WO2018116341A1 - 遠心送風機および空気調和装置並びに遠心送風機の製造方法 - Google Patents
遠心送風機および空気調和装置並びに遠心送風機の製造方法 Download PDFInfo
- Publication number
- WO2018116341A1 WO2018116341A1 PCT/JP2016/087763 JP2016087763W WO2018116341A1 WO 2018116341 A1 WO2018116341 A1 WO 2018116341A1 JP 2016087763 W JP2016087763 W JP 2016087763W WO 2018116341 A1 WO2018116341 A1 WO 2018116341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wall portions
- centrifugal blower
- bell mouth
- flange portion
- turbofan
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
Definitions
- the present invention relates to a centrifugal blower, an air conditioner, and a method for manufacturing a centrifugal blower having a plurality of wall portions standing up connected to a flange portion and an outer peripheral surface of a cylindrical portion in a bell mouth.
- This main stream is sent to the radial outside of the turbofan by the blades of the turbofan.
- Most of the air sent to the outside in the radial direction of the turbofan is blown out of the indoor unit of the air conditioner through the outlet of the indoor unit of the air conditioner.
- a part of the air sent to the outside of the turbofan in the radial direction passes through the space between the outer peripheral surface of the shroud and the indoor unit housing in the indoor unit of the air conditioner, in the radial direction of the bell mouth. It returns to the outside and merges with the main stream again through the gap between the bell mouth and the shroud.
- the flow of air that recirculates as described above and merges with the main flow through the gap between the bell mouth and the shroud is referred to as a leakage flow.
- This leakage flow is flowing in a direction inclined in the circumferential direction from the axial direction of the turbo fan due to the influence of the air flow in the circumferential direction generated by the rotation of the turbo fan.
- the mainstream air guided to the air intake port of the shroud by the bell mouth flows mainly in the direction along the rotation axis of the turbofan.
- Patent Document 1 a plurality of wall portions could not be formed largely due to restrictions on molding of the bell mouth. For this reason, there existed a subject which cannot suppress the fall of fan efficiency and the deterioration of a noise so much.
- the plurality of wall portions are formed separately from the bell mouth so that the plurality of wall portions can be formed larger, the number of steps for integrating the plurality of wall portions and the bell mouth increases.
- the mold for molding the bell mouth having the plurality of wall portions becomes complicated, making it difficult to perform the mold release operation, or causing problems in the molded bell mouth. It becomes easy. For this reason, there existed a subject which manufacturing efficiency deteriorated.
- the present invention is for solving the above-described problems, and can provide a centrifugal blower, an air conditioner, and a centrifugal blower manufacturing method that can further suppress the reduction in fan efficiency and noise caused by leakage flow, and improve the manufacturing efficiency.
- the purpose is to provide.
- a centrifugal blower includes a circular main plate that is rotationally driven, a shroud that is disposed so as to face the main plate and opens in a circular shape, and a circumferential direction of the main plate between the main plate and the shroud.
- a turbo fan including a plurality of wings arranged at intervals, and a bell mouth arranged around the turbo fan, wherein the bell mouth is orthogonal to the rotational axis direction of the turbo fan.
- the plurality of wall portions include a plurality of groups of two or more wall portions extending parallel to each other in the outer direction of the cylindrical portion.
- the air conditioner according to the present invention includes the above centrifugal blower.
- a centrifugal blower manufacturing method is the above centrifugal blower manufacturing method, wherein the two or more wall portions in the group of wall portions slide in a direction in which a mold used for forming the bell mouth slides. It is formed by extending parallel to each other in the outward direction of the cylindrical part.
- the plurality of wall portions include a plurality of groups of two or more wall portions that extend parallel to each other in the outer direction of the cylindrical portion. .
- a big wall part can be formed easily. Therefore, a decrease in fan efficiency and noise deterioration due to the leakage flow can be further suppressed, and manufacturing efficiency can be improved.
- FIG. 1 is an explanatory view showing a left half section of a ceiling-embedded indoor unit 2 to which the centrifugal blower 1 according to Embodiment 1 of the present invention is applied.
- the ceiling-embedded indoor unit 2 is buried in the back side above the ceiling.
- a rectangular decorative panel 3 is attached from the bottom opening to the periphery of the ceiling opening.
- the ceiling-embedded indoor unit 2 includes a centrifugal fan 1 and a heat exchanger 5 in a main body housing 4.
- the centrifugal blower 1 includes a turbo fan 6, a bell mouth 7, and a fan motor 8.
- the centrifugal blower 1 is installed at the center in the main body housing 4.
- the fan motor 8 is fixed to the center of the top surface of the main body housing 4.
- the turbo fan 6 is attached to the rotation shaft 9 of the fan motor 8 at the center, and is rotated by the fan motor 8.
- the bell mouth 7 is attached to the lower side of the turbo fan 6.
- front F the downward direction which inhales air from the bellmouth 7 covered with the decorative panel 3 by rotation of the turbo fan 6
- rear R the upper side with respect to the lower front F
- the air passing through the heat exchanger 5 exchanges heat with the refrigerant flowing in the heat exchanger 5.
- the heat-exchanged conditioned air is sent to the outside in the radial direction of the turbofan 6 rather than the heat exchanger 5 of the ceiling-embedded indoor unit 2.
- the conditioned air is blown out to the outside of the front F of the ceiling-embedded indoor unit 2 that is the air-conditioning target room through the air outlet 13 at the lower outer side in the main body housing 4 of the ceiling-embedded indoor unit 2.
- FIG. 2 is a perspective view showing turbo fan 6 of centrifugal blower 1 according to Embodiment 1 of the present invention.
- the front F is a top view.
- the turbofan 6 includes a main plate 14, a shroud 10, and a plurality of blades 12.
- the main plate 14 has a circular shape, is fixed to a rotary shaft 9 extending forward F of the fan motor 8, and is driven to rotate by the fan motor 8.
- the shroud 10 is disposed to face the main plate 14, and has an air suction port 11 that opens in a circle around the rotation axis of the turbofan 6.
- the plurality of blades 12 are arranged between the main plate 14 and the shroud 10 with a space in the circumferential direction of the main plate 14.
- FIG. 3 is a perspective view showing the front surface of the bell mouth 7 of the centrifugal blower 1 according to Embodiment 1 of the present invention.
- FIG. 4 is a perspective view showing the back surface of the bell mouth 7 of the centrifugal blower 1 according to Embodiment 1 of the present invention.
- FIG. 5 is a side view showing the bell mouth 7 of the centrifugal blower 1 according to Embodiment 1 of the present invention.
- FIG. 6 is a rear view showing the bell mouth 7 of the centrifugal blower 1 according to Embodiment 1 of the present invention.
- the front F is a top view.
- the front F is directed downward.
- the bell mouth 7 is disposed around the turbo fan 6 and is disposed in front of the shroud 10 in the axial direction A of the rotation axis of the turbo fan 6.
- the bell mouth 7 includes a flange portion 15 and a cylindrical portion 16.
- the flange portion 15 has a rectangular plate shape and has four sides 17a, 17b, 17c, and 17d as edges.
- the flange portion 15 is disposed in front F of the rotational axis of the turbofan 6 in the axial direction A, and extends perpendicular to the axial direction A of the rotational axis of the turbofan 6.
- the flange portion 15 is a portion that protrudes outward in the radial direction of the tubular portion 16 from the peripheral portion of the front F of the tubular portion 16.
- the flange portion 15 has a convex region 18 into which the electrical component box is fitted.
- the convex region 18 protrudes from the rear surface of the rear R of the flange portion 15 in the axial direction A of the rotation axis of the turbofan 6.
- the convex region 18 is substantially rectangular along a part of the side 17 d of the flange portion 15, and protrudes rearward R adjacent to a part of the circumferential portion of the cylindrical part 16.
- the cylindrical portion 16 is circularly opened from the flange portion 15 to the rear R in the axial direction A of the rotating shaft of the turbofan 6 at the center portion of the flange portion 15.
- the cylindrical portion 16 includes a reduced diameter portion 19 and an enlarged diameter portion 20.
- the reduced diameter portion 19 has an inner diameter and an outer diameter that decrease from the peripheral portion of the front F connected to the flange portion 15 toward the rear R.
- the diameter-expanded portion 20 is continuous from the diameter-reduced portion 19 to the rear R in the axial direction A of the rotation axis of the turbofan 6 than the diameter-reduced portion 19, and the inner diameter is increased from the front F to the rear R.
- the outer diameter is larger. Inside the reduced diameter portion 19 and the enlarged diameter portion 20, a through-hole 21 is formed that penetrates in the front-rear direction in the axial direction A of the rotation axis of the turbofan 6.
- the enlarged diameter portion 20 is connected to the shroud from the air suction port 11 in a state where a predetermined gap is provided between the peripheral portion of the air suction port 11 formed by the shroud 10 of the turbofan 6. 10 is inserted inside. Thereby, the bell mouth 7 guides the air sucked from the front F toward the rear R through the through-hole 21 to the air suction port 11 of the shroud 10.
- the bell mouth 7 stands up connected to the rear surface of the rear portion R in the axial direction A of the rotational axis of the turbofan 6 in the flange portion 15 and the outer peripheral surface of the cylindrical portion 16.
- a plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are provided.
- the wall portions 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, 22 g, and 22 h are axial directions of the rotational axis of the turbofan 6 so that the plate surfaces are substantially parallel to the axial direction A of the rotational axis of the turbofan 6. It extends from the front F of A toward the rear R.
- the walls 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are cylinders of any one of the first to third slide molds 27a, 27b, and 27c used for forming the bell mouth 7 described later. It is extended
- the plurality of wall portions 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, 22 g, and 22 h are two or more wall portions 22 a, 22 b, 22 c, extending in parallel to each other in the outer direction of the tubular portion 16.
- Three groups of 22d, 22e, 22f, 22g, and 22h are included. That is, the direction in which two or more wall portions in a group of one wall portion are extended in parallel with each other only needs to match the sliding direction in which the slide mold used for forming the bell mouth 7 slides. It is not limited to 16 radial directions.
- the plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are flange portions 15 each having a rectangular shape corresponding to one of first to third slide molds 27a, 27b, and 27c described later. At least two or more are formed on one side 17a, 17b, 17c. Wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h formed at least two on one side 17a, 17b, and 17c of the flange portion 15 that is rectangular are first to third slides to be described later.
- the cylindrical parts 16 of the corresponding molds are extended in parallel to each other in the radial direction of the cylindrical part 16 in accordance with the slide direction B that slides in the radial direction.
- a group of three wall portions 22a, 22b, and 22c formed on the side 17a of the flange portion 15 is a sliding direction that slides in the radial direction of the cylindrical portion 16 of the first slide mold 27a described later. They are stretched parallel to each other in accordance with B.
- a group of two wall portions 22d and 22e formed by the side 17b arranged separately at 90 ° in the circumferential direction of the cylindrical portion 16 with respect to the side 17a of the flange portion 15 is a second slide described later.
- the cylindrical portions 16 of the mold 27b are extended in parallel with each other in accordance with a sliding direction B that slides in the radial direction.
- a group of three wall portions 22f, 22g, and 22h formed by the side 17c that is arranged at 90 ° in the circumferential direction of the cylindrical portion 16 with respect to the side 17b of the flange portion 15 will be described later.
- the three slide molds 27c are extended in parallel with each other in accordance with a slide direction B that slides in the radial direction of the cylindrical portion 16 of the cylindrical slide 16c.
- the wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h only need to constitute a group of wall portions that extend in parallel with each other by two or more.
- the walls 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h include an axial edge 23 and a radial edge 24. It is a shape having a large surface area intersecting at a substantially right angle.
- the axial edge 23 extends straight from the rear surface of the rear R in the axial direction A of the rotational axis of the turbofan 6 in the flange portion 15 to the rear along the axial direction A of the rotational axis of the turbofan 6.
- the radial edge 24 is orthogonal to the axial direction A of the rotating shaft of the turbofan 6 from the outer peripheral surface of the reduced diameter portion 19 of the cylindrical portion 16 to the outer side of the outer diameter of the shroud 10 in the radial direction of the cylindrical portion 16. And stretched straight.
- wall part 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h is not restricted to this shape.
- the wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h may have any shape as long as the surface area can be increased with a molding die 25 used for molding the bell mouth 7 described later.
- FIG. 7 is a perspective view showing the relationship between the bell mouth 7 and the mold 25 of the centrifugal blower 1 according to Embodiment 1 of the present invention.
- the bell mouth 7 is manufactured by integral molding. That is, the bell mouth 7 including the flange portion 15, the cylindrical portion 16, and the plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h is manufactured by integral molding.
- FIG. 7 shows a plurality of molds 26 a, 26 b, 26 c, 26 d, 27 a, 27 b, 27 c, 27 d as the mold 25 that molds the rear R side of the bell mouth 7.
- the mold used for forming the bell mouth 7 includes a first corner mold 26a, a second corner mold 26b, a third corner mold 26c, and a fourth corner mold 26d.
- the first to fourth corner molds 26a, 26b, 26c, and 26d mold the four corners of the flange portion 15.
- the first to fourth corner molds 26a, 26b, 26c, and 26d are clamped and opened in the front-rear direction with a mold (not shown) that molds the front surface of the front F of the bell mouth 7.
- a first slide mold 27a, a second slide mold 27b, a third slide mold 27c, and a fourth slide mold 27d are provided.
- Four first to fourth slide molds 27a, 27b, 27c, and 27d are provided in the circumferential direction of the cylindrical portion 16 every 90 °.
- the first to fourth slide molds 27a, 27b, 27c, 27d are the sides 17a, 17b, 17c of the flange portion 15 which is a rectangle between the first to fourth corner molds 26a, 26b, 26c, 26d.
- 17d is slid in the radial direction (sliding direction B) of the cylindrical portion 16 to be clamped and opened.
- the first to fourth slide molds 27a, 27b, 27c, and 27d are formed by dividing the outer peripheral surface portion of the cylindrical portion 16 into four parts.
- a plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are formed on the first to third slide molds 27a, 27b, and 27c.
- the slits 28 as hollow portions are formed in a number corresponding to the number of wall portions.
- the slit 28 is formed in an elongated shape parallel to the radial direction of the cylindrical portion 16 that slides when each of the first to third slide molds 27a, 27b, and 27c is opened. At least two slits 28 are formed for each of the first to third slide molds 27a, 27b, and 27c.
- the walls 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are formed on the first to third slide molds 27a, 27b, and 27c used for forming the bell mouth 7.
- the cylindrical portion 16 is formed so as to be substantially parallel to the sliding direction B that slides in the radial direction.
- the walls 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are sides of the flange portion 15 that is a rectangle corresponding to any one of the first to third slide molds 27a, 27b, and 27c. It is extended
- the wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h formed in this way are opened when the first to third slide molds 27a, 27b, and 27c are slid in the sliding direction B.
- the slides of the first to third slide molds 27a, 27b, and 27c are not inhibited.
- the releasability of wall part 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h is good, and it is hard to produce a malfunction at the time of shaping
- FIG. 8 is an explanatory diagram showing the positional relationship between the shroud 10 and the bell mouth 7 of the turbofan 6 and the main flow S and the leakage flow M in the centrifugal blower 1 according to Embodiment 1 of the present invention.
- the bellmouth 7 has a plurality of large wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h. For this reason, the direction of the leakage flow M before joining the main flow S in the vicinity of the air suction port 11 is better rectified by the axial direction A of the rotating shaft of the turbofan 6.
- the directions of the main flow S and the leakage flow M become closer, and when the leakage flow M merges with the main flow S through the gap between the outer peripheral surface of the enlarged diameter portion 20 and the inner peripheral surface of the shroud 10, the leakage flow M is the main flow.
- the degree of interference with is reduced. Therefore, a decrease in fan efficiency and noise due to the leakage flow M are suppressed.
- the centrifugal blower 1 includes a circular main plate 14 that is rotationally driven and a shroud 10 that is disposed to face the main plate 14 and has an air suction port 11 that opens in a circular shape, and from the main plate 14 to the shroud 10.
- a turbofan 6 including a plurality of blades 12 arranged at intervals in the circumferential direction of the main plate 14 is provided.
- the centrifugal blower 1 includes a bell mouth 7 disposed around the turbo fan 6.
- the bell mouth 7 includes a flange portion 15 extending perpendicular to the axial direction A (rotational axis direction) of the rotation axis of the turbofan 6 and a cylindrical portion 16 extending in the axial direction A from the flange portion 15. Yes.
- the bell mouth 7 has a plurality of wall portions 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, 22 g, and 22 h that are connected to the flange portion 15 and the outer peripheral surface of the cylindrical portion 16.
- the plurality of wall portions 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, 22 g, and 22 h are two or more wall portions 22 a, 22 b, 22 c, 22 d, and 22 e that extend parallel to each other in the outer direction of the tubular portion 16. , 22f, 22g, and 22h. According to this configuration, the large wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h can be easily formed when the bell mouth 7 is molded.
- the large walls 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h can rectify the direction of the leakage flow M before joining the main flow S in the vicinity of the air suction port 11 in the axial direction A. . Therefore, the direction of the main flow S and the leakage flow M becomes close, and the degree of interference of the leakage flow M with the main flow S when the leakage flow M merges with the main flow S is reduced. Therefore, it is possible to further suppress a decrease in fan efficiency and a deterioration in noise caused by the leakage flow M.
- the large walls 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are outward directions of the cylindrical portion 16 of the first to third slide molds 27a, 27b, and 27c used for forming the bell mouth 7. Can be stretched according to the sliding direction B. For this reason, even if several wall part 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h is integrally molded with the bellmouth 7, wall part 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h However, the mold 25 is not complicated. Therefore, manufacturing efficiency can be improved.
- the group of the plurality of wall portions 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, 22 g, and 22 h are separately arranged at 90 ° positions in the circumferential direction of the tubular portion 16.
- the plurality of wall portions 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, 22 g, and 22 h have the direction of the leakage flow M before joining the main flow S in the vicinity of the air suction port 11 as the axial direction A Can be rectified better.
- the flange part 15 is a rectangle.
- the group of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h is one of the sides 17a, 17b, 17c, and 17d of the four sides 17a, 17b, 17c, and 17d of the flange portion 15 that is rectangular. It is provided in the central part. According to this configuration, the leakage flow that tends to flow in the direction inclined in the circumferential direction from the axial direction A of the rotating shaft of the turbofan 6 toward the four corners of the rectangular flange portion 15 is a rectangular flange portion.
- the walls 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h block the momentum.
- the plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are arranged in numbers of 2 or more on the respective sides 17a, 17b, and 17c, and the effect of reducing the momentum of the leakage flow is great. Therefore, the plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h can rectify the direction of the leakage flow M before joining the main flow S in the vicinity of the air suction port 11 in the axial direction A. .
- the flange portion 15 has the convex region 18 into which the electrical component box is fitted.
- the plurality of wall portions 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, 22 g, and 22 h are not formed in the region of the side 17 d of the flange portion 15 having the convex region 18.
- the convex region 18 inhibits the leakage flow. Thereby, even if the plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are not formed, the influence of the leakage flow M is difficult to reach.
- each of the plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h includes an axial edge portion 23 that extends in the axial direction A from the flange portion 15, and a tubular shape.
- a radial edge 24 extending perpendicularly to the axial direction A is crossed from the outer diameter of the air suction port 11 of the shroud 10 to the outer side in the radial direction of the cylindrical portion 16 from the outer peripheral surface of the portion 16.
- Shape the large wall portions 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, 22 g, and 22 h that can rectify the leakage flow M can be integrally formed with the bell mouth 7.
- the bell mouth 7 is manufactured by integral molding. According to this configuration, the plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are integrally formed with the bell mouth 7 and the manufacturing efficiency can be improved.
- the manufacturing method of the centrifugal blower 1 is the two or more wall portions 22a, 22b, 22c, 22d in the group of the wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h.
- 22e, 22f, 22g, and 22h are parallel to each other in the outward direction of the cylindrical portion 16 in accordance with the slide direction B in which the first to third slide molds 27a, 27b, and 27c used for forming the bell mouth 7 slide. It is formed by stretching.
- the plurality of wall portions 22a, 22b, 22c, 22d, 22e, 22f, 22g, and 22h are integrally formed with the bell mouth 7 and the manufacturing efficiency can be improved.
- FIG. 9 is a schematic configuration diagram illustrating an air-conditioning apparatus 100 according to Embodiment 2 of the present invention.
- the refrigerant flow during the cooling operation is indicated by a solid arrow
- the refrigerant flow during the heating operation is indicated by a dotted arrow.
- FIG. 9 only the configuration relationship of the refrigerant circulation circuit is specified, and the actual arrangement relationship such as the upper, lower, left, and right of the component devices is not specified.
- the air conditioner 100 has been described in the first embodiment, which is the compressor 101, the four-way valve 102, the heat source side heat exchanger 103, the expansion device 104, and the load side heat exchanger. And a heat exchanger 5.
- the air conditioner 100 includes the heat source side blower 106 that blows air to the heat source side heat exchanger 103 and the centrifugal blower 1 described in Embodiment 1 that blows air to the heat exchanger 5.
- the air conditioner 100 includes pipes 108 and 109 that connect the ceiling-embedded indoor unit 2 and the outdoor unit.
- the air conditioner 100 includes control devices 110 and 111 that control various movable parts of the air conditioner 100.
- the compressor 101, the four-way valve 102, the heat source side heat exchanger 103, the expansion device 104, and the heat exchanger 5 are connected by refrigerant piping to form a refrigerant circulation circuit.
- the compressor 101, the four-way valve 102, the expansion device 104, the heat source side blower 106, the centrifugal blower 1, various sensors, and the like are connected to the control devices 110 and 111 via communication lines.
- the heat source side heat exchanger 103 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
- the heat exchanger 5 acts as an evaporator during cooling operation and acts as a condenser during heating operation.
- the high-pressure and high-temperature gas refrigerant discharged from the compressor 101 flows into the heat source side heat exchanger 103 via the four-way valve 102.
- the refrigerant that has flowed into the heat source side heat exchanger 103 is condensed by heat exchange with the outside air supplied by the heat source side blower 106 to become a high-pressure liquid refrigerant, and flows out of the heat source side heat exchanger 103.
- the high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 103 flows into the expansion device 104 and becomes a low-pressure gas-liquid two-phase refrigerant.
- the low-pressure gas-liquid two-phase refrigerant flowing out of the expansion device 104 flows into the heat exchanger 5 and evaporates by heat exchange with the indoor air supplied by the centrifugal blower 1 to become a low-pressure gas refrigerant. And flows out of the heat exchanger 5.
- the low-pressure gaseous refrigerant flowing out of the heat exchanger 5 is sucked into the compressor 101 via the four-way valve 102.
- the high-pressure and high-temperature gas refrigerant discharged from the compressor 101 flows into the heat exchanger 5 through the four-way valve 102.
- the refrigerant that has flowed into the heat exchanger 5 is condensed by heat exchange with the indoor air supplied by the centrifugal blower 1 to become a high-pressure liquid refrigerant and flows out of the heat exchanger 5.
- the high-pressure liquid refrigerant flowing out of the heat exchanger 5 flows into the expansion device 104 and becomes a low-pressure gas-liquid two-phase refrigerant.
- the low-pressure gas-liquid two-phase refrigerant that flows out of the expansion device 104 flows into the heat source side heat exchanger 103 and evaporates by heat exchange with the outside air supplied by the heat source side blower 106, thereby being in a low pressure gas state. It becomes a refrigerant and flows out of the heat source side heat exchanger 103.
- the low-pressure gaseous refrigerant flowing out of the heat source side heat exchanger 103 is sucked into the compressor 101 via the four-way valve 102.
- the air conditioning apparatus 100 includes the centrifugal blower 1 of Embodiment 1 described above. According to this configuration, the air conditioner 100 can further suppress the decrease in fan efficiency and noise caused by the leakage flow M, and the manufacturing efficiency can be improved.
- centrifugal blower according to the present invention As described above, as an embodiment of the present invention, the case where the centrifugal blower according to the present invention is applied to a ceiling-embedded indoor unit of an air conditioner is illustrated. However, the centrifugal blower according to the present invention may be used for an indoor unit or an outdoor unit of another type of air conditioner. Moreover, the centrifugal blower according to the present invention may be widely used in various devices including a blowing means other than the air conditioner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
遠心送風機は、ターボファンと、ベルマウスと、を備え、ベルマウスは、ターボファンの回転軸方向に直交して延伸するフランジ部とフランジ部から回転軸方向に延出された筒状部とを含み、フランジ部と筒状部における外周面とに繋がって起立する複数の壁部を有し、複数の壁部は、筒状部の外方向に相互に平行に延伸された2以上の壁部の群を複数含む。
Description
本発明は、ベルマウスにおいて、フランジ部と筒状部における外周面とに繋がって起立する複数の壁部を有した遠心送風機および空気調和装置並びに遠心送風機の製造方法に関する。
遠心送風機を用いた空気調和装置の室内機では、ファンモータが駆動してターボファンが回転すると、空気調和装置の室内機の吸込口から空気調和装置の室内機の内部に空気が吸い込まれる。空気調和装置の室内機の内部に吸い込まれた空気は、ベルマウスによってターボファンのシュラウドの空気吸込口に案内される。
以下、ベルマウスによってシュラウドの空気吸込口に案内された空気の流れを主流という。
以下、ベルマウスによってシュラウドの空気吸込口に案内された空気の流れを主流という。
この主流は、ターボファンの翼により、ターボファンの半径方向の外側に送られる。ターボファンの半径方向の外側に送られる空気の大部分は、空気調和装置の室内機の吹出口を通じて空気調和装置の室内機の外部に吹き出される。一方、ターボファンの半径方向の外側に送られる空気の一部は、空気調和装置の室内機内にて、シュラウドの外周面と室内機筐体との間の空間を通ってベルマウスの半径方向の外側に還流し、ベルマウスとシュラウドとの間の隙間を通って再び主流と合流する。
以下、上記のように還流し、ベルマウスとシュラウドとの間の隙間を通って主流と合流する空気の流れを漏れ流れという。
以下、上記のように還流し、ベルマウスとシュラウドとの間の隙間を通って主流と合流する空気の流れを漏れ流れという。
この漏れ流れは、ターボファンの回転により生じる周方向への空気の流れの影響を受けて、ターボファンの軸方向から周方向に傾斜した方向に流れている。一方で、ベルマウスによりシュラウドの空気吸込口に案内された主流の空気は、主にターボファンの回転軸に沿った方向に流れている。このように、漏れ流れが主流と合流する空気吸込口の近傍では、漏れ流れと主流との流れの向きが大きく異なっている。このため、漏れ流れが主流に合流すると、主流が乱され、ファン効率が低下するとともに、騒音が悪化する。
従来では、ターボファンの効率低下および騒音の悪化を抑制するために、ベルマウスの吸込口の外周面に周方向にベルマウスの半径方向にほぼ平行な壁部を複数設けた技術が提案されている(たとえば、特許文献1参照)。
特許文献1の技術によれば、複数の壁部が漏れ流れを案内し、漏れ流れの方向が主流の方向に近づくようになる。これにより、漏れ流れが主流と合流するときに、主流の乱れが抑制できるとされている。
特許文献1の技術によれば、複数の壁部が漏れ流れを案内し、漏れ流れの方向が主流の方向に近づくようになる。これにより、漏れ流れが主流と合流するときに、主流の乱れが抑制できるとされている。
しかしながら、特許文献1の技術では、ベルマウスの成形上の制約から複数の壁部を大きく形成できなかった。このため、ファン効率の低下および騒音の悪化があまり抑制できない課題があった。
また、複数の壁部が大きく形成できるように、複数の壁部がベルマウスと別体で形成されると、複数の壁部とベルマウスとを一体化させる工程などが増加する。あるいは、複数の大きな壁部が形成されてしまうと、複数の壁部を有したベルマウスを成形する成形型が複雑化し、離型作業が困難になったり、成形したベルマウスに不具合が発生し易くなったりする。このため、製造効率が悪化する課題があった。
本発明は、上記課題を解決するためのものであり、漏れ流れに起因するファン効率の低下および騒音の悪化がより抑制でき、製造効率が向上できる遠心送風機および空気調和装置並びに遠心送風機の製造方法を提供することを目的とする。
本発明に係る遠心送風機は、回転駆動される円形の主板と前記主板に対向して配置されて円形に開口する空気吸込口を有するシュラウドと前記主板から前記シュラウドまでの間に前記主板の周方向に間隔を開けて配置された複数の翼とを含むターボファンと、前記ターボファンの周囲に配置されたベルマウスと、を備え、前記ベルマウスは、前記ターボファンの回転軸方向に直交して延伸するフランジ部と前記フランジ部から前記回転軸方向に延出された筒状部とを含み、前記フランジ部と前記筒状部における外周面とに繋がって起立する複数の壁部を有し、前記複数の壁部は、前記筒状部の外方向に相互に平行に延伸された2以上の壁部の群を複数含むものである。
本発明に係る空気調和装置は、上記の遠心送風機を備えたものである。
本発明に係る遠心送風機の製造方法は、上記の遠心送風機の製造方法であって、前記壁部の群における当該2以上の壁部を、前記ベルマウスの成形に用いる金型がスライドするスライド方向に合わせた前記筒状部の外方向に相互に平行に延伸させて形成するものである。
本発明に係る遠心送風機および空気調和装置並びに遠心送風機の製造方法によれば、複数の壁部は、筒状部の外方向に相互に平行に延伸された2以上の壁部の群を複数含む。これにより、大きな壁部が容易に形成できる。したがって、漏れ流れに起因するファン効率の低下および騒音の悪化がより抑制でき、製造効率が向上できる。
以下、図面に基づいて本発明の実施の形態について説明する。
なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
[天井埋込型室内機の構成]
図1は、本発明の実施の形態1に係る遠心送風機1を適用した天井埋込型室内機2の左側半断面を示す説明図である。
図1に示すように、天井埋込型室内機2は、天井の上方となる裏側に埋没設置されている。天井埋込型室内機2は、下面開口部から天井の開口部周縁にかけて、矩形の化粧パネル3が取付けられている。天井埋込型室内機2は、本体筐体4内に、遠心送風機1および熱交換器5などを備えている。
[天井埋込型室内機の構成]
図1は、本発明の実施の形態1に係る遠心送風機1を適用した天井埋込型室内機2の左側半断面を示す説明図である。
図1に示すように、天井埋込型室内機2は、天井の上方となる裏側に埋没設置されている。天井埋込型室内機2は、下面開口部から天井の開口部周縁にかけて、矩形の化粧パネル3が取付けられている。天井埋込型室内機2は、本体筐体4内に、遠心送風機1および熱交換器5などを備えている。
遠心送風機1は、ターボファン6と、ベルマウス7と、ファンモータ8と、を備えている。遠心送風機1は、本体筐体4内の中央に設置されている。
ファンモータ8は、本体筐体4の天面の中央に固定されている。ターボファン6は、中心部をファンモータ8の回転軸9に取り付けられ、ファンモータ8によって回転駆動される。
ベルマウス7は、ターボファン6の下側に取り付けられている。
ファンモータ8は、本体筐体4の天面の中央に固定されている。ターボファン6は、中心部をファンモータ8の回転軸9に取り付けられ、ファンモータ8によって回転駆動される。
ベルマウス7は、ターボファン6の下側に取り付けられている。
なお、以下では、ターボファン6の回転により化粧パネル3に覆われたベルマウス7から空気を吸込む下方を前方Fという。また、下方である前方Fに対して上方を後方Rという。
ファンモータ8が駆動してターボファン6が回転すると、天井埋込型室内機2の前方Fの中央部に設けられた吸込口から後方Rの天井埋込型室内機2の内部に空気が吸い込まれる。天井埋込型室内機2の内部に吸い込まれた空気は、ベルマウス7によってターボファン6のシュラウド10の空気吸込口11に案内される。ターボファン6のシュラウド10の空気吸込口11に案内された空気は、ターボファン6の翼12により、ターボファン6の半径方向の外側に送られる。ターボファン6の半径方向の外側に送られる空気は、ターボファン6の水平方向に並設された熱交換器5を通過する。熱交換器5を通過する空気は、熱交換器5内を流れる冷媒と熱交換する。熱交換された調和空気は、天井埋込型室内機2の熱交換器5よりもターボファン6の半径方向の外側に送られる。そして、調和空気は、天井埋込型室内機2の本体筐体4内における外側下部の吹出口13を通じて空調対象室内である天井埋込型室内機2の前方Fの外部に吹き出される。
[ターボファンの構成]
図2は、本発明の実施の形態1に係る遠心送風機1のターボファン6を示す斜視図である。なお、図2では、前方Fが上を向いた図になっている。
図2に示すように、ターボファン6は、主板14と、シュラウド10と、複数の翼12と、を含んで構成されている。
図2は、本発明の実施の形態1に係る遠心送風機1のターボファン6を示す斜視図である。なお、図2では、前方Fが上を向いた図になっている。
図2に示すように、ターボファン6は、主板14と、シュラウド10と、複数の翼12と、を含んで構成されている。
主板14は、円形であり、ファンモータ8の前方Fに延出される回転軸9に固定され、ファンモータ8に回転駆動される。
シュラウド10は、主板14に対向して配置され、ターボファン6の回転軸を中心として円形に開口する空気吸込口11を有している。
複数の翼12は、主板14からシュラウド10までの間に主板14の周方向に間隔を開けて配置されている。
シュラウド10は、主板14に対向して配置され、ターボファン6の回転軸を中心として円形に開口する空気吸込口11を有している。
複数の翼12は、主板14からシュラウド10までの間に主板14の周方向に間隔を開けて配置されている。
[ベルマウスの構成]
図3は、本発明の実施の形態1に係る遠心送風機1のベルマウス7の前面を示す斜視図である。図4は、本発明の実施の形態1に係る遠心送風機1のベルマウス7の背面を示す斜視図である。図5は、本発明の実施の形態1に係る遠心送風機1のベルマウス7を示す側面図である。図6は、本発明の実施の形態1に係る遠心送風機1のベルマウス7を示す背面図である。なお、図3では、前方Fが上を向いた図になっている。図4では、前方Fが下を向いた図になっている。
図3は、本発明の実施の形態1に係る遠心送風機1のベルマウス7の前面を示す斜視図である。図4は、本発明の実施の形態1に係る遠心送風機1のベルマウス7の背面を示す斜視図である。図5は、本発明の実施の形態1に係る遠心送風機1のベルマウス7を示す側面図である。図6は、本発明の実施の形態1に係る遠心送風機1のベルマウス7を示す背面図である。なお、図3では、前方Fが上を向いた図になっている。図4では、前方Fが下を向いた図になっている。
図1に戻って示すように、ベルマウス7は、ターボファン6の周囲に配置され、シュラウド10よりもターボファン6の回転軸の軸方向Aの前方Fに配置されている。
図3~図6に示すように、ベルマウス7は、フランジ部15と、筒状部16と、を含んで構成されている。
フランジ部15は、矩形の板状であり、4つの辺17a、17b、17c、17dを縁部として有する。フランジ部15は、ターボファン6の回転軸の軸方向Aの前方Fに配置され、ターボファン6の回転軸の軸方向Aに直交して延伸している。言い換えると、フランジ部15は、筒状部16の前方Fの周縁部から筒状部16の半径方向の外側に張り出した部位である。
図3、図4、図6に示すように、フランジ部15は、電気品箱を嵌め込む凸状領域18を有している。
凸状領域18は、フランジ部15におけるターボファン6の回転軸の軸方向Aの後方Rの背面に突出している。凸状領域18は、フランジ部15の一部の辺17dに沿わせたほぼ矩形であり、筒状部16の一部の円周部分に隣接して後方Rに突出している。
凸状領域18は、フランジ部15におけるターボファン6の回転軸の軸方向Aの後方Rの背面に突出している。凸状領域18は、フランジ部15の一部の辺17dに沿わせたほぼ矩形であり、筒状部16の一部の円周部分に隣接して後方Rに突出している。
図3~図6に示すように、筒状部16は、フランジ部15の中央部にてフランジ部15からターボファン6の回転軸の軸方向Aの後方Rに円形に開口している。
図5に示すように、筒状部16は、縮径部19と、拡径部20と、を含んで構成されている。
縮径部19は、フランジ部15に接続された前方Fの周縁部から後方Rに向かうにつれて内径および外径が小さくなっている。
拡径部20は、縮径部19よりもターボファン6の回転軸の軸方向Aの後方Rに縮径部19から連続し、縮径部19に連続する前方Fから後方Rに向かうにつれて内径および外径が大きくなっている。
縮径部19および拡径部20の内側には、ターボファン6の回転軸の軸方向Aの前後方向に貫通する貫通口21が形成されている。
図5に示すように、筒状部16は、縮径部19と、拡径部20と、を含んで構成されている。
縮径部19は、フランジ部15に接続された前方Fの周縁部から後方Rに向かうにつれて内径および外径が小さくなっている。
拡径部20は、縮径部19よりもターボファン6の回転軸の軸方向Aの後方Rに縮径部19から連続し、縮径部19に連続する前方Fから後方Rに向かうにつれて内径および外径が大きくなっている。
縮径部19および拡径部20の内側には、ターボファン6の回転軸の軸方向Aの前後方向に貫通する貫通口21が形成されている。
後述で用いる図8に示すように、拡径部20は、ターボファン6のシュラウド10が構成する空気吸込口11の周縁部との間に所定の隙間を設けた状態で空気吸込口11からシュラウド10の内側に挿入されている。これにより、ベルマウス7は、貫通口21を通じて前方Fから後方Rに向かって吸込まれる空気をシュラウド10の空気吸込口11に案内する。
図4~図6に示すように、ベルマウス7は、フランジ部15におけるターボファン6の回転軸の軸方向Aの後方Rの背面と、筒状部16における外周面と、に繋がって起立する複数の壁部22a、22b、22c、22d、22e、22f、22g、22hを有している。
壁部22a、22b、22c、22d、22e、22f、22g、22hは、ターボファン6の回転軸の軸方向Aにほぼ平行に板面を沿わせるように、ターボファン6の回転軸の軸方向Aの前方Fから後方Rに向かって延伸されている。
壁部22a、22b、22c、22d、22e、22f、22g、22hは、ターボファン6の回転軸の軸方向Aにほぼ平行に板面を沿わせるように、ターボファン6の回転軸の軸方向Aの前方Fから後方Rに向かって延伸されている。
また、壁部22a、22b、22c、22d、22e、22f、22g、22hは、後述するベルマウス7の成形に用いる第1~第3スライド金型27a、27b、27cのうちのいずれかの筒状部16の半径方向にスライドするスライド方向Bに合わせて延伸されている。
言い換えると、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、筒状部16の外方向に相互に平行に延伸された2以上の壁部22a、22b、22c、22d、22e、22f、22g、22hの群を3つ含んでいる。
つまり、1つの壁部の群における2以上の壁部が相互に平行に延伸される方向は、ベルマウス7の成形に用いるスライド金型のスライドするスライド方向に合っていれば良く、筒状部16の半径方向に限定されない。
言い換えると、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、筒状部16の外方向に相互に平行に延伸された2以上の壁部22a、22b、22c、22d、22e、22f、22g、22hの群を3つ含んでいる。
つまり、1つの壁部の群における2以上の壁部が相互に平行に延伸される方向は、ベルマウス7の成形に用いるスライド金型のスライドするスライド方向に合っていれば良く、筒状部16の半径方向に限定されない。
複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、後述する第1~第3スライド金型27a、27b、27cのうちの1つに対応する矩形であるフランジ部15の1つの辺17a、17b、17cにて少なくとも2つ以上形成されている。
矩形であるフランジ部15の1つの辺17a、17b、17cにて少なくとも2以上形成された壁部22a、22b、22c、22d、22e、22f、22g、22hは、後述する第1~第3スライド金型27a、27b、27cのうちの対応する金型の筒状部16の半径方向にスライドするスライド方向Bに合わせた筒状部16の半径方向に相互に平行に延伸されている。
矩形であるフランジ部15の1つの辺17a、17b、17cにて少なくとも2以上形成された壁部22a、22b、22c、22d、22e、22f、22g、22hは、後述する第1~第3スライド金型27a、27b、27cのうちの対応する金型の筒状部16の半径方向にスライドするスライド方向Bに合わせた筒状部16の半径方向に相互に平行に延伸されている。
具体的には、フランジ部15の辺17aにて3つ形成された壁部22a、22b、22cの群は、後述する第1スライド金型27aの筒状部16の半径方向にスライドするスライド方向Bに合わせて相互に平行に延伸されている。フランジ部15の辺17aに対して筒状部16の周方向で90°の位置に分かれて配置された辺17bにて2つ形成された壁部22d、22eの群は、後述する第2スライド金型27bの筒状部16の半径方向にスライドするスライド方向Bに合わせて相互に平行に延伸されている。フランジ部15の辺17bに対して筒状部16の周方向で90°の位置に分かれて配置された辺17cにて3つ形成された壁部22f、22g、22hの群は、後述する第3スライド金型27cの筒状部16の半径方向にスライドするスライド方向Bに合わせて相互に平行に延伸されている。
なお、壁部22a、22b、22c、22d、22e、22f、22g、22hは、2以上の数で相互に平行に延伸する壁部の群を構成できれば良い。
図4、図5、後述で用いる図8に示すように、壁部22a、22b、22c、22d、22e、22f、22g、22hは、軸方向縁部23と、径方向縁部24と、をほぼ直角に交差させた大きな表面積を有する形状である。
軸方向縁部23は、フランジ部15におけるターボファン6の回転軸の軸方向Aにおける後方Rの背面からターボファン6の回転軸の軸方向Aに沿って後方に真っ直ぐに延伸している。
径方向縁部24は、筒状部16の縮径部19における外周面からシュラウド10の外径寸法よりも筒状部16の半径方向の外側にターボファン6の回転軸の軸方向Aに直交して真っ直ぐに延伸している。
なお、壁部22a、22b、22c、22d、22e、22f、22g、22hは、この形状に限られない。壁部22a、22b、22c、22d、22e、22f、22g、22hは、後述するベルマウス7の成形に用いる成形型25で表面積を大きく成形できればどのような形状でもよい。
[ベルマウスおよび成形型の構成]
図7は、本発明の実施の形態1に係る遠心送風機1のベルマウス7と成形型25との関係を示す斜視図である。
図7に示すように、ベルマウス7は、一体成形により製作されている。すなわち、フランジ部15と筒状部16と複数の壁部22a、22b、22c、22d、22e、22f、22g、22hとを含むベルマウス7は、一体成形により製作されている。
図7は、本発明の実施の形態1に係る遠心送風機1のベルマウス7と成形型25との関係を示す斜視図である。
図7に示すように、ベルマウス7は、一体成形により製作されている。すなわち、フランジ部15と筒状部16と複数の壁部22a、22b、22c、22d、22e、22f、22g、22hとを含むベルマウス7は、一体成形により製作されている。
図7には、ベルマウス7の後方Rの背面を成形する成形型25として複数の金型26a、26b、26c、26d、27a、27b、27c、27dが示されている。
ベルマウス7の成形に用いる金型としては、第1角部金型26a、第2角部金型26b、第3角部金型26cおよび第4角部金型26dを備えている。第1~第4角部金型26a、26b、26c、26dは、フランジ部15の4つの角部を成形する。第1~第4角部金型26a、26b、26c、26dは、ベルマウス7の前方Fの前面を成形する図示しない成形型と前後方向に型締めおよび型開きされる。
ベルマウス7の成形に用いる金型としては、第1角部金型26a、第2角部金型26b、第3角部金型26cおよび第4角部金型26dを備えている。第1~第4角部金型26a、26b、26c、26dは、フランジ部15の4つの角部を成形する。第1~第4角部金型26a、26b、26c、26dは、ベルマウス7の前方Fの前面を成形する図示しない成形型と前後方向に型締めおよび型開きされる。
ベルマウス7の成形に用いる金型としては、第1スライド金型27a、第2スライド金型27b、第3スライド金型27cおよび第4スライド金型27dを備えている。第1~第4スライド金型27a、27b、27c、27dは、筒状部16の周方向に90°ごとに4つ設けられている。第1~第4スライド金型27a、27b、27c、27dは、第1~第4角部金型26a、26b、26c、26dの間における矩形であるフランジ部15の各辺17a、17b、17c、17dの中央部にて筒状部16の半径方向(スライド方向B)にスライドされて型締めおよび型開きされる。第1~第4スライド金型27a、27b、27c、27dは、筒状部16の外周面部を4つに分けて成形する。
ここで、図7に示すように、第1~第3スライド金型27a、27b、27cには、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hを成形するための中空部としてのスリット28が壁部数に応じた本数で形成されている。スリット28は、第1~第3スライド金型27a、27b、27cのそれぞれが型開きする際にスライドする筒状部16の半径方向に平行に細長く形成されている。スリット28は、第1~第3スライド金型27a、27b、27cのそれぞれについて少なくとも2つ以上形成されている。
これにより、図6に示すように、壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7の成形に用いる第1~第3スライド金型27a、27b、27cのうちいずれかにおける筒状部16の半径方向にスライドするスライド方向Bとほぼ平行となるように成形される。このため、壁部22a、22b、22c、22d、22e、22f、22g、22hは、第1~第3スライド金型27a、27b、27cのうちいずれかに対応する矩形であるフランジ部15の辺17a、17b、17cに直交するスライド方向Bに合わせて延伸されている。
このように成形された壁部22a、22b、22c、22d、22e、22f、22g、22hは、第1~第3スライド金型27a、27b、27cがスライド方向Bにスライドされて型開きするときに第1~第3スライド金型27a、27b、27cのスライドを阻害しない。そして、壁部22a、22b、22c、22d、22e、22f、22g、22hの離型性が良く、壁部22a、22b、22c、22d、22e、22f、22g、22hの成形時に不具合が生じ難い。
これにより、図6に示すように、壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7の成形に用いる第1~第3スライド金型27a、27b、27cのうちいずれかにおける筒状部16の半径方向にスライドするスライド方向Bとほぼ平行となるように成形される。このため、壁部22a、22b、22c、22d、22e、22f、22g、22hは、第1~第3スライド金型27a、27b、27cのうちいずれかに対応する矩形であるフランジ部15の辺17a、17b、17cに直交するスライド方向Bに合わせて延伸されている。
このように成形された壁部22a、22b、22c、22d、22e、22f、22g、22hは、第1~第3スライド金型27a、27b、27cがスライド方向Bにスライドされて型開きするときに第1~第3スライド金型27a、27b、27cのスライドを阻害しない。そして、壁部22a、22b、22c、22d、22e、22f、22g、22hの離型性が良く、壁部22a、22b、22c、22d、22e、22f、22g、22hの成形時に不具合が生じ難い。
[主流および漏れ流の概略]
図8は、本発明の実施の形態1に係る遠心送風機1におけるターボファン6のシュラウド10とベルマウス7との位置関係並びに主流Sおよび漏れ流れMを示した説明図である。
図8に示すように、ベルマウス7が複数の大きな壁部22a、22b、22c、22d、22e、22f、22g、22hを有している。このため、空気吸込口11近傍にて主流Sと合流する前の漏れ流れMの方向がターボファン6の回転軸の軸方向Aにより良く整流される。それにより、主流Sと漏れ流れMの方向が近くなり、漏れ流れMが拡径部20の外周面とシュラウド10の内周面との隙間から主流Sと合流するときに、漏れ流れMが主流に干渉する度合いが軽減される。したがって、漏れ流れMに起因するファン効率の低下および騒音の悪化が抑制される。
図8は、本発明の実施の形態1に係る遠心送風機1におけるターボファン6のシュラウド10とベルマウス7との位置関係並びに主流Sおよび漏れ流れMを示した説明図である。
図8に示すように、ベルマウス7が複数の大きな壁部22a、22b、22c、22d、22e、22f、22g、22hを有している。このため、空気吸込口11近傍にて主流Sと合流する前の漏れ流れMの方向がターボファン6の回転軸の軸方向Aにより良く整流される。それにより、主流Sと漏れ流れMの方向が近くなり、漏れ流れMが拡径部20の外周面とシュラウド10の内周面との隙間から主流Sと合流するときに、漏れ流れMが主流に干渉する度合いが軽減される。したがって、漏れ流れMに起因するファン効率の低下および騒音の悪化が抑制される。
[実施の形態1の効果]
実施の形態1によれば、遠心送風機1は、回転駆動される円形の主板14と主板14に対向して配置されて円形に開口する空気吸込口11を有するシュラウド10と主板14からシュラウド10までの間に主板14の周方向に間隔を開けて配置された複数の翼12とを含むターボファン6を備えている。遠心送風機1は、ターボファン6の周囲に配置されたベルマウス7を備えている。ベルマウス7は、ターボファン6の回転軸の軸方向A(回転軸方向)に直交して延伸するフランジ部15とフランジ部15から軸方向Aに延出された筒状部16とを含んでいる。ベルマウス7は、フランジ部15と筒状部16における外周面とに繋がって起立する複数の壁部22a、22b、22c、22d、22e、22f、22g、22hを有している。複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、筒状部16の外方向に相互に平行に延伸された2以上の壁部22a、22b、22c、22d、22e、22f、22g、22hの群を複数含んでいる。
この構成によれば、ベルマウス7の成形時に大きな壁部22a、22b、22c、22d、22e、22f、22g、22hが容易に形成できる。これにより、大きな壁部22a、22b、22c、22d、22e、22f、22g、22hは、空気吸込口11近傍にて主流Sと合流する前の漏れ流れMの方向を軸方向Aにより良く整流できる。そのため、主流Sと漏れ流れMの方向が近くなり、漏れ流れMが主流Sと合流するときに、漏れ流れMが主流Sに干渉する度合いが軽減される。したがって、漏れ流れMに起因するファン効率の低下および騒音の悪化がより抑制できる。
また、大きな壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7の成形に用いる第1~第3スライド金型27a、27b、27cの筒状部16の外方向にスライドするスライド方向Bに合わせて延伸できる。このため、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hがベルマウス7とともに一体成形されても、壁部22a、22b、22c、22d、22e、22f、22g、22hが離型し易く、成形型25が複雑化しない。したがって、製造効率が向上できる。
実施の形態1によれば、遠心送風機1は、回転駆動される円形の主板14と主板14に対向して配置されて円形に開口する空気吸込口11を有するシュラウド10と主板14からシュラウド10までの間に主板14の周方向に間隔を開けて配置された複数の翼12とを含むターボファン6を備えている。遠心送風機1は、ターボファン6の周囲に配置されたベルマウス7を備えている。ベルマウス7は、ターボファン6の回転軸の軸方向A(回転軸方向)に直交して延伸するフランジ部15とフランジ部15から軸方向Aに延出された筒状部16とを含んでいる。ベルマウス7は、フランジ部15と筒状部16における外周面とに繋がって起立する複数の壁部22a、22b、22c、22d、22e、22f、22g、22hを有している。複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、筒状部16の外方向に相互に平行に延伸された2以上の壁部22a、22b、22c、22d、22e、22f、22g、22hの群を複数含んでいる。
この構成によれば、ベルマウス7の成形時に大きな壁部22a、22b、22c、22d、22e、22f、22g、22hが容易に形成できる。これにより、大きな壁部22a、22b、22c、22d、22e、22f、22g、22hは、空気吸込口11近傍にて主流Sと合流する前の漏れ流れMの方向を軸方向Aにより良く整流できる。そのため、主流Sと漏れ流れMの方向が近くなり、漏れ流れMが主流Sと合流するときに、漏れ流れMが主流Sに干渉する度合いが軽減される。したがって、漏れ流れMに起因するファン効率の低下および騒音の悪化がより抑制できる。
また、大きな壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7の成形に用いる第1~第3スライド金型27a、27b、27cの筒状部16の外方向にスライドするスライド方向Bに合わせて延伸できる。このため、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hがベルマウス7とともに一体成形されても、壁部22a、22b、22c、22d、22e、22f、22g、22hが離型し易く、成形型25が複雑化しない。したがって、製造効率が向上できる。
実施の形態1によれば、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hの群は、筒状部16の周方向で90°の位置に分かれて配置されている。
この構成によれば、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、空気吸込口11近傍にて主流Sと合流する前の漏れ流れMの方向を軸方向Aにより良く整流できる。
この構成によれば、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、空気吸込口11近傍にて主流Sと合流する前の漏れ流れMの方向を軸方向Aにより良く整流できる。
実施の形態1によれば、フランジ部15は、矩形である。壁部22a、22b、22c、22d、22e、22f、22g、22hの群は、矩形であるフランジ部15の4辺17a、17b、17c、17dのうちいずれかの辺17a、17b、17c、17dの中央部に設けられている。
この構成によれば、矩形のフランジ部15の4隅に向かってターボファン6の回転軸の軸方向Aから周方向に傾斜した方向に大きく流れ込もうとする漏れ流れは、矩形であるフランジ部15の各辺17a、17b、17cの中央部にて壁部22a、22b、22c、22d、22e、22f、22g、22hにより遮られて勢いを削がれる。また、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、各辺17a、17b、17cに2以上の数で配置され、漏れ流れの勢いを削ぐ効果が大きい。そのため、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、空気吸込口11近傍にて主流Sと合流する前の漏れ流れMの方向を軸方向Aにより良く整流できる。
この構成によれば、矩形のフランジ部15の4隅に向かってターボファン6の回転軸の軸方向Aから周方向に傾斜した方向に大きく流れ込もうとする漏れ流れは、矩形であるフランジ部15の各辺17a、17b、17cの中央部にて壁部22a、22b、22c、22d、22e、22f、22g、22hにより遮られて勢いを削がれる。また、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、各辺17a、17b、17cに2以上の数で配置され、漏れ流れの勢いを削ぐ効果が大きい。そのため、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、空気吸込口11近傍にて主流Sと合流する前の漏れ流れMの方向を軸方向Aにより良く整流できる。
実施の形態1によれば、フランジ部15は、電気品箱を嵌め込む凸状領域18を有している。複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、凸状領域18を有するフランジ部15の辺17dの領域には形成されない。
この構成によれば、凸状領域18は、漏れ流れを阻害する。これにより、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hが形成されなくても、漏れ流れMの影響が及び難い。
この構成によれば、凸状領域18は、漏れ流れを阻害する。これにより、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hが形成されなくても、漏れ流れMの影響が及び難い。
実施の形態1によれば、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hのそれぞれは、フランジ部15から軸方向Aに延伸する軸方向縁部23と、筒状部16における外周面からシュラウド10が有する空気吸込口11の外径寸法よりも筒状部16の半径方向の外側に軸方向Aに直交して延伸する径方向縁部24と、を交差させた形状である。
この構成によれば、漏れ流れMを整流できる離型性の良い大きな壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7とともに一体成形できる。
この構成によれば、漏れ流れMを整流できる離型性の良い大きな壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7とともに一体成形できる。
実施の形態1によれば、ベルマウス7は、一体成形により製作されている。
この構成によれば、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7と一体成形され、製造効率が向上できる。
この構成によれば、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7と一体成形され、製造効率が向上できる。
実施の形態1によれば、遠心送風機1の製造方法は、壁部22a、22b、22c、22d、22e、22f、22g、22hの群における当該2以上の壁部22a、22b、22c、22d、22e、22f、22g、22hを、ベルマウス7の成形に用いる第1~第3スライド金型27a、27b、27cがスライドするスライド方向Bに合わせた筒状部16の外方向に相互に平行に延伸させて形成する。
この構成によれば、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7と一体成形され、製造効率が向上できる。
この構成によれば、複数の壁部22a、22b、22c、22d、22e、22f、22g、22hは、ベルマウス7と一体成形され、製造効率が向上できる。
実施の形態2.
[空気調和装置の構成]
図9は、本発明の実施の形態2に係る空気調和装置100を示す概略構成図である。なお、図9では、冷房運転時の冷媒の流れが実線の矢印で示され、暖房運転時の冷媒の流れが点線の矢印で示される。また、図9では、冷媒循環回路の構成関係のみが特定され、構成機器の実際の上下左右などの配置関係が特定されていない。
[空気調和装置の構成]
図9は、本発明の実施の形態2に係る空気調和装置100を示す概略構成図である。なお、図9では、冷房運転時の冷媒の流れが実線の矢印で示され、暖房運転時の冷媒の流れが点線の矢印で示される。また、図9では、冷媒循環回路の構成関係のみが特定され、構成機器の実際の上下左右などの配置関係が特定されていない。
図9に示すように、空気調和装置100は、圧縮機101と、四方弁102と、熱源側熱交換器103と、絞り装置104と、負荷側熱交換器である実施の形態1で説明した熱交換器5と、を備えている。空気調和装置100は、熱源側熱交換器103に送風する熱源側送風機106と、熱交換器5に送風する実施の形態1で説明した遠心送風機1と、を備えている。空気調和装置100は、天井埋込型室内機2と室外機を接続する配管108、109を備えている。空気調和装置100は、空気調和装置100の各種可動部品を制御する制御装置110、111を備えている。
空気調和装置100には、圧縮機101と四方弁102と熱源側熱交換器103と絞り装置104と熱交換器5とが冷媒配管で接続されて、冷媒循環回路が形成される。
空気調和装置100には、圧縮機101と四方弁102と熱源側熱交換器103と絞り装置104と熱交換器5とが冷媒配管で接続されて、冷媒循環回路が形成される。
制御装置110、111には、たとえば、圧縮機101、四方弁102、絞り装置104、熱源側送風機106、遠心送風機1、各種センサなどが通信線を介して接続されている。
制御装置110、111によって、四方弁102の流路が切り替えられることにより、冷房運転と暖房運転とが切り替えられる。熱源側熱交換器103は、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する。熱交換器5は、冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する。
制御装置110、111によって、四方弁102の流路が切り替えられることにより、冷房運転と暖房運転とが切り替えられる。熱源側熱交換器103は、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する。熱交換器5は、冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する。
[冷房運転時の冷媒の流れ]
圧縮機101から吐出される高圧高温のガス状態の冷媒は、四方弁102を介して熱源側熱交換器103に流入する。熱源側熱交換器103に流入した冷媒は、熱源側送風機106によって供給される外気との熱交換によって凝縮することにより、高圧の液状態の冷媒となり、熱源側熱交換器103から流出する。熱源側熱交換器103から流出した高圧の液状態の冷媒は、絞り装置104に流入し、低圧の気液二相状態の冷媒となる。絞り装置104から流出する低圧の気液二相状態の冷媒は、熱交換器5に流入し、遠心送風機1によって供給される室内空気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱交換器5から流出する。熱交換器5から流出する低圧のガス状態の冷媒は、四方弁102を介して圧縮機101に吸入される。
圧縮機101から吐出される高圧高温のガス状態の冷媒は、四方弁102を介して熱源側熱交換器103に流入する。熱源側熱交換器103に流入した冷媒は、熱源側送風機106によって供給される外気との熱交換によって凝縮することにより、高圧の液状態の冷媒となり、熱源側熱交換器103から流出する。熱源側熱交換器103から流出した高圧の液状態の冷媒は、絞り装置104に流入し、低圧の気液二相状態の冷媒となる。絞り装置104から流出する低圧の気液二相状態の冷媒は、熱交換器5に流入し、遠心送風機1によって供給される室内空気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱交換器5から流出する。熱交換器5から流出する低圧のガス状態の冷媒は、四方弁102を介して圧縮機101に吸入される。
[暖房運転時の冷媒の流れ]
圧縮機101から吐出される高圧高温のガス状態の冷媒は、四方弁102を介して熱交換器5に流入する。熱交換器5に流入した冷媒は、遠心送風機1によって供給される室内空気との熱交換によって凝縮することで高圧の液状態の冷媒となり、熱交換器5から流出する。熱交換器5から流出した高圧の液状態の冷媒は、絞り装置104に流入し、低圧の気液二相状態の冷媒となる。絞り装置104から流出する低圧の気液二相状態の冷媒は、熱源側熱交換器103に流入し、熱源側送風機106によって供給される外気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱源側熱交換器103から流出する。熱源側熱交換器103から流出する低圧のガス状態の冷媒は、四方弁102を介して圧縮機101に吸入される。
圧縮機101から吐出される高圧高温のガス状態の冷媒は、四方弁102を介して熱交換器5に流入する。熱交換器5に流入した冷媒は、遠心送風機1によって供給される室内空気との熱交換によって凝縮することで高圧の液状態の冷媒となり、熱交換器5から流出する。熱交換器5から流出した高圧の液状態の冷媒は、絞り装置104に流入し、低圧の気液二相状態の冷媒となる。絞り装置104から流出する低圧の気液二相状態の冷媒は、熱源側熱交換器103に流入し、熱源側送風機106によって供給される外気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱源側熱交換器103から流出する。熱源側熱交換器103から流出する低圧のガス状態の冷媒は、四方弁102を介して圧縮機101に吸入される。
[実施の形態2の効果]
実施の形態2によれば、空気調和装置100は、上記した実施の形態1の遠心送風機1を備えている。
この構成によれば、空気調和装置100は、漏れ流れMに起因するファン効率の低下および騒音の悪化がより抑制でき、製造効率が向上できる。
実施の形態2によれば、空気調和装置100は、上記した実施の形態1の遠心送風機1を備えている。
この構成によれば、空気調和装置100は、漏れ流れMに起因するファン効率の低下および騒音の悪化がより抑制でき、製造効率が向上できる。
以上のように、本発明の実施の形態として、本発明に係る遠心送風機を空気調和装置の天井埋込型室内機に適用させた場合を例示した。しかし、本発明に係る遠心送風機は、他のタイプの空気調和装置の室内機あるいは室外機などに用いても良い。また、本発明に係る遠心送風機は、空気調和装置以外の送風手段を具備する各種機器に広く用いても良い。
1 遠心送風機、2 天井埋込型室内機、3 化粧パネル、4 本体筐体、5 熱交換器、6 ターボファン、7 ベルマウス、8 ファンモータ、9 回転軸、10 シュラウド、11 空気吸込口、12 翼、13 吹出口、14 主板、15 フランジ部、16 筒状部、17a 辺、17b 辺、17c 辺、17d 辺、18 凸状領域、19 縮径部、20 拡径部、21 貫通口、22a 壁部、22b 壁部、22c 壁部、22d 壁部、22e 壁部、22f 壁部、22g 壁部、22h 壁部、23 軸方向縁部、24 径方向縁部、25 成形型、26a 第1角部金型、26b 第2角部金型、26c 第3角部金型、26d 第4角部金型、27a 第1スライド金型、27b 第2スライド金型、27c 第3スライド金型、27d 第4スライド金型、28 スリット、100 空気調和装置、101 圧縮機、102 四方弁、103 熱源側熱交換器、104 絞り装置、106 熱源側送風機、108 配管、109 配管、110 制御装置、111 制御装置。
Claims (8)
- 回転駆動される円形の主板と前記主板に対向して配置されて円形に開口する空気吸込口を有するシュラウドと前記主板から前記シュラウドまでの間に前記主板の周方向に間隔を開けて配置された複数の翼とを含むターボファンと、
前記ターボファンの周囲に配置されたベルマウスと、
を備え、
前記ベルマウスは、前記ターボファンの回転軸方向に直交して延伸するフランジ部と前記フランジ部から前記回転軸方向に延出された筒状部とを含み、前記フランジ部と前記筒状部における外周面とに繋がって起立する複数の壁部を有し、
前記複数の壁部は、前記筒状部の外方向に相互に平行に延伸された2以上の壁部の群を複数含む遠心送風機。 - 複数の前記壁部の群は、前記筒状部の周方向で90°の位置に分かれて配置された請求項1に記載の遠心送風機。
- 前記フランジ部は、矩形であり、
前記壁部の群は、矩形である前記フランジ部の4辺のうちいずれかの辺の中央部に設けられた請求項2に記載の遠心送風機。 - 前記フランジ部は、電気品箱を嵌め込む凸状領域を有し、
前記複数の壁部は、前記凸状領域を有する前記フランジ部の辺の領域には形成されない請求項3に記載の遠心送風機。 - 前記複数の壁部のそれぞれは、前記フランジ部から前記回転軸方向に延伸する軸方向縁部と、前記筒状部における外周面から前記シュラウドが有する前記空気吸込口の外径寸法よりも前記筒状部の半径方向の外側に前記回転軸方向に直交して延伸する径方向縁部と、を交差させた形状である請求項1~4のいずれか1項に記載の遠心送風機。
- 前記ベルマウスは、一体成形により製作された請求項1~5のいずれか1項に記載の遠心送風機。
- 請求項1~6のいずれか1項に記載の遠心送風機を備えた空気調和装置。
- 請求項1~6のいずれか1項に記載の遠心送風機の製造方法であって、
前記壁部の群における当該2以上の壁部を、前記ベルマウスの成形に用いる金型がスライドするスライド方向に合わせた前記筒状部の外方向に相互に平行に延伸させて形成する遠心送風機の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201690000628.4U CN207920972U (zh) | 2016-12-19 | 2016-12-19 | 离心送风机以及空调装置 |
JP2018557240A JP6739546B2 (ja) | 2016-12-19 | 2016-12-19 | 遠心送風機および空気調和装置並びに遠心送風機の製造方法 |
PCT/JP2016/087763 WO2018116341A1 (ja) | 2016-12-19 | 2016-12-19 | 遠心送風機および空気調和装置並びに遠心送風機の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/087763 WO2018116341A1 (ja) | 2016-12-19 | 2016-12-19 | 遠心送風機および空気調和装置並びに遠心送風機の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018116341A1 true WO2018116341A1 (ja) | 2018-06-28 |
Family
ID=62627219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/087763 WO2018116341A1 (ja) | 2016-12-19 | 2016-12-19 | 遠心送風機および空気調和装置並びに遠心送風機の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6739546B2 (ja) |
CN (1) | CN207920972U (ja) |
WO (1) | WO2018116341A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020230206A1 (ja) * | 2019-05-10 | 2020-11-19 | 三菱電機株式会社 | 空気調和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012207643A (ja) * | 2011-03-30 | 2012-10-25 | Mitsubishi Electric Corp | ファンガード、室外ユニット及び冷凍サイクル装置 |
JP2012211576A (ja) * | 2011-03-31 | 2012-11-01 | Daikin Industries Ltd | 遠心送風機及びこれを備えた空気調和機 |
JP2016080208A (ja) * | 2014-10-10 | 2016-05-16 | 株式会社富士通ゼネラル | 天井埋込型空気調和機 |
JP2016188578A (ja) * | 2015-03-30 | 2016-11-04 | パナソニックIpマネジメント株式会社 | 送風装置 |
-
2016
- 2016-12-19 JP JP2018557240A patent/JP6739546B2/ja active Active
- 2016-12-19 CN CN201690000628.4U patent/CN207920972U/zh active Active
- 2016-12-19 WO PCT/JP2016/087763 patent/WO2018116341A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012207643A (ja) * | 2011-03-30 | 2012-10-25 | Mitsubishi Electric Corp | ファンガード、室外ユニット及び冷凍サイクル装置 |
JP2012211576A (ja) * | 2011-03-31 | 2012-11-01 | Daikin Industries Ltd | 遠心送風機及びこれを備えた空気調和機 |
JP2016080208A (ja) * | 2014-10-10 | 2016-05-16 | 株式会社富士通ゼネラル | 天井埋込型空気調和機 |
JP2016188578A (ja) * | 2015-03-30 | 2016-11-04 | パナソニックIpマネジメント株式会社 | 送風装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020230206A1 (ja) * | 2019-05-10 | 2020-11-19 | 三菱電機株式会社 | 空気調和装置 |
JPWO2020230206A1 (ja) * | 2019-05-10 | 2020-11-19 | ||
JP7275257B2 (ja) | 2019-05-10 | 2023-05-17 | 三菱電機株式会社 | 空気調和装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018116341A1 (ja) | 2019-06-27 |
JP6739546B2 (ja) | 2020-08-12 |
CN207920972U (zh) | 2018-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109891155B (zh) | 室内机及空调装置 | |
JP6600005B2 (ja) | 空気調和機の室外機および冷凍サイクル装置 | |
WO2011055676A1 (ja) | 空気調和装置の室内機 | |
US10473339B2 (en) | Guide blade and air conditioner having the same | |
JP2011099613A (ja) | 空気調和装置の室内機 | |
JP6639654B2 (ja) | 空気調和機 | |
WO2017077575A1 (ja) | 送風機、室外機および冷凍サイクル装置 | |
JP7031061B2 (ja) | 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置 | |
CN109247023B (zh) | 离心送风机、空气调节装置以及制冷循环装置 | |
JP5295321B2 (ja) | 送風機、室外機及び冷凍サイクル装置 | |
CN210772705U (zh) | 室内机以及空调机 | |
US20210372411A1 (en) | Turbo fan, air sending device, air conditioning device, and refrigeration cycle device | |
WO2018116341A1 (ja) | 遠心送風機および空気調和装置並びに遠心送風機の製造方法 | |
JP6755331B2 (ja) | プロペラファン及び冷凍サイクル装置 | |
JP6541881B2 (ja) | 空気調和機、空気調和装置および冷凍サイクル装置 | |
CN107614981B (zh) | 制冷循环装置用室外单元以及制冷循环装置 | |
CN111630327B (zh) | 空调机的室内机 | |
US11333166B2 (en) | Propeller fan and refrigeration cycle apparatus | |
KR102206818B1 (ko) | 프로펠러 팬, 실외기 및 냉동 사이클 장치 | |
KR100874227B1 (ko) | 에어컨 유로 가이드 장치 | |
JP5558449B2 (ja) | 送風機、室外機及び冷凍サイクル装置 | |
WO2017060973A1 (ja) | 送風装置、室外機及び冷凍サイクル装置 | |
WO2017085889A1 (ja) | 遠心ファン、空気調和装置および冷凍サイクル装置 | |
JP2018025354A (ja) | 室内機および空気調和機 | |
JP6566699B2 (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16924356 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018557240 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16924356 Country of ref document: EP Kind code of ref document: A1 |