WO2018116438A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018116438A1
WO2018116438A1 PCT/JP2016/088327 JP2016088327W WO2018116438A1 WO 2018116438 A1 WO2018116438 A1 WO 2018116438A1 JP 2016088327 W JP2016088327 W JP 2016088327W WO 2018116438 A1 WO2018116438 A1 WO 2018116438A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
current
current ripple
ripple
slope
Prior art date
Application number
PCT/JP2016/088327
Other languages
English (en)
French (fr)
Inventor
村上 哲
祐太 小松
亮祐 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/347,990 priority Critical patent/US10505459B2/en
Priority to EP16924594.1A priority patent/EP3562021A4/en
Priority to PCT/JP2016/088327 priority patent/WO2018116438A1/ja
Priority to CN201680091552.5A priority patent/CN110089020B/zh
Priority to JP2018557478A priority patent/JP6745911B2/ja
Publication of WO2018116438A1 publication Critical patent/WO2018116438A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This invention relates to a power converter for converting a DC voltage and a DC voltage, or an AC voltage and a DC voltage.
  • the switching power supply device of the power converter shown in Patent Document 1 is provided with N-phase switching legs and is switched by shifting the phase by 360 degrees / N, realizing a low loss and a reduction in input / output current ripple by a current shunt function.
  • Patent Document 2 discloses the integration of the magnetic circuit, but the core winding is wound in a direction in which the DC magnetic flux cancels each other, so that the magnetic flux saturation due to the DC magnetic flux can be prevented.
  • the DC inductance can be configured only by the leakage magnetic flux.
  • the present invention has been made in order to solve such problems, and is a power that magnetically integrates a plurality of reactors into one core, suppresses current ripple, and enables a power filter to be downsized.
  • An object is to provide a conversion device.
  • the DC winding and the plurality of coupled windings are wound around one magnetic body, one end of the DC winding is connected to a voltage source, and the other end of the DC winding is connected to the other end of the DC winding.
  • One end of each of the plurality of coupling windings is connected, and the other end of each of the plurality of coupling windings is connected to each intermediate connection point of a plurality of upper and lower arms made of a switching element, and the DC winding and the coupling winding
  • a control device for controlling the switching elements, and switching operation is performed by shifting the parallel upper and lower arms by 180 degrees relative to each other.
  • the switching of the upper arm or the lower arm is controlled according to the magnitude of the duty and the magnitude of the DC current ripple and AC current ripple constituting the current ripple of the combined winding. It is characterized in.
  • the loss of the coupling winding can be suppressed by performing switching control according to the magnitude of the DC current ripple and the AC current ripple of the coupling winding.
  • FIG. 4B is a magnetic equivalent circuit diagram of FIG. 4A. It is explanatory drawing explaining that the BH characteristic of the core material by Embodiment 1 of this invention is nonlinear. It is explanatory drawing which illustrates typically generation
  • FIG. 1 shows a circuit configuration of a power conversion apparatus according to Embodiment 1 of the present invention
  • FIG. 2 shows a current path at the time of positive polarity of the circuit of FIG. 1
  • FIG. 3 shows a current path at the time of negative polarity of the circuit of FIG. It is explanatory drawing shown typically.
  • the AC voltage source 1 has one end connected to one end of a third winding 2c constituting the integrated magnetic component 2 (point A), and the other end of the third winding 2c connected to the first end.
  • the first winding 2a and the second winding 2b are connected to a point (point B).
  • the first winding 2a and the second winding 2b are respectively connected between the upper and lower arms of the converter circuit 3 (point C and point D), and the output of the converter circuit 3 is connected to the load 5 through the link capacitor 4. Is done.
  • the other end of the AC voltage source 1 is connected to the midpoint of the rectifier elements Da and Db connected in series in the converter circuit 3, the cathode of the rectifier element Da is the positive electrode of the link capacitor 4, and the anode of the rectifier element Db is Connected to the negative electrode of the link capacitor 4.
  • the control circuit 10 drives the converter circuit 3 from the input current information 10a from the current sensor 6, the input voltage information 10b from the AC voltage source 1, and the voltage information 10c of the link capacitor 4 that is the output voltage.
  • control circuit 10d is generated and controlled to be the target output voltage, and further controlled to be a high power factor operation in which the AC voltage and the AC current phase are synchronized.
  • the control circuit 10 may be realized by a combination of a processor (MPU) and a computer program stored in a memory, or may be realized by dedicated hardware such as an ASIC. , May be realized by a reconfigurable gate array such as an FPGA, or a combination thereof.
  • FIG. 2 shows a current path when the AC input voltage of the circuit of the power converter according to the first embodiment shown in FIG. 1 is positive (arrow in the figure).
  • the current from the AC voltage source 1 is shunted from the rectifier element Da of the converter circuit 3 through the link capacitor 4 to the switching elements Sb and Sd that are turned on in the converter circuit 3, and the current is synthesized by the integrated magnetic component 2.
  • the switching elements Sa and Sc of the converter circuit 3 are switched to excite the integrated magnetic component 2 and boost the voltage of the AC voltage source 1.
  • FIG. 3 shows a current path when the AC input voltage of the circuit of the power converter according to the first embodiment shown in FIG. 1 is negative (arrow in the figure).
  • the current from the AC voltage source 1 enters the integrated magnetic component 2, is shunted to the switching elements Sa and Sc that are turned on in the converter circuit 3, enters the link capacitor 4, passes through the rectifier element Db of the converter circuit 3, and then receives the AC voltage. Return to Source 1.
  • the phase of the switching elements Sb and Sd of the converter circuit 3 is shifted by 180 degrees to perform a switching operation, thereby exciting the integrated magnetic component 2 and boosting the voltage of the AC voltage source 1.
  • FIG. 4A is a schematic diagram in which the integrated magnetic component 2 according to Embodiment 1 is represented by a magnetoresistive network
  • FIG. 4B is a magnetic equivalent circuit of FIG. 4A. The meanings of the symbols in the figure are as follows.
  • the core shape of the integrated magnetic component 2 is, for example, a shape having three legs such as EE type or EI type.
  • the first winding 2a is wound around the first side leg 2i of the core
  • the second winding 2b is wound around the second side leg 2j of the core so as to cancel the DC magnetic fluxes to form a coupled reactor.
  • the third winding 2c is wound around the central leg 2h of the core in a direction in which the magnetic fluxes of the first winding 2a and the second winding 2b are strengthened to constitute a DC reactor.
  • a gap for preventing DC magnetic flux saturation is provided in the central leg 2h of the core. The gap may be configured such that the coupling degree of the coupling reactor and the coupling degree between the coupling reactor and the DC reactor are also adjusted to cancel the AC magnetic flux leaking from the gap.
  • the direct current magnetic flux is generated so as to join the central leg 2h of the core, and the direction is not changed unless the power transmission direction is changed, while the alternating magnetic flux is circulated through the side legs 2i, 2j of the switching element Sb, The direction changes each time Sd switches.
  • the central leg 2h of the core the circulating AC magnetic flux is always canceled in the opposite direction.
  • Magnetic fluxes ⁇ 1, ⁇ 2, and ⁇ c generated in the windings are expressed by (Equation 1) from the relationship between the magnetomotive forces of the cores of the side legs 2i and 2j of the core and the center leg 2h.
  • the relationship between the magnetic resistance R of the core and the magnetic permeability ⁇ is inversely proportional as shown in (Equation 20), where the magnetic permeability ⁇ , the core cross-sectional area Ae, and the circumference of the core are l.
  • Equation 20 the magnetic resistance R increases when the magnetic permeability ⁇ decreases with an increase in current, and the DC current ripple idc and AC expressed by (Equation 18) and (Equation 19) The current ripple iac increases.
  • the DC inductance of (Equation 21) is the leakage inductance of the first winding 2a and the second winding 2b that form a coupled reactor in the self-inductance 2Lc of the third winding 2c.
  • Lo-Mo, the third winding 2c and the first winding 2a, and the mutual inductance 4Mc of the third winding 2c and the second winding 2b are added and separated by magnetic integration. It can be seen that a high inductance can be obtained compared to the configuration, and that the DC inductance can be adjusted by the number of turns and the degree of coupling.
  • the DC inductance has the first winding 2a and the second winding of the AC reactor in addition to the self-inductance of the third winding 2c forming the DC reactor. Since it can form using the mutual inductance with the coil
  • FIG. 6 is an explanatory diagram for explaining the current i1 (current ripple) of the first winding 2a in the negative current path shown in FIG. 3 separately for the direct current ripple idc and the alternating current ripple iac.
  • FIG. 6 (1) is when D (duty) ⁇ 0.5
  • FIG. 6 (2) is when D> 0.5.
  • This figure is an example (idc ⁇ iac) in which the DC current ripple included in the current ripple of the coupled winding is smaller than the AC current ripple.
  • Duty D represents the ratio of on-time to period T.
  • the four modes of the state (a), the state (b), the state (c), and the state (d) are repeated depending on the operation state of the switching elements Sb and Sd.
  • the switching elements Sa and Sc operate complementarily to the switching elements Sb and Sd, respectively, for synchronous rectification.
  • the direct current ripple idc is an example smaller than the alternating current ripple iac
  • the direct current change amount of the coupled winding is 4 and the alternating current change amount is 6, the current change amount of the combined winding is the sum of these. Therefore, it becomes 10.
  • the current change amount of the third winding 2c which is a DC winding, is 8 in this case because the AC current change amount of the coupled winding is canceled and becomes twice the DC current change amount of the coupled winding.
  • the switching element Sb is turned off and the switching element Sd is turned off.
  • the third winding 2c, the first winding 2a, the switching element Sa, the load link capacitor 4, and the rectification A current loop returning to the AC voltage source 1 through the element Db is formed. Since no voltage change occurs between the first winding 2a and the second winding 2b, which are coupled windings of the integrated magnetic component 2, the AC current ripple iac does not change, and the outputs of the AC voltage source 1 and the link capacitor 4
  • the excitation is reset by the voltage, and only the DC current ripple idc of the first winding 2a decreases.
  • the current change amount of the combined winding is -4 because it is an addition of these.
  • the current change amount of the third winding 2c which is a DC winding, is canceled by the AC current change amount of the coupled winding and becomes twice the DC current change amount of the coupled winding.
  • the switching element Sb is off, the switching element Sd is on, and a current loop returning from the AC voltage source 1 to the AC voltage source 1 through the third winding 2c, the switching element Sd, and the rectifying element Db It is formed.
  • the first winding 2a and the second winding 2b form a coupling reactor in which the first winding 2a and the second winding 2b are magnetically coupled, an alternating current change occurs in the first winding 2a and the second winding 2b.
  • a current obtained by adding the DC current ripple idc and the AC current ripple iac having a negative slope flows through the first winding 2a, and the ripple current becomes smaller than that in the mode of the state (a).
  • the current change amount of the combined winding is ⁇ 2 because of the addition of these.
  • the current change amount of the third winding 2c, which is a DC winding, is 8 in this case because the AC current change amount of the combined winding is canceled and becomes twice the DC current change amount of the combined winding. .
  • the current change amount of the combined winding is -4 because it is an addition of these.
  • the current change amount of the third winding 2c which is a DC winding, is canceled by the AC current change amount of the coupled winding and becomes twice the DC current change amount of the coupled winding.
  • the period during which the current ripple of the coupled winding is maximum is the mode (a), and the slope is 10 in this example.
  • the slope of the current i1 of the first winding 2a which is the coupled winding, is positive in the interval of the state (a), and in the remaining period within the other one cycle.
  • the state (b), the state (c), and the state (d) there is a negative slope, and the current ripple frequency of the current i1 is the switching frequency.
  • the switching element Sb is on, the switching element Sd is off, and a coupling reactor magnetically coupled is formed in the first winding 2a and the second winding 2b, so that the alternating current ripple iac Increases, and the direct current ripple idc of the first winding 2a is attenuated because the excitation is reset.
  • the direct current change amount of the first winding 2a which is a combined winding is ⁇ 4 and the alternating current change amount is 6, the current change amount of the combined winding is 2 because it is an addition of these.
  • the current change amount of the third winding 2c which is a DC winding, is -8 in this case because the AC current change amount of the combined winding is canceled and becomes twice the DC current change amount of the combined winding. .
  • a current loop is formed from the AC voltage source 1 to the AC voltage source 1 through the third winding 2c, the switching elements Sb and Sd, and the rectifying element Db.
  • a magnetically coupled reactor is not formed in the first winding 2a and the second winding 2b, the AC current ripple iac is not changed in the first winding 2a, and the DC current ripple idc is not changed.
  • the current change amount of the third winding 2c which is a DC winding, is 8 in this case because the AC current change amount of the coupled winding is canceled and becomes twice the DC current change amount of the coupled winding.
  • the switching element Sb is off and the switching element Sd is on, and a magnetically coupled coupling reactor is formed in the first winding 2a and the second winding 2b, and the first winding
  • the AC current ripple iac that decreases and the DC current ripple idc that also attenuates attenuate in the line 2a, and a current ripple obtained by adding the AC current ripple iac and the DC current ripple idc is generated.
  • the direct current change amount of the first winding 2a which is a combined winding is ⁇ 4 and the alternating current change amount is ⁇ 6, the current change amount of the combined winding is -10 because of the addition of these.
  • the current change amount of the third winding 2c which is a DC winding, is canceled by the AC current change amount of the coupled winding and becomes twice the DC current change amount of the coupled winding.
  • the period during which the current ripple of the coupled winding is maximum is the mode (d), and in this example, the slope is ⁇ 10.
  • the slope of the current i1 of the first winding 2a that is the coupled winding is positive in the sections of the state (a), the state (b), and the state (c).
  • the state (d) which is the remaining period within one cycle other than the above, a negative slope is obtained, and the current ripple frequency of the current i1 is the switching frequency.
  • FIG. 7 schematically shows another example of current ripple generation when the switching element is driven.
  • the current i1 (current ripple) of the first winding 2a in the negative current path shown in FIG. 3 is an explanatory diagram divided into a direct current ripple idc and an alternating current ripple iac.
  • the difference from FIG. 6 is that the DC current ripple idc is smaller than the AC current ripple iac in FIG. 6 and the current frequency of the coupled winding is the switching frequency
  • FIG. It is an example when it is larger than the alternating current ripple iac, and is an explanatory diagram for explaining that the current frequency of the coupled winding is twice the switching frequency.
  • the operation as a circuit is the same as that in FIG. 6.
  • the first winding 2 a that is a coupled winding and the third winding that is a DC winding are determined from the relationship between the direct current ripple idc and the alternating current ripple iac.
  • the line 2c will be described.
  • the current waveform will be described assuming that the change amount of the DC current ripple of the AC winding is 6 and the change amount of the AC current ripple is 4.
  • the direct current change amount of the first winding 2a which is the coupled winding is -6
  • the alternating current change amount is 0,
  • the current change amount of the combined winding is the sum of these- 6
  • the current change amount of the third winding 2c which is a DC winding, cancels the AC current change amount of the combined winding and is twice the DC current change amount of the combined winding.
  • the direct current change amount of the first winding 2a which is a coupled winding
  • the alternating current change amount is ⁇ 4
  • the current change amount of the coupled winding is the sum of these, so 2 It becomes.
  • the current change amount of the third winding 2c which is a DC winding, is 12 in this case because the AC current change amount of the combined winding is canceled and becomes twice the DC current change amount of the combined winding.
  • the direct current change amount of the first winding 2a which is the coupled winding is -6
  • the alternating current change amount is 0,
  • the current change amount of the combined winding is the sum of these- 6
  • the current change amount of the third winding 2c which is a DC winding, cancels the AC current change amount of the combined winding and is twice the DC current change amount of the combined winding.
  • the slope of the current of the first winding 2a which is a coupled winding, is positive when either the switching element Sb or the switching element Sd of the lower arm of the converter is on, and the current gradient when both are off.
  • the slope is negative and the current ripple frequency is twice the switching frequency.
  • the period in which the current ripple of the coupled winding is maximum is the mode (a), and the slope is 10 in this example.
  • the direct current change amount of the first winding 2a which is the combined winding is -6
  • the alternating current change amount is 2
  • the current change amount of the combined winding is the sum of these- 2.
  • the current change amount of the third winding 2c which is a DC winding, cancels the AC current change amount of the combined winding and is twice the DC current change amount of the combined winding.
  • the amount of change in direct current of the first winding 2a which is a combined winding
  • the amount of change in alternating current is 0, and the amount of change in current in the combined winding is the addition of these.
  • the current change amount of the third winding 2c which is a DC winding, is 12 in this case because the AC current change amount of the combined winding is canceled and becomes twice the DC current change amount of the combined winding. .
  • the amount of change in direct current of the first winding 2a which is a coupled winding
  • the amount of change in alternating current is ⁇ 4
  • the amount of change in current in the coupled winding is the sum of these. -10.
  • the current change amount of the third winding 2c which is a DC winding, cancels the AC current change amount of the combined winding and is twice the DC current change amount of the combined winding.
  • the period during which the current ripple of the coupled winding is maximum is the mode (d), and the slope is ⁇ 10 in this example.
  • the slope of the current of the first winding 2a of the coupled winding in the state (a) and the state (c) in which both the switching element Sb and the switching element Sd are on is positive, and the switching element Sb or switching
  • the slope of the current during a period when only one of the elements Sd is on is negative, and the current ripple frequency is twice the switching frequency.
  • the first winding of the coupled winding is obtained when both the direct current ripple idc ⁇ the alternating current ripple iac and the direct current ripple idc> the alternating current ripple iac.
  • the current ripple of 2a is 10 and the same.
  • the current ripple of the third winding 2c which is a DC winding is 8 when the DC current ripple idc ⁇ AC current ripple iac, and 12 when the DC current ripple idc> AC current ripple iac.
  • the current ripple of the DC windings can be reduced if the relation of DC current ripple idc ⁇ AC current ripple iac is satisfied. Therefore, since the current ripple of the DC winding can be reduced, it can be seen that not only the AC copper loss of the DC winding can be reduced, but also the circuit input and output capacitors can be reduced in capacity and the filter can be simplified.
  • FIG. 8 (1) is a diagram in which the magnitude relationship between the DC current ripple idc and the AC current ripple iac of the coupled winding changes within the current range to be used.
  • FIG. 8 (2) shows the coupled winding within the current range to be used.
  • FIG. 5 is a diagram in which the magnitude relationship between the direct current ripple idc and the alternating current ripple iac remains unchanged. In both cases, the slope of the total current ripple of the coupled windings is the same with respect to the input current of the circuit, assuming 10.
  • the magnitude relationship is reversed such that the DC current ripple idc ⁇ AC current ripple iac is DC current ripple idc> AC current ripple iac as the current increases within the current range to be used. Then, even if the total current of the coupled winding is the same, the current waveform of the coupled winding becomes the same as the switching frequency when the current increases, and the AC copper loss can be reduced. Further, with the above configuration, the AC copper loss of the DC winding can be reduced because the DC current ripple idc of the coupling winding can be suppressed against the increase in the input current of the circuit.
  • Table 1 summarizes the features when the magnitude relationship between the DC current ripple idc of the coupled winding and the AC current ripple iac changes depending on the circuit current.
  • the DC winding Since the DC winding has a DC current twice that of the coupled winding, the effect of increased DC copper loss is significant at large currents, but the relationship of the current ripple of the coupled winding is DC current ripple idc> AC current If a characteristic that changes from ripple iac to DC current ripple idc ⁇ alternating current ripple iac is used, an increase in the AC copper loss of the DC winding can be suppressed, and an increase in the loss of the winding can be suppressed.
  • FIG. FIG. 9 is a diagram showing a circuit configuration of a power converter according to Embodiment 2 of the present invention.
  • This is a step-up PFC converter that rectifies the AC voltage of the AC voltage source 1 using a bridge diode 7 and outputs the rectified DC voltage to a DC terminal.
  • the positive terminal of the rectified bridge diode 7 is connected to one end of the third winding 2c that is the winding of the DC reactor of the integrated magnetic component 2 that integrates the coupling reactor and the DC reactor described in FIG. Point), the other end of the third winding 2c of the DC reactor is connected to one end of the first winding 2a and the second winding 2b which are the windings of the coupling reactor (point B).
  • the other ends of the first winding 2a and the other end of the second winding 2b are connected to AC ends of switching elements Sa, Sb, Sc, and Sd that constitute a bridge-type converter circuit having upper and lower arms, respectively. (C point, D point).
  • a link capacitor 4 as a load is connected to the DC terminal of the converter circuit.
  • the rectified negative electrode terminal is connected to the negative electrode at the DC end of the converter circuit and the negative electrode of the link capacitor 4.
  • the current ripple is the same as that described with reference to FIGS. 6 and 7 in the first embodiment, and the same effect can be obtained.
  • the switching elements Sb and Sd of the lower arm are controlled as in the first embodiment, and the power transmission direction is the direction from the link capacitor 4 to the voltage source. Then, the switching elements Sa and Sc of the upper arm are controlled in the same manner as in the first embodiment.
  • FIG. FIG. 10 is a diagram showing a circuit configuration of a power converter according to Embodiment 3 of the present invention.
  • a DC-DC converter that boosts the DC voltage of the DC voltage source 8, wherein the positive terminal of the DC voltage source 8 is a winding of a DC reactor of the integrated magnetic component 2 in which the coupling reactor and the DC reactor are integrated.
  • the other end of the third winding 2c of the DC reactor is connected to one end of the first winding 2a and the second winding 2b which are the windings of the coupling reactor.
  • point B the other end of the third winding 2c of the DC reactor is connected to one end of the first winding 2a and the second winding 2b which are the windings of the coupling reactor.
  • the other end C of the first winding 2a and the other end of the second winding 2b are connected to AC ends of bridge-type converter circuits Sa, Sb, Sc, Sd having upper and lower arms, respectively (point C, D point).
  • a link capacitor 4 as a load is connected to the DC terminal of the converter circuit.
  • the negative terminal of the DC voltage source 1 is connected to the negative terminal of the DC terminal of the converter circuit and the negative terminal of the link capacitor 4.
  • the switching elements Sb and Sd of the lower arm are controlled as in the first embodiment, and the power transmission direction is from the link capacitor 4 to the DC voltage source 8.
  • the upper arm switching elements Sa and Sc are controlled in the same manner as in the first embodiment.
  • FIG. 11 is a diagram showing a circuit configuration of a power converter according to Embodiment 4 of the present invention.
  • the interleaved leg is composed of N phases, and a schematic diagram of current ripple in this circuit configuration is shown in FIG. Only the legs are switched at a timing of 360 ° / N, the frequency of the current ripple is increased proportionally and the on-time is shortened accordingly, so that the value of the current ripple itself can be reduced.
  • the capacitance of the input / output capacitors is reduced, and the current ripple frequency of the power supply and the load is N times the switching frequency, so that the power supply filter can be downsized.
  • the effect of reducing current ripple is similar to the operation described in the first embodiment, and the same effect can be obtained.
  • 1 AC voltage source 2 integrated magnetic component, 2a first winding, 2b second winding, 2c third winding, 2n nth winding, 2i first side leg, 2j second side Leg, 2h center leg, 3 converter circuit, Sa, Sb, Sc, Sd, SnP, SnN switching element, Da, Db rectifier element, 4 link capacitor, 5 load, 6 current sensor, 7 bridge diode, 8 DC voltage source, 10 control circuit, 10a input current information, 10b input voltage information, 10c DC output voltage information, 10d drive signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

直流巻線と複数の結合巻線とが1つの磁性体に巻回され、直流巻線の一端が電圧源に接続され、他端に複数の結合巻線の各一端が接続され、複数の結合巻線の各他端がスイッチング素子からなる複数の上下アームの各中間接続点に接続され、直流巻線と結合巻線に流れる電流により発生する磁束が互いに同方向で合流するように構成されたリアクトルと、スイッチング素子を制御する制御装置とを備え、スイッチング動作のデューティの大きさと、結合巻線の電流リプルを構成する直流電流リプルと交流電流リプルの大小に応じて上アームまたは下アームのスイッチングを制御することを特徴とする電流変換装置。

Description

電力変換装置
 この発明は、直流電圧と直流電圧、又は交流電圧と直流電圧を変換する電力変換装置に関する。
 従来の電力変換器は、例えば、ブリッジレスPFC(Power Factor Correction)の回路構成で、スイッチングするレグの電流を2分配し、それぞれのレグにリアクトルを設け、インターリーブ動作させる構成が知られている(例えば、特許文献1参照)。また、磁気統合回路の構成では、各々の直流磁束を互いにキャンセルする回路構成が知られている(例えば、特許文献2参照)。
特許5210331号公報 特許5144284号公報
 特許文献1に示す電力変換器のスイッチング電源装置は、スイッチングするレグをN相設け、位相を360度/Nずらしてスイッチングし、電流の分流機能による低損失化と入出力電流リプルの低減を実現する構成としていた。しかしながら、N相設けたリアクトルを統合して小型化すると共に、統合したリアクトルの巻線に流れるリプル電流の低減についてはなんら開示がない。また特許文献2には、磁気回路の統合について開示されているが、コアの巻線が、直流磁束が互いにキャンセルする方向に巻回されているため、直流磁束による磁束飽和の防止はできるが、直流インダクタンスが漏れ磁束でしか構成できない課題があった。この発明は、このような問題点を解消するために成されたものであって、複数のリアクトルを1つのコアに磁気統合し、電流リプルを抑制し、電源フィルタの小型化を可能とする電力変換装置の提供を目的とする。
 この発明に係る電力変換装置において、直流巻線と複数の結合巻線とが1つの磁性体に巻回され、前記直流巻線の一端が電圧源に接続され、前記直流巻線の他端に前記複数の結合巻線の各一端が接続され、前記複数の結合巻線の各他端がスイッチング素子からなる複数の上下アームの各中間接続点に接続され、前記直流巻線と前記結合巻線に流れる電流により発生する磁束が互いに同方向で合流するように構成されたリアクトルと、スイッチング素子を制御する制御装置とを備え、並列する上下アームを互いに180度ずらしてスイッチング動作させるとともに、スイッチング動作のデューティの大きさと、結合巻線の電流リプルを構成する直流電流リプルと交流電流リプルの大小に応じて上アームまたは下アームのスイッチングを制御することを特徴とする。
 この発明の電力変換装置によれば、結合巻線の直流電流リプルと交流電流リプルの大小に応じてスイッチング制御することにより、結合巻線の損失を抑制することができる。
この発明の実施の形態1による電力変換装置の回路構成図である。 図1の回路の正極時の電流経路を説明する説明図である。 図1の回路の負極時の電流経路を説明する説明図である。 この発明の実施の形態1の統合磁気部品を磁気抵抗網で記した模式図である。 図4Aの磁気等価回路図である。 この発明の実施の形態1によるコア材のBH特性が非線形であることを説明する説明図である。 図3に示した負極電流経路時の電流リプルの発生を模式的に説明する説明図である。 負極電流経路時の電流リプルの発生を模式的に説明する別の説明図である。 結合巻線と直流巻線の特性を説明する説明図である。 この発明の実施の形態2による電力変換装置の回路構成図である。 この発明の実施の形態3による電力変換装置の回路構成図である。 この発明の実施の形態4による電力変換装置の回路構成図である。 この発明の実施の形態4による電力変換装置の回路構成での電流リプルの模式図である。 この発明の実施の形態1から4の制御回路のハードウエア構成図である。
実施の形態1.
 図1は、この発明の実施の形態1による電力変換装置の回路構成を示し、図2は図1の回路の正極時の電流経路を、図3は図1の回路の負極時の電流経路を模式的に示した説明図である。  
 図1に示すように、交流電圧源1は、1端が統合磁気部品2を構成する第3の巻線2cの一端に接続され(A点)、第3の巻線2cのもう一端は第1の巻線2aと第2の巻線2bが接続された点(B点)に接続される。第1の巻線2aと第2の巻線2bは、コンバータ回路3の上下アーム間にそれぞれ接続され(C点、D点)、コンバータ回路3の出力は、リンクコンデンサ4を経て負荷5に接続される。
 コンバータ回路3の直列に接続された整流素子Da、Dbの中点には交流電圧源1のもう1端が接続され、整流素子Daのカソードはリンクコンデンサ4の正極に、整流素子Dbのアノードはリンクコンデンサ4の負極に接続される。
 制御回路10は、電流センサ6からの入力電流情報10aと、交流電圧源1からの入力電圧情報10bと、出力電圧であるリンクコンデンサ4の電圧情報10cとから、コンバータ回路3を駆動する駆動信号10dを生成し、目標出力電圧となるよう制御し、さらに交流電圧と交流電流位相が同期した高力率動作となるよう制御する。
 なお、制御回路10は、図13に示すように、プロセッサ(MPU)とメモリに格納されたコンピュータプログラムの組合せによって実現してもよいし、ASIC等の専用のハードウエアによって実現してもよいし、FPGAのような再構成可能なゲートアレイによって実現してもよいし、これらの組合せによって実現してもよい。
 図2に、図1で示された実施の形態1の電力変換器の回路の交流入力電圧が正極時の電流経路を示す(図中矢印)。
 交流電圧源1からの電流は、コンバータ回路3の整流素子Daからリンクコンデンサ4を経て、コンバータ回路3のオンしているスイッチング素子Sb、Sdに分流され、統合磁気部品2にて電流が合成され、交流電圧源1に戻る。この時、コンバータ回路3のスイッチング素子Sa、Scをスイッチング動作することで、統合磁気部品2を励磁し交流電圧源1の電圧を昇圧する。
 図3に、図1で示された実施の形態1の電力変換器の回路の交流入力電圧が負極時の電流経路を示す(図中矢印)。
 交流電圧源1からの電流は、統合磁気部品2に入り、コンバータ回路3のオンしているスイッチング素子Sa、Scに分流され、リンクコンデンサ4に入り、コンバータ回路3の整流素子Dbを経て交流電圧源1に戻る。この時、コンバータ回路3のスイッチング素子Sb、Sdの位相を180度ずらしてスイッチング動作させることで、統合磁気部品2を励磁し交流電圧源1の電圧を昇圧する。
 次に、上述した統合磁気部品2の構成について説明し、統合磁気部品2の直流インダクタンスと交流インダクタンスと、電流リプルの式を記す。以下、図3の負極時の電流経路の例で下アームを構成するスイッチング素子Sb、Sdの制御を説明するが、図2の正極時の電流経路でスイッチング素子Sa、Scを制御することにより、同様な動作及び効果を奏する。
 図4Aは実施の形態1の統合磁気部品2を磁気抵抗網で記した模式図、図4Bは図4Aの磁気等価回路である。図中の記号の意味は以下の通りである。
No:第1の巻線2a、第2の巻線2bの巻数
Nc:第3の巻線2cの巻数
ic:第3の巻線2cの電流
i1:第1の巻線2aの電流
i2:第2の巻線2bの電流
Ro:コアの第1の側脚2i、第2の側脚2jの磁気抵抗
Rc:コアの中央脚2hの磁気抵抗
φ1:コアの第1の側脚2iの磁束
φ2:コアの第2の側脚2jの磁束
φc:コアの中央脚2hの磁束
 図4Aにおいて、統合磁気部品2のコア形状としては、例えば、EE型もしくはEI型等の3脚を有する形状であって、第1の巻線2aはコアの第1の側脚2iに、第2の巻線2bはコアの第2の側脚2jに互いに直流磁束を打ち消すように巻回して結合リアクトルを形成する。第3の巻線2cはコアの中央脚2hに第1の巻線2aと第2の巻線2bの磁束を強め合う方向に巻回し、直流リアクトルを構成する。コアの中央脚2hには直流の磁束飽和を防止するためのギャップが設けられている。ギャップは、結合リアクトルの結合度、及び結合リアクトルと直流リアクトルとの結合度の調整も行い、ギャップから漏れる交流磁束をキャンセルする構造としてもよい。
 直流の磁束は、コアの中央脚2hに合流するように生じ、電力伝送方向が変わらない限り向きは変わらず、一方、交流磁束はコアの側脚2i、2jを循環するようにスイッチング素子Sb、Sdがスイッチングする度に向きが変わる。コアの中央脚2hでは、この循環する交流磁束は常に向きが逆であるため打ち消される。
 この統合磁気部品2のインダクタンスが自己インダクタンスと相互インダクタンスと漏れインダクタンスで構成されていることを次に示す。
巻線に生じる磁束φ1、φ2、φcは、コアの側脚2i、2jと中央脚2hのそれぞれのコアの起磁力の関係から(式1)で表わされる。
Figure JPOXMLDOC01-appb-M000001
 
 第1の巻線2aに生じる電圧をV1、第2の巻線2bに生じる電圧をV2、第3の巻線2cに生じる電圧をVcとすると、
V1=Nodφ1/dt、V2=Nodφ2/dt、Vc=Ncdφc/dtより、
(式1)を変形すると、V1、V2、Vcは(式2)と(式3)で表わされ
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
 
 第1の巻線2aと第2の巻線2b、コアの第1の側脚2iと第2の側脚2jは対称であるため、
第1の側脚2i、第2の側脚2jの自己インダクタンスをLo、
中央脚2hの自己インダクタンスをLc
第1の側脚2i、第2の側脚2jの相互インダクタンスをMo、
中央脚2hと、第1の側脚2i、第2の側脚2jとの相互インダクタンスをMcとすると、
(式2)は(式4)のように表わされる。
Figure JPOXMLDOC01-appb-M000004
 
 ic=i1+i2より、(式4)を変形すると(式5)が得られる。
Figure JPOXMLDOC01-appb-M000005
 
 また、(式2)、(式3)と(式4)の比較により、Lo、Lc、Mo、Mcはそれぞれ以下で(式6)から(式9)で示される。
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000009
 
 また、第1の巻線2aと第2の巻線2bの結合度をko、第1の巻線2a、第2の巻線2bと第3の巻線2cとの結合度をkcとすると、ko、kcはそれぞれ(式10)、(式11)で表わされる。
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-M000011
 
 第3の巻線2cと第1の巻線2aとの間の電圧をV1e(A-C間)、第3の巻線2cと第2の巻線2bとの間の電圧をV2e(A-D間)とすると、それぞれ(式12)、(式13)で表わされる。
Figure JPOXMLDOC01-appb-M000012
 
Figure JPOXMLDOC01-appb-M000013
 
 この(式12)、(式13)において、
入力電圧をVin、出力電圧をVoutとすると、
例えば、図3の電流経路において、巻線に接続されるスイッチング素子Sbがオン、スイッチング素子Sdがオフする場合、
V1e=Vin
V2e=Vin-Vout
巻線に接続されるスイッチング素子Sdがオン、スイッチング素子Sbがオフする場合、
V1e=Vin-Vout
V2e=Vin
巻線に接続されるスイッチング素子Sbがオフ、スイッチング素子Sdがオフする場合、
V1e=Vin-Vout
V2e=Vin-Vout
巻線に接続されるスイッチング素子Sbがオン、スイッチング素子Sdがオンする場合、
V1e=Vin
V2e=Vin
となる。
(式12)、(式13)に(式5)を代入すると、V1e、V2eは(式14)で表わされる。
Figure JPOXMLDOC01-appb-M000014
 
電流i1、i2は(式15)のように直流成分idcと交流成分iacで表わされる。
Figure JPOXMLDOC01-appb-M000015
 
これら電流の直流成分と交流成分について、(式14)と(式15)を用いると(式16)(式17)で表わされる。
Figure JPOXMLDOC01-appb-M000016
 
Figure JPOXMLDOC01-appb-M000017
 
また(式16)、(式17)の、
Figure JPOXMLDOC01-appb-M000018
 
を(式6)から(式9)を用いて表わすと(式18)、(式19)で表わされる。
Figure JPOXMLDOC01-appb-M000019
 
Figure JPOXMLDOC01-appb-M000020
 
 一般に、コアの磁気抵抗Rと透磁率μの関係は、透磁率μ、コア断面積Ae、コアの周長をlとすると、(式20)に示すように反比例の関係にあるため、
Figure JPOXMLDOC01-appb-M000021
 
 コア材のBH特性が図5に示すように非線形の場合、透磁率μが電流増加によって低下すると磁気抵抗Rが増加し、(式18)、(式19)で表わされる直流電流リプルidc、交流電流リプルiacは増加する。
 中央脚2hにギャップを設けた構造等のようにRc>>Roであると、電流増加に対する電流リプルの増加分は直流電流リプルidcより交流電流リプルiacの方が大きくなり、電流が小さいところでは、例えば、直流電流リプルidc>交流電流リプルiacであっても、電流の大きいところでは直流電流リプルidc<交流電流リプルiacとなり得ることを示す。
 直流インダクタンスLdc、交流インダクタンスLacとすると、(式18)、(式19)よりそれぞれ(式21)、(式22)で表わされる
Figure JPOXMLDOC01-appb-M000022
 
Figure JPOXMLDOC01-appb-M000023
 
 電流リプルは、(式18)、(式19)にコアの形状、及び巻線電流によって決まる磁気抵抗と、入力と出力の電圧関係、及びスイッチング時間を代入すれば求めることができる。
 次に、インダクタンスに着目すると、(式21)の直流インダクタンスは、第3の巻線2cの自己インダクタンス2Lcに、結合リアクトルを形成する第1の巻線2aと第2の巻線2bの漏れインダクタンスLo-Moと、第3の巻線2cと第1の巻線2a、及び第3の巻線2cと第2の巻線2bの相互インダクタンス4Mcとが加算されており、磁気統合により、別体構成と比べて高インダクタンスが得られること、巻数や結合度により直流インダクタンスの調整ができることがわかる。
 このように本発明の実施の形態1の統合磁気部品2は、直流インダクタンスが、直流リアクトルを形成する第3の巻線2cの自己インダクタンスに加え、交流リアクトルの第1の巻線2a、第2の巻線2bとの相互インダクタンスと、結合リアクトルの漏れインダクタンスとを用いて形成できるため、小型で高インダクタンスなリアクトルが実現できる。
 さらにコアの形状をEE、若しくはEIのように3脚を有するコア形状とした場合、中央脚2hのギャップから漏れ磁束が生じず、中央脚2hに巻回する第3の巻線2cに渦電流損が発生せずにインダクタンス、及び漏れインダクタンスを構成でき、電源のフィルタとしての機能分担も可能となる。
 このような統合磁気部品2を用いた電流リプルの低減について、スイッチング素子の制御との関係で以下に説明する。
 まず、図6において、スイッチング素子駆動時の電流リプルの発生の一例を模式的に説明する。図6は、図3に示した負極電流経路時の第1の巻線2aの電流i1(電流リプル)について、直流電流リプルidcと交流電流リプルiacに分けて説明した説明図である。図6(1)が、D(デューティ)<0.5の時であり、図6(2)が、D>0.5の時である。
 また、本図は、結合巻線の電流リプルに含まれる直流電流リプルが、交流電流リプルより小さい例(idc<iac)である。デューティDは、周期Tに対するオン時間の比率を表す。
 動作モードとしてはスイッチング素子Sb、Sdの動作状態により状態(a)、状態(b)、状態(c)、状態(d)の4モードを繰り返す動きとなる。なお、スイッチング素子Sa、Scは同期整流用としてそれぞれスイッチング素子Sb、Sdと相補的に動作する。
(1)D<0.5の時
 状態(a)は、スイッチング素子Sbがオン、スイッチング素子Sdがオフであり、交流電圧源1から第3の巻線2c、第1の巻線2a、スイッチング素子Sb、整流素子Dbを通り交流電圧源1へ戻る電流ループが形成される。
 この時、第1の巻線2aと第2の巻線2bが磁気的に結合した結合リアクトルを形成しているため、第1の巻線2aと第2の巻線2bには交流電流リプルiacが生じ、結合巻線には直流電流リプルidcと交流電流リプルiacが加算された電流リプルが生じる。ここでは直流電流リプルidcが交流電流リプルiacより小さい例であるため、仮に結合巻線の直流電流変化量を4、交流電流変化量を6とすると、結合巻線の電流変化量はこれらの足し算であるため10となる。
 直流巻線である第3巻線2cの電流変化量は、結合巻線の交流電流変化量がキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では8となる。
 状態(b)は、スイッチング素子Sbがオフ、スイッチング素子Sdがオフであり、交流電圧源1から第3の巻線2c、第1の巻線2a、スイッチング素子Sa、負荷のリンクコンデンサ4、整流素子Dbを通り交流電圧源1へ戻る電流ループが形成される。
 統合磁気部品2の結合巻線である第1の巻線2a、第2の巻線2b間に電圧変化が生じないため交流電流リプルiacは変化せず、交流電圧源1とリンクコンデンサ4の出力電圧にて励磁がリセットされて、第1の巻線2aの直流電流リプルidcのみが減少する。
結合巻線である第1の巻線2aの直流電流変化量を-4、交流電流変化量を0とすると、結合巻線の電流変化量はこれらの足し算であるため-4となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量がキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では-8となる。
 状態(c)は、スイッチング素子Sbがオフ、スイッチング素子Sdがオンであり、交流電圧源1から第3の巻線2c、スイッチング素子Sd、整流素子Dbを通り交流電圧源1へ戻る電流ループが形成される。
 この時、第1の巻線2aと第2の巻線2bが磁気的に結合した結合リアクトルを形成しているため、第1の巻線2aと第2の巻線2bには交流電流変化が生じ、その結果、第1の巻線2aには直流電流リプルidcとマイナスの傾きを持った交流電流リプルiacが加算された電流が流れ、状態(a)のモードよりもリプル電流は小さくなる。
 結合巻線である第1の巻線2aの直流電流変化量を4、交流電流変化量を-6とすると、結合巻線の電流変化量はこれらの足し算であるため-2となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量がキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では8となる。
 状態(d)は、状態(b)と同様、スイッチング素子Sbがオフ、スイッチング素子Sdがオフであり、交流電圧源1から第3の巻線2c、第1の巻線2a、スイッチング素子Sa、負荷のリンクコンデンサ4、整流素子Dbを通り交流電圧源1へ戻る電流ループが形成される。
 統合磁気部品2の結合巻線である第1の巻線2a、第2の巻線2b間に電圧変化が生じないため交流電流リプルiacは変化せず、交流電圧1とリンクコンデンサ4の出力電圧にて励磁がリセットされて、第1の巻線2aの直流電流リプルidcのみが減少する。
 結合巻線である第1の巻線2aの直流電流変化量を-4、交流電流変化量を0とすると、結合巻線の電流変化量はこれらの足し算であるため-4となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量がキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では-8となる。
 以上4モードの中で、結合巻線の電流リプルが最大となる期間は状態(a)のモードであり、この例では傾きが10である。
 スイッチング素子Sbがオンしている時、状態(a)の区間では、結合巻線である第1の巻線2aの電流i1の傾きは正であり、それ以外の1周期内の残りの期間である、状態(b)、状態(c)、状態(d)では負の傾きとなり、電流i1の電流リプル周波数は、スイッチング周波数となる。
(2)D>0.5の時
 状態(a)は、スイッチング素子Sbがオン、スイッチング素子Sdがオンであり、交流電圧源1から第3の巻線2c、スイッチング素子Sb、Sd、整流素子Dbを通り交流電圧源1へ戻る電流ループが形成される。
 この時、第1の巻線2aと第2の巻線2bには磁気的に結合した結合リアクトルが形成されず、第1の巻線2aに交流電流リプルに変化はなく、直流電流リプルidcのみが増加する。
 結合巻線である第1の巻線2aの直流電流変化量を4、交流電流変化量を0とすると、結合巻線の電流変化量はこれらの足し算であるため4となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量がキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では8となる。
 状態(b)は、スイッチング素子Sbがオン、スイッチング素子Sdがオフであり、第1の巻線2aと第2の巻線2bには磁気的に結合した結合リアクトルが形成されて交流電流リプルiacが増加し、第1の巻線2aの直流電流リプルidcは励磁がリセットされるため減衰する。
 結合巻線である第1の巻線2aの直流電流変化量を-4、交流電流変化量を6とすると、結合巻線の電流変化量はこれらの足し算であるため2となる。
 直流巻線である第3巻線2cの電流変化量は、結合巻線の交流電流変化量がキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では-8となる。
 状態(c)は、状態(a)と同様、交流電圧源1から第3の巻線2c、スイッチング素子Sb、Sd、整流素子Dbを通り交流電圧源1へ戻る電流ループが形成される。
 この時、第1の巻線2aと第2の巻線2bには磁気的に結合した結合リアクトルが形成されず、第1の巻線2aに交流電流リプルiacに変化はなく、直流電流リプルidcが増加する。
 結合巻線である第1の巻線2aの直流電流変化量を4、交流電流変化量を0とすると、結合巻線の電流変化量はこれらの足し算であるため4となる。
 直流巻線である第3巻線2cの電流変化量は、結合巻線の交流電流変化量がキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では8となる。
 状態(d)は、スイッチング素子Sbがオフ、スイッチング素子Sdがオンであり、第1の巻線2aと第2の巻線2bには磁気的に結合した結合リアクトルが形成され、第1の巻線2aには減少する交流電流リプルiacと、同じく減衰する直流電流リプルidcは減衰し、これら交流電流リプルiacと直流電流リプルidcの加算された電流リプルが生じることになる。
 結合巻線である第1の巻線2aの直流電流変化量を-4、交流電流変化量を-6とすると、結合巻線の電流変化量はこれらの足し算であるため-10となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量がキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では-8となる。
以上4モードの中で、結合巻線の電流リプルが最大となる期間は(d)のモードであり、この例では、傾きは-10である。
 スイッチング素子Sbがオンしている時、状態(a)、状態(b)、状態(c)の区間では、結合巻線である第1の巻線2aの電流i1の傾きは正であり、それ以外の1周期内の残りの期間である、状態(d)では負の傾きとなり、電流i1の電流リプル周波数は、スイッチング周波数となる。
 次に図7に、スイッチング素子駆動時の電流リプル発生の別の一例を模式的に示す。図6同様、図3に示した負極電流経路時の第1の巻線2aの電流i1(電流リプル)について、直流電流リプルidcと交流電流リプルiacに分けて説明した説明図である。
 図6との違いは、図6では直流電流リプルidcが交流電流リプルiacより小さい場合であって、結合巻線の電流周波数がスイッチング周波数であるのに対し、図7は、直流電流リプルidcが交流電流リプルiacより大きい場合の例であり、結合巻線の電流周波数がスイッチング周波数の2倍となることを説明する説明図である。
 回路としての動作は図6と同じで、モード毎に、直流電流リプルidcと交流電流リプルiacの関係から、結合巻線である第1の巻線2a、および直流巻線である第3の巻線2cについて説明する。
 ここでは理解容易のため交流巻線の直流電流リプルの変化量を6、交流電流リプルの変化量を4として電流波形を説明する。
(1)D<0.5の時
 状態(a)では、結合巻線である第1の巻線2aの直流電流変化量は6、交流電流変化量は4であり、結合巻線の電流変化量はこれらの足し算であるため10となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量はキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では12となる
 状態(b)では、結合巻線である第1の巻線2aの直流電流変化量は-6、交流電流変化量は0であり、結合巻線の電流変化量はこれらの足し算であるため-6となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量はキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では-12となる
 状態(c)では、結合巻線である第1の巻線2aの直流電流変化量は6、交流電流変化量は-4であり、結合巻線の電流変化量はこれらの足し算であるため2となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量はキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では12となる
 状態(d)では、結合巻線である第1の巻線2aの直流電流変化量は-6、交流電流変化量は0であり、結合巻線の電流変化量はこれらの足し算であるため-6となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量はキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では-12となる
 結合巻線である第1の巻線2aの電流の傾きは、コンバータの下アームのスイッチング素子Sb、またはスイッチング素子Sdのいずれかがオンの時は正であり、両方ともオフの時の電流の傾きは負となり、電流リプル周波数はスイッチング周波数の2倍となる。
以上4モードの中で、結合巻線の電流リプルが最大となる期間は(a)のモードであり、この例では傾きは10である。
(2)D>0.5の時
 状態(a)では、結合巻線である第1の巻線2aの直流電流変化量は6、交流電流変化量は0であり、結合巻線の電流変化量はこれらの足し算であるため6となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量はキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では12となる
 状態(b)では、結合巻線である第1の巻線2aの直流電流変化量は-6、交流電流変化量は2であり、結合巻線の電流変化量はこれらの足し算であるため-2となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量はキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では-12となる
 状態(c)では、結合巻線である第1の巻線2aの直流電流変化量は6、交流電流変化量は0であり、結合巻線の電流変化量はこれらの足し算であるため6となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量はキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では12となる。
 状態(d)では、結合巻線である第1の巻線2aの直流電流変化量を-6、交流電流変化量は-4であり、結合巻線の電流変化量はこれらの足し算であるため-10となる。
 直流巻線である第3の巻線2cの電流変化量は、結合巻線の交流電流変化量はキャンセルされ、結合巻線の直流電流変化量の2倍となるため、この場合では-12となる。
以上4モードの中で、結合巻線の電流リプルが最大となる期間は(d)のモードであり、この例では傾きは-10である。
る。
 スイッチング素子Sb、スイッチング素子Sdがともにオンしている期間である状態(a)、状態(c)の結合巻線の第1の巻線2aの電流の傾きは正であり、スイッチング素子Sbもしくはスイッチング素子Sdのどちらか片方のみがオンする期間の電流の傾きは負となり、電流リプル周波数はスイッチング周波数の2倍となる。
 以上のように図6、図7の比較において、直流電流リプルidc<交流電流リプルiacの条件のときも、直流電流リプルidc>交流電流リプルiacのときも、結合巻線の第1の巻線の2aの電流リプルは10で同じである。しかし、直流巻線である第3の巻線2cの電流リプルは直流電流リプルidc<交流電流リプルiacの時は8、直流電流リプルidc>交流電流リプルiacの時は12であり、このことは、結合巻線の電流リプルが同じでも、直流電流リプルidc<交流電流リプルiacの関係とすれば直流巻線の電流リプルを小さくすることが可能であることを示している。従って、直流巻線の電流リプルを小さくできるので、直流巻線の交流銅損低減はもとより、回路の入力および出力コンデンサの低容量化およびフィルタの簡素化が可能となることがわかる。
 次に統合磁気部品2に使用するコア材のBH特性が非線形である場合、つまり回路の入力電流によって結合巻線および直流巻線の電流リプルが変化する場合の、結合巻線と直流巻線の特性について図8を用いて説明する。
 図8(1)は、使用する電流範囲内において、結合巻線の直流電流リプルidcと交流電流リプルiacの大小関係が変わる図で、図8(2)は使用する電流範囲内において結合巻線の直流電流リプルidcと交流電流リプルiacの大小関係が変わらない図である。
 ともに回路の入力電流に対して、結合巻線の合計電流リプルの傾きを10として同じとしてある。
 図8(1)のように、使用する電流範囲内で、電流増加につれて直流電流リプルidc<交流電流リプルiacが、直流電流リプルidc>交流電流リプルiacのように、大小関係が逆転するようにすれば、結合巻線の合計電流は同じでも、電流増加時に結合巻線の電流波形がスイッチング周波数と同じとなり、交流銅損の低減ができる。
 また上記構成とすれば、直流巻線の交流銅損は、結合巻線の直流電流リプルidcが回路の入力電流増加に対して抑えられるため低減できる。
 以上、回路の電流によって、結合巻線の直流電流リプルidcと交流電流リプルiacの大小関係が変わる構成にした場合の特長を表1にまとめる。
Figure JPOXMLDOC01-appb-T000024
 
 回路の電流が大きくなる時に、巻線の直流銅損や、コア材の透磁率の低下による電流リプルの増加すること、それに伴う交流銅損が増加することは致し方ないが、大電流時において、結合巻線の電流リプルの関係が、直流電流リプルidc>交流電流リプルiacから、直流電流リプルidc<交流電流リプルiacの関係に変化する特性を利用すれば、結合巻線の電流周波数が2fswからfswへと下がるため、結合巻線の交流銅損の増加を抑制することが出来る。
 直流巻線には結合巻線の2倍の直流電流が流れるため、大電流時には直流銅損の増加による影響が顕著であるが、結合巻線の電流リプルの関係が直流電流リプルidc>交流電流リプルiacから、直流電流リプルidc<交流電流リプルiacの関係に変化する特性を利用すれば、直流巻線の交流銅損の増加が抑えられ、巻線の損失増加を抑制することができる。
実施の形態2.
 図9は、この発明の実施の形態2による電力変換器の回路構成を示した図である。
 交流電圧源1の交流電圧をブリッジダイオード7により整流し、整流後の直流電圧を直流端子に出力する昇圧型のPFCコンバータである。整流後のブリッジダイオード7の正極端子は、図1で説明した、結合リアクトルと直流リアクトルを統合した統合磁気部品2の直流リアクトルの巻線である第3の巻線2cの一端に接続され(A点)、直流リアクトルの第3の巻線2cの他端には結合リアクトルの巻き線である第1の巻線2aと第2の巻線2bの一端が接続される(B点)。第1の巻線2aの他端および第2の巻線2bの他端には、上下アームを有するブリッジ型のコンバータ回路を構成するスイッチング素子Sa、Sb、Sc、Sdの交流端がそれぞれ接続される(C点、D点)。コンバータ回路の直流端には負荷であるリンクコンデンサ4が接続される。整流後の負極端子は、コンバータ回路の直流端の負極と、リンクコンデンサ4の負極に接続された構成である。
 電流リプルについては実施の形態1にて図6、及び図7を用いて説明した内容と同じであり、同様な効果が得られる。この場合、電力伝送方向がブリッジダイオード7からリンクコンデンサ4の方向では、下アームのスイッチング素子Sb、Sdを実施の形態1のように制御し、電力伝送方向がリンクコンデンサ4から電圧源への方向では、上アームのスイッチング素子Sa、Scを実施の形態1と同様に制御する。
実施の形態3.
 図10は、この発明の実施の形態3による電力変換器の回路構成を示した図である。
 直流電圧源8の直流電圧を昇圧するDC-DCコンバータであって、直流電圧源8の正極端子は、結合リアクトルと直流リアクトルを統合した統合磁気部品2の直流リアクトルの巻線である第3の巻線2cの一端に接続され(A点)、直流リアクトルの第3の巻線2cの他端には結合リアクトルの巻き線である第1の巻線2aと第2の巻線2bの一端が接続される(B点)。第1の巻線2aの他端Cおよび第2巻線2bの他端には、上下アームを有するブリッジ型のコンバータ回路Sa、Sb、Sc、Sdの交流端がそれぞれ接続される(C点、D点)。コンバータ回路の直流端には負荷であるリンクコンデンサ4が接続される。直流電圧源1の負極端子は、コンバータ回路の直流端の負極と、リンクコンデンサ4の負極に接続された構成である。
 電流リプルについては実施の形態1にて図6、及び図7を用いて説明した内容と同じであり、同様な効果が得られる。この場合、電力伝送方向が直流電圧源8からリンクコンデンサ4の方向では、下アームのスイッチング素子Sb、Sdを実施の形態1のように制御し、電力伝送方向がリンクコンデンサ4から直流電圧源8への方向では、上アームのスイッチング素子Sa、Scを実施の形態1と同様に制御する。
実施の形態4.
 図11は、この発明の実施の形態4による電力変換器の回路構成を示した図である。
 実施の形態3のDC-DCコンバータにおいて、インターリーブを行うレグをN相で構成したものであり、この回路構成での電流リプルの模式図を図12に示す。360°/Nのタイミングで各レグをスイッチング動作するだけであり、それにつれて電流リプルの周波数が比例して上がり、オン時間が短くなるので電流リプルの値そのものを小さくすることができる。これにより、入出力のコンデンサの低容量化と、電源と負荷の電流リプル周波数がスイッチング周波数のN倍となるため、電源フィルタの小型化が可能となる。電流リプルが低減する効果については、実施の形態1で説明した動作と同様であり、同様な効果が得られる。
 なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 図中、同一符号は、同一または相当する構成、機能を有する部分を示す。
1 交流電圧源、2 統合磁気部品、2a 第1の巻線、2b 第2の巻線、2c 第3の巻線、2n 第nの巻線、2i 第1の側脚、2j 第2の側脚、2h 中央脚、3 コンバータ回路、Sa、Sb、Sc、Sd、SnP、SnN スイッチング素子、Da、Db 整流素子、4 リンクコンデンサ、5 負荷、6 電流センサ、7 ブリッジダイオード、8 直流電圧源、10 制御回路、10a 入力電流情報、10b 入力電圧情報、10c 直流出力電圧情報、10d 駆動信号。
 

Claims (13)

  1.  直流巻線と複数の結合巻線とが1つの磁性体に巻回され、前記直流巻線の一端が電圧源に接続され、前記直流巻線の他端に前記複数の結合巻線の各一端が接続され、前記複数の結合巻線の各他端がスイッチング素子からなる複数の上下アームの各中間接続点に接続され、前記直流巻線と前記結合巻線に流れる電流により発生する磁束が互いに同方向で合流するように構成されたリアクトル、
    前記スイッチング素子を制御する制御装置を備え、
    並列する前記上下アームを互いに180度ずらしてスイッチング動作させるとともに、スイッチング動作のデューティの大きさと、前記結合巻線の電流リプルを構成する直流電流リプルと交流電流リプルの大小に応じて上アームまたは下アームのスイッチングを制御することを特徴とする電流変換装置。
  2.  スイッチング動作のデューティが0.5より小さく、前記結合巻線の電流リプルを構成する直流電流リプルが交流電流リプルより小さいとき、
    スイッチング周期の半周期で複数の上アームまたは複数の下アームを相補的にオンする際は、電流リプルの傾きは正であり、前記複数の上アームまたは複数の下アームをともにオフする際は、前記電流リプルの傾きは負となるように電流極性を逆に制御し、
    次の半周期で、前記複数の上アームまたは複数の下アームを相補的にオンする際は、前記電流の傾きは負であり、前記複数の上アームまたは複数の下アームをともにオフする際は、前記電流リプルの傾きは負となるように電流極性を同じに制御することを特徴とする請求項1に記載の電流変換装置。
  3.  スイッチング動作のデューティが0.5より大きく、前記結合巻線の電流リプルを構成する直流電流リプルが交流電流リプルより小さいとき、
    スイッチング周期の半周期で複数の上アームまたは複数の下アームをともにオンする際は、電流リプルの傾きは正であり、前記複数の上アームまたは複数の下アームをそれぞれ相補的にオンする際は、前記電流リプルの傾きは正となるように電流極性を同じに制御し、
    次の半周期で、前記複数の上アームまたは複数の下アームをともにオンする際は、前記電流リプルの傾きは正であり、前記複数の上アームまたは複数の下アームを相補的にオンする際は、前記電流リプルの傾きは負となるように電流極性を逆に制御することを特徴とする請求項1に記載の電流変換装置。
  4.  スイッチング動作のデューティが0.5より小さく、前記結合巻線の電流リプルを構成する直流電流リプルが交流電流リプルより大きいとき、
    スイッチング周期の半周期で複数の上アームまたは複数の下アームを相補的にオンする際は、電流リプルの傾きは正であり、前記複数の上アームまたは複数の下アームをともにオフする際は、前記電流リプルの傾きは負となるように電流極性を逆に制御し、
    次の半周期で、前記複数の上アームまたは複数の下アームを相補的にオンする際は、前記電流リプルの傾きは正であり、前記複数の上アームまたは複数の下アームをともにオフする際は、前記電流リプルの傾きは負となるように電流極性を逆に制御することを特徴とする請求項1に記載の電流変換装置。
  5.  スイッチング動作のデューティが0.5より大きく、前記結合巻線の電流リプルを構成する直流電流リプルが交流電流リプルより大きいとき、
    スイッチング周期の半周期で複数の上アームまたは複数の下アームをともにオンする際は、電流リプルの傾きは正であり、前記複数の上アームまたは複数の下アームをそれぞれ相補的にオンする際は、前記電流リプルの傾きは負となるように電流極性を逆に制御し、
    次の半周期で、前記複数の上アームまたは複数の下アームをともにオンする際は、前記電流リプルの傾きは正であり、前記複数の上アームまたは複数の下アームを相補的にオンする際は、前記電流リプルの傾きは負となるように電流極性を逆に制御することを特徴とする請求項1に記載の電流変換装置。
  6.  前記電圧源の電流に応じて前記直流電流リプルと前記交流電流リプルの大小関係が変化することを特徴とする請求項1に記載の電流変換装置。
  7.  前記電圧源の電流が基準値より小さい時は、前記直流電流リプルが前記交流電流リプルより大きく、前記電圧源の電流が基準値より大きい時は、前記直流電流リプルより前記交流電流リプルが大きくなることを特徴とする請求項6に記載の電流変換装置。
  8.  前記電圧源は交流電圧源であり、前記交流電圧源の一端は前記直流巻線に接続され、他端は前記スイッチング素子の前記複数の上下アームと並列に接続された整流素子と接続されていることを特徴とする請求項1から7のいずれか一項に記載の電力変換装置。
  9.  前記電圧源は直流電圧源であることを特徴とする請求項1から7のいずれか一項に記載の電力変換装置。
  10.  前記直流電圧源は、交流電源と整流素子で構成されていることを特徴とする請求項9に記載の電力変換装置。
  11.  前記1つの磁性体は、コアの形状が3脚であり、中央脚にギャップを設け、中央脚には前記直流巻線を巻回し、前記中央脚を挟む2つの側脚には前記結合巻線を巻回することを特徴とする請求項1から10のいずれか一項に記載の電力変換装置。
  12.  インターリーブするスイッチングレグをN相設け、360°/Nのタイミングで前記スイッチング素子を作動させることを特徴とする請求項1または9に記載の電力変換装置。
  13.  前記電流リプルの周波数は、スイッチング周波数のN倍となることを特徴とする請求項1から5のいずれか一項に記載の電力変換装置。
PCT/JP2016/088327 2016-12-22 2016-12-22 電力変換装置 WO2018116438A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/347,990 US10505459B2 (en) 2016-12-22 2016-12-22 Power conversion device
EP16924594.1A EP3562021A4 (en) 2016-12-22 2016-12-22 POWER CONVERSION DEVICE
PCT/JP2016/088327 WO2018116438A1 (ja) 2016-12-22 2016-12-22 電力変換装置
CN201680091552.5A CN110089020B (zh) 2016-12-22 2016-12-22 电力变换装置
JP2018557478A JP6745911B2 (ja) 2016-12-22 2016-12-22 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088327 WO2018116438A1 (ja) 2016-12-22 2016-12-22 電力変換装置

Publications (1)

Publication Number Publication Date
WO2018116438A1 true WO2018116438A1 (ja) 2018-06-28

Family

ID=62626175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088327 WO2018116438A1 (ja) 2016-12-22 2016-12-22 電力変換装置

Country Status (5)

Country Link
US (1) US10505459B2 (ja)
EP (1) EP3562021A4 (ja)
JP (1) JP6745911B2 (ja)
CN (1) CN110089020B (ja)
WO (1) WO2018116438A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523591B1 (ja) * 2018-11-09 2019-06-05 三菱電機株式会社 電力変換装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11750087B2 (en) * 2018-05-24 2023-09-05 Astec International Limited Totem pole bridgeless PFC power converters
US20220385173A1 (en) * 2019-11-21 2022-12-01 Abb Schweiz Ag Power factor correction circuit and industrial robot
US11502613B2 (en) * 2020-08-18 2022-11-15 Lear Corporation DC-DC converter that applies a dual active bridge rectifier topology
CN115664222B (zh) * 2022-12-12 2023-03-14 惠州市乐亿通科技有限公司 双向直流变换电路和电源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256681A (ja) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp 直流リアクトル
JP5144284B2 (ja) 2008-01-16 2013-02-13 本田技研工業株式会社 電力変換回路
WO2013065095A1 (ja) * 2011-10-31 2013-05-10 株式会社日立製作所 リアクトル、変圧器およびこれを用いた電力変換器
JP5210331B2 (ja) 2010-01-06 2013-06-12 力銘科技股▲分▼有限公司 インタリーブ・ブリッジレス・パワー・ファクター修正器およびその制御方法
JP2015162998A (ja) * 2014-02-28 2015-09-07 日立アプライアンス株式会社 アクティブフィルタ、モータ駆動装置、圧縮機及びこれらを用いた冷凍装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935967B1 (ko) * 2007-10-31 2010-01-08 삼성전기주식회사 집적 코일을 갖는 역률 개선 회로
CN101944842B (zh) * 2009-07-07 2013-11-06 深圳Tcl新技术有限公司 开关电源输出直流电压滤波方法及滤波装置
CN101958657A (zh) * 2009-07-17 2011-01-26 华为技术有限公司 电源转换电路及设备、功率因数矫正电路交错控制方法
JP2011130572A (ja) * 2009-12-17 2011-06-30 Nippon Soken Inc Dcdcコンバータ
JP5694748B2 (ja) * 2010-12-06 2015-04-01 株式会社豊田中央研究所 複数相コンバータ用リアクトルユニット
US8698475B2 (en) * 2011-10-20 2014-04-15 Monolithic Power Systems, Inc. Switching-mode power supply with ripple mode control and associated methods
JP2013093921A (ja) * 2011-10-24 2013-05-16 Toyota Central R&D Labs Inc 2相コンバータ用リアクトル及び2相コンバータ
CN102969880B (zh) * 2012-12-14 2015-01-14 山东大学 一种单相电压型变换器消除二次纹波电路
CN105761880B (zh) * 2016-04-20 2017-12-29 华为技术有限公司 一种薄膜电感和电源转换电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144284B2 (ja) 2008-01-16 2013-02-13 本田技研工業株式会社 電力変換回路
JP5210331B2 (ja) 2010-01-06 2013-06-12 力銘科技股▲分▼有限公司 インタリーブ・ブリッジレス・パワー・ファクター修正器およびその制御方法
JP2012256681A (ja) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp 直流リアクトル
WO2013065095A1 (ja) * 2011-10-31 2013-05-10 株式会社日立製作所 リアクトル、変圧器およびこれを用いた電力変換器
JP2015162998A (ja) * 2014-02-28 2015-09-07 日立アプライアンス株式会社 アクティブフィルタ、モータ駆動装置、圧縮機及びこれらを用いた冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3562021A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523591B1 (ja) * 2018-11-09 2019-06-05 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
EP3562021A1 (en) 2019-10-30
CN110089020B (zh) 2021-04-02
JP6745911B2 (ja) 2020-08-26
US20190319541A1 (en) 2019-10-17
JPWO2018116438A1 (ja) 2019-07-25
EP3562021A4 (en) 2019-12-11
US10505459B2 (en) 2019-12-10
CN110089020A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN108352246B (zh) 电力变换装置
WO2018116437A1 (ja) 電力変換装置
TWI690952B (zh) 磁性元件及其適用之電源轉換裝置
JP6271099B1 (ja) 直流電圧変換回路
JP6345710B2 (ja) 一体型磁気変換装置
US7183754B2 (en) DC/DC converter
JP6745911B2 (ja) 電力変換装置
US8072785B2 (en) Switching power supply unit
US7449867B2 (en) Multi-phase buck converter with a plurality of coupled inductors
WO2015037204A1 (ja) 多相電力変換装置のフィルタ回路および多相電力変換装置
WO2020061905A1 (en) Apparatus for conversion between ac power and dc power
US7138787B2 (en) DC/DC converter
JP2009005579A (ja) 電力変換回路
JP2021035200A (ja) マルチフェーズllcコンバータ
JP6523591B1 (ja) 電力変換装置
JP2007068392A (ja) 複数の結合インダクタを有する多相バックコンバータ
JP4124814B2 (ja) 入出力絶縁型dcーdcコンバータ
JP2012231585A (ja) 電力変換回路
TWI328918B (en) Multi-output dc-dc converter with improved cross-regulation performance
WO2009157330A1 (ja) Dc-dcコンバータ
JP2017005861A (ja) 共振型双方向dc/dcコンバータ
JP2010022125A (ja) 多相力率改善回路
JP3973489B2 (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016924594

Country of ref document: EP

Effective date: 20190722