液口の外側に十分に広いシール面を確保することができる。
 前記枠体の前記側面は、前記積層方向から見て矩形形状を有しており、前記注液口は、前記矩形形状の一辺における中央に設けられてもよい。
 この場合、電解液の供給管を枠体の側面に押し付ける際に、供給管は矩形形状の一辺における中央に押し付けられる。そのため、矩形形状の一辺における供給管による圧力分布が一辺の中央に対して略対称になる。
 前記枠体は、前記電極板の前記縁部を保持する第1樹脂部と、前記積層方向から見て前記第1樹脂部の周囲に設けられ前記枠体の前記側面を有する第2樹脂部と、を備え、前記注液口は、前記第1樹脂部に設けられた第1開口と、前記第2樹脂部に設けられた第2開口と、を有しており、前記第1開口は、隣り合う前記バイポーラ電極間の空間及び前記第2開口と連通してもよい。
 この場合、電解液は第2開口から第1開口を経由して枠体内に注入される。
 本発明の一側面に係る蓄電モジュールの製造方法は、電極板と、前記電極板の一方面に設けられた正極と、前記電極板の他方面に設けられた負極とを含むバイポーラ電極を有する蓄電モジュールの製造方法であって、前記バイポーラ電極を積層して積層体を得る工程と、前記バイポーラ電極の積層方向に延在する前記積層体の側面において前記電極板の縁部を保持する枠体を形成する工程と、前記枠体に設けられた注液口から前記枠体内に電解液を注入する工程と、を含み、前記積層方向に延在する前記枠体の側面は、本体領域と突出領域とを有しており、前記本体領域には、前記注液口が設けられ、前記本体領域は、前記積層方向に交差する方向に延在する縁を有しており、前記突出領域は、前記積層方向において前記注液口から離れるように前記縁から突出しており、前記電解液を注入する工程では、前記電解液の供給管を前記突出領域に押し付けながら前記電解液を注入する。
 なお、積層工程前に枠体の一部を形成し、枠体形成工程において枠体の在部を形成してもよい。
 この製造方法では、電解液を注入する工程において、バイポーラ電極の積層方向における注液口の外側に突出領域が位置している。この突出領域はシール面として機能する。そのため、バイポーラ電極の積層方向において注液口の外側に十分に広いシール面を確保することができる。電解液の供給管を突出領域に押し付けることによって、供給管と注液口の周囲領域との間のシールを確保することができる。
 前記枠体は、前記電極板の前記縁部を保持する第1樹脂部と、前記積層方向から見て前記第1樹脂部の周囲に設けられ前記枠体の前記側面を有する第2樹脂部と、を備え、前記枠体を形成する工程では、射出成形により前記第2樹脂部を形成し、前記第2樹脂部の樹脂材料が前記積層方向に交差する方向に流れてもよい。
 この場合、第2樹脂部の樹脂材料が固化することによって枠体の側面が形成される。第2樹脂部を形成する際に、第2樹脂部の樹脂材料が積層方向における注液口の外側を流れることによって、突出領域が形成される。枠体の側面が突出領域を有していると、突出領域が無い場合に比べて、積層方向における突出領域の幅の分だけ第2樹脂部の樹脂材料が流れ易くなる。
 本発明の一側面によれば、バイポーラ電極の積層方向における注液口の外側に十分に広いシール面を確保することができる蓄電モジュール及び蓄電モジュールの製造方法が提供され得る。
蓄電モジュールを備える蓄電装置の一実施形態を示す概略断面図である。 図1の蓄電装置を構成する蓄電モジュールを示す概略断面図である。 図2の蓄電モジュールを示す概略斜視図である。 図3の蓄電モジュールの一部を拡大した平面図である。 図2の蓄電モジュールの製造方法における積層工程の一例を示す概略断面図である。 図2の蓄電モジュールの製造方法における枠体形成工程を示す概略断面図である。 図2の蓄電モジュールの製造方法における電解液注入工程を示す概略断面図である。
 以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面にはXYZ直交座標系が示される。
[蓄電装置の構成]
 図1は、蓄電モジュールを備える蓄電装置の一実施形態を示す概略断面図である。同図に示す蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる。蓄電装置10は、複数(本実施形態では3つ)の蓄電モジュール12を備えるが、単一の蓄電モジュール12を備えてもよい。蓄電モジュール12は例えばバイポーラ電池である。蓄電モジュール12は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池であるが、電気二重層キャパシタであってもよい。以下の説明では、ニッケル水素二次電池を例示する。
 複数の蓄電モジュール12は、例えば金属板等の導電板14を介して積層され得る。積層方向から見て、蓄電モジュール12及び導電板14は例えば矩形形状を有する。各蓄電モジュール12の詳細については後述する。導電板14は、蓄電モジュール12の積層方向(Z方向)において両端に位置する蓄電モジュール12の外側にもそれぞれ配置される。導電板14は、隣り合う蓄電モジュール12と電気的に接続される。これにより、複数の蓄電モジュール12が積層方向に直列に接続される。積層方向において、一端に位置する導電板14には正極端子24が接続されており、他端に位置する導電板14には負極端子26が接続されている。正極端子24は、接続される導電板14と一体であってもよい。負極端子26は、接続される導電板14と一体であってもよい。正極端子24及び負極端子26は、積層方向に交差する方向(X方向)に延在している。これらの正極端子24及び負極端子26により、蓄電装置10の充放電を実施できる。
 導電板14は、蓄電モジュール12において発生した熱を放出するための放熱板としても機能し得る。導電板14の内部に設けられた複数の空隙14aを空気等の冷媒が通過することにより、蓄電モジュール12からの熱を効率的に外部に放出できる。各空隙14aは例えば積層方向に交差する方向(Y方向)に延在する。積層方向から見て、導電板14は、蓄電モジュール12よりも小さいが、蓄電モジュール12と同じかそれより大きくてもよい。
 蓄電装置10は、交互に積層された蓄電モジュール12及び導電板14を積層方向に拘束する拘束部材16を備え得る。拘束部材16は、一対の拘束プレート16A,16Bと、拘束プレート16A,16B同士を連結する連結部材(ボルト18及びナット20)とを備える。各拘束プレート16A,16Bと導電板14との間には、例えば樹脂フィルム等の絶縁フィルム22が配置される。各拘束プレート16A,16Bは、例えば鉄等の金属によって構成されている。積層方向から見て、各拘束プレート16A,16B及び絶縁フィルム22は例えば矩形形状を有する。絶縁フィルム22は導電板14よりも大きくなっており、各拘束プレート16A,16Bは、蓄電モジュール12よりも大きくなっている。積層方向から見て、拘束プレート16Aの縁部には、ボルト18の軸部を挿通させる挿通孔16A1が蓄電モジュール12よりも外側となる位置に設けられている。同様に、積層方向から見て、拘束プレート16Bの縁部には、ボルト18の軸部を挿通させる挿通孔16B1が蓄電モジュール12よりも外側となる位置に設けられている。積層方向から見て各拘束プレート16A,16Bが矩形形状を有している場合、挿通孔16A1及び挿通孔16B1は、拘束プレート16A,16Bの角部に位置する。
 一方の拘束プレート16Aは、負極端子26に接続された導電板14に絶縁フィルム22を介して突き当てられ、他方の拘束プレート16Bは、正極端子24に接続された導電板14に絶縁フィルム22を介して突き当てられている。ボルト18は、例えば一方の拘束プレート16A側から他方の拘束プレート16B側に向かって挿通孔16A1に通され、他方の拘束プレート16Bから突出するボルト18の先端には、ナット20が螺合されている。これにより、絶縁フィルム22、導電板14及び蓄電モジュール12が挟持されてユニット化されると共に、積層方向に拘束荷重が付加される。
 図2は、図1の蓄電装置を構成する蓄電モジュールを示す概略断面図である。同図に示す蓄電モジュール12は、複数のバイポーラ電極32が積層された積層体30を備える。バイポーラ電極32の積層方向から見て積層体30は例えば矩形形状を有する。隣り合うバイポーラ電極32間にはセパレータ40が配置され得る。バイポーラ電極32は、電極板34と、電極板34の一方面に設けられた正極36と、電極板34の他方面に設けられた負極38とを含む。積層体30において、一のバイポーラ電極32の正極36は、セパレータ40を挟んで積層方向に隣り合う一方のバイポーラ電極32の負極38と対向し、一のバイポーラ電極32の負極38は、セパレータ40を挟んで積層方向に隣り合う他方のバイポーラ電極32の正極36と対向している。積層方向において、積層体30の一端には、内側面に負極38が配置された電極板34(負極側終端電極)が配置され、他端には、内側面に正極36が配置された電極板34(正極側終端電極)が配置される。負極側終端電極の負極38は、セパレータ40を介して最上層のバイポーラ電極32の正極36と対向している。正極側終端電極の正極36は、セパレータ40を介して最下層のバイポーラ電極32の負極38と対向している。これら終端電極の電極板34はそれぞれ隣り合う導電板14(図1参照)に接続される。
 蓄電モジュール12は、バイポーラ電極32の積層方向に延在する積層体30の側面30aにおいて電極板34の縁部34aを保持する枠体50を備える。枠体50は、積層体30の側面30aを取り囲むように構成されている。側面50sは、バイポーラ電極32の積層方向から見て例えば矩形形状を有している。この場合、側面50sは4つの矩形面から構成される。枠体50は、電極板34の縁部34aを保持する第1樹脂部52と、積層方向から見て第1樹脂部52の周囲に設けられる第2樹脂部54とを備え得る。
 枠体50の内壁を構成する第1樹脂部52は、各バイポーラ電極32の電極板34の一方面(正極36が形成される面)から縁部34aにおける電極板34の端面にわたって設けられている。バイポーラ電極32の積層方向から見て、各第1樹脂部52は、各バイポーラ電極32の電極板34の縁部34a全周にわたって設けられている。隣り合う第1樹脂部52同士は、各バイポーラ電極32の電極板34の他方面(負極38が形成される面)の外側に延在する面において溶着している。その結果、第1樹脂部52には、各バイポーラ電極32の電極板34の縁部34aが埋没して保持されている。各バイポーラ電極32の電極板34の縁部34aと同様に、積層体30の両端に配置された電極板34の縁部34aも第1樹脂部52に埋没した状態で保持されている。これにより、積層方向に隣り合う電極板34,34間には、当該電極板34,34と第1樹脂部52とによって気密に仕切られた内部空間Vが形成されている。当該内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液(不図示)が収容されている。
 枠体50の外壁を構成する第2樹脂部54は、バイポーラ電極32の積層方向において積層体30の全長にわたって延在する筒状部である。第2樹脂部54は、バイポーラ電極32の積層方向に延在する第1樹脂部52の外側面を覆っている。第2樹脂部54は、バイポーラ電極32の積層方向に延在する内側面において第1樹脂部52の外側面に溶着されている。
 電極板34は、例えばニッケルからなる矩形の金属箔である。電極板34の縁部34aは、正極活物質及び負極活物質の塗工されない未塗工領域となっており、当該未塗工領域が枠体50の内壁を構成する第1樹脂部52に埋没して保持される領域となっている。正極36を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極38を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。電極板34の他方面における負極38の形成領域は、電極板34の一方面における正極36の形成領域に対して一回り大きくなっている。
 セパレータ40は、例えばシート状に形成されている。セパレータ40を形成する材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。また、セパレータ40は、フッ化ビニリデン樹脂化合物で補強されたものであってもよい。なお、セパレータ40は、シート状に限られず、袋状のものを用いてもよい。
 枠体50(第1樹脂部52及び第2樹脂部54)は、例えば絶縁性の樹脂を用いた射出成形によって矩形の筒状に形成されている。枠体50を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)等が挙げられる。
 図3は、図2の蓄電モジュールを示す概略斜視図である。図4は、図3の蓄電モジュールの一部を拡大した平面図である。図3及び図4に示されるように、蓄電モジュール12の枠体50は、バイポーラ電極32の積層方向に延在する側面50sを有する。側面50sはバイポーラ電極32の積層方向から見て外側に位置する面である。よって、第2樹脂部54が枠体50の側面50sを有することになる。
 枠体50の側面50sは、本体領域50s1と突出領域50s2とを有している。本体領域50s1と突出領域50s2の形状はそれぞれ例えば矩形である。本体領域50s1には、枠体50内に電解液を注入するための注液口50aが設けられている。注液口50aは、電解液の注入後にシール材(不図示)によって封止される。注液口50aの形状は例えば矩形であるが、円形等の他の形状であってもよい。注液口50aはバイポーラ電極32の積層方向が長手方向となるように延在している。注液口50aは、バイポーラ電極32の積層方向から見た側面50sの矩形形状の一辺における中央に設けられるが、中央からずれて配置されてもよい。本体領域50s1は、バイポーラ電極32の積層方向に交差する方向(Y方向)に延在する縁Eを有している。突出領域50s2は、バイポーラ電極32の積層方向において注液口50aから離れるように縁Eから突出している。本実施形態では、一対の突出領域50s2が注液口50aを挟むように配置されている。突出領域50s2は、縁Eに沿って注液口50aの全長を越えて注液口50aの両外側にはみ出る長さで設けられている。
 図4に示されるように、注液口50aは、第1樹脂部52に設けられた第1開口52aと、第2樹脂部54に設けられた第2開口54aとを有し得る。第1開口52aは、隣り合うバイポーラ電極32間の内部空間V(図2参照)及び第2開口54aと連通している。第1樹脂部52には複数の第1開口52aが設けられており、第2樹脂部54には、複数の第1開口52aを覆うように広がる単一の第2開口54aが設けられている。第1開口52aは各第1樹脂部52に設けられてもよいし、隣り合う第1樹脂部52間に設けられてもよい。各第1開口52aの形状は例えば円形であり、第2開口54aの形状は例えば矩形である。
 以上説明したように、本実施形態の蓄電モジュール12は、電極板34と、電極板34の一方面に設けられた正極36と、電極板34の他方面に設けられた負極38とを含むバイポーラ電極32が積層された積層体30と、バイポーラ電極32の積層方向に延在する積層体30の側面30aにおいて電極板34の縁部34aを保持する枠体50とを備える。枠体50は、バイポーラ電極32の積層方向に延在する側面50sを有している。側面50sは、本体領域50s1と突出領域50s2とを有している。本体領域50s1には、枠体50内に電解液を注入するための注液口50aが設けられる。本体領域50s1は、バイポーラ電極32の積層方向に交差する方向に延在する縁Eを有している。突出領域50s2は、バイポーラ電極32の積層方向において注液口50aから離れるように縁Eから突出している。
 蓄電モジュール12では、バイポーラ電極32の積層方向における注液口50aの外側に突出領域50s2が位置している。突出領域50s2は、電解液を枠体50内に注入する際、後述する電解液の供給管110(図7参照)と、枠体50の側面50sに設けられた注液口50aの周囲領域(本体領域50s1における注液口50aに隣接する部分及び突出領域50s2)との間のシール面として機能する。そのため、バイポーラ電極32の積層方向において注液口50aの外側に十分に広いシール面を確保することができる。これにより、電解液の供給管110を注液口50aに挿入する必要がなくなるので、供給管110と注液口50aとの間の位置を調整する必要もなくなる。
 枠体50の側面50sは、バイポーラ電極32の積層方向から見て矩形形状を有しており、注液口50aは、当該矩形形状の一辺における中央に設けられてもよい。この場合、電解液の供給管110を枠体50の側面50sに押し付ける際に、供給管110は矩形形状の一辺における中央に押し付けられる(図7参照)。そのため、矩形形状の一辺における供給管110による圧力分布が一辺の中央に対して略対称になる。注液口50aが矩形形状の一辺における中央からずれて配置される場合、中央に対して注液口50aの位置と対称となる位置に、供給管110と同等の圧力を付与可能な治具(不図示)を配置すればよい。これにより、矩形形状の一辺における供給管110及び治具による圧力分布が略対称になる。
 枠体50は、電極板34の縁部34aを保持する第1樹脂部52と、バイポーラ電極32の積層方向から見て第1樹脂部52の周囲に設けられ枠体50の側面50sを有する第2樹脂部54とを備えてもよい。注液口50aは、第1樹脂部52に設けられた第1開口52aと、第2樹脂部54に設けられた第2開口54aとを有しており、第1開口52aは、隣り合うバイポーラ電極32間の内部空間V及び第2開口54aと連通している。この場合、電解液は第2開口54aから第1開口52aを経由して枠体50内に注入される。
[蓄電装置の製造方法]
 図5~図7は、本実施形態に係る蓄電モジュールの製造方法における各工程の一例を示す概略断面図である。以下、図2に示される蓄電モジュール12の製造方法の一例を説明する。
(積層工程)
 まず、図5に示されるように、例えばセパレータ40を介してバイポーラ電極32を積層して積層体30を得る。本実施形態では、積層工程前に、各バイポーラ電極32の電極板34の縁部34aに第1樹脂部52が例えば射出成形により形成されている。
(枠体形成工程)
 次に、第2樹脂部54を例えば射出成形により形成する(図2参照)。図6に示されるように、モールドM内に、流動性を有する第2樹脂部54の樹脂材料54Pを流し込むことによって、第2樹脂部54が形成される。その結果、図3及び図4に示されるように、第1樹脂部52及び第2樹脂部54を有する枠体50が形成される。モールドMは、枠体50の側面50sにおける本体領域50s1及び突出領域50s2(図4参照)の外縁を形成する第1部分M1と、注液口50aの第2開口54aを形成するための入れ子である第2部分M2とを有する。第2樹脂部54の樹脂材料54Pは、バイポーラ電極32の積層方向に交差する方向に流れる。例えば、第2樹脂部54の樹脂材料54Pは、互いに対向配置された一対の第1部分M1間を流れた後、第2部分M2に衝突して、第2部分M2の周囲に沿って2つに分かれる。2つに分かれた第2樹脂部54の樹脂材料54Pは、それぞれ第1部分M1と第2部分M2との間を流れた後、合流して、一対の第1部分M1間を流れる。
 なお、本実施形態では積層工程前に枠体50の一部である第1樹脂部52を形成し、積層工程後に枠体50の残部である第2樹脂部54を形成しているが、積層工程後に枠体50の一部である第1樹脂部52を形成してもよい。
(電解液注入工程)
 次に、図7に示されるように、枠体50に設けられた注液口50aから枠体50内に電解液を注入する。電解液は、電解液の供給管110を枠体50の側面50sにおける注液口50aの周囲領域に押し付けながら注入される。この周囲領域は、図4に示される本体領域50s1における注液口50aに隣接する部分と突出領域50s2とを含む。
 電解液の注入は、注入装置100を用いて行われる。注入装置100は、供給管110と、供給管110及び枠体50を保持する治具120とを備える。供給管110は、供給管本体112と、供給管本体112の先端を取り囲むアタッチメント114と、アタッチメント114と枠体50の側面50sとの間に配置されるパッキン116とを有する。治具120は、側面50sとは反対側の枠体50の側面を支持する板状部材122と、板状部材122に対向配置された板状部材124と、板状部材122,124間を接続する一対の柱状部材126とを備える。板状部材124には供給管110が固定されている。各柱状部材126は、板状部材122に固定され、板状部材124を板厚方向に貫通するボルト108によって板状部材124に接続される。ボルト108の先端は柱状部材126の上面に設けられた挿通孔に挿入され螺合される。ボルト108を締めることによって、板状部材124に固定された供給管110のパッキン116を枠体50の側面50sに押し付けることができる。
 供給管本体112は、板状部材124を板厚方向に貫通する筒状部材である。アタッチメント114は、板状部材124に固定され、板状部材124と枠体50の側面50sとの間に配置される筒状部材である。供給管110の一端は注液口50aに位置しており、他端は板状部材124の外面(アタッチメント114が配置されていない方の面)に位置している。供給管110の他端は、配管によりバルブV1に接続される。バルブV1は、電解液を収容するタンクTを介して配管によりディスペンサDに接続される。タンクTはディスペンサDとバルブV1との間に配置される。供給管110の他端とバルブV1との間の配管は、途中で分岐しておりバルブV2にも接続される。バルブV2は、真空計Gを介して真空ポンプPに接続される。供給管110の他端は、蓄電モジュール12の耐圧試験機に接続可能であってもよい。
 電解液の注入は、注入装置100を用いて例えば以下のように行われる。まず、バルブV2を開けてバルブV1を閉じた状態で真空ポンプPを作動させる。これにより、枠体50内の内部空間V(図2参照)から空気が排出される。その後、バルブV2を閉じてバルブV1を開けると、ディスペンサDから供給されタンクTに収容された電解液が枠体50内の内部空間Vに注入される。
 上記工程を経た後、シール材により注液口50aを封止することによって、図2に示される蓄電モジュール12が製造される。その後、図1に示されるように、導電板14を介して複数の蓄電モジュール12を積層する。積層方向の両端に位置する導電板14にはそれぞれ正極端子24及び負極端子26が予め接続されている。その後、積層方向の両端に、絶縁フィルム22を介して一対の拘束プレート16A,16Bをそれぞれ配置する。その後、ボルト18の軸部を拘束プレート16Aの挿通孔16A1に挿入し、拘束プレート16Bの挿通孔16B1に挿入する。その後、拘束プレート16Bから突出したボルト18の先端に、ナット20を螺合する。このようにして図1に示される蓄電装置10が製造される。
 以上説明したように、本実施形態の蓄電モジュールの製造方法は、積層工程、枠体形成工程及び電解液注入工程を含む。この製造方法では、電解液注入工程において、バイポーラ電極32の積層方向における注液口50aの外側に突出領域50s2が位置している。突出領域50s2はシール面として機能する。そのため、バイポーラ電極32の積層方向において注液口50aの外側に十分に広いシール面を確保することができる。電解液の供給管110を突出領域50s2に押し付けることによって、供給管110と注液口50aの周囲領域との間のシールを確保することができる。
 枠体形成工程では、射出成形により第2樹脂部54を形成し、第2樹脂部54の樹脂材料54Pがバイポーラ電極32の積層方向に交差する方向に流れてもよい。この場合、第2樹脂部54の樹脂材料54Pが固化することによって枠体50の側面50sが形成される。第2樹脂部54を形成する際に、第2樹脂部54の樹脂材料54Pがバイポーラ電極32の積層方向における注液口50aの外側を流れることによって、突出領域50s2が形成される。枠体50の側面50sが突出領域50s2を有していると、突出領域50s2が無い場合に比べて、バイポーラ電極32の積層方向における突出領域50s2の幅の分だけ第2樹脂部54の樹脂材料54Pが流れ易くなる。
 以上、本発明の好適な実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。
 12  蓄電モジュール
 30  積層体
 30a  側面
 32  バイポーラ電極
 34  電極板
 34a  縁部
 36  正極
 38  負極
 50  枠体
 50a  注液口
 50s  側面
 50s1  本体領域
 50s2  突出領域
 52  第1樹脂部
 52a  第1開口
 54  第2樹脂部
 54a  第2開口
 54P  樹脂材料
 110  供給管
 E  縁
 V  内部空間

 
 

Claims (5)

  1.  電極板と、前記電極板の一方面に設けられた正極と、前記電極板の他方面に設けられた負極とを含むバイポーラ電極が積層された積層体と、
     前記バイポーラ電極の積層方向に延在する前記積層体の側面において前記電極板の縁部を保持する枠体と、
    を備え、
     前記枠体は、前記積層方向に延在する側面を有しており、
     前記枠体の前記側面は、本体領域と突出領域とを有しており、
     前記本体領域には、前記枠体内に電解液を注入するための注液口が設けられ、前記本体領域は、前記積層方向に交差する方向に延在する縁を有しており、
     前記突出領域は、前記積層方向において前記注液口から離れるように前記縁から突出している、蓄電モジュール。
  2.  前記枠体の前記側面は、前記積層方向から見て矩形形状を有しており、
     前記注液口は、前記矩形形状の一辺における中央に設けられている、請求項1に記載の蓄電モジュール。
  3.  前記枠体は、前記電極板の前記縁部を保持する第1樹脂部と、前記積層方向から見て前記第1樹脂部の周囲に設けられ前記枠体の前記側面を有する第2樹脂部と、を備え、
     前記注液口は、前記第1樹脂部に設けられた第1開口と、前記第2樹脂部に設けられた第2開口と、を有しており、
     前記第1開口は、隣り合う前記バイポーラ電極間の空間及び前記第2開口と連通している、請求項1又は2に記載の蓄電モジュール。
  4.  電極板と、前記電極板の一方面に設けられた正極と、前記電極板の他方面に設けられた負極とを含むバイポーラ電極を有する蓄電モジュールの製造方法であって、
     前記バイポーラ電極を積層して積層体を得る工程と、
     前記バイポーラ電極の積層方向に延在する前記積層体の側面において前記電極板の縁部を保持する枠体を形成する工程と、
     前記枠体に設けられた注液口から前記枠体内に電解液を注入する工程と、
    を含み、
     前記積層方向に延在する前記枠体の側面は、本体領域と突出領域とを有しており、
     前記本体領域には、前記注液口が設けられ、前記本体領域は、前記積層方向に交差する方向に延在する縁を有しており、
     前記突出領域は、前記積層方向において前記注液口から離れるように前記縁から突出しており、
     前記電解液を注入する工程では、前記電解液の供給管を前記突出領域に押し付けながら前記電解液を注入する、蓄電モジュールの製造方法。
  5.  前記枠体は、前記電極板の前記縁部を保持する第1樹脂部と、前記積層方向から見て前記第1樹脂部の周囲に設けられ前記枠体の前記側面を有する第2樹脂部と、を備え、
     前記枠体を形成する工程では、射出成形により前記第2樹脂部を形成し、前記第2樹脂部の樹脂材料が前記積層方向に交差する方向に流れる、請求項4に記載の蓄電モジュール
    の製造方法。

     
PCT/JP2017/041715 2016-12-19 2017-11-20 蓄電モジュール及び蓄電モジュールの製造方法 WO2018116725A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-245580 2016-12-19
JP2016245580A JP6801430B2 (ja) 2016-12-19 2016-12-19 蓄電モジュール及び蓄電モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2018116725A1 true WO2018116725A1 (ja) 2018-06-28

Family

ID=62627291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041715 WO2018116725A1 (ja) 2016-12-19 2017-11-20 蓄電モジュール及び蓄電モジュールの製造方法

Country Status (2)

Country Link
JP (1) JP6801430B2 (ja)
WO (1) WO2018116725A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805844B2 (ja) * 2017-01-24 2020-12-23 株式会社豊田自動織機 蓄電モジュールの製造方法
JP6858270B2 (ja) * 2017-10-10 2021-04-14 株式会社豊田自動織機 蓄電モジュール
JP7107067B2 (ja) * 2018-07-30 2022-07-27 株式会社豊田自動織機 蓄電モジュール
JP7103033B2 (ja) * 2018-07-31 2022-07-20 株式会社豊田自動織機 蓄電モジュール及び蓄電モジュールの製造方法
JP7070279B2 (ja) * 2018-09-20 2022-05-18 株式会社豊田自動織機 蓄電モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248274A (ja) * 1991-01-25 1992-09-03 Mitsui Eng & Shipbuild Co Ltd 積層電池
JP2005251465A (ja) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd バイポーラ電池
JP2005259379A (ja) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd バイポーラ電池
JP2012234823A (ja) * 2005-09-05 2012-11-29 Nissan Motor Co Ltd バイポーラ電池の製造方法
EP2613393A1 (en) * 2012-01-04 2013-07-10 Centurion Bipolair B.V. A bipolar lead acid battery and a method of manufacturing
WO2015103295A1 (en) * 2013-12-30 2015-07-09 Moomaw Daniel Sealed bipolar battery assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248274A (ja) * 1991-01-25 1992-09-03 Mitsui Eng & Shipbuild Co Ltd 積層電池
JP2005251465A (ja) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd バイポーラ電池
JP2005259379A (ja) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd バイポーラ電池
JP2012234823A (ja) * 2005-09-05 2012-11-29 Nissan Motor Co Ltd バイポーラ電池の製造方法
EP2613393A1 (en) * 2012-01-04 2013-07-10 Centurion Bipolair B.V. A bipolar lead acid battery and a method of manufacturing
WO2015103295A1 (en) * 2013-12-30 2015-07-09 Moomaw Daniel Sealed bipolar battery assembly

Also Published As

Publication number Publication date
JP2018101486A (ja) 2018-06-28
JP6801430B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
US11276903B2 (en) Electricity storage device and method for manufacturing electricity storage device
WO2018116725A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
JP6586969B2 (ja) 蓄電モジュール
JP6805844B2 (ja) 蓄電モジュールの製造方法
JP2018125125A (ja) 蓄電モジュールの製造方法及び蓄電モジュール
JP2019016459A (ja) 蓄電装置およびその製造方法
JP2019061850A (ja) 蓄電モジュール及び蓄電モジュールの製造方法
WO2019065000A1 (ja) 蓄電モジュール
WO2018123502A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
WO2018116729A1 (ja) 蓄電モジュール
JP2018120719A (ja) 蓄電モジュールの製造方法
JP7059793B2 (ja) 蓄電モジュールの製造方法及び蓄電モジュールの製造用冶具
JP7164459B2 (ja) 蓄電モジュール
JP7063196B2 (ja) 蓄電モジュールの検査方法
JP7103272B2 (ja) 蓄電モジュール及びその製造方法
WO2019187554A1 (ja) 電池モジュール
JP6965730B2 (ja) 蓄電モジュールの製造方法
JP2020119669A (ja) 蓄電モジュールの製造方法
JP2019200962A (ja) 蓄電モジュールの製造方法、及び、蓄電モジュール
JP2019129070A (ja) バイポーラ電池の製造方法及びバイポーラ電池
JP2020035665A (ja) 供給装置
JP7095630B2 (ja) 蓄電モジュールの製造装置及び蓄電モジュールの製造方法
JP7056357B2 (ja) 蓄電モジュールの製造方法、蓄電装置の製造方法、及び、蓄電装置
JP2019102165A (ja) 蓄電モジュールの製造方法及び蓄電モジュール
JP7110875B2 (ja) 蓄電モジュールの製造方法及び蓄電モジュールの製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882981

Country of ref document: EP

Kind code of ref document: A1