WO2018113274A1 - 中子捕获治疗系统及用于粒子线产生装置的靶材 - Google Patents

中子捕获治疗系统及用于粒子线产生装置的靶材 Download PDF

Info

Publication number
WO2018113274A1
WO2018113274A1 PCT/CN2017/092742 CN2017092742W WO2018113274A1 WO 2018113274 A1 WO2018113274 A1 WO 2018113274A1 CN 2017092742 W CN2017092742 W CN 2017092742W WO 2018113274 A1 WO2018113274 A1 WO 2018113274A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
layer
neutron
cooling
active layer
Prior art date
Application number
PCT/CN2017/092742
Other languages
English (en)
French (fr)
Inventor
刘渊豪
蔡炅彣
陈韦霖
Original Assignee
南京中硼联康医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720599162.0U external-priority patent/CN207640821U/zh
Priority claimed from CN201710389061.5A external-priority patent/CN108934120B/zh
Priority claimed from CN201720600916.XU external-priority patent/CN207640824U/zh
Priority claimed from CN201710389070.4A external-priority patent/CN108926784B/zh
Priority claimed from CN201710384408.7A external-priority patent/CN108926782B/zh
Priority claimed from CN201710384698.5A external-priority patent/CN108926783B/zh
Priority claimed from CN201720599511.9U external-priority patent/CN207640822U/zh
Priority claimed from CN201710383772.1A external-priority patent/CN108926781B/zh
Priority claimed from CN201720600026.9U external-priority patent/CN206835439U/zh
Priority claimed from CN201720599639.5U external-priority patent/CN207640823U/zh
Priority to EP20197643.8A priority Critical patent/EP3777976A1/en
Application filed by 南京中硼联康医疗科技有限公司 filed Critical 南京中硼联康医疗科技有限公司
Priority to JP2019533000A priority patent/JP2020513885A/ja
Priority to EP17885357.8A priority patent/EP3530316B1/en
Priority to RU2019121849A priority patent/RU2727576C1/ru
Publication of WO2018113274A1 publication Critical patent/WO2018113274A1/zh
Priority to US16/412,762 priority patent/US20190262632A1/en
Priority to US16/513,956 priority patent/US11224766B2/en
Priority to US17/539,358 priority patent/US20220088416A1/en
Priority to JP2022038857A priority patent/JP7332736B2/ja
Priority to JP2023130566A priority patent/JP2023162248A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/009Neutron capture therapy, e.g. using uranium or non-boron material
    • A61K41/0095Boron neutron capture therapy, i.e. BNCT, e.g. using boronated porphyrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/06Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0094Other isotopes not provided for in the groups listed above
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/02Neutron sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • H05H2006/007Radiation protection arrangements, e.g. screens

Definitions

  • One aspect of the invention relates to a radiation illumination system, and more particularly to a neutron capture treatment system; another aspect of the invention relates to a target for a radiation illumination system, and more particularly to a particle line generating device Target.
  • neutron capture therapy combines the above two concepts, such as boron neutron capture therapy, by the specific agglomeration of boron-containing drugs in tumor cells, combined with precise neutron beam regulation, providing better radiation than traditional radiation. Cancer treatment options.
  • the accelerator boron neutron capture treatment accelerates the proton beam by an accelerator, and the proton beam accelerates to an energy sufficient to overcome the coulomb repulsion of the target nucleus, and reacts with the target to generate neutrons, thus generating
  • the target is irradiated by an accelerated proton beam of very high energy level, the temperature of the target will rise sharply, and the metal part of the target will easily foam, thereby affecting the service life of the target.
  • an aspect of the present invention provides a neutron capture treatment system including a neutron production device and a beam shaping body, the neutron production device including an accelerator and a target, and the accelerator accelerates generation of charged particles A line interacts with the target to produce a neutron beam, the beam shaping body comprising a reflector, a retarding body, a thermal neutron absorber, a radiation shield, and a beam outlet, the slowing body being from the target
  • the neutrons generated by the material are decelerated to an epithermal neutron energy region, the reflector surrounding the retarding body and guiding the offset neutrons back to the retarding body to increase the intensity of the epithermal neutron beam
  • the thermal neutron absorber is used to absorb thermal neutrons to avoid excessive doses with shallow normal tissue during treatment, the radiation shield being disposed around the beam exit at the rear of the reflector for shielding leakage Neutrons and photons to reduce the normal tissue dose in the non-irradiated area
  • the target includes an active layer, a
  • Another aspect of the present invention provides a target for a particle beam generating device, the target comprising an active layer, a susceptor layer, and a heat dissipation layer, the active layer for generating the particle line, the pedestal
  • the layer supports the active layer
  • the heat dissipation layer includes a tubular member composed of a plurality of tubes side by side. The heat dissipation structure of the tubular member increases the heat dissipation surface, improves the heat dissipation effect, and helps to extend the life of the target.
  • a neutron capture treatment system including a neutron production device and a beam shaping body, the neutron production device including an accelerator and a target, the accelerator accelerating the generated charged particle beam and the The target action produces a neutron beam, the beam shaping body comprising a reflector, a retarding body, a thermal neutron absorber, a radiation shield, and a beam exit, the slowing body being generated from the target Sub-deceleration to an epithermal neutron energy region, the reflector surrounding the retarding body and guiding the offset neutrons back to the retarding body to increase the intensity of the epithermal neutron beam, the thermal neutron absorption
  • the body is used to absorb thermal neutrons to avoid excessive doses with shallow normal tissue at the time of treatment, the radiation shield being disposed around the beam exit at the rear of the reflector for shielding leakage of neutrons and photons
  • the target has a cooling inlet, a cooling outlet, and a cooling passage
  • the heat dissipation effect is improved; by providing the protrusions in the cooling channel, the heat dissipation surface and/or the eddy current are further increased, which helps to extend the life of the target.
  • Another aspect of the present invention provides a target for a particle beam generating device, the target comprising an active layer, a susceptor layer, and a heat dissipation layer, the active layer for generating the particle line, the pedestal
  • the layer supports the active layer, the heat dissipation layer having a cooling passage for the circulation of the cooling medium, and the cooling passage is provided with at least one protrusion having a cooling surface.
  • Another aspect of the present invention provides a target for a neutron beam generating device, the target comprising an active layer and a pedestal layer, the active layer being capable of interacting with an incident particle beam to generate the neutron line
  • the susceptor layer can both inhibit foaming caused by incident particle lines and support the active layer, and the active layer includes a first active layer and a second active layer, and the incident particle lines sequentially pass through the first in the incident direction.
  • the neutron yield can be increased by using the first active layer and the second active layer disposed along the incident direction of the particle beam.
  • the neutron generating device includes an accelerator and a target, and the charged particle beam generated by the accelerator accelerates to generate a neutron beam with the target, the beam shaping body including a reflector, a retarding body, a thermal neutron absorber, a radiation shield and a beam outlet, the retarding body decelerating neutrons generated from the target to an epithermal neutron energy region, the reflector surrounding the retarding body and guiding the deviated neutrons back
  • the thermal neutron absorber is used to absorb thermal neutrons to avoid excessive doses with shallow normal tissue during treatment
  • the radiation shielding body surrounding a beam exit is provided at the rear of the reflector for shielding leaking neutrons and photons to reduce normal tissue dose in the non-irradiated region
  • the target comprising an active layer and a pedestal layer, the active layer being capable of The incident particle beam
  • FIG. 1 is a schematic diagram of a neutron capture treatment system in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic view of a target in an embodiment of the present invention.
  • Figure 3 is a partially enlarged schematic view of the target of Figure 2;
  • FIG. 4 is a schematic view of the heat dissipation layer of the target of FIG. 2 as seen from direction A;
  • Figure 5a is a schematic view of a first embodiment of the inner wall of the heat dissipation passage of the target of Figure 2;
  • Figure 5b is a schematic view of the first embodiment of the inner wall of the heat dissipation passage of the target of Figure 2 along the axis B-B;
  • Figure 6a is a schematic view showing a second embodiment of the inner wall of the heat dissipation passage of the target of Figure 2;
  • Figure 6b is a schematic view of the second embodiment of the inner wall of the heat dissipation passage of the target of Figure 2 along the axis C-C;
  • Figure 7 is a schematic illustration of a third embodiment of the inner wall of the heat dissipating passage of the target of Figure 2.
  • the neutron capture treatment system of the present embodiment is preferably a boron neutron capture treatment system 100, including a neutron production device 10, a beam shaping body 20, a collimator 30, and a treatment table 40.
  • the neutron generating device 10 includes an accelerator 11 and a target T, and the accelerator 11 accelerates charged particles (such as protons, nucleus, etc.) to generate charged particle lines P such as protons, and the charged particle rays P illuminate the target T and
  • the target T acts to produce a neutron beam (neutron beam) N, and the target T is preferably a metal target. According to the required neutron yield and energy, the energy and current of the accelerated charged particles, and the physicochemical properties of the metal target, the appropriate nuclear reaction is selected.
  • the nuclear reaction is often discussed as 7 Li(p,n) 7 Be and 9 Be(p,n) 9 B, both of which are endothermic reactions.
  • the energy thresholds of the two nuclear reactions are 1.881 MeV and 2.055 MeV, respectively. Since the ideal neutron source for boron neutron capture therapy is the superheated neutron of the keV energy level, theoretically, if proton bombardment with energy only slightly higher than the threshold is used.
  • Metallic lithium target which can produce relatively low-energy neutrons, can be used in clinical practice without too much slow processing.
  • the ideal target should have a high neutron yield, produce a neutron energy distribution close to the epithermal neutron energy zone (described in detail below), no excessively strong radiation generation, safe and inexpensive to operate, and high temperature resistance. But in fact, it is impossible to find a nuclear reaction that meets all requirements.
  • the target T may also be made of a metal material other than Li, Be, such as Ta or W and alloys thereof.
  • the accelerator 11 may be a linear accelerator, a cyclotron, a synchrotron, or a synchrocyclotron.
  • the neutron beam N generated by the neutron generating device 10 is sequentially irradiated to the patient 200 on the treatment table 40 by the beam shaping body 20 and the collimator 30.
  • the beam shaping body 20 is capable of adjusting the beam quality of the neutron beam N generated by the neutron generating device 10, and the collimator 30 is used to concentrate the neutron beam N so that the neutron beam N has a higher process during the treatment. Targeting.
  • the beam shaping body 20 further includes a reflector 21, a retarding body 22, a thermal neutron absorber 23, a radiation shield 24, and a beam outlet 25.
  • the neutron generated by the neutron generating device 10 has a wide spectrum of energy, except for the super
  • thermal neutrons need to reduce other types of neutrons and photons as much as possible to avoid injury to the operator or patient, so the neutrons coming out of the neutron generating device 10 need to pass through the retarding body 22
  • the fast neutron energy is adjusted to the superheated neutron energy region, and the retarding body 22 is made of a material having a large cross section with fast neutron action and a small thermal neutron action cross section.
  • the retarding body 22 is composed of D 2 .
  • At least one of O, AlF 3 , Fluental, CaF 2 , Li 2 CO 3 , MgF 2 , and Al 2 O 3 is formed; the reflector 21 surrounds the retarding body 22 and diffuses through the retarding body 22 to the periphery. The neutron is reflected back to the neutron beam N to improve the utilization of the neutron, and is made of a material having strong neutron reflection capability.
  • the reflector 21 is made of at least one of Pb or Ni;
  • the thermal neutron absorber 23 is made of Li-6, and the thermal neutron absorber 23 is used to absorb the thermal neutrons passing through the retarding body 22 to reduce the thermal neutrons in the neutron beam N.
  • the content avoids excessive doses with shallow normal tissue during treatment;
  • the radiation shield 24 is disposed around the beam outlet 25 at the rear of the reflector for shielding neutrons and photons leaking from outside the beam outlet 25, radiation
  • the material of the shielding body 24 includes at least one of a photonic shielding material and a neutron shielding material.
  • the material of the radiation shielding body 24 includes a photonic shielding material lead (Pb) and a neutron shielding material polyethylene (PE).
  • the beam shaping body 20 can have other configurations as long as the epithermal neutron beam required for treatment can be obtained.
  • the collimator 30 is disposed at the rear of the beam outlet 25, and the epithermal neutron beam emerging from the collimator 30 is irradiated to the patient 200, and is slowly heated to a thermal neutron to reach the tumor cell M through the shallow normal tissue.
  • the collimator 30 can also be eliminated or replaced by other structures that illuminate the patient 200 directly from the beam exit 25.
  • a radiation shielding device 50 is disposed between the patient 200 and the beam outlet 25 to shield the radiation from the beam outlet 25 to the normal tissue of the patient. It is understood that the radiation shielding device 50 may not be provided. .
  • the boron-containing drug selectively accumulates in the tumor cell M, and then uses the boron-containing (B-10) drug to have a high capturing cross-section characteristic of the thermal neutron.
  • Two heavy-charged particles, 4 He and 7 Li, are generated by 10 B(n, ⁇ ) 7 Li neutron capture and nuclear splitting reaction.
  • the average energy of the two charged particles is about 2.33 MeV, which has high linear transfer (LET) and short range characteristics.
  • the linear energy transfer and range of ⁇ short particles are 150 keV/ ⁇ m and 8 ⁇ m, respectively, while the 7 Li heavy particles It is 175keV/ ⁇ m, 5 ⁇ m.
  • the total range of the two particles is about one cell size. Therefore, the radiation damage caused by the organism can be limited to the cell level, and it can reach the locality without causing too much damage to the normal tissue. The purpose of killing tumor cells.
  • the target T is disposed between the accelerator 11 and the beam shaping body 20, and the accelerator 11 has an accelerating tube 111 for accelerating the charged particle beam P.
  • the accelerating tube 111 is incident on the charged particle beam P.
  • the body 20 passes through the reflector 21 and the retarding body 22 in sequence, and the target T is disposed in the retarding body 22 and located at the end of the accelerating tube 111 to obtain better neutron beam quality.
  • the target T includes a heat dissipation layer 12, a susceptor layer 13 and an active layer 14, and the active layer 14 acts on the charged particle beam P to generate a neutron line, and the susceptor layer 13 supports the active layer 14.
  • the material of the active layer 14 is Li or its alloy
  • the charged particle beam P is a proton line
  • the target T further includes an anti-oxidation layer 15 for preventing oxidation of the active layer on the side of the active layer 14, the pedestal layer. 13 can simultaneously suppress foaming caused by incident proton rays, and the charged particle beam P sequentially passes through the oxidation resistant layer 15, the active layer 14, and the susceptor layer 13 in the incident direction.
  • the material of the oxidation resistant layer 15 is considered to be less susceptible to corrosion by the active layer and can reduce the loss of the incident proton beam and the heat generation caused by the proton beam, such as at least one of Al, Ti and its alloys or stainless steel.
  • the anti-oxidation layer 15 is a material capable of undergoing nuclear reaction with protons at the same time, and can further increase the neutron yield while performing the above-mentioned functions. At this time, the anti-oxidation layer is simultaneously a part of the active layer, such as Be.
  • the energy of the incident proton beam is higher than the energy threshold of the nuclear reaction with Li and Be, respectively producing two different nuclear reactions, 7 Li(p,n) 7 Be and 9 Be(p,n) 9 B;
  • Be has a high melting point and good thermal conductivity, and its melting point is 1287 ° C, thermal conductivity is 201 W / (m K), and high temperature resistance relative to Li (melting point of 181 ° C, thermal conductivity: 71 W / (m K))
  • the heat dissipation performance has great advantages, further increasing the life of the target, and its reaction threshold with the proton generating (p, n) nuclear reaction is about 2.055 MeV, most of the accelerator neutron source using proton beam, the energy is Above the reaction threshold, the target is also the best choice for lithium targets.
  • the neutron yield is improved due to the presence of Be compared to the antioxidant layer using other materials such as Al.
  • the proton beam energy is 2.5 MeV-5 MeV, which can generate a high effective cross section with the lithium target, and does not generate excessive fast neutrons, and obtains better beam quality;
  • the thickness of the active layer 14 is 80 ⁇ m-240 ⁇ m, fully reacts with protons, and does not cause excessive energy deposition, affecting the heat dissipation performance of the target; while achieving the above effects while ensuring low manufacturing cost, the thickness of the anti-oxidation layer 15 is 5 ⁇ m-25 ⁇ m .
  • Monte Carlo software was used to simulate the proton beams of 2.5MeV, 3MeV, 3.5MeV, 4MeV, 4.5MeV and 5MeV respectively.
  • the proton beam was injected into the anti-oxidation layer 15 in the direction perpendicular to the surface of the target T.
  • Layer 14 (Li) and pedestal layer 13 (Ta, which will be described later in detail) the material of the oxidation resistant layer 15 is compared with Be, and the thickness of the oxidation resistant layer 15 is 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, respectively.
  • the thickness of the active layer 14 is 80 ⁇ m, 120 ⁇ m, 160 ⁇ m, 200 ⁇ m, 240 ⁇ m, respectively.
  • the thickness of the pedestal layer 12 has little effect on the neutron yield, which can be adjusted according to the actual situation, and the obtained neutron yield (ie, each proton generated)
  • the number of sub-numbers) is shown in Table 1 and Table 2.
  • the calculation results of the neutron yield increase ratio of Be as the lithium target anti-oxidation layer relative to Al are shown in Table 3. From the results, it is known that when Be is used as the anti-oxidation layer material, the neutron yield is significantly improved relative to Al.
  • the neutron yield available was 7.31E-05n/proton-5.61E-04n/proton.
  • the heat dissipation layer 12 is made of a heat conductive material (such as a material having good thermal conductivity such as Cu, Fe, Al, etc.) or a material capable of both heat conduction and foaming inhibition; the base layer 13 is made of a material that inhibits foaming; The material or the material capable of both thermally and inhibiting foaming includes at least one of Fe, Ta or V.
  • the heat dissipation layer can have a variety of configurations, such as a flat plate.
  • the heat dissipation layer 12 includes the tubular member 121 and the support member 122.
  • the material of the tubular member 121 and the support member 122 are both Cu, which has good heat dissipation performance.
  • the tubular member 121 is composed of a plurality of tubes arranged side by side and positioned and mounted by the support member 122.
  • the support member 122 is fixed to the retarding body 22 or the end portion of the accelerating tube 111 by a connecting member such as a bolt or a screw. Other detachable connections are available for easy replacement of the target.
  • the structure of the tube increases the heat dissipation area, improves the heat dissipation effect, and helps to extend the life of the target.
  • the heat dissipation layer 12 further has a cooling passage P through which the cooling medium flows.
  • the cooling medium is water, and the inside of the tube constituting the tubular member 121 at least partially forms a cooling passage P.
  • the cooling medium flows through the inside of the tube to take away the heat thereof, and the inside of the tube serves as a cooling passage, thereby further enhancing the heat dissipation effect and prolonging the life of the target.
  • the shape, number and size of the tube are determined according to the size of the actual target. Only four circular tubes are schematically shown in the figure. It can be understood that it can also be a square tube, a polygonal tube, an elliptical tube, and the like; The adjacent tubes may be close to each other such that the outer surfaces thereof are in contact with each other or may be spaced apart; the cross-sectional shape of the inner holes of the tubes may also be various, such as circular, polygonal, elliptical, etc., and different cross sections are also Can have different shapes.
  • the additive is manufactured to obtain a tubular member, which facilitates the molding of the minute structure and the complicated structure. .
  • the three-dimensional modeling of the tubular member is carried out, and the three-dimensional model data of the tubular member is input into the computer system, and layered into two-dimensional slice data, and the raw materials (such as copper powder) are layer-by-layer manufactured by a computer-controlled additive manufacturing system. After the superposition, the three-dimensional product is finally obtained.
  • the pedestal layer 13 When the pedestal layer 13 is made of Ta, it has a certain heat dissipation effect and can reduce foaming, inhibit inelastic scattering of protons and Li to release ⁇ , and prevent excess protons from passing through the target; in this embodiment, the pedestal layer The material of 13 is a Ta-W alloy, which can obviously improve the low strength of pure tantalum and poor heat conductivity while maintaining the excellent performance of the above Ta, so that the heat generated by the nuclear reaction of the active layer 14 can be conducted out in time by the pedestal layer. At this time, the heat dissipation layer may also be at least partially made of the same material or integral structure as the base layer.
  • the weight percentage of W in the Ta-W alloy is 2.5%-20% to ensure the foaming property of the susceptor layer, and the pedestal layer has higher strength and thermal conductivity, further extending the service life of the target.
  • Ta-W alloys such as Ta-2.5 wt% W, Ta-5.0 wt% W, Ta-7.5 wt% W, Ta-10 wt% W, Ta-12 wt% W, Ta- are used for powder metallurgy, forging, pressing, and the like. 20 wt% W or the like) is formed into a plate-like susceptor layer 13 having a proton line energy of 1.881 MeV-10 MeV and a pedestal layer having a thickness of at least 50 ⁇ m to sufficiently absorb excess protons.
  • the manufacturing process of the target T is as follows:
  • S1 pouring liquid lithium metal onto the susceptor layer 13 to form the active layer 14, and may also be treated by evaporation or sputtering, and an extremely thin adhesion layer 16 may be disposed between the lithium and the ruthenium.
  • the same treatment such as evaporation or sputtering may be used to improve the adhesion between the pedestal layer and the active layer;
  • the oxidation resistant layer 15 is simultaneously subjected to HIP treatment or by other processes to close the pedestal layer 13 to form a cavity and/or to surround the active layer 14;
  • the support member 122 and the tubular member 121 are connected by welding, press fitting, or the like.
  • the oxidation resistant layer 15 and the pedestal layer 13 may be subjected to HIP treatment or the susceptor layer 13 may be closed to form a cavity by another process, and then the liquid lithium metal is further removed. Pouring into the cavity to form Use layer 14.
  • the support member 122 can also be omitted, and the plurality of tubes can be connected and fixed integrally by welding or other means.
  • the base layer 13, the active layer 14, and the anti-oxidation layer 15 on each tube are separately formed, and the tubular member is positioned and connected with the support member 122. After the connection, the base layer 13, the active layer 14, and the antioxidant layer formed on each tube are connected.
  • the whole of the layer 15 may be discontinuous, and it is necessary to form a connection portion 17 between adjacent tubes.
  • the connection portion 17 is also composed of the base layer 13, the active layer 14 and the anti-oxidation layer 15, and the entire target is divided into The plurality of separate acting portions further reduce the foaming phenomenon of the metal anti-oxidation layer.
  • the connection between the support member 122 and the tubular member 121 in S4 can also be detachable, and the target T can be partially replaced. Extending the service life of the target and reducing the cost of treatment for the patient; it can be understood that the base layer 13, the active layer 14, and the anti-oxidation layer 15 on each tube can also be integrally formed and then connected to the tubular member, so that the active layer of the target T is connected.
  • the support member 122 and the tubular member 121 can also be integrally obtained by additive manufacturing, which reduces the difficulty of processing and assembly.
  • the shape formed by the base layer 13, the active layer 14, and the oxidation resistant layer 15 in a cross section perpendicular to the center line of the tube may also be various, such as connecting the base layer 13, the active layer 14, and the oxidation resistant layer 15 to the tubular member.
  • the outer surface of one side has the same contour, which is a circular arc shape in this embodiment, which increases the area of the target T and the charged particle beam P and the area where the heat dissipation layer 12 contacts the susceptor layer 13 and conducts heat; each tube
  • the upper active layer 14 covers at least 1/4 of the outer circumference of the tube, that is, the angle between the active layer and the center line of the tube in the circumferential direction is at least 45 degrees.
  • the support member 122 includes a first support portion 1221 and a second support portion 1222 symmetrically disposed at two ends of the tubular member 121, respectively having a cooling inlet IN and a cooling outlet OUT, and the cooling passage P communicates with the cooling inlet IN and cooling Exit OUT.
  • the cooling passage P includes a first cooling passage P1 on the first support portion, a second cooling passage P2 on the second support portion, and a third cooling passage P3 formed inside the tube constituting the tubular member 121.
  • the cooling medium enters from the cooling inlet IN on the first support portion 1221, enters the inside of each of the tubes constituting the tubular member 121 through the first cooling passage P1, and then exits from the cooling outlet OUT through the second cooling passage P2 on the second support portion. .
  • the target T is heated by a high-energy-grade accelerated proton beam irradiation temperature, and the susceptor layer and the heat dissipation layer conduct heat, and carry the heat out through a cooling medium circulating in the tubular member and the support member, thereby The material T is cooled.
  • first cooling passage P1 and the second cooling passage P2 can also adopt other arrangements, such as the cooling medium entering from the cooling inlet IN on the first supporting portion 1221 sequentially passes through the insides of the respective tubes constituting the tubular member 121, and finally From the cooling outlet OUT on the second support portion; the cooling medium may also directly enter and exit the tubular member without passing through the support member.
  • the cooling inlet IN and the cooling outlet OUT may be disposed on the tubular member 121, and the respective tubes are sequentially connected.
  • the cooling passages P are formed, and the cooling medium flows through the inside of each tube in sequence.
  • the support member 122 may further include a third support portion 1223 connecting the first and second support portions 1221, 1222, and the third support portion 1223 is in contact with the other side opposite to the side of the tubular member 121 connecting the active layer 14, the third support The portion 1223 may also have a fourth cooling passage that constitutes the cooling passage P.
  • the cooling medium may pass only through the support member 122 without passing through the inside of each tube of the tubular member 121, and the cooling passages in the interior of each tube and the support member 122 are not Connected, cooling within support 122
  • the passage can have a variety of arrangements, such as a spiral shape, as much as possible through the area in contact with the tube; the cooling medium can also pass through the inside of the tube and through the third support of the support or both through the inside of the tube and through the support First, second and third support portions.
  • the first and second cooling pipes D1 and D2 are disposed between the accelerating tube 111 and the reflector 21 and the retarding body 22, and one ends of the first and second cooling pipes D1 and D2 are respectively cooled to the cooling inlet of the target T. IN is connected to the cooling outlet OUT and the other end is connected to an external cooling source. It can be understood that the first and second cooling tubes can also be disposed in the beam shaping body in other ways, and can also be eliminated when the target is placed outside the beam shaping body.
  • one or more protrusions 123 having a cooling surface S may be disposed in the cooling passage P to increase the heat dissipation surface and/or form a vortex to enhance the heat dissipation effect, and the cooling surface S is a cooling medium.
  • the inner wall W of the cooling passage P protrudes.
  • the maximum distance L1 of the protruding portion 123 extending from the inner wall W of the cooling passage P is smaller than a half of the distance L2 extending to the opposite inner wall W in the extending direction, and the protruding portion 123 does not affect the cooling medium.
  • the free flow in the cooling channel P that is to say the projections, does not function to divide a cooling channel into several substantially independent cooling channels (the cooling medium does not influence each other).
  • the projection 123 protrudes from the inner wall W of the cooling passage P in a direction perpendicular to the flow direction D of the cooling medium, and the inner wall W of the cooling passage P is a cylindrical surface, protruding
  • the portion 123 is a strip extending linearly in the flow direction D of the cooling medium.
  • the inner wall W of the cooling passage P may have other shapes, and the protrusion 123 may also have a spiral shape or other shape from the inner wall W of the cooling passage P. Extending in the direction of circulation of the cooling medium. In the figure, there are 10 protrusions and are evenly distributed along the circumference of the inner wall W.
  • the protrusions may also be other numbers or only disposed on the inner wall W of the cooling channel in contact with the active layer or the pedestal layer, at least two adjacent
  • the shape and/or the length of the protrusions may also differ.
  • the cross-sectional shape of the protruding portion 123 in a direction perpendicular to the flow direction D of the cooling medium may be a rectangle, a trapezoid, a triangle, or the like; the shape or size of the different cross-sections may be different, such as being pulsed, zigzag, or wavy in the direction of flow of the cooling medium.
  • the sub-projection portion 1231 is provided on the cooling surface S of the protruding portion 123.
  • the sub-protrusion portion 1231 has a zigzag shape in a cross-sectional shape perpendicular to the cooling medium flow direction D, and extends in the cooling medium flow direction D, which can be understood.
  • the sub-protrusion can also have various configurations, as long as the heat dissipating surface can be increased.
  • the sub-protrusion 1231 is only schematically disposed on one of the cooling surfaces of the protrusion 123.
  • the protrusion 1231 may also be disposed on any other cooling surface of the protrusion 123.
  • the projections 123 are rings spaced apart in the flow direction of the cooling medium. It can be understood that it can also be a ring. At least part. In the picture The number of rings and the length of the cooling channel are only schematic and can be adjusted according to the actual situation.
  • the end surface of the ring is a plane perpendicular to the flow direction D of the cooling medium, and it is understood that it may be a plane inclined to the flow direction D of the cooling medium or a tapered surface or a curved surface.
  • At least one second wall 124 is disposed in the cooling passage P to divide the cooling passage P into at least two mutually independent sub-channels P' and P", at least two adjacent sub-portions.
  • the flow direction of the cooling medium in the channel is different, and the heat dissipation efficiency is increased.
  • the second wall 124 is cylindrical on the basis of the first embodiment and passes through the protrusions 123, and the inside of the cylindrical second wall 124 Forming the sub-channel P' while forming one sub-channel P" between every two adjacent protrusions 123 and the second wall 124, thereby forming 10 sub-channels P", sub-channels P' and at least around the sub-channel P'
  • the flow direction of the cooling medium in one sub-channel P" is different, and the flow direction of the cooling medium in at least two adjacent sub-channels P" may also be different.
  • the second wall may have other depending on the different arrangement of the protrusions. The manner of arrangement.
  • the protrusions in the cooling channel and the sub-protrusions thereon further increase the manufacturing difficulty. Therefore, the protrusions and/or the second wall can be separately formed and then inserted into the tube for positioning, or integrated with the tube by additive manufacturing. obtain.
  • the heat dissipation layer 12 can also be used as the base layer 13 at the same time.
  • the heat dissipation layer 12 is at least partially made of a material capable of both heat conduction and foam suppression, such as a tube made of Ta or Ta-W alloy.
  • the member 122 and the support member 122 made of Cu, the active layer 14 is connected to the Ta or Ta-W alloy tube by a process such as evaporation or sputtering, and the Ta or Ta-W alloy tube serves as the susceptor layer 12 and the heat dissipation layer 13 at the same time.
  • the target T has a rectangular plate shape as a whole; it can be understood that the target T can also be a disk shape, and the first support portion and the second support portion form a whole circumference or a part of the circumference, and the length of the tube can be
  • the target T can also be other solid shapes; the target T can also be movable relative to the accelerator or the beam shaping body to facilitate the change of the target or to make the particle line and the target uniformly.
  • a liquid material liquid metal can also be used for the active layer 14.
  • the target of the present invention can also be applied to other neutron production devices in the medical and non-medical fields, as long as the generation of the neutron is based on the nuclear reaction between the particle beam and the target, the material of the target is also based on different nuclear reactions. The difference can also be applied to other particle line generating devices.
  • tubular member in the present invention refers to a unit in which a plurality of individual tubes are arranged and connected by a joint or a joining process, and a hollow portion is formed by forming one or a plurality of plate members or combining them to form a hollow portion.
  • An object cannot be understood as a tubular member of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种中子捕获治疗系统(100)及用于中子产生装置(10)的靶材(T),能提升靶材(T)的散热性能,减少起泡,增加靶材(T)的寿命。中子捕获治疗系统(100)包括中子产生装置(10)和射束整形体(20);中子产生装置(10)包括加速器(11)和靶材(T);加速器(11)加速产生的带电粒子线(P)与靶材(T)作用产生中子线(N);靶材(T)包括作用层(14)、基座层(13)和散热层(12),作用层(14)与带电粒子线(P)作用产生中子线(N),基座层(13)支撑作用层(14),散热层(12)包括由多个管并排组成的管状件(121)。

Description

中子捕获治疗系统及用于粒子线产生装置的靶材 技术领域
本发明一方面涉及一种辐射线照射系统,尤其涉及一种中子捕获治疗系统;本发明另一方面涉及一种用于辐射线照射系统的靶材,尤其涉及一种用于粒子线产生装置的靶材。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastoma multiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐射伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应(relative biological effectiveness,RBE)的辐射源,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗,借由含硼药物在肿瘤细胞的特异性集聚,配合精准的中子射束调控,提供比传统放射线更好的癌症治疗选择。
在加速器硼中子捕获治疗中,加速器硼中子捕获治疗通过加速器将质子束加速,质子束加速至足以克服靶材原子核库伦斥力的能量,与靶材发生核反应以产生中子,因此在产生中子的过程中靶材会受到非常高能量等级的加速质子束的照射,靶材的温度会大幅上升,同时靶材的金属部分容易起泡,从而影响靶材的使用寿命。
因此,有必要提出一种新的技术方案以解决上述问题。
发明内容
为了解决上述问题,本发明一方面提供了一种中子捕获治疗系统,包括中子产生装置和射束整形体,所述中子产生装置包括加速器和靶材,所述加速器加速产生的带电粒子线与所述靶材作用产生中子线,所述射束整形体包括反射体、缓速体、热中子吸收体、辐射屏蔽体和射束出口,所述缓速体将自所述靶材产生的中子减速至超热中子能区,所述反射体包围所述缓速体并将偏离的中子导回至所述缓速体以提高超热中子射束强度,所述热中子吸收体用于吸收热中子以避免治疗时与浅层正常组织造成过多剂量,所述辐射屏蔽体围绕所述射束出口设置在所述反射体后部用于屏蔽渗漏的中子和光子以减少非照射区的正常组织剂量,所述 靶材包括作用层、基座层和散热层,所述作用层与带电粒子线作用产生中子线,所述基座层支撑所述作用层,所述散热层包括由多个管并排组成的管状件。采用管状件的散热结构,增大了散热表面,提升了散热效果,有助于延长靶材的寿命。
本发明另一方面提供了一种用于粒子线产生装置的靶材,所述靶材包括作用层、基座层和散热层,所述作用层用于产生所述粒子线,所述基座层支撑所述作用层,所述散热层包括由多个管并排组成的管状件。采用管状件的散热结构,增大了散热表面,提升了散热效果,有助于延长靶材的寿命。
本发明另一方面提供了一种中子捕获治疗系统,包括中子产生装置和射束整形体,所述中子产生装置包括加速器和靶材,所述加速器加速产生的带电粒子线与所述靶材作用产生中子线,所述射束整形体包括反射体、缓速体、热中子吸收体、辐射屏蔽体和射束出口,所述缓速体将自所述靶材产生的中子减速至超热中子能区,所述反射体包围所述缓速体并将偏离的中子导回至所述缓速体以提高超热中子射束强度,所述热中子吸收体用于吸收热中子以避免治疗时与浅层正常组织造成过多剂量,所述辐射屏蔽体围绕所述射束出口设置在所述反射体后部用于屏蔽渗漏的中子和光子以减少非照射区的正常组织剂量,所述靶材所述靶材具有冷却进口、冷却出口及设置在冷却进口和冷却出口之间的冷却通道,所述冷却通道内设置有至少一个突出部,所述突出部具有冷却表面。通过采用冷却通道内流通的冷却介质为靶材散热,提升了散热效果;通过在冷却通道内设置突出部,进一步增大了散热表面和/或形成涡流,有助于延长靶材的寿命。
本发明另一方面提供了一种用于粒子线产生装置的靶材,所述靶材包括作用层、基座层和散热层,所述作用层用于产生所述粒子线,所述基座层支撑所述作用层,所述散热层具有供冷却介质流通的冷却通道,所述冷却通道内设置有至少一个突出部,所述突出部具有冷却表面。通过采用冷却通道内流通的冷却介质为靶材散热,提升了散热效果;通过在冷却通道内设置突出部,进一步增大了散热表面和/或形成涡流,有助于延长靶材的寿命。
本发明另一方面提供了一种用于中子线产生装置的靶材,所述靶材包括作用层和基座层,所述作用层能够与入射粒子线作用产生所述中子线,所述基座层既能抑制由入射粒子线引起的发泡又能支撑所述作用层,所述作用层包括第一作用层和第二作用层,入射粒子线沿入射方向依次穿过所述第一作用层和第二作用层。采用沿粒子线入射方向设置的第一作用层和第二作用层,能够增加中子产率。
本发明另一方面提供了一种中子捕获治疗系统,包括中子产生装置和射束整形体,所述 中子产生装置包括加速器和靶材,所述加速器加速产生的带电粒子线与所述靶材作用产生中子线,所述射束整形体包括反射体、缓速体、热中子吸收体、辐射屏蔽体和射束出口,所述缓速体将自所述靶材产生的中子减速至超热中子能区,所述反射体包围所述缓速体并将偏离的中子导回至所述缓速体以提高超热中子射束强度,所述热中子吸收体用于吸收热中子以避免治疗时与浅层正常组织造成过多剂量,所述辐射屏蔽体围绕所述射束出口设置在所述反射体后部用于屏蔽渗漏的中子和光子以减少非照射区的正常组织剂量,所述靶材包括作用层和基座层,所述作用层能够与入射粒子线作用产生所述中子线,所述基座层既能抑制由入射粒子线引起的发泡又能支撑所述作用层,所述作用层包括第一作用层和第二作用层,入射粒子线沿入射方向依次穿过所述第一作用层和第二作用层。采用沿粒子线入射方向设置的第一作用层和第二作用层,能够增加中子产率。
附图说明
图1为本发明实施例中的中子捕获治疗系统示意图;
图2为本发明实施例中的靶材的示意图;
图3为图2中的靶材的局部放大示意图;
图4为图2中的靶材的散热层从方向A看过去的示意图;
图5a为图2中的靶材的散热通道内壁的第一实施例的示意图;
图5b为图2中的靶材的散热通道内壁的第一实施例的沿轴线B-B的示意图;
图6a为图2中的靶材的散热通道内壁的第二实施例的示意图;
图6b为图2中的靶材的散热通道内壁的第二实施例的沿轴线C-C的示意图;
图7为图2中的靶材的散热通道内壁的第三实施例的示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
如图1,本实施例中的中子捕获治疗系统优选为硼中子捕获治疗系统100,包括中子产生装置10、射束整形体20、准直器30和治疗台40。中子产生装置10包括加速器11和靶材T,加速器11对带电粒子(如质子、氘核等)进行加速,产生如质子线的带电粒子线P,带电粒子线P照射到靶材T并与靶材T作用产生中子线(中子束)N,靶材T优选为金属靶材。依据所需的中子产率与能量、可提供的加速带电粒子能量与电流大小、金属靶材的物化性等特性来挑选合适的核反应,常被讨论的核反应有7Li(p,n)7Be及9Be(p,n)9B,这两种反应皆为吸热反应。两种核反应的能量阀值分别为1.881MeV和2.055MeV,由于硼中子捕获治疗的理想中子源为keV能量等级的超热中子,理论上若使用能量仅稍高于阀值的质子轰击金属锂靶 材,可产生相对低能的中子,不需太多的缓速处理便可用于临床,然而锂金属(Li)和铍金属(Be)两种靶材与阀值能量的质子作用截面不高,为产生足够大的中子通量,通常选用较高能量的质子来引发核反应。理想的靶材应具备高中子产率、产生的中子能量分布接近超热中子能区(将在下文详细描述)、无太多强穿辐射产生、安全便宜易于操作且耐高温等特性,但实际上并无法找到符合所有要求的核反应。本领域技术人员熟知的,靶材T也可以由Li、Be之外的金属材料制成,例如由Ta或W及其合金等形成。加速器11可以是直线加速器、回旋加速器、同步加速器、同步回旋加速器。
中子产生装置10产生的中子束N依次通过射束整形体20和准直器30照射向治疗台40上的患者200。射束整形体20能够调整中子产生装置10产生的中子束N的射束品质,准直器30用以汇聚中子束N,使中子束N在进行治疗的过程中具有较高的靶向性。射束整形体20进一步包括反射体21、缓速体22、热中子吸收体23、辐射屏蔽体24和射束出口25,中子产生装置10生成的中子由于能谱很广,除了超热中子满足治疗需要以外,需要尽可能的减少其他种类的中子及光子含量以避免对操作人员或患者造成伤害,因此从中子产生装置10出来的中子需要经过缓速体22将其中的快中子能量调整到超热中子能区,缓速体22由与快中子作用截面大、超热中子作用截面小的材料制成,本实施例中,缓速体22由D2O、AlF3、Fluental、CaF2、Li2CO3、MgF2和Al2O3中的至少一种制成;反射体21包围缓速体22,并将穿过缓速体22向四周扩散的中子反射回中子射束N以提高中子的利用率,由具有中子反射能力强的材料制成,本实施例中,反射体21由Pb或Ni中的至少一种制成;缓速体22后部有一个热中子吸收体23,由与热中子作用截面大的材料制成,本实施例中,热中子吸收体23由Li-6制成,热中子吸收体23用于吸收穿过缓速体22的热中子以减少中子束N中热中子的含量,避免治疗时与浅层正常组织造成过多剂量;辐射屏蔽体24围绕射束出口25设置在反射体后部,用于屏蔽从射束出口25以外部分渗漏的中子和光子,辐射屏蔽体24的材料包括光子屏蔽材料和中子屏蔽材料中的至少一种,本实施例中,辐射屏蔽体24的材料包括光子屏蔽材料铅(Pb)和中子屏蔽材料聚乙烯(PE)。可以理解,射束整形体20还可以有其他的构造,只要能够获得治疗所需超热中子束即可。准直器30设置在射束出口25后部,从准直器30出来的超热中子束向患者200照射,经浅层正常组织后被缓速为热中子到达肿瘤细胞M,可以理解,准直器30也可以取消或由其他结构代替,中子束从射束出口25出来直接向患者200照射。本实施例中,患者200和射束出口25之间还设置了辐射屏蔽装置50,屏蔽从射束出口25出来的射束对患者正常组织的辐射,可以理解,也可以不设置辐射屏蔽装置50。
患者200服用或注射含硼(B-10)药物后,含硼药物选择性地聚集在肿瘤细胞M中,然后利用含硼(B-10)药物对热中子具有高捕获截面的特性,借由10B(n,α)7Li中子捕获及核分裂 反应产生4He和7Li两个重荷电粒子。两荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)、短射程特征,α短粒子的线性能量转移与射程分别为150keV/μm、8μm,而7Li重荷粒子则为175keV/μm、5μm,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级,便能在不对正常组织造成太大伤害的前提下,达到局部杀死肿瘤细胞的目的。
下面结合图2、图3和图4对靶材T的结构做详细的说明。
靶材T设置在加速器11和射束整形体20之间,加速器11具有对带电粒子线P进行加速的加速管111,本实施例中,加速管111沿带电粒子线P方向伸入射束整形体20,并依次穿过反射体21和缓速体22,靶材T设置在缓速体22内并位于加速管111的端部,以得到较好的中子射束品质。
靶材T包括散热层12、基座层13和作用层14,作用层14与带电粒子线P作用产生中子线,基座层13支撑作用层14。本实施例中,作用层14的材料为Li或其合金,带电粒子线P为质子线,靶材T还包括位于作用层14一侧用于防止作用层氧化的抗氧化层15,基座层13能同时抑制由入射质子线引起的发泡,带电粒子线P沿入射方向依次穿过抗氧化层15、作用层14和基座层13。抗氧化层15的材料同时考虑不易被作用层腐蚀且能够减小入射质子束的损耗及质子束导致的发热,如包括Al、Ti及其合金或者不锈钢中的至少一种。本实施例中,抗氧化层15为同时能够与质子发生核反应的材料,起到上述作用的同时能进一步地增加中子产率,此时,抗氧化层同时为作用层的一部分,如采用Be或其合金,入射质子束的能量高于与Li和Be发生核反应的能量阀值,分别产生两种不同的核反应,7Li(p,n)7Be及9Be(p,n)9B;另外,Be具有高熔点及良好的导热特性,其熔点为1287℃,热传导率为201W/(m K),相对于Li(熔点为181℃,热传导率为71W/(m K))的耐高温及散热性能具有极大优势,进一步增加了靶材的寿命,并且其与质子发生(p,n)核反应的反应阀值约为2.055MeV,多数采用质子射束的加速器中子源,其能量皆高于该反应阀值,而铍靶亦是锂靶以外的最佳选择。与采用其他材料,如Al,的抗氧化层相比,由于Be的存在,中子产率得到了提高。本实施例中,质子线能量为2.5MeV-5MeV,能够与锂靶产生较高的作用截面,同时不会产生过多的快中子,获得较好的射束品质;作用层14的厚度为80μm-240μm,与质子能发生充分的反应,也不会过厚造成能量沉积,影响靶材散热性能;在达到上述效果的同时保证较低的制造成本,抗氧化层15的厚度为5μm-25μm。在对比试验中,采用蒙地卡罗软件分别仿真2.5MeV、3MeV、3.5MeV、4MeV、4.5MeV、5MeV的质子束由垂直于靶材T的作用表面的方向依次射入抗氧化层15、作用层14(Li)及基座层13(Ta,将在后文 详述),抗氧化层15的材料以Al与Be进行对比,抗氧化层15厚度分别为5μm、10μm、15μm、20μm、25μm,作用层14厚度分别为80μm、120μm、160μm、200μm、240μm,基座层12厚度对中子产率几乎没有影响可视实际情况调整,得到的中子产率(即每个质子产生的中子个数)结果如表1、表2所示。使用Be作为锂靶抗氧化层相对于Al的中子产率提升比例计算结果如表3所示,由结果知,使用Be作为抗氧化层材料时,中子产率相对于Al有明显提升,可以获得的中子产率为7.31E-05n/proton-5.61E-04n/proton。
表1、使用Al作为锂靶抗氧化层的中子产率(n/proton).E为入射质子线能量
Figure PCTCN2017092742-appb-000001
Figure PCTCN2017092742-appb-000002
表2、使用Be作为锂靶抗氧化层的中子产率(n/proton).E为入射质子线能量
Figure PCTCN2017092742-appb-000003
Figure PCTCN2017092742-appb-000004
表3、使用Be作为锂靶抗氧化层相对于Al的中子产率提升比例.E为入射质子线能量
Figure PCTCN2017092742-appb-000005
Figure PCTCN2017092742-appb-000006
散热层12由导热材料(如Cu、Fe、Al等导热性能好的材料)或既能导热又能抑制发泡的材料制成;基座层13由抑制发泡的材料制成;抑制发泡的材料或既能导热又能抑制发泡的材料包括Fe、Ta或V中的至少一种。散热层可以有多种构造,如为平板状,本实施例中,散热层12包括管状件121及支撑件122,管状件121和支撑件122的材料都为Cu,具有较好的散热性能且成本较低,管状件121由多个管并排组成并通过支撑件122进行定位安装,支撑件122通过螺栓或螺钉等连接件固定到缓速体22内或加速管111端部,可以理解,还可以采用其他可拆卸的连接,便于更换靶材。管的构造增大了散热面积,提升了散热效果,有助于延长靶材的寿命。散热层12还具有供冷却介质流通的冷却通道P,本实施例中, 冷却介质为水,组成管状件121的管内部至少部分形成冷却通道P,冷却介质流经管的内部带走其热量,管内部作为冷却通道,进一步增强了散热效果,延长靶材寿命。管的形状、个数及大小根据实际靶的尺寸决定,图中仅示意性地画出了4个圆管,可以理解,其也可以为方管、多边形管、椭圆管等及其组合;相邻的管可以是紧挨的使其外表面相互接触,也可以是间隔开的;管的内孔横截面形状也可以是多样的,如圆形、多边形、椭圆形等,不同的横截面还可以具有不同的形状。由于管状件在实际制造中每个管的直径较小,且内部有冷却通道,常规的生产工艺难度较大,本实施例中采用增材制造来获得管状件,方便微小结构和复杂结构的成型。首先对管状件进行三维建模,将管状件的三维模型数据输入到计算机系统中,并分层成二维切片数据,通过计算机控制的增材制造系统将原材料(如铜粉)进行逐层制造,叠加后最终获得三维产品。
基座层13采用Ta制成时,具有一定的散热效果同时能够减少起泡,抑制质子与Li发生非弹性散射而释放γ,及阻止多余的质子通过靶材;本实施例中,基座层13的材料为Ta-W合金,在保持上述Ta的优良性能的同时能明显地改善纯钽强度低、热传导性差的劣势,使得作用层14发生核反应产生的热量能由基座层及时传导出去,此时,散热层也可以至少部分与基座层采用相同的材料或一体构造。Ta-W合金中W的重量百分比为2.5%-20%,以保证基座层抑制发泡的特性,同时基座层具有更高的强度和热传导性,进一步延长靶材使用寿命。采用粉末冶金、锻造、压制等将Ta-W合金(如Ta-2.5wt%W、Ta-5.0wt%W、Ta-7.5wt%W、Ta-10wt%W、Ta-12wt%W、Ta-20wt%W等)制成板状的基座层13,在质子线能量为1.881MeV-10MeV,基座层的厚度至少为50μm,以充分吸收多余的质子。
本实施例中,靶材T的制造工艺如下:
S1:将液态的锂金属浇注到基座层13上形成作用层14,也可以采用蒸镀或溅射等处理,锂和钽之间还可以设置极薄的附着层16,附着层16的材料包括Cu、Al、Mg或Zn中的至少一种,同样可采用蒸镀或溅射等处理,提高基座层与作用层的附着性;
S2:将基座层13与散热层12的管状件121进行HIP(Hot Isostatic Pressing:热等静压)处理;
S3:抗氧化层15同时进行HIP处理或通过其他工艺将基座层13封闭形成一个容腔和/或将作用层14包围;
S4:支撑件122与管状件121通过焊接、压装等方式进行连接。
上述步骤S1、S2、S3和S4不分先后,如可以先将抗氧化层15与基座层13进行HIP处理或通过其他工艺将基座层13封闭形成一个容腔,再将液态的锂金属浇注到该容腔内形成作 用层14。可以理解,支撑件122也可以省略,将多个管通过焊接或其他方式依次连接固定为一体即可。每个管上的基座层13、作用层14、抗氧化层15分别成型,再将管状件与支撑件122定位连接,连接后各个管上形成的基座层13、作用层14、抗氧化层15的整体可能是不连续的,则需要在相邻的管之间形成连接部17,连接部17也由基座层13、作用层14和抗氧化层15组成,整个靶材被分为多个单独的作用部分,进一步降低了金属抗氧化层的起泡现象,此时,S4中支撑件122与管状件121的连接也可采用可拆卸的方式,则靶材T可以进行部分更换,延长靶材使用寿命,降低患者治疗成本;可以理解,各个管上的基座层13、作用层14、抗氧化层15也可以整体成型再连接到管状件,这样连接后靶材T的作用层整体是连续的,对于带电粒子线P与靶材T发生作用是有利的,此时支撑件122与管状件121还可以是一体通过增材制造获得的,降低加工、装配难度。基座层13、作用层14、抗氧化层15形成的整体在垂直于管中心线的剖面的形状也可以是多样的,如与管状件连接基座层13、作用层14、抗氧化层15一侧的外表面轮廓一致,本实施例中为圆弧形,增大了靶材T与带电粒子线P作用的面积及散热层12与基座层13接触并传导热量的面积;每个管上的作用层14至少覆盖管外周的1/4,即作用层在圆周方向与管中心线的夹角α至少为45度。
本实施例中,支撑件122包括第一支撑部1221和第二支撑部1222,对称设置在管状件121的两端,分别具有冷却进口IN和冷却出口OUT,冷却通道P连通冷却进口IN和冷却出口OUT。冷却通道P包括第一支撑部上的第一冷却通道P1、第二支撑部上的第二冷却通道P2和组成管状件121的管内部形成的第三冷却通道P3。冷却介质从第一支撑部1221上的冷却进口IN进入,通过第一冷却通道P1同时进入组成管状件121的各个管内部,然后通过第二支撑部上的第二冷却通道P2从冷却出口OUT出来。靶材T受到高能量等级的加速质子束照射温度升高发热,所述基座层和散热层将热量导出,并通过流通在管状件和支撑件内的冷却介质将热量带出,从而对靶材T进行冷却。
可以理解,第一冷却通道P1和第二冷却通道P2还可以采用其他的设置,如使得从第一支撑部1221上的冷却进口IN进入的冷却介质依次通过组成管状件121的各个管内部,最后从第二支撑部上的冷却出口OUT出来;冷却介质也可以不经过支撑件,而是直接进出管状件,此时,冷却进口IN和冷却出口OUT可以设置在管状件121上,各个管依次相连组成冷却通道P,冷却介质依次流经各个管的内部。
支撑件122还可以包括连接第一、第二支撑部1221、1222的第三支撑部1223,第三支撑部1223与管状件121连接作用层14的一侧相对的另一侧接触,第三支撑部1223也可以具有组成冷却通道P的第四冷却通道,此时,冷却介质可以仅通过支撑件122而不经过管状件121的各个管内部,各个管内部与支撑件122内的冷却通道均不连通,支撑件122内的冷却 通道可以有多种排布方式,如螺旋形,以尽量多的经过与管接触的区域;冷却介质还可以既经过管内部又经过支撑件的第三支撑部或者既经过管内部又经过支撑件的第一、第二和第三支撑部。
本实施例中,加速管111与反射体21和缓速体22之间设置第一、第二冷却管D1、D2,第一、第二冷却管D1、D2的一端分别与靶材T的冷却进口IN和冷却出口OUT连接,另一端连接到外部冷却源。可以理解,第一、第二冷却管还可以以其他方式设置在射束整形体内,当靶材置于射束整形体之外时,还可以取消。
继续参阅图5-图7,冷却通道P内可以设置1个或多个具有冷却表面S的突出部123,以增大散热表面和/或形成涡流,增强散热效果,冷却表面S为冷却介质在冷却通道P内流通时能够与突出部123接触的表面,突出部123从冷却通道P的内壁W沿与冷却介质流通方向D垂直或倾斜的方向突出,可以理解,突出部123也可以其他形式从冷却通道P的内壁W突出。在与冷却介质流通方向D垂直的方向,突出部123从冷却通道P内壁W延伸的最大距离L1小于在该延伸方向延伸到相对的内壁W的距离L2的一半,突出部123并不能影响冷却介质在该冷却通道P内的自由流通,也就是说突出部起不到将一个冷却通道划分成几个基本独立(冷却介质互不影响)的冷却通道的作用。
在图5a和5b所示的冷却通道的第一实施例中,突出部123从冷却通道P的内壁W沿与冷却介质流通方向D垂直的方向突出,冷却通道P的内壁W为圆柱面,突出部123为呈直线形沿冷却介质流通方向D延伸的条形件,可以理解,冷却通道P的内壁W可以为其他形状,突出部123还可以呈螺旋形或其他形状从冷却通道P的内壁W沿冷却介质流通方向延伸。图中突出部为10个且沿内壁W周向平均分布,可以理解,突出部也可以为其他个数或仅设置在与作用层或基座层接触的冷却通道内壁W,至少2个相邻突出部的形状和/或突出长度也可以不同。突出部123在垂直于冷却介质流通方向D的横截面形状可以是矩形、梯形、三角形等;不同横截面形状或大小也可以不同,如在冷却介质流通方向呈脉冲状、锯齿状或波浪状。突出部123的冷却表面S上设置子突出部1231,本实施例中,子突出部1231在垂直于冷却介质流通方向D的横截面形状为锯齿状,并沿冷却介质流通方向D延伸,可以理解,子突出部也可以具有各种不同的构造,只要能增加散热表面即可;本实施例中,子突出部1231仅示意性地设置在突出部123的其中一个冷却表面上,可以理解,子突出部1231还可以设置在突出部123的任意其他冷却表面上。
图6a和6b所示为冷却通道的第二实施例,下面仅描述其与第一实施例不同的地方,突出部123为在冷却介质流通方向间隔分布的环,可以理解,也可以为环的至少一部分。图中 环的个数和冷却通道的长度仅为示意,可根据实际情况进行调整。本实施例中,环的端面为垂直于冷却介质流通方向D的平面,可以理解,其也可以为与冷却介质流通方向D倾斜的平面或为锥形面或曲面等。
参阅图7,冷却通道的第三实施例中,冷却通道P内设置至少一个第二壁124将冷却通道P分为至少2个相互独立的子通道P'和P″,至少2个相邻子通道中冷却介质流通方向不同,增加散热效率。本实施例中,第二壁124在第一实施例的基础上为圆筒状并穿过各突出部123,圆筒状的第二壁124内部形成子通道P',同时在每2个相邻的突出部123和第二壁124之间形成1个子通道P″,从而围绕子通道P'形成10个子通道P″,子通道P'和至少一个子通道P″中的冷却介质流通方向不同,至少2个相邻的子通道P″中的冷却介质流通方向也可以不同。可以理解,第二壁根据突出部的不同设置还可以有其他的设置方式。冷却通道内的突出部及其上的子突出部进一步增加了制造难度,因此,突出部和/或第二壁可以采用单独成型然后插入管内进行定位,或与管一体通过增材制造获得。
可以理解,还可以将散热层12同时作为基座层13,此时,散热层12至少部分由既能导热又能抑制发泡的材料制成,如采用Ta或Ta-W合金制成的管状件121和Cu制成的支撑件122,作用层14通过蒸镀或溅射等工艺与Ta或Ta-W合金管连接,Ta或Ta-W合金管同时作为基座层12和散热层13。本实施例中,靶材T整体呈矩形板状;可以理解,靶材T还可以为圆板状,第一支撑部和第二支撑部组成整个圆周或圆周的一部分,此时管的长度可以不同;靶材T也可以为其他固体形状;靶材T还可以相对加速器或射束整形体是可运动的,以方便换靶或使粒子线与靶材均匀作用。作用层14也可以使用液状物(液体金属)。
可以理解,本发明的靶还可以应用于其他医疗和非医疗领域的中子产生装置,只要其中子的产生是基于粒子线与靶材的核反应,则靶材的材料也基于不同的核反应有所区别;还可以应用于其他粒子线产生装置。
本发明中的“管状件”指的是多个单独的管排列并通过连接件或连接工艺进行连接组成的整体,由一个或多个板状件形成或组合形成中空部得到的带中空部的物体不能理解为本发明的管状件。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,都在本发明要求保护的范围之内。

Claims (31)

  1. 一种中子捕获治疗系统,其特征在于,所述中子捕获治疗系统包括中子产生装置和射束整形体,所述中子产生装置包括加速器和靶材,所述加速器加速产生的带电粒子线与所述靶材作用产生中子线,所述射束整形体包括反射体、缓速体、热中子吸收体、辐射屏蔽体和射束出口,所述缓速体将自所述靶材产生的中子减速至超热中子能区,所述反射体包围所述缓速体并将偏离的中子导回至所述缓速体以提高超热中子射束强度,所述热中子吸收体用于吸收热中子以避免治疗时与浅层正常组织造成过多剂量,所述辐射屏蔽体围绕所述射束出口设置在所述反射体后部用于屏蔽渗漏的中子和光子以减少非照射区的正常组织剂量,所述靶材包括作用层、基座层和散热层,所述作用层与带电粒子线作用产生中子线,所述基座层支撑所述作用层,所述散热层包括由多个管并排组成的管状件。
  2. 如权利要求1所述的中子捕获治疗系统,其特征在于,所述中子捕获治疗系统还包括治疗台和准直器,所述中子产生装置产生的中子线通过所述射束整形体照射向所述治疗台上的患者,所述患者和射束出口之间设置辐射屏蔽装置以屏蔽从所述射束出口出来的射束对患者正常组织的辐射,所述准直器设置在所述射束出口后部以汇聚中子线,所述射束整形体内设置第一、第二冷却管,所述靶材具有冷却进口、冷却出口及设置在冷却进口和冷却出口之间的冷却通道,所述第一、第二冷却管的一端分别与所述靶材的冷却进口和冷却出口连接,另一端连接到外部冷却源,所述管状件的各个管内部组成所述冷却通道的至少一部分。
  3. 如权利要求2所述的中子捕获治疗系统,其特征在于,所述靶材位于所述射束整形体内,所述加速器具有对带电粒子线进行加速的加速管,所述加速管沿带电粒子线方向伸入所述射束整形体并依次穿过所述反射体和缓速体,所述靶材设置在所述缓速体内并位于所述加速管端部,所述第一、第二冷却管设置在所述加速管与所述反射体和缓速体之间。
  4. 一种用于粒子线产生装置的靶材,其特征在于,所述靶材包括作用层、基座层和散热层,所述作用层用于产生所述粒子线,所述基座层支撑所述作用层,所述散热层包括由多个管并排组成的管状件。
  5. 如权利要求4所述的用于粒子线产生装置的靶材,其特征在于,所述粒子线产生装置为中子线产生装置,所述作用层的材料为Li或其合金,所述作用层 与入射质子束发生7Li(p,n)7Be核反应来产生中子;或所述作用层的材料为Be或其合金,所述作用层与入射质子束发生9Be(p,n)9B核反应来产生中子。
  6. 如权利要求4所述的用于粒子线产生装置的靶材,其特征在于,所述靶材还包括抗氧化层,所述抗氧化层的材料包括Al、Ti、Be及其合金或者不锈钢中的至少一种,所述作用层和基座层之间设置附着层,所述附着层的材料包括Cu、Al、Mg或Zn中的至少一种,所述散热层由导热材料或既能导热又能抑制发泡的材料制成,所述基座层由抑制发泡的材料制成,抑制发泡的材料或既能导热又能抑制发泡的材料包括Fe、Ta或V中的至少一种,导热材料包括Cu、Fe、Al中的至少一种,所述散热层和所述基座层通过HIP工艺连接,所述作用层与所述基座层通过铸造、蒸镀或溅射工艺连接。
  7. 如权利要求4所述的用于粒子线产生装置的靶材,其特征在于,所述管状件同时作为所述基座层,所述管状件的材料为Ta,所述作用层与所述管状件通过蒸镀或溅射工艺连接。
  8. 如权利要求4所述的用于粒子线产生装置的靶材,其特征在于,所述基座层的材料为Ta-W合金,所述Ta-W合金中W的质量百分比为2.5%-20%,,所述质子线的能量为1.881MeV-10MeV,所述基座层的厚度至少为50μm。
  9. 如权利要求4-7中任一项所述的用于粒子线产生装置的靶材,其特征在于,所述管状件的每个管上的作用层至少覆盖管外周的1/4,作用层在圆周方向与管中心线的夹角至少为45度,所述管状件在相邻的管之间形成连接部,所述连接部由基座层、作用层和抗氧化层组成。
  10. 如权利要求4-7中任一项所述的用于粒子线产生装置的靶材,其特征在于,所述散热层还包括支撑件,所述支撑件的材料为Cu,所述管状件与所述支撑件焊接或可拆卸连接或一体通过增材制造形成,所述支撑件和/或管状件具有冷却通道。
  11. 如权利要求9所述的用于粒子线产生装置的靶材,其特征在于,所述支撑件包括设置在所述管状件两端的第一支撑部和第二支撑部,所述第一支撑部具有冷却进口和第一冷却通道,所述第二支撑部具有冷却出口和第二冷却通道,冷却介质从所述冷却进口进入通过所述第一冷却通道进入所述管状件的各个管内部,然后通过所述第二冷却通道从所述冷却出口出来,所述冷却介质为水,所述支撑件还包括连接所述第一、第二支撑部的第三支撑部,所述 第三支撑部与所述管状件连接所述作用层的一侧相对的另一侧接触,所述第三支撑部具有冷却通道,冷却介质仅通过所述支撑件或者既经过所述管状件的各个管内部又经过所述支撑件的第三支撑部或者既经过管内部又经过支撑件的第一、第二和第三支撑部。
  12. 一种中子捕获治疗系统,其特征在于,所述中子捕获治疗系统包括中子产生装置和射束整形体,所述中子产生装置包括加速器和靶材,所述加速器加速产生的带电粒子线与所述靶材作用产生中子线,所述射束整形体包括反射体、缓速体、热中子吸收体、辐射屏蔽体和射束出口,所述缓速体将自所述靶材产生的中子减速至超热中子能区,所述反射体包围所述缓速体并将偏离的中子导回至所述缓速体以提高超热中子射束强度,所述热中子吸收体用于吸收热中子以避免治疗时与浅层正常组织造成过多剂量,所述辐射屏蔽体围绕所述射束出口设置在所述反射体后部用于屏蔽渗漏的中子和光子以减少非照射区的正常组织剂量,所述靶材具有冷却进口、冷却出口及设置在冷却进口和冷却出口之间的冷却通道,所述冷却通道内设置有至少一个突出部,所述突出部具有冷却表面。
  13. 一种用于粒子线产生装置的靶材,其特征在于,所述靶材包括作用层、基座层和散热层,所述作用层用于产生所述粒子线,所述基座层支撑所述作用层,所述散热层具有供冷却介质流通的冷却通道,所述冷却通道内设置有至少一个突出部,所述突出部具有冷却表面。
  14. 根据权利要求13所述的用于粒子线产生装置的靶材,其特征在于,所述粒子线产生装置为中子线产生装置,所述作用层的材料为Li或其合金,所述作用层与入射质子束发生7Li(p,n)7Be核反应来产生中子;或所述作用层的材料为Be或其合金,所述作用层与入射质子束发生9Be(p,n)9B核反应来产生中子。
  15. 根据权利要求13所述的用于粒子线产生装置的靶材,其特征在于,所述突出部从所述冷却通道的内壁沿与冷却介质流通方向垂直或倾斜的方向突出,所述突出部呈螺旋形或直线形从所述冷却通道的内壁沿冷却介质流通方向延伸,或为在冷却介质流通方向间隔分布的环或环的一部分。
  16. 根据权利要求13所述的用于粒子线产生装置的靶材,其特征在于,所述突出部与所述冷却通道是一体的或所述突出部是单独成型的并安装在所述冷却通道内,所 述冷却表面上设置子突出部。
  17. 根据权利要求15所述的用于粒子线产生装置的靶材,其特征在于,所述突出部在垂直于冷却介质流通方向的横截面形状是矩形、梯形或三角形;不同横截面形状或大小不同,在冷却介质流通方向呈脉冲状、锯齿状或波浪状。
  18. 根据权利要求15所述的用于粒子线产生装置的靶材,其特征在于,在与冷却介质流通方向垂直的方向,所述突出部从冷却通道内壁延伸的最大距离小于在该延伸方向延伸到相对的内壁的距离的一半,至少2个相邻的所述突出部的形状和/或突出长度不同。
  19. 根据权利要求15所述的用于粒子线产生装置的靶材,其特征在于,所述突出部至少部分设置在与作用层或基座层接触的冷却通道内壁。
  20. 根据权利要求13所述的用于粒子线产生装置的靶材,其特征在于,所述冷却通道内设置至少一个第二壁将所述冷却通道分为至少2个相互独立的子通道,至少2个相邻子通道中冷却介质流通方向不同。
  21. 根据权利要求13所述的用于粒子线产生装置的靶材,其特征在于,所述散热层包括由多个管并排组成的管状件,所述管的内部至少部分形成所述冷却通道,所述管是通过增材制造形成的,所述冷却通道的内壁为圆柱面,所述突出部为从所述冷却通道的内壁沿与冷却介质流通方向垂直的方向突出并呈直线形沿冷却介质流通方向延伸的条形件,所述突出部为多个并沿所述冷却通道内壁周向平均分布。
  22. 一种用于中子线产生装置的靶材,其特征在于,所述靶材包括作用层和基座层,所述作用层能够与入射粒子线作用产生所述中子线,所述基座层既能抑制由入射粒子线引起的发泡又能支撑所述作用层,所述作用层包括第一作用层和第二作用层,入射粒子线沿入射方向依次穿过所述第一作用层和第二作用层。
  23. 如权利要求22所述的用于中子线产生装置的靶材,其特征在于,所述第一、第二作用层的材料均为能够与所述入射粒子线发生核反应的材料,所述第一、第二作用层的材料不同。
  24. 如权利要求23所述的用于中子线产生装置的靶材,其特征在于,所述第一作用层的材料为Be或其合金,所述第二作用层的材料为Li或其合金,所述入射粒子线为质子线,所述第一、第二作用层分别与所述质子线发生9Be(p,n)9B及7Li(p,n)7Be核反应来产生中子,所述质子线的能量为2.5MeV-5MeV,中子产率为7.31E-05n/proton-5.61E-04n/proton。
  25. 如权利要求22所述的用于中子线产生装置的靶材,其特征在于,所述第一作用层的厚度为5μm-25μm,所述第二作用层的厚度为80μm-240μm。
  26. 如权利要求22所述的用于中子线产生装置的靶材,其特征在于,所述第二作用层与基座层通过浇注、蒸镀或溅射工艺连接,所述第一作用层通过HIP处理将基座层封闭形成一个容腔和/或将第二作用层包围。
  27. 如权利要求22所述的用于中子线产生装置的靶材,其特征在于,所述第二作用层和基座层之间设置附着层,所述附着层的材料包括Cu、Al、Mg或Zn中的至少一种。
  28. 如权利要求22所述的用于中子线产生装置的靶材,其特征在于,所述靶材还包括散热层,所述散热层包括冷却通道,所述冷却通道是通过增材制造形成的。
  29. 如权利要求28所述的用于中子线产生装置的靶材,其特征在于,所述基座层由抑制发泡的材料制成,所述散热层由导热材料或既能导热又能抑制发泡的材料制成,抑制发泡的材料或既能导热又能抑制发泡的材料包括Fe、Ta或V中的至少一种,导热材料包括Cu、Fe、Al中的至少一种,所述散热层和所述基座层通过HIP工艺连接。
  30. 如权利要求28所述的用于中子线产生装置的靶材,其特征在于,所述散热层和基座层至少部分为相同的材料或是一体的,所述相同的材料为Ta或Ta-W合金。
  31. 一种中子捕获治疗系统,其特征在于,包括中子产生装置和射束整形体,所述中子产生装置包括加速器和靶材,所述加速器加速产生的带电粒子线与所述靶材作用产生中子线,所述射束整形体包括反射体、缓速体、热中子吸收体、辐射屏蔽体和射束出口,所述缓速体将自所述靶材产生的中子减速至超热中子能区,所述反射体包围所述缓速体并将偏离的中子导回至所述缓速体以提高超热中子射束强度,所述热中子吸收体用于吸收热中子以避免治疗时与浅层正常组织造成过多剂量,所述辐射屏蔽体围绕所述射束出口设置在所述反射体后部用于屏蔽渗漏的中子和光子以减少非照射区的正常组织剂量,所述靶材如权利要求22-30之一所述。
PCT/CN2017/092742 2016-12-23 2017-07-13 中子捕获治疗系统及用于粒子线产生装置的靶材 WO2018113274A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019533000A JP2020513885A (ja) 2016-12-23 2017-07-13 中性子捕捉治療システムおよび粒子線発生装置用のターゲット
RU2019121849A RU2727576C1 (ru) 2016-12-23 2017-07-13 Система нейтронозахватной терапии и мишень для устройства генерации пучка частиц
EP17885357.8A EP3530316B1 (en) 2016-12-23 2017-07-13 Neutron capturing therapy system and target material for use in particle beam generating device
EP20197643.8A EP3777976A1 (en) 2016-12-23 2017-07-13 Neutron capture therapy system and target for particle beam generating device
US16/412,762 US20190262632A1 (en) 2016-12-23 2019-05-15 Neutron capture therapy system and target for particle beam generating device
US16/513,956 US11224766B2 (en) 2016-12-23 2019-07-17 Neutron capture therapy system and target for particle beam generating device
US17/539,358 US20220088416A1 (en) 2016-12-23 2021-12-01 Neutron capture therapy system and target for particle beam generating device
JP2022038857A JP7332736B2 (ja) 2016-12-23 2022-03-14 中性子捕捉治療システムおよび粒子線発生装置用のターゲット
JP2023130566A JP2023162248A (ja) 2016-12-23 2023-08-10 中性子捕捉治療システムおよび粒子線発生装置用のターゲット

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
CN201611213272 2016-12-23
CN201611213272.5 2016-12-23
CN201621425423.9 2016-12-23
CN201621425423 2016-12-23
CN201710384698.5 2017-05-26
CN201720600026.9 2017-05-26
CN201720600916.X 2017-05-26
CN201720599511.9 2017-05-26
CN201710389061.5A CN108934120B (zh) 2017-05-26 2017-05-26 用于中子线产生装置的靶材及中子捕获治疗系统
CN201720599511.9U CN207640822U (zh) 2017-05-26 2017-05-26 中子捕获治疗系统及用于粒子线产生装置的靶材
CN201710389070.4A CN108926784B (zh) 2017-05-26 2017-05-26 中子捕获治疗系统及用于粒子线产生装置的靶材
CN201720600916.XU CN207640824U (zh) 2017-05-26 2017-05-26 中子捕获治疗系统及用于粒子线产生装置的靶材
CN201710389061.5 2017-05-26
CN201710383772.1 2017-05-26
CN201720599639.5 2017-05-26
CN201720599639.5U CN207640823U (zh) 2017-05-26 2017-05-26 用于中子线产生装置的靶材及中子捕获治疗系统
CN201720599162.0U CN207640821U (zh) 2017-05-26 2017-05-26 中子捕获治疗系统及用于粒子线产生装置的靶材
CN201710383772.1A CN108926781B (zh) 2017-05-26 2017-05-26 中子捕获治疗系统及用于粒子线产生装置的靶材
CN201710384408.7A CN108926782B (zh) 2017-05-26 2017-05-26 用于中子线产生装置的靶材及中子捕获治疗系统
CN201720599162.0 2017-05-26
CN201710384408.7 2017-05-26
CN201720600026.9U CN206835439U (zh) 2017-05-26 2017-05-26 用于中子线产生装置的靶材及中子捕获治疗系统
CN201710384698.5A CN108926783B (zh) 2017-05-26 2017-05-26 中子捕获治疗系统及用于粒子线产生装置的靶材
CN201710389070.4 2017-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/412,762 Continuation US20190262632A1 (en) 2016-12-23 2019-05-15 Neutron capture therapy system and target for particle beam generating device

Publications (1)

Publication Number Publication Date
WO2018113274A1 true WO2018113274A1 (zh) 2018-06-28

Family

ID=62624327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092742 WO2018113274A1 (zh) 2016-12-23 2017-07-13 中子捕获治疗系统及用于粒子线产生装置的靶材

Country Status (5)

Country Link
US (3) US20190262632A1 (zh)
EP (2) EP3777976A1 (zh)
JP (3) JP2020513885A (zh)
RU (1) RU2727576C1 (zh)
WO (1) WO2018113274A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108969913A (zh) * 2018-09-05 2018-12-11 东莞东阳光高能医疗设备有限公司 一种中子射束准直器
EP3845273A4 (en) * 2018-08-31 2021-10-27 Neuboron Therapy System Ltd. NEUTRON CAPTURE TREATMENT SYSTEM
CN113616936A (zh) * 2021-08-02 2021-11-09 上海联影医疗科技股份有限公司 放疗靶结构及放射治疗设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037624A1 (zh) 2017-08-24 2019-02-28 南京中硼联康医疗科技有限公司 中子捕获治疗系统
CN111821580A (zh) * 2019-04-17 2020-10-27 中硼(厦门)医疗器械有限公司 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体
US11517769B2 (en) * 2019-07-10 2022-12-06 Ricoh Company, Ltd. Neutron beam transmission adjusting device comprising a neutron beam transmission unit including a neutron reactant, method for producing neutron beam transmission adjusting device, and neutron beam adjusting method
CN111588998A (zh) * 2020-05-19 2020-08-28 散裂中子源科学中心 一种便于遥控维护的集成式中子靶体结构
CN112420235A (zh) * 2020-10-26 2021-02-26 南京即衡科技发展有限公司 一种可组合可控Am-Be中子源装置
JP2022150626A (ja) * 2021-03-26 2022-10-07 住友重機械工業株式会社 治療準備装置、及び治療設備
JP2024513390A (ja) * 2021-04-02 2024-03-25 ティーエーイー テクノロジーズ, インコーポレイテッド 目的材料の保護のための材料および構成
KR20240138835A (ko) * 2023-03-13 2024-09-20 주식회사 다원메닥스 A-bnct용 고 열속 제거를 위한 최적의 베릴륨 표적 내부 냉각구조

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862004A (en) * 1987-10-09 1989-08-29 Hamamatsu Photonics Kabushiki Kaisha Radiation dose measuring method and apparatus with nuclide discrimination function
JP2006047115A (ja) * 2004-08-04 2006-02-16 Mitsubishi Heavy Ind Ltd 中性子発生装置及びターゲット、並びに中性子照射システム
CN104372191A (zh) * 2014-03-26 2015-02-25 安泰科技股份有限公司 大尺寸B4C-Al中子吸收板及其制备方法
CN105120952A (zh) * 2013-03-29 2015-12-02 住友重机械工业株式会社 中子捕捉疗法装置
CN205460520U (zh) * 2016-01-08 2016-08-17 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076990A (en) * 1975-10-08 1978-02-28 The Trustees Of The University Of Pennsylvania Tube target for fusion neutron generator
US6906338B2 (en) * 2000-08-09 2005-06-14 The Regents Of The University Of California Laser driven ion accelerator
JP3725114B2 (ja) 2002-10-18 2005-12-07 川崎重工業株式会社 核融合炉用の波形形状冷却パネル
JP2006196353A (ja) * 2005-01-14 2006-07-27 Hitachi Ltd 加速器中性子源及びこれを用いたホウ素中性子捕捉療法システム
JP4596392B2 (ja) * 2006-03-08 2010-12-08 三菱重工業株式会社 中性子発生装置及び中性子照射システム
ES2421324T3 (es) * 2006-12-11 2013-08-30 Mallinckrodt Llc Cuerpos diana y sus usos en la producción de materiales de radioisótopo
US20110158369A1 (en) * 2007-02-24 2011-06-30 Delbert John Larson Cellular, electron cooled storage ring system and method for fusion power generation
JP2009047432A (ja) * 2007-08-13 2009-03-05 Kyoto Univ 中性子発生用ターゲット装置及び中性子発生装置
JP4739358B2 (ja) * 2008-02-18 2011-08-03 住友重機械工業株式会社 ターゲット装置
US20130279638A1 (en) * 2010-11-29 2013-10-24 Inter-University Research Insitute Corporation High Energy Accelerator Research Composite type target, neutron generating method in use thereof and neutron generating apparatus in use thereof
JP5888760B2 (ja) * 2012-03-06 2016-03-22 国立研究開発法人理化学研究所 中性子発生源および当該中性子発生源の製造方法、中性子発生装置
JP6113453B2 (ja) * 2012-07-13 2017-04-12 株式会社八神製作所 中性子発生装置用のターゲットとその製造方法
CN107617169B (zh) * 2014-12-08 2020-02-28 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
CN204319540U (zh) * 2014-12-08 2015-05-13 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
CN204319539U (zh) * 2014-12-08 2015-05-13 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
EP3133905B1 (en) * 2014-12-08 2018-01-17 Neuboron Medtech Ltd. A beam shaping assembly for neutron capture therapy
CN108325092B (zh) * 2014-12-08 2020-08-07 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
JP6713653B2 (ja) * 2015-01-23 2020-06-24 国立大学法人 筑波大学 中性子発生用ターゲット、中性子発生装置、中性子発生用ターゲットの製造方法及び中性子発生方法
EP3570294B1 (en) * 2015-05-04 2020-12-23 Neuboron Medtech Ltd. Beam shaping body for neutron capture therapy
CN204798657U (zh) * 2015-05-04 2015-11-25 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
WO2016179381A1 (en) * 2015-05-06 2016-11-10 Neutron Therapeuutics Inc. Neutron target for boron neutron capture therapy
CN204667894U (zh) * 2015-05-12 2015-09-23 南京中硼联康医疗科技有限公司 用于屏蔽放射性射线的屏蔽体
RU2695296C1 (ru) 2015-09-28 2019-07-22 Неуборон Медтек Лтд. Система диагностики пучка для системы нейтронзахватной терапии
RU2717363C1 (ru) * 2015-11-26 2020-03-23 Нойборон Медтех Лтд. Блок формирования пучка для нейтрон-захватной терапии
WO2017118291A1 (zh) 2016-01-08 2017-07-13 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862004A (en) * 1987-10-09 1989-08-29 Hamamatsu Photonics Kabushiki Kaisha Radiation dose measuring method and apparatus with nuclide discrimination function
JP2006047115A (ja) * 2004-08-04 2006-02-16 Mitsubishi Heavy Ind Ltd 中性子発生装置及びターゲット、並びに中性子照射システム
CN105120952A (zh) * 2013-03-29 2015-12-02 住友重机械工业株式会社 中子捕捉疗法装置
CN104372191A (zh) * 2014-03-26 2015-02-25 安泰科技股份有限公司 大尺寸B4C-Al中子吸收板及其制备方法
CN205460520U (zh) * 2016-01-08 2016-08-17 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3845273A4 (en) * 2018-08-31 2021-10-27 Neuboron Therapy System Ltd. NEUTRON CAPTURE TREATMENT SYSTEM
EP4082610A1 (en) * 2018-08-31 2022-11-02 Neuboron Therapy System Ltd. Neutron capture therapy system
CN108969913A (zh) * 2018-09-05 2018-12-11 东莞东阳光高能医疗设备有限公司 一种中子射束准直器
CN108969913B (zh) * 2018-09-05 2024-03-08 国科中子医疗科技有限公司 一种中子射束准直器
CN113616936A (zh) * 2021-08-02 2021-11-09 上海联影医疗科技股份有限公司 放疗靶结构及放射治疗设备

Also Published As

Publication number Publication date
JP7332736B2 (ja) 2023-08-23
EP3777976A1 (en) 2021-02-17
JP2022091813A (ja) 2022-06-21
EP3530316A1 (en) 2019-08-28
JP2023162248A (ja) 2023-11-08
EP3530316B1 (en) 2020-11-04
US11224766B2 (en) 2022-01-18
JP2020513885A (ja) 2020-05-21
US20190358470A1 (en) 2019-11-28
US20220088416A1 (en) 2022-03-24
RU2727576C1 (ru) 2020-07-22
US20190262632A1 (en) 2019-08-29
EP3530316A4 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2018113274A1 (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
JP7464672B2 (ja) 中性子捕捉療法用のビーム成形体
CN108926784B (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
TWI642410B (zh) Beam shaping body for neutron capture therapy
CN109381802A (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
TWI649012B (zh) Target and neutron capture treatment system for neutron beam generating device
TWI687249B (zh) 中子捕獲治療系統
CN110180095B (zh) 用于中子捕获治疗的射束整形体
WO2017054548A1 (zh) 用于中子捕获治疗的射束整形体
CN207856090U (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
CN112933422A (zh) 用于中子线产生装置的靶材
CN206835439U (zh) 用于中子线产生装置的靶材及中子捕获治疗系统
CN108926781B (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
CN207640821U (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
WO2019029483A1 (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
CN207640822U (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
TWI632933B (zh) Neutron capture therapy system and target for particle beam generating device
CN207640823U (zh) 用于中子线产生装置的靶材及中子捕获治疗系统
CN207640824U (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
CN108926782B (zh) 用于中子线产生装置的靶材及中子捕获治疗系统
CN108934120B (zh) 用于中子线产生装置的靶材及中子捕获治疗系统
CN108926783B (zh) 中子捕获治疗系统及用于粒子线产生装置的靶材
CN108236760B (zh) 中子捕获治疗系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017885357

Country of ref document: EP

Effective date: 20190521

ENP Entry into the national phase

Ref document number: 2019533000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE